
Distinguishing Sequences for
Distributed Testing: Preset
Distinguishing Sequences

Robert M. Hierons1 and Uraz Cengiz Türker2

1Department of Computer Science, Brunel University London, UK.
2Faculty of Engineering and Natural Sciences, Sabanci University, Turkey

Email: rob.hierons@brunel.ac.uk, urazc@sabanciuniv.edu

There has been long-standing interest in automatically generating test sequences
from a finite state machine (FSM) and more recently this has been extended to
the case where there are multiple physically distributed testers and so we are
testing from a multi-port FSM. This paper explores the problem of generating
a controllable preset distinguishing sequence (PDS) from a multi-port FSM,
motivated by the fact that many FSM-based test generation algorithms use
PDSs. We prove that it is generally undecidable whether a multi-port FSM has
a controllable PDS but provide a class of multi-port FSMs for which the problem
is decidable. We also consider the important case where there is an upper bound
` on the length of PDSs of interest, proving that controllable PDS existence is
PSPACE-hard and in EXPSPACE. In practice the upper bound ` is likely to be a
polynomial in terms of the size of the multi-port FSM and in this case controllable

PDS existence is NP-Complete.

Keywords: Finite state machine, distributed test architecture, preset distinguishing sequence

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Testing is an important part of the software develop-
ment process but is typically manual, expensive, and
error prone. This has led to significant interest in au-
tomating parts of testing, with many approaches being
examples of model-based testing (MBT) in which au-
tomation is based on a model. Many MBT methods
take as input a finite state machine (FSM) (see, for ex-
ample, [1–5]) or input output transition system (IOTS)
(see, for example, [6, 7]). The FSM or IOTS that is used
in test automation might have been produced by a tool
that analyses the semantics of a model, allowing testers
to use more expressive languages such as state charts
and SDL [3, 8, 9]. This paper focuses on the problem of
generating test sequences from an FSM. This problem
was initially described in the seminal paper by Moore
[4] in 1956 and in 1964 Hennie [2] provided the first
FSM-based test generation algorithm that can be auto-
mated.

Traditionally, software testing has been seen as a
process in which the system under test (SUT) and tester
interact synchronously. However, this does not reflect
how many systems interact with their environment and,
in particular, a distributed system might interact with
its environment at a number of physically distributed
locations (ports). In such a situation we might have a

separate local tester at each port. If the local testers do
not interact with one another during testing and there
is no global clock then testing is distributed and we
are testing in the (ISO standardised [10]) distributed
test architecture. There has been significant interest in
distributed testing (see, for example, [11–20]), with the
initial motivation being protocol conformance testing.
In this case an implementation N of a layer of the
protocol stack is tested through having one local tester
acting as the layer above N and another local tester
sitting on a different machine [14, 15, 20].

A separate line of research has explored the situation
in which the local testers can synchronise their actions
by communicating through a network (see, for example,
[21–24]). There are situations in which such an
approach is entirely appropriate and one can then
use traditional FSM-based test sequence generation
algorithms. However, it may not be possible to
synchronise the testers if there are timing constraints3.
In addition, the exchange of messages between the
local testers either requires an external network to be
established, which can increase the cost of testing, or
uses the same network as the SUT and so can change

3Although our models do not include time, we might use
them to test the functional aspects of a system that has timing
constraints such as timeouts.

The Computer Journal, Vol. ??, No. ??, ????

2 Hierons and Türker

the behaviour of the SUT.
The initial work on distributed testing found that

there can be additional controllability problems in which
a local tester cannot determine when to supply an
input since it only observes the events at its port
[14, 20]. Consider, for example, the interaction shown
in Figure 1a. In this the tester at port 1 should
send input x1 and as a result we expect o1 to be
output at port 1. The tester at port 2 should then
send input x2. However, the tester at port 2 does
not observe the previous interactions, which were at
port 1, and so does not know when to send the input.
Controllability problems are typically seen as being
undesirable since the tester cannot know the order in
which inputs are received: this makes it difficult to
determine whether a test objective was achieved and
also to trace failures to requirements. The focus of
test generation has thus been on techniques that return
controllable test sequences; test sequences that do not
cause controllability problems [11, 13, 16, 25–28]. Note
also that recent work showed that it is undecidable
whether there is a test case that is guaranteed to
distinguish two states s and s′ of an FSM [18] but this
problem can be solved in low-order polynomial time if
we restrict attention to controllable test sequences [17].

