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Abstract

Conventional methods apply symmetric prior distributions such as a normal distri-

bution or a Laplace distribution for regression coefficients, which may be suitable for

median regression and exhibit no robustness to outliers. This work develops a quantile

regression on linear panel data model without heterogeneity from a Bayesian point of

view, i.e., upon a location-scale mixture representation of the asymmetric Laplace error

distribution, and provides how the posterior distribution is summarized using Markov
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chain Monte Carlo methods. Applying this approach to the 1970 British Cohort Study

data, it finds that a different maternal health problem has different influence on child’s

worrying status at different quantiles. In addition, applying stochastic search variable

selection for maternal health problems to the 1970 British Cohort Study data, it finds

that maternal nervous breakdown, among the 25 maternal health problems, contributes

most to influence the child’s worrying status.

Key words: British Cohort Study data; Bayesian inference; Quantile regression; Asym-

metric Laplace error distribution; Markov chain Monte Carlo; Stochastic Search Vari-

able selection.
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1 Introduction

In many applications, conventional regression analysis focuses on the mean effect or optimal

forecasting in a mean squared error sense. Since a set of quantiles often provides more

complete description of the response distribution than the mean, or classical mean regression,

quantile regression not only quantifies the relationship between quantiles of the response

distribution and covariates, but also exhibits robustness to outliers and has a wide application

(Buchinsky, 1998; Yu et al., 2003; and Koenker, 2005), for example, to calculate Value at Risk

and expected shortfall for financial risk management (Taylor, 2008), to study the relationship
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between GDP and population (Schnabel and Eilers, 2009), to study the correlation of the

wage and the level of education (Härdle and Song, 2010), and to estimate the volatility of

temperatures (Guo and Härdle , 2012).

For classical quantile regression, the error distribution is often assumed to have the q-th

quantile equal to zero, see, for example, Yu and Stander (2003), and classical quantile regres-

sion parameters depend on asymptotic normality which is assumed unbiased and normal. In

addition, confidence intervals depend on the density function of model error which is diffi-

cult to estimate reliability. On the contrary, credible intervals from Bayesian inference can

avoid these problems, whichever sample sizes. Aside from these, Bayesian inference can take

historical information or expert opinion easily via prior information. Therefore Bayesian

quantile regression is naturally motivated.

Quantile regression is attempted in Bayesian framework in both theoretical and applied

econometric analysis, for example, Walker and Mallick (1999), Kottas and Gelfand (2001),

and Hanson and Johnson (2002) on median regression (one special quantile regression),

and Yu and Moyeed (2001), Tsionas (2003) and Kozumi and Kobayashi (2010) on general

quantile regression with the asymmetric Laplace density for the errors. In addition, on

infinite mixture model, Kottas and Krnjajic (2009) on Bayesian semi-parametric approach,

Yu (2002), Taddy and Kottas (2010) and Yue and Rue (2011) on Bayesian nonparametric

approach. However, few studies have been on Bayesian quantile regression for panel data

(Yuan and Yin, 2010; Reich et al., 2010).

This paper explores a Bayesian quantile regression for linear panel data without het-

erogeneity. For posterior inference, upon a location-scale mixture representation of the

asymmetric Laplace error distribution, we propose a Gibbs sampling algorithm and develop

Markov chain Monte Carlo (MCMC) methods (see, e.g., Chib 2001; Liu 2001; Gamerman
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and Lopes 2006). All posterior densities are fully tractable and easy to sample, making

the Gibbs sampler appealing when several quantile regressions are required at one time. In

addition, the proposed Gibbs sampler can be applied for the calculation of the marginal

likelihood and the variable selection.

For variable selection, several criteria have been proposed (see, for example, Zwick and

Velicer (1986)), though no agreement has emerged in the literature on optimal criterion.

Aside from the classical literature, Bayesian approach focuses on an unknown number of

variables (Frühwirth-Schnatter and Lopes (2009), Conti, et al. (2014)). Variable selection in

modeling with Bayesian quantile regression is difficult due to the computational efficiency.

This work applies stochastic search variable selection based on Markov chain Monte Carlo

method.

We apply Bayesian approach to the 1970 British Cohort Study (BCS) to analyze the

influence of maternal health problems on child’s worrying status. This is the first instance,

as we know, in which the influences of the maternal health problems are estimated to ac-

count for child’s worrying status. We find that the different maternal health problems have

different influence on child’s worrying status at different quantiles, moreover, maternal ner-

vous breakdown, among the 25 maternal health problems, contributes most to influence the

child’s worrying status. Indeed Bayesian approach may be applied to empirical study of op-

timal taxation under prospect theory, or predictive asset return, see, for example, Kanbur,

pirttila and Tuomala (2008) and Dai (2011) for optimal taxation under prospect theory, and

Campbell and Yogo (2006) and Dai, Li and Wang (2013) for predictive asset return.

This paper joins the literature in health economics and personality psychology. While

it is established in psychology on their importance (see, for example, Roberts et al.(2006,

2007), Hampson and Friedman (2008)), and in economics for the influence of personality

4



traits on health (Kaestner and Callison, 2011; Conti et al., 2014) and health-related behav-

iors (Heckman et al., 2006; Cutler and Lleras-Muney, 2010; Conti, et al., 2014), it is less

recognized in economics on the influence of maternal health problems on child’s worrying

status.

Using principal component analysis, a few economic result from the BCS data, for ex-

ample, psychological and behavioral development influences education and labor market

outcomes (Feinstein, 2000), intergenerational income persistence rises across the 1958 and

the 1970 cohorts (Blanden et al., 2007), and the standardized raw scores from the locus

of control and self-esteem scales significantly predict self-reported poor health at age 30

(Murasko, 2007). Other data may be explored, see, for example, Dai and Heckman (2013).

This work goes beyond those studies, since Bayesian inference is explored to examine the

influence of maternal health problems on child’s worrying status.

The remain of the paper is structured as follows. In the next section, we describe the

BCS data. Section 3 outlines the basic model, while Section 4 develops MCMC method for

quantile regression model and explains how the MCMC output may be used to compute the

marginal likelihoods and for variable selection. Empirical implementation and results for our

Bayesian approach are shown in Section 5. Section 6 concludes.

2 Data: The British Cohort Study

The data, we use in this work, are from the BCS, a survey of all babies born (alive or dead)

after the 24-th week of gestation from 0.01 hours on Sunday, 5th April to 24.00 hours on

Saturday, 11 April, 1970 in places including England, Scotland, Wales and Northern Ireland.

Seven surveys, in detail, respectively in 1975, 1980, 1986, 1996, 2000, 2004 and 2008, are
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followed up so far to trace all members of the birth cohort. In this work, information on

background characteristics is drawn from the survey in 1975 and 1980 on maternal health

problems, and on child’s worrying status from the survey in 1980 and 1986. Samples from the

family of multiple children are excluded, and samples for the respondents with any missing

information on those background characteristics are also excluded. A sample of size 3,426 is

left for our analysis in this paper.

2.1 Rutter Score Derived Variable for Child

Applying the Rutter Behaviour Scale question ”Often worried?” for child, the Rutter score

derived variable, Y , was derived, where the question was completed by the cohort member’s

parent (usually the mother) in the BCS 1980 and 1986 follow-up data sets. In the BCS, the

Rutter score derived, and thus the response variable, is discrete choice. For our case, the

response results are 1 (Does not worried), 2 (Somewhat worried), and 3 (Certainly worried).

2.2 Mother Malaise Score Derived Variables

Applying the Malaise Inventory (”How you feel”) completed by the cohort member’s parent

(usually the mother), the mother malaise score derived variables were derived on behalf of

the cohort member and included in the BCS 1975 and 1980 follow-up data sets. These 25

variables were named in the Mother Malaise data sets as follows:

(1) Do you often have backache? (X1)

(2) Do you feel tired most of the time? (X2)

(3) Do you often feel depressed? (X3)

(4) Do you often have bad headaches? (X4)
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(5) Do you often get worried about things? (X5)

(6) Do you usually have great difficulty in falling or staying asleep? (X6)

(7) Do you usually wake unnecessarily early in the morning? (X7)

(8) Do you wear yourself out worrying about your health? (X8)

(9) Do you often get into a violent rage? (X9)

(10) Do people annoy and irritate you? (X10)

(11) Have you at times had a twitching of the face, head or shoulders? (X11)

(12) Do you suddenly become scared for no good reason? (X12)

(13) Are you scared to be alone when there are not friends near you? (X13)

(14) Are you easily upset or irritated? (X14)