In distributed testing a local tester observes the
events at its ports and so a projection of the global trace
(sequence of inputs and outputs) that occurred. Thus,
the overall observation is a set of local traces rather
than a global trace. Since a set of local traces need not
uniquely define the global trace that occurred, there are
additional observability problems in distributed testing
[15]. To see this, consider the interaction given in
Figure 1b. In the specification the input of x1 at port
1 should lead to output o1 at port 1 and if we apply
x1 again then o1 should be output at port 1 and o2

should be output at port 2. The expected global trace
is therefore x1/〈o1, ε〉x1/〈o1, o2〉 in which ε denotes null
output at a particular port. As a result, the tester
at port 1 should observe x1o1x1o1 and the tester at
port 2 should observe o2. These local observations are
made if instead the SUT produces x1/〈o1, o2〉x1/〈o1, ε〉
(Figure 1c) despite this global trace not being allowed
by the specification. Observability problems can reduce
test effectiveness and so there has been interest in
producing test sequences that do not suffer from
observability problems [12, 15, 29–31].

Most FSM-based test generation techniques use
sequences that distinguish the states of the FSM M
from which test sequences are being generated (see,
for example, [1, 2, 32–36]). It has been found that
distinguishing sequences, where they exist, lead to
shorter tests [37]. There are two types of distinguishing
sequences: adaptive distinguishing sequences (ADSs)
and preset distinguishing sequences (PDSs). A PDS
for state set S′ is an input sequence that leads to
different outputs from all of the states in S′. An ADS
for S′ also leads to different outputs from all of the

states in S′ but is adaptive: instead of being a fixed
input sequences, it is like a decision tree, the next
input to be applied being decided on the basis of the
output observed. Hierons proved that when the FSM
has multiple ports, it is undecidable whether a set S′

of states has an ADS or a PDS and this is the case
even when we restrict attention to sets containing only
two states [33]. Despite these negative results, recently
Hierons and Türker investigated the problem of deriving
controllable ADSs from a multi-port FSM. Although
they did not provide an answer to the question of
whether constructing an ADS is decidable, they proved
that ADS existence is PSPACE-hard [39]. In contrast,
ADS existence can be decided in polynomial time for
single-port FSMs [40].

In this paper, we concentrate on deriving controllable
PDSs from multi-port FSMs. One motivation is that
many FSM-based test sequence generation techniques
use PDSs (see, for example, [2, 34, 41–44]); if we can
devise approaches that generate controllable PDSs then
there is the potential to extend these test generation
techniques to distributed testing. In addition, there is a
test sequence generation algorithm for multi-port FSMs
that uses PDSs [45].

This paper makes the following contributions. First,
we define what it means for an input sequence to be a
controllable PDS for an FSM M or some subset of its set
of states. We prove that (controllable) PDS existence
is undecidable in general but we also provide a class
of FSMs for which it is decidable. We also prove that
if we have an upper bound ` on the length of PDSs in
which we are interested then PDS existence is decidable,
PSPACE-hard, and in EXPSPACE. In practice, instead
of using a PDS we might generate a set of controllable
input sequences that pairwise distinguish the states of
the FSM M and such input sequences can be generated
in low-order polynomial time [17]. Thus, in practice
we might expect an upper bound ` to be a polynomial
in terms of the size of the FSM M and we prove that
controllable PDS existence is then NP-Complete. As
far as we are aware there is no corresponding result
for single-port FSMs but it is not hard to show that
the general bounded case is PSPACE-Complete for such
FSMs. Finally, we give a class of FSMs for which
controllable PDS existence is decidable.

This paper is structured as follows. We provide
preliminary material in Section 2 and also define
controllable PDSs. In Section 3 we then prove that
PDS existence is undecidable in general and provide
the complexity results for the bounded cases. Section
4 then considers a special class of FSM, which we call
C-FSMs, and proves that controllable PDS existence is
decidable for this. Finally, in Section 5 we conclude and
discuss potential future work.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 3

FIGURE 1: Controllability and observability problems.