(15) Are you frightened of going out alone or of meeting people? (X15)

(16) Are you constantly keyed up and jittery? (X16)

(17) Do you suffer from indigestion? (X17)

(18) Do you suffer from an upset stomach? (X18)

(19) Is your appetite poor? (X19)

(20) Does every little thing get on your nerves and wear you out? (X20)

(21) Does your heart often race like mad? (X21)

(22) Do you often have bad pain in eyes? (X22)

(23) Are you troubled with rheumatism or fibrosis? (X23)

(24) Have you ever had a nervous breakdown? (X24)

(25) Do you have other health problems? (X25)
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3 Potential Outcome Model

Let Yit+1 be the Rutter score derived variable for the i-th cohort member surveyed at the

(t+ 1)-th sweep, and X1,it, X2,it,..., X25,it the mother malaise score derived variables for the

i-th cohort member’s parent (usually the mother) surveyed at the t-th sweep. We introduce

the linear panel data model without heterogeneity as follows.

Yit+1 = β0 +
25∑
j=1

βjXj,it + εit. (1)

for i = 1, 2, ..., 3426, and t = 1, 2, where β. is unknown parameter, and εit is is an idiosyncratic

error term assumed to be independent of the Rutter score derived variable and mother

malaise score derived variables.

4 Bayesian Inference and Variable Selection

In this study, we consider quantile regression to estimate β from

min
3426∑
i=1

2∑
t=1

ρq(Yit −
25∑
j=1

βjXj,it − β0), (2)

where ρq(.) in (2) is the check function defined by

ρq(u) ≡ {q − I(u < 0)} · u, (3)

for 0 < q < 1, where I(.) is the indicator function. Instead of classical approach, a Bayesian

approach and MCMC algorithm will be developed for posterior inference.
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4.1 Asymmetric Laplace Distribution

For Bayesian inference of (2), an assumption on the data distribution is required to construct

a likelihood function. The error term εit is assumed, following Yu and Moyeed (2001), to

follow the asymmetric Laplace distribution (ALD) with density

fAL(εit) =
q(1− q)

σ
exp{−ρq(

εit
σ

)}, (4)

where σ is the scale parameter. For the properties of this distribution, see, for example, Yu

and Moyeed (2001), and Yu and Zhang (2005). Note that the q-th quantile of εit is zero,

E(εit) = 1−2q
q(1−q) , and Var(εit) = 1−2q+2q2

q2(1−q)2 .

To develop MCMC algorithm for the quantile regression, a location scale mixture repre-

sentation is applied, i.e.,

εit = θvit + τ
√
σvituit, (5)

where θ = 1−2q
q(1−q) , τ

2 = 2
q(1−q) , vit ∼ ε(σ) and uit ∼ N(0, 1) are mutually independent random

variables, and ε(σ) is the exponential distribution with mean σ (Kozumi and Kobayashi,

2010). Thus the panel data model without heterogeneity can be represented as follows.

Yit = β0 +
25∑
j=1

βjXj,it + θvit + τ
√
σvituit, (6)

where vit ∼ ε(σ) and uit ∼ N(0, 1) are mutually independent random variables.

To begin posterior inference, some prior distributions are supposed as follows: (1) β ∼

N(β0, B0), where β ≡ (β0, β1, ..., β25), and β0 and B0 are specified parameters; (2) σ ∼

IG(n0

2
, s0

2
), where IG(a, b) is the inverse Gamma distribution with the parameters a and b,
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and n0 and s0 are specified parameters. These priors are chosen for computational reasons,

but are flexible enough when analyzing BCS to represent various prior beliefs about the

parameters. Next to construct a MCMC algorithm with those prior distributions.

4.2 Markov Chain Monte Carlo Algorithm

A MCMC algorithm (see, for example, Chib (2001), Liu (2001) and Gamerman and Lopes

(2006)) for the quantile regression is constructed by sampling {vit}, β, and σ from their

full conditional distributions applying the data augmentation techniques as Chib (1992). A

tractable and efficient Gibbs sampler is proposed for general i = 1, 2, ..., N and t = 1, T as

follows. In the empirical part, N = 3426, and T = 2.

1. Sample vit (i = 1, 2, ..., N ; t = 1, T ) from GIG(1
2
, ĉ2it, d̂

2
it), where

ĉ2it =
(Yit+1 − β>Xit)

2

τ 2σ
, (7)

d̂2it =
θ2

τ 2σ
+

2

σ
, (8)

and GIG(ν, c, d) is the generalized inverse Gaussian distribution with the probability density

function

fGIG(x|ν, c, d) =
(d
c
)ν

2Kν(cd)
xν−1 exp{−1

2
(c2x−1 + d2x)}, (9)

for x > 0, −∞ < ν <∞, and c, d > 0, where Kν(.) is a modified Bessel function of the third

kind (Barndorff-Nielsen and Shephard, 2001).
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2. Sample β from N(β̂, B̂), where

β̂ = B̂{
N∑
i=1

T∑
t=1

(Yit+1 − θvit)Xit

τ 2σvit
+B−10 β0}, (10)

B̂−1 =
N∑
i=1

T∑
t=1

XitX
>
it

τ 2σvit
+B−10 . (11)

3. Sample σ from IG( n̂
2
, ŝ
2
), where

n̂ = 3NT + n0, (12)

ŝ =
N∑
i=1

T∑
t=1

(Yit+1 − β>Xit − θvit)2

τ 2vit
+ 2

N∑
i=1

T∑
t=1

vit + s0. (13)

The MCMC algorithm for the quantile regression model is constructed applying the data

augmentation technique as Chib (1992). From (5), (6) and the assumptions for some prior

distributions, a tractable and efficient Gibbs sampler can be proposed as above. In addition,

the proposed Gibbs sampler sample vit from the generalized inverse Gaussian distribution.

Efficient algorithms to simulate from the generalized inverse Gaussian distribution exist, see,

for example, Dagpunar (1989) and Hörman et al. (2004), but our proposed Gibbs sampler

is implemented easily without any further need for tuning. Similar to Alhamzawi and Yu

(2013), all those similar results and our assumptions can, applying Ghosh et al.(2006) and

Sriram et al.(2011), guarantee the rationality of the MCMC algorithm mentioned above.

4.3 Marginal Likelihood

The marginal likelihood, m(Y ), of the panel data model is defined as

m(Y ) =

∫
f(Y |η)π(η)dη, (14)
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where f(Y |η) is the sampling density of the data {Y } and π(η) is the prior of the model

specific parameter η.

The marginal likelihood, m(Y ), can be reformulated as

m(Y ) =
f(Y |η)π(η)

π(η|Y )
, (15)

from which Chib (1995) suggests to estimate the marginal likelihood as follows.

logm(Y ) = log f(Y |η∗) + log π(η∗)− log π(η∗|Y ), (16)

where η∗ is a particular high density point, typically the posterior mean or mode.

For η ≡ {β, σ} and Y ≡ {Yit} in the panel data model, the posterior ordinate π(η∗|Y ) is

estimated by the following decomposition.

π(η∗|Y ) = π(σ∗|Y )π(β∗|σ∗, Y ), (17)

marginalized over the latent variable v ≡ {vit}, since the ordinates π(σ∗|Y ), and π(β∗|σ∗, Y )

can be estimated according to Chib (1995). The likelihood ordinate, f(Y |η∗), can be esti-

mated by Chib method.

4.4 Variable Selection

To perform the variable selection for the quantile regression, an indicator vector is defined

as follows. γ ≡ (γ0, γ1, ..., γ25), where γ0 = 1, and γi = 1 for i ≥ 1 if βi is included in the

model (i.e., βi 6= 0), and γi = 0 for i ≥ 1 if βi is excluded in the model (i.e., βi = 0).
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Given the indicator γ, kγ denote the size of the γ-th subset model, kγ = γ>1, and βkγ

and Xkγ ,it are kγ × 1 vectors corresponding to all the components of β and Xit such that the

corresponding γi’s are equal to 1. Given γ, the following prior assumptions are supposed.

1. βkγ |σ, ν ∼ N(β0, 2σ(X>kγV Xkγ )−1), where p(σ) ∝ σ−1 and each νi ∼ ε( σ
p(1−p)).

2. A prior distribution over model space γ is given by p(γ|π) ∝ πkγ (1− π)k−kγ .

3. π ∼ beta(a0, b0).