2. PRELIMINARIES

In this section we explore the formalisation used,
provide definitions of concepts we require, and define
what it means for an input sequence to be a controllable
PDS for an FSM M . We will let P denote the set
of ports; for all p ∈ P there is a local tester at port
p. We will use the term FSM to denote a multi-port
finite state machine (FSM): an FSM in which there are
multiple ports. We will use the term single-port FSM
for classical FSMs. We now give standard definitions of
FSMs and associated notation (see, for example, [39]).

Definition 2.1. An FSM is defined by a tuple M =
(P, S, s0, X, Y, δ, λ) where:

• P = {1, 2, . . . , k} is the set of ports.
• S is the finite set of states and s0 ∈ S is the initial
state. We let n denote the number of states.
• X is the finite set of inputs and X = X1 ∪X2 ∪
· · ·∪Xk where Xp (1 ≤ p ≤ k) is the input alphabet
for port p. We assume that the input alphabets
of the ports are disjoint: for all p, p′ ∈ P, such
that p 6= p′, we have Xp ∩ Xp′ = ∅. Given input
x ∈ X, inport(x) = p if x ∈ Xp. We consider the
projection of an input onto a port and define it as
πp(x) = x if x ∈ Xp, and πp(x) = ε if x 6∈ Xp. We
use “ε” to denote an empty/null input or output
and also the empty sequence.
• Y =

∏k
p=1(Yp ∪ {ε}) is the set of outputs where

Yp is the output alphabet for port p. We assume
that the output alphabets of the ports are disjoint:
for two ports p, p′ ∈ P, such that p 6= p′, we
have Yp ∩ Yp′ = ∅. An output y ∈ Y is a vector
〈o1, o2, . . . , ok〉 where op ∈ Yp ∪ {ε} for all 1 ≤
p ≤ k. We also assume that X is disjoint from
∪1≤p≤kYp. The notation πp(y) is used to denote
the projection of y onto port p, which is simply the
pth component of the output vector y. We define
outport(y) = {p ∈ P | πp(y) 6= ε}, which is the set
of ports at which an output is produced.
• δ is the state transfer function of type S×X → S.

If an input x ∈ X is applied when M is in state s
then M changes its state to δ(s, x).
• During a state transition M produces an output
vector. The output function λ : S ×X → Y gives
the output vector produced in response to an input.

An FSM processes inputs one at a time but is able to
produce more than one output in a transitions (at most
one output for each port). We will use the following
terminology in which M = (P, S, s0, X, Y, δ, λ).

Definition 2.2. Given state s and input x, if
δ(s, x) = s′ and λ(s, x) = y then τ = (s, s′, x/y)
is a transition of M with starting state s, ending
state s′, and label x/y. If (s, s′, x/y) is a
transition of M then the input of x in state s
leads to M moving to state s′ and producing output
y. Given transition τ = (s, s′, x/y) we define
inport(τ) = inport(x/y) = inport(x) and we also
define outport(τ) = outport(x/y) = outport(y) and
finally we define ports(τ) = ports(x/y) = {inport(x)}∪
outport(y) to denote the ports used in the transition.

We will use directed graphs to represent FSMs. As
an example, Figure 2 describes a 2-port FSM M that
has port set {1, 2}, state set {s1, s2, s3, s4}, initial state
s1, inputs {x1} at port 1 and {x2} at port 2, and
outputs {o1, o

′
1} at port 1 and {o2, o

′
2} at port 2. A

node represents a state of the FSM and a directed edge
between two nodes represents a transition: an edge with
label x/y from a node that has label s to a node that
has label s′ represents the transition (s, s′, x/y).

We use ε to represent the empty sequence and
juxtaposition to denote concatenation. Thus, for
example, xx′ represents a sequence of length 2 whose
first element is x and whose second element is x′. The
output and state transfer functions can be extended to
input sequences in the usual way: if x ∈ X and x̄ ∈ X∗
then δ(s, ε) = s, δ(s, xx̄) = δ(δ(s, x), x̄), λ(s, ε) = ε,
and λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄). We now define some
standard terminology.

Definition 2.3. A sequence of transitions ρ =

The Computer Journal, Vol. ??, No. ??, ????