Given γ and the prior assumptions above, there are several ways to develop, for examples,

(a) a tractable and efficient Gibbs sampler can be proposed applying the data augmenta-

tion technique as Chib (1992), similarly to section 4.2, then compare the posterior model

probabilities for different γ; (b) following Smith and Kohn (1996), Kuo and Mallick (1998),

Krishna et al. (2008), Zou and Yuan (2008), Wu and Liu (2009), Alhamzawi and Yu (2013),

or Yu et. al. (2013), an efficient Gibbs sampler can be proposed for computing posterior

model probabilities in quantile regression, which we will follow next.

Under the prior assumptions, a MCMC algorithm can be developed to compute posterior

model probabilities in the quantile regression by running the Gibbs sampler, and the marginal

likelihood of Y under model γ can be obtained by integrating out βkγ and σ,

p(Y |γ, ν,X) ∝
∫
p(σ)dσ

∫
p(Y |βkγ , γ, σ, ν,X)p(βkγ |γ, σ, ν)p(ν|σ)dβkγ . (18)

Integrating out βkγ and σ as a normal integral and an inverse gamma integral,

Y |γ, ν,X ∼ t(2n){Xkγβ0 + ξν,
1

2
(V + V Xkγ (X>kγV Xkγ )−1X>kγV )}. (19)

Then, the Gibbs sampler can be implemented (Smith and Kohn, 1996; Krishna et al., 2008)
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to generate samples of

p(Y |γ, ν,X) ∝ p(Y, γ, ν,X)p(γ|π). (20)

5 Real Data Application

In this section, the Bayesian quantile regression is applied to analysis the British Cohort

study data. This data set was extensively investigated for many sorts of topics, but this paper

examines the influence of maternal health problems on child’s worrying status. There are

3426 observations, 25 predictor variables, and one response variable. We assume the quantile

regression model between the response variable and the 25 covariates, plus an intercept.

In Table 1, upon the Bayesian quantile regression applying the MCMC package in R (R

Development Core Team, 2011), the model is evaluated at three different quantiles 0.05, 0.50

and 0.95. The maternal health problems have different influence on child’s worrying status

at different quantiles, through MCMC quantile regression iteration 50001 of 51000, in detail,

βi have different estimates at different quantiles for each i = 0, ..., 25. β24 and β25 have the

biggest absolute value for the three quantiles, except for β0.

Upon the Bayesian quantile regression applying the MCMC package in R (R Development

Core Team, 2011), iterations = 1001 : 50991, thinning interval = 10, number of chains

= 1, sample size per chain = 5000. Table 2 summarizes the empirical mean and standard

deviation for each variable Xi (i = 1, ..., 25), and standard error of the mean for the model

at the quantile 0.05. In this case, X24 has the biggest standard deviation, and X25 has

the next biggest standard deviation. Table 3 summarizes the quantiles for each variable Xi

(i = 1, ..., 25).

Tables 4-5 summarizes the same contents for the quantile 0.50, and Tables 6-7 for the
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quantile 0.95.

Applying the stochastic search variable selection (R Development Core Team, 2011),

quantreg iteration 50001 of 51000, the top models and the posterior model probabilities are

summarized in Table 8-10 for the different quantiles 0.05, 0.50, and 0.95. From the posterior

model probabilities applying the stochastic search variable selection, SSVSquantreg, the top

models picked have significantly different posterior model probabilities, and, in particular,

the maternal nervous breakdown, X24, and the other health problems, X25, are the first two

important to influence child’s worrying status. This indicates that the maternal nervous

breakdown and the other health problems need be made enough attention to intervene early

for the influence on child’s worrying status.

6 Conclusions

In this paper, we developed a Bayesian quantile regression for linear panel data model without

heterogeneity, in particular, upon a location-scale mixture representation of the asymmetric

Laplace error distribution, this paper provides how the posterior distribution can be sampled

and summarized by a MCMC method.

In addition, the influence of maternal health problems on child’s worrying status was

explored by this method to the 1970 BCS data, and we find that different maternal health

problem has different influence on child’s worrying status at different quantiles, also that

maternal nervous breakdown and the other maternal health problem, by our method, are

the first two important to influence the child’s worrying status.