4 Hierons and Türker

FIGURE 2: Example FSM M

(s1, s2, x1/y1)(s2, s3, x2/y2) . . . (sm, sm+1, xm/ym) is a
walk that has starting state s1, ending state
sm+1, and label x1/y2 x2/y2 . . . xm/ym. Here
x1/y2x2/y2 . . . xm/ym is an input output sequence, also
called a trace, whose input portion is x̄ = x1 . . . xm
and whose output portion is ȳ = y1 . . . ym. We also
use x̄/ȳ to represent this trace. An FSM M defines
the language L(M) of traces that label walks with start-
ing state s0 and this is the behaviour of M . Thus,
L(M) = {x̄/λ(s0, x̄)|x̄ ∈ X∗} and LM (s) denotes the
set of labels of walks of M with starting state s. Given
S′ ⊆ S, we let LM (S′) = ∪s∈S′LM (s) denote the set
of labels of walks of M that have starting state in S′.
States s, s′ are equivalent if LM (s) = LM (s′) and FSMs
M and N are equivalent if L(M) = L(N). FSM M
is minimal if there is no FSM that is equivalent to
M and has fewer states. Further, M is strongly con-
nected if for all (s, s′) ∈ S × S we have that there is
a walk with starting state s and ending state s′. If M
is strongly connected then M is minimal if and only if
LM (s) 6= LM (s′) for all s, s′ ∈ S with s 6= s′. We use
pre to denote a function that takes a set of sequences
and returns the set of prefixes of these sequences. If
x1/y1 x2/y2 . . . xm/ym is a trace then its prefixes are of
the form x1/y1 x2/y2 . . . xi/yi for i ≤ m.

If we consider the FSM M given in Figure 2 then
(s3, s1, x2/〈ε, o2〉)(s1, s2, x2/〈o1, o2〉) is a walk that has
starting state s3 and ending state s2. The label of
this walk is x2/〈ε, o2〉 x2/〈o1, o2〉 and this has input
portion x2x2 and output portion 〈ε, o2〉〈o1, o2〉. L(M)
contains the global trace x2/〈o1, o2〉 x1/〈o1, o2〉, which
can also be represented as x2x1/〈o1, o2〉〈o1, o2〉, and
LM (s3) contains the global trace x2/〈ε, o2〉 x2/〈o1, o2〉.
As normal, we restrict attention to minimal FSMs but
this is not a significant restriction since it is possible
to convert an FSM into an equivalent minimal FSM in

low-order polynomial time [46].

We will sometimes use the term global trace to denote
a trace in order to distinguish this from the local traces
observed by the (local) testers. Since the ports are
distributed, no tester observes a global trace: the tester
at port p only observes the inputs and outputs at p. If
σ is a global trace, then we use πp(σ) to denote the local
trace at p: a sequence of inputs and outputs at port p
(the projection of σ at p).

Definition 2.4. Given port p, function πp is defined
by the following rules.

πp(ε) = ε
πp((x/〈o1, o2, . . . , ok〉)σ) = πp(σ) if x 6∈ Xp ∧ op = ε
πp((x/〈o1, o2, . . . , ok〉)σ) = xπp(σ) if x ∈ Xp ∧ op = ε
πp((x/〈o1, o2, . . . , ok〉)σ) = opπp(σ) if x 6∈ Xp ∧ op 6= ε
πp((x/〈o1, o2, . . . , ok〉)σ) = xopπp(σ) if x ∈ Xp ∧ op 6= ε

A local tester only observes the local projections of
the global trace that occurred and so the set of local
testers can only distinguish two global traces if there is
a port p such that the local projections at p differ.

Definition 2.5. Global traces σ1, σ2 are indistin-
guishable, written σ1 ∼ σ2, if for all p ∈ P we have
that πp(σ1) = πp(σ2).

Consider, for instance, global traces σ1 =
x2/〈o1, o2〉x2/〈ε, o2〉 and σ2 = x2/〈ε, o2〉x2/〈o1, o2〉. We
have that π1(σ1) = o1, π2(σ1) = x2o2x2o2, π1(σ2) = o1

and π2(σ2) = x2o2x2o2 and, as a result, σ1 ∼ σ2. We
will use |.| to denote the cardinality of a set or the length
of a sequence and so, for example, in the above we have
that |P| = 2 and |π1(σ1)| = 4.

We now define what it means for an input sequence
to be controllable [47]. Essentially, an input sequence
is controllable if each local tester knows when to send
its inputs. Since testing is distributed, a local tester
only observes the corresponding local trace and so must
be able to decide when to send its inputs based on
this local trace. Now let us suppose that we have
input sequence x̄ = x1 . . . xm and consider the condition
under which the tester at port p knows when to send
xj+1 ∈ Xp. We are interested in distinguishing states
so the local tester may not know the state from which x̄
is applied. As a result, if we set x̄′ = x1 . . . xj then the
local observation, before xj+1, should be πp(λ(s, x̄′)) for
some s ∈ S. Thus, we require that the observation of
πp(λ(s, x̄′)) could not have been made if some different
prefix x̄′′ = x1 . . . xi of x̄ had been applied from a state
s′. Further, we require this condition to hold for all
of the states from which x̄ might be applied and for
all 1 ≤ j < m. The following formalises the above
intuition.

Definition 2.6. Input sequence x̄ = x1 . . . xm is
controllable for state set S′ of FSM M if for all s, s′ ∈
S′ and distinct prefixes x̄′, x̄′′ of x̄ we have that if
x̄′ = x1 . . . xj for 1 ≤ j < m and xj+1 ∈ Xp for
port p then πp(λ(s, x̄′)) 6= πp(λ(s′, x̄′′)). Further, x̄ is

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 5

controllable for M if it is controllable for state set S.

When an input sequence x̄ is applied to an FSM,
the FSM produces outputs. If we are testing from
a single-port FSM and x̄ leads to different outputs
when applied from different states of M , then x̄ can
be used to identify the states of M . State identification
is important, not only for distinguishing the states of
an M , but also for deriving test sequences from M .
There are a number of approaches to distinguishing
states of a single–port FSM and it has been shown that
distinguishing sequences (DSs) have the advantage of
leading to shorter test sequences [37].

There are two types of DSs, adaptive distinguishing
sequences (ADSs) and preset distinguishing sequences
(PDSs). An ADS can be seen as being a decision tree
where the choice of next input depends on the output
that has been observed. Recently Hierons and Türker
investigate the problem of deriving controllable ADSs
from a multi-port FSM. They proved that controllable
ADS existence is PSPACE-Hard [39] but left decidability
open.

For single-port FSMs a PDS is an input sequence
that leads to a different output sequence for each state:
the tester applies this input sequence and observes
the resultant output sequence. One of the benefits of
using a PDS is that testing need not be adaptive, with
this allowing the use of a simpler test infrastructure.
While many test tools support adaptive testing, the
additional computation required in adaptive testing
can be problematic when there are timing constraints
(see, for example, [48]). To obtain such benefits in
distributed testing we require that the local testers do
not have to be adaptive.

Example 1. Consider the input sequence x̄ =
x1x1x2, in which x1 is input at port 1 and x2 is input at
port 2. Further, let us suppose that x̄ is applied from a
state set S′ = {s1, s2, s3} such that from s1 we should
obtain the trace σ1 = x1/〈o1,−〉 x1/〈o1, o2〉 x2/〈o1,−〉
(Figure 3a), from s2 we should obtain the trace σ2 =
x1/〈o1,−〉 x1/〈o1, o2〉 x2/〈o′1,−〉 (Figure 3b) and from
s3 we should obtain the trace σ3 = x1/〈o1, o

′
2〉x1/〈o1, o

′
2

〉 x2/〈o1,−〉 (Figure 3c). Here we have that in σ1 and
σ2 the tester at port 2 applies input x2 after observing
o2 and in σ3 the tester at port 2 applies input x2 after
observing o′2o

′
2. Thus, although x1x1x2 is a fixed input

sequence that causes no controllability problems for S′

and distinguishes the states from S′, its application
requires the tester at port 2 to be adaptive and thus
it cannot be applied using local testers that are not
adaptive.

In order for a controllable global input sequence x̄ to
not require the local testers to be adaptive, given port
p we will require that the observations made at p before
an input x at p are identical for all states in S′: the
tester at p thus simply waits for this local trace to be
observed before applying x.

Definition 2.7. A global input sequence x̄ that
is controllable for set S′ of states of FSM M is a
controllable PDS for S′ if and only if the following hold:

1. Given states s, s′ ∈ S′ with s 6= s′, if σ and σ′

are the global traces that result from applying x̄ in
states s and s′ respectively then σ 6∼ σ′.