Our findings have high policy relevance in terms of the importance of the intervention of

maternal nervous breakdown early for the influence on child’s worrying status.
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q=0.05 q=0.50 q=0.95
β0 1126.80 2909.93 6219.29
β1 5.13 0.56 0.95
β2 -3.30 0.05 -8.85
β3 0.23 -0.41 -0.30
β4 -1.11 0.25 -3.58
β5 -4.88 -0.09 0.93
β6 -0.10 -0.20 -2.80
β7 2.20 -0.55 -3.76
β8 -1.81 2.09 1.86
β9 -0.41 -1.19 -5.94
β10 2.22 0.28 0.06
β11 -14.86 -3.09 -7.68
β12 -13.23 -0.79 -2.01
β13 13.86 0.79 6.21
β14 0.96 0.27 5.51
β15 6.42 1.49 -6.35
β16 2.87 0.41 -5.71
β17 2.75 0.54 3.07
β18 -0.85 -0.38 3.42
β19 -3.20 0.32 2.77
β20 6.24 -1.07 1.86
β21 4.43 0.74 3.21
β22 1.31 0.50 0.54
β23 -3.54 0.10 -5.09
β24 -194.69 63.94 317.94
β25 79.96 -40.22 -289.67

Table 1: β for the quantile q=0.05, 0.50, 0.95 (all figures e-3 units)
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Mean SD Naive SE Time-series SE
(Intercept) 80960.000 71879.300 1017.000 1106.000

X1 261.900 213.400 3.018 3.491
X2 -149.800 237.600 3.360 3.822
X3 185.400 340.400 4.814 5.271
X4 -75.700 245.800 3.476 3.877
X5 -254.900 257.300 3.638 4.211
X6 -157.500 267.900 3.789 3.952
X7 163.800 273.500 3.868 4.166
X8 -186.800 461.000 6.519 7.460
X9 -6554.000 335.300 4.742 5.084
X10 1507.000 290.300 4.106 4.513
X11 -313.300 557.300 7.881 8.479
X12 -329.200 533.100 7.539 8.646
X13 38.260 472.600 6.684 7.343
X14 -4.005 288.400 4.079 4.303
X15 237.800 352.400 4.984 5.331
X16 49.760 423.700 5.992 6.617
X17 -163.300 379.400 5.365 6.031
X18 4.134 425.900 6.023 6.681
X19 188.400 383.400 5.423 5.706
X20 200.100 429.500 6.074 6.698
X21 511.500 445.400 6.298 7.015
X22 -145.200 456.700 6.459 6.873
X23 50.030 266.600 3.771 3.990
X24 8781.000 29472.100 416.800 449.800
X25 894.100 15204.000 215.000 225.300

Table 2: Empirical mean and standard deviation for each variable, and standard error of the
mean for the quantile q=0.05 (all figures e-3 units)
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2.5% 25% 50% 75% 97.5%
X1 -1.34700 1.13700 2.54300 3.98620 6.93500
X2 -6.33800 -3.02200 -1.45200 0.12610 3.02100
X3 -4.75700 -0.49200 1.84600 4.15660 8.71300
X4 -5.81500 -2.35300 -0.73510 0.89110 3.99100
X5 -7.70100 -4.26700 -2.55100 -0.78220 2.43500
X6 -6.94900 -3.34100 -1.56900 0.25070 3.75800
X7 -3.83500 -0.13280 1.64700 3.46200 7.04700
X8 -10.26800 -5.08700 -2.13500 1.18830 7.48600
X9 -7.25500 -2.92700 -0.70160 1.57420 6.00400
X10 -5.59700 -1.81500 0.23440 2.10240 5.73600
X11 -13.57600 -6.94100 -3.33700 0.59920 8.25000
X12 -13.38400 -6.96400 -3.31500 0.28870 7.30000
X13 -8.44000 -2.85800 0.24870 3.44650 10.18400
X14 -5.73800 -1.93200 -0.06721 1.90910 5.67600
X15 -3.93900 -0.09158 2.16200 4.58360 9.75500
X16 -7.83700 -2.42900 0.44340 3.29010 8.77200
X17 -9.35300 -4.09600 -1.53500 0.91150 5.69400
X18 -8.17500 -2.86500 -0.01683 2.89110 8.58500
X19 -5.68900 -0.60500 1.91100 4.39410 9.39800
X20 -6.46200 -0.87610 1.97500 4.88770 10.38500
X21 -3.12100 2.08200 4.94800 7.97480 14.39400
X22 -10.27300 -4.54000 -1.46500 1.52430 7.74900
X23 -4.87600 -1.25900 0.54290 2.24970 5.87200
X24 -475.64400 -100.40000 74.99000 264.89090 698.47500
X25 -292.12600 -91.20000 7.40400 108.54190 310.32500