2. Given states s, s′ ∈ S′ with s 6= s′, if σ and σ′

are the global traces that result from applying x̄ in
states s and s′ respectively then for all ports p we
have that the longest prefixes of πp(σ) and πp(σ′)
that end in an input are identical.

When this holds, each local tester follows a fixed
pattern until its last input has been supplied and then
it simply observes any further output. As a result,
the local testers do not have to be adaptive. We now
consider the problem of generating such controllable
PDSs.

3. GENERATING A CONTROLLABLE PDS

In this section we explore the problem of deciding
whether an FSM has a controllable PDS and investigate
problems associated with controllable PDSs. Initially
we prove that the general problem is undecidable, by
relating it to the undecidable Post Correspondence
Problem. In practice, there are likely to be upper
bounds on the length of a PDS that is useful. We thus
also explore bounded PDS existence; the upper bound
naturally makes the problem decidable.

It is known that the problem of determining whether
there is an input sequence that distinguishes two
states is undecidable even if we are testing from a
deterministic FSM [18]. However, this work did not
restrict attention to controllable input sequences and,
indeed, it is possible to determine in polynomial time
whether there is a controllable input sequence that
distinguishes two states of a deterministic FSM [17]. We
consider controllable PDSs and show that the existence
of a controllable PDS is undecidable. We show this by
a reduction from the undecidable Post Correspondence
Problem.

Definition 3.1. Post’s Correspondence Problem
(PCP) is to decide, for sequences α1, α2, . . . , αb and
β1, β2, . . . , βb, whether there is a sequence a1a2 . . . aj
of indices in [1..b] such that αa1

αa2
. . . αaj

=
βa1

βa2
. . . βaj

.

The following takes an instance α1, α2, . . . , αb,
β1, β2, . . . , βb of the PCP and constructs an FSM
M where there is a controllable PDS for M if and
only if there is a solution to this instance of the
PCP. In the construction, m is the maximum of
the lengths of the sequences that define this instance
of the PCP. The construction includes four pairs
(s1, s

′
1), (s2, s

′
2), (s3, s

′
3), (s4, s

′
4) of special states and for

each 1 ≤ i ≤ b there is a corresponding input xi. In

The Computer Journal, Vol. ??, No. ??, ????

6 Hierons and Türker

FIGURE 3: A preset test sequence that requires adaptive testers.

s1, s
′
1, s2, s

′
2 the input of xi a total of m times leads to

output sequence αi; from s3, s
′
3, s4, s

′
4 we instead get

output sequence βi. These output sequences are sent
to port 2. M is constructed so that a PDS must start
with an input init at port 0 that takes it to one of
s1, s2, s3, s4, must then apply some xi a total ofm times,
then apply some xj m times etc. A PDS must finally
apply input x′ at port 2. The key point in the proof is
that, by the definition of a PDS, the final input of x′

can only occur if the sequences observed at port 2 are
identical and this is the case if and only if the PDS has
applied an input sequence init(xa1

)m(xa2
)m . . . (xaj

)m,
where xm denotes x repeated m times, that leads to
the same output sequences at port 2 from all of the
states. This is the case if and only if αa1αa2 . . . αaj =
βa1βa2 . . . βaj ; the sequence a1a2 . . . aj of indices defines
a solution to this instance of the PCP.

Theorem 3.1. Given FSM M with state set S,
checking the existence of a controllable PDS for S is
undecidable and this holds even if we restrict attention
to FSMs with three ports.

Proof. We will prove this by showing that any algorithm
that solves this problem can be used to solve Post’s
Correspondence Problem. Let us suppose that we have
an instance of PCP defined by sequences α1, α2, . . . , αb

and β1, β2, . . . , βb. We will now define an FSMM such
that there is a controllable PDS for the states of M if
and only if there is a solution to this instance of PCP.

Let m denote the length of the longest sequence
in α1, α2, . . . , αb, β1, β2, . . . , βb (ie. m = max{|α1|,
|α2|, . . . , |αb|, |β1|, |β2|, . . . , |βb|}). Within the state set
S of M we will include S′ = {s1, s2, s3, s4} and special
states {s?, se} and so S′ ∪ {s?, se} ⊆ S.

The FSM has three ports P = {0, 1, 2}. The input
and output alphabets of port 0 are X0 = {init},
Y0 = {∅} ∪ S respectively. For every state si in
S \ S′ we introduce a transition labelled with init/ <
si, start, ε > that ends in s1. Thus, with input init the
tester at port 0 can identify the state if the FSM was
in a state from S \ S′. If M receives input init when
in a state from S′ then there is no change in state and
output < ε, start, ε > is produced.

For all 1 ≤ j ≤ b there is an input xj at port
1. With input xj state s? produces empty output

(< ε, ε, ε >) and goes to state se. With input xj
state se produces empty output and loops. Thus, an
input sequence starting with xj cannot distinguish se
and s? and so a PDS for M cannot start with an xj .
We will structure transitions labelled by inputs from
port 1 such that a sequence of m consecutive inputs
of xj at port 1 leads to output sequence αj at port
2 from states s1, s

′
1 and s2, s

′
2 and output sequence

βj at port 2 from states s3, s
′
3 and s4, s

′
4. This can

be achieved since m = max{|α1|, |α2|, . . . , |αb|, |β1|,
|β2|, . . . , |βb|}. The first such sequence takes states
s1, s2, s3, s4 to s′1, s

′
2, s
′
3, s
′
4 respectively and after that

these input sequences lead to cycles. If we only apply
such sequences then we do not distinguish s1 from s2

and we also do not distinguish s3 from s4.
If an input sequence from {x1, x2, . . . , xb}∗ is not in

(xm1 +xm2 + . . .+xmb)∗ (is not a sequence of m instances
of some xa1

followed by m instances of some xa2
etc.)

then the si are all taken to state se. It is straightforward
to add transitions that achieve this; such transitions
are added to the states other than the s′i in a cycle
(from s′i) whose transitions all have label xj (some xj).
The transitions added all have the same output and this
ensures that, from the observation above, if (after init)
we apply an input sequence in {x1, x2, . . . , xb}∗ that is
not in (xm1 +xm2 + . . .+xmb)∗ then we cannot distinguish
s1 from s2 and we also cannot distinguish s3 from s4.

We have input x′ at port 2. From state s′j , 1 ≤ j ≤ 4,
the input of x′ at port 2 leads to output sj at port 0 and
M moves to the state se. From all other states input x′

takes M to se with no outputs at any port.
Note that a PDS for M must begin with input init

at port 0 (since this is the only way of distinguishing se
and s?) and this leads to all the states except states in
set S′ being distinguished at port 0. As a result of the
difference in output at port 0, init cannot be applied
again in a controllable PDS.

From the above we can conclude that a (minimal)
controllable PDS must end in input x′ and must
precede this with an input sequence in the form
init xma1

xma2
. . . xmaj

and the output sequence at port 2
must be the following:

• From states s1 and s2 the sequence
start αa1

αa2
. . . αaj

• From states s3 and s4 the sequence

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 7

FIGURE 4: Example FSM M

start βa1βa2 . . . βaj .

This initial input sequence of the form init xma1
xma2

. . .
xmaj

distinguishes all states except those in S′. By the
definition of a controllable PDS, we require there to be
a common sequence of outputs at port 2 before x′ is
applied and so we require that start αa1αa2 . . . αaj =
start βa1

βa2
. . . βaj

. There is thus an input sequence
that has the required properties, and so defines a
controllable PDS, if and only if there is a solution to
the given instance of PCP. The result therefore follows
from the PCP being undecidable.

We can adapt the proof to show that the existence
of a controllable PDS for a subset of states S′ ⊆ S is
undecidable for FSMs with two ports. To prove this we
simply construct an FSMM′ fromM by dropping port
0 and taking S′ = {s1, s2, s3, s4}.

Corollary 3.1. Given FSM M and a state set
S′ ⊆ S, checking the existence of a controllable PDS
for state set S′ is undecidable and this holds even if we
restrict attention to FSMs with two ports.

Recall that checking the existence of a PDS is a
decidable problem when a single-port FSM is under
consideration [40]. Hence one may wonder why such a
complexity jump exists. We observe that this negative
result is due to what we call “unsplitting”. The
unsplitting issue is that, as a result of observability
problems, it is possible to have the situation in which
an input sequence x̄ distinguishes two states of M but
some extension x̄x of x̄ does not.