Table 3: Quantiles for each variable when the quantile q=0.05 (all figures e-3 units)
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Mean SD Naive SE Time-series SE
(Intercept) 29510.00000 1917.03100 27.11000 27.11000

X1 0.66020 4.70700 0.06656 0.06889
X2 0.42350 4.45500 0.06300 0.06300
X3 2.91500 7.11300 0.10060 0.10060
X4 -1.09500 4.83300 0.06835 0.06898
X5 -1.02500 4.17200 0.05899 0.05899
X6 -0.02617 6.51800 0.09217 0.09471
X7 -1.56800 6.86200 0.09704 0.09704
X8 2.16700 12.10100 0.17110 0.17110
X9 -1.96000 7.36500 0.10420 0.10420
X10 -45.60000 5.74800 0.08129 0.08129
X11 -5.42100 13.93300 0.19700 0.19700
X12 -6.85000 12.46000 0.17620 0.17250
X13 2.50500 12.51200 0.17700 0.17700
X14 -1.28200 6.02300 0.08517 0.08517
X15 1.26500 9.32900 0.13190 0.13190
X16 1.27600 9.62700 0.13610 0.13810
X17 -0.27990 7.54500 0.10670 0.10670
X18 2.56600 9.28200 0.13130 0.13130
X19 1.81300 11.09900 0.15700 0.15350
X20 -4.30400 10.52200 0.14880 0.14880
X21 2.18700 11.71400 0.16570 0.16950
X22 3.21700 9.07700 0.12840 0.11980
X23 1.50600 6.13100 0.08671 0.08671
X24 489.50000 832.31100 0.11770 11.77000
X25 -172.10000 360.37700 5.09600 5.09600

Table 4: Empirical mean and standard deviation for each variable, and standard error of the
mean for the quantile q=0.50 (all figures e-4 units)
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2.5% 25% 50% 75% 97.5%
(Intercept) 25445.4100 28376.7290 29630.0000 30743.89190 33003.4600

X1 -8.6250 -2.4480 0.5838 3.6300 10.1710
X2 -8.5120 -2.4630 0.4258 3.2990 9.3610
X3 -10.8590 -1.7350 2.7430 7.4820 17.5130
X4 -11.0650 -4.2140 -1.1040 2.0350 8.1710
X5 -9.8440 -3.6330 -0.8936 1.6830 7.0560
X6 -12.7880 -4.2380 -0.0366 4.2310 12.7960
X7 -15.3660 -5.8820 -1.4430 3.0750 11.6360
X8 -21.2970 -5.3980 2.0210 9.5740 26.5670
X9 -16.9570 -6.6250 -1.9170 3.0030 12.1740
X10 -12.1040 -4.0950 -0.2667 3.3190 10.6870
X11 -33.8050 -14.5850 -4.8640 3.8510 21.6330
X12 -34.0110 -14.3300 -6.1220 1.5110 16.1080
X13 -22.5280 -5.1120 2.2030 9.8840 27.8070
X14 -13.8990 -5.0690 -1.1530 2.6480 10.1430
X15 -16.8440 -4.6930 1.0780 7.0880 20.4560
X16 -17.3840 -5.0210 1.0840 7.3910 20.8090
X17 -15.8120 -4.9400 -0.2400 4.6070 14.7560
X18 -15.0820 -3.3770 2.3710 8.3070 21.7620
X19 -19.4420 -5.2890 1.5910 8.5320 25.0950
X20 -26.2960 -11.1120 -4.0050 2.6800 15.8220
X21 -21.3700 -5.5090 2.1500 9.5880 25.7640
X22 -14.1720 -2.7470 3.0950 9.0090 21.8540
X23 -10.5890 -2.4880 1.3630 5.4100 13.9490
X24 -968.4610 -48.3330 402.5000 955.8340 2391.5660
X25 -927.5700 -399.4760 -156.6000 68.2750 502.9410

Table 5: Quantiles for each variable when the quantile q=0.50 (all figures e-4 units)
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Mean SD Naive SE Time-series SE
(Intercept) 543695.460 89426.900 1265.000 1526.000

X1 -26.660 263.000 3.720 4.410
X2 -315.410 285.900 4.044 5.278
X3 56.890 380.900 5.387 6.252
X4 -272.060 277.500 3.924 4.794
X5 -188.940 267.000 3.776 4.756
X6 209.250 330.700 4.677 5.667
X7 -219.800 321.400 4.546 5.336
X8 114.880 493.900 6.985 7.819
X9 -323.280 383.700 5.426 6.256
X10 -23.130 344.300 4.869 5.876
X11 107.880 587.300 8.305 9.311
X12 -288.510 506.800 7.167 7.714
X13 -182.250 502.800 7.111 7.820
X14 -119.030 348.300 4.925 5.872
X15 -180.200 426.800 6.036 7.686
X16 45.020 449.200 6.353 7.070
X17 46.290 382.700 5.412 6.318
X18 40.220 451.800 6.389 7.439
X19 -283.000 463.500 6.555 7.313
X20 -340.210 457.600 6.472 7.280
X21 5380.900 451.000 6.378 7.051
X22 596.060 476.700 6.742 7.828
X23 -69.550 327.200 4.627 5.620
X24 11901.210 32910.100 465.400 526.100
X25 -17966.530 18277.500 258.500 324.300

Table 6: Empirical mean and standard deviation for each variable, and standard error of the
mean for the quantile q=0.95 (all figures e-5 units)
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2.5% 25% 50% 75% 97.5%
(Intercept) 3783.021000 4822.000000 5411.142900 6011.000000 7310.987000

X1 -5.526000 -2.044000 -0.182300 1.547000 4.797000
X2 -8.516000 -5.127000 -3.207600 -1.260000 2.565000
X3 -7.097000 -2.014000 0.679300 3.184000 7.869000
X4 -8.036000 -4.580000 -2.731600 -79.930000 2.706000
X5 -7.234000 -3.644000 -1.910700 -705.400000 3.189000
X6 -4.811000 -0.073560 2.210700 4.391000 8.246000
X7 -8.675000 -4.335000 -2.161400 0.007187 3.938000
X8 -8.859000 -2.114000 1.186400 4.435000 10.403000
X9 -10.886000 -5.801000 -3.227300 -0.648600 4.243000
X10 -7.099000 -2.538000 -0.192100 2.090000 6.376000
X11 -11.012000 -2.672000 1.329400 5.071000 11.764000
X12 -13.181000 -6.219000 -2.721400 0.581100 6.605000
X13 -12.166000 -5.053000 -1.754700 1.648000 7.593000
X14 -8.183000 -3.535000 -1.173300 1.203000 5.571000
X15 -10.492000 -4.647000 -1.685700 1.147000 6.205000
X16 -8.687000 -2.559000 0.555000 3.577000 8.928000
X17 -7.463000 -2.024000 0.643100 3.161000 7.391000
X18 -8.881000 -2.501000 0.658700 3.484000 8.691000
X19 -12.285000 -5.818000 -2.713800 0.417100 5.652000
X20 -12.563000 -6.433000 -3.268300 -0.329300 5.214000
X21 -4.353000 2.590000 5.707900 8.514000 13.439000
X22 -3.864000 2.872000 6.214400 9.278000 14.778000
X23 -7.358000 -2.825000 -0.538400 1.571000 5.350000
X24 -90.350000 -88.010000 147.516800 49.500000 696.594000
X25 -555.750000 -300.300000 -172.533700 -49.340000 153.451000

Table 7: Quantiles for each variable when the quantile q=0.95 (all figures e-3 units)

Models Probability
(Intercept) 0.9278

X24 0.0502
(Intercept), X24 0.0142
(Intercept), X25 0.0052
(Intercept), X3 0.0004

Table 8: Variable Selection for the quantile q=0.05
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Models Probability
(Intercept) 0.9954

(Intercept), X24 0.0040
(Intercept), X25 0.0004
(Intercept), X2 0.0002

Table 9: Variable Selection for the quantile q=0.50

Models Probability
(Intercept) 0.9274

(Intercept), X24 0.0486
(Intercept), X25 0.0146
(Intercept), X20 0.0012
(Intercept), X2 0.0010

Table 10: Variable Selection for the quantile q=0.95
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Guo, M. and W. Härdle (2012), Simultaneous confidence bands for expectile functions, Adv.

Stat. Anal. 96: 517-542.

Hanson, T. and W. O. Johnson (2002), Modeling regression error with a mixture of Pölya
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