Example 2. Consider the FSM in Figure 4 and input
sequence x1x2. The local traces from different states at
port 1 are as follows: x1o1 from s1, x1o1o1 from s2,
x1o
′
1o1 from s3, and x1o

′
1 from s4. Note that each trace

is different and so the tester at port 1 can distinguish

the states. However, let us suppose that for testing
purposes we need to concatenate the input sequence
x1x2 with input x2 to form x1x2x2. The local traces
at port 1 are now: x1o1o1 from s1, x1o1o1o1 from s2,
x1o
′
1o1 from s3, and x1o

′
1o1 from s4. The local traces at

port 1 from states s3 and s4 are now indistinguishable.

As a result, we cannot apply techniques that maintain
a partition of the set of states of M (identifying which
have not yet been distinguished) and refine the partition
whenever a new input is chosen.

It has been shown that for a given FSM M and a
port p ∈ P it is possible to construct a controllable
input sequence, that distinguishes two states of M ,
in polynomial time and this sequence has length at
most k(n − 2) + 1 [17]. Such a sequence is called a
separating sequence. Therefore, one can use separating
sequences of length k(n − 2) + 1 to distinguish states.
Since we require at most n − 1 separating sequences
to pairwise distinguish all of the states of M , the sum
of the lengths of the separating sequences is at most
` = (n − 1)(k(n − 2) + 1). In practice one might use
such a value ` as an upper bound on the length of any
controllable preset distinguishing sequence x̄ used; if
there is no controllable PDS with length less than `
then one instead uses a set of separating sequences, of
this total length, that distinguish the states of M . This
leads to the following problem

Definition 3.2. The Bounded PDS problem is to
decide whether there is a controllable PDS x̄ for a given
FSM M such that the length of the PDS is not more
than ` ∈ Z>0.

We will show that when we limit the length of a PDS,
we can decide whether the underlying FSM possesses
a controllable PDS. It is known that for single-
port FSMs the shortest PDSs can be exponentially
long [40]. Clearly, this result also holds for FSMs.
On the other hand, as stated above, the length of
a separating sequence is bounded by a polynomial
function. Therefore, we will consider the general
bounded PDS problem and the case where the bound
is a polynomial function of the size of the FSM
under consideration. We use the following result
regarding PDSs from [39], which is immediate from the
corresponding result for single-port FSMs [40].

Lemma 3.1. Given a single-port FSM M in
which no transition produces empty output, checking
the existence of a preset distinguishing sequence is
PSPACE-Complete.

Proposition 3.1. Given an FSM M , checking
the existence of a controllable PDS with length at
most ` that distinguishes all of the states of M is
PSPACE-Hard. In addition, this result still holds if we
restrict attention to FSMs that have two ports.

Proof. Assume that we have been given a single-port
FSM M1 = (S, s0, X, Y, δ, λ) such that all of the

The Computer Journal, Vol. ??, No. ??, ????

8 Hierons and Türker

transitions of M1 have non-empty output. We will
construct an FSM M that has two ports 1 and 2. The
state set of M will be S and the initial state will be s0.
Port 1 will have input alphabet X1 = X and output
alphabet Y1 = ∅. Port 2 will have input alphabet
X2 = ∅ and output alphabet Y2 = Y . Given state s
and input x such that δ(s, x) = s′ and λ(s, x) = y, we
will include in M the transition from s to s′ that has
input x ∈ X1 and produces output 〈ε, y〉.

Now consider controllable PDSs for M . First observe
that all input sequences are controllable. In addition,
since no output is produced at port 1, the restriction
that no input can follow a difference in output is always
satisfied. Thus, we can consider all input sequences.
Finally, an input sequence distinguishes two states of
M if and only if it distinguishes two states of M1. Thus,
an input sequence is a controllable PDS for M if and
only if it is a PDS for M1. We set ` = 2n−1, which is a
known upper bound on the length of the shortest PDS
for a single-port FSM [49]. Thus, M1 has a PDS if and
only if M has a controllable PDS of length at most `
and so the result follows from Lemma 3.1.

Now we can show that an algorithm that uses
exponential space can decide the bounded PDS
problem.

Proposition 3.2. Given an FSM M , checking the
existence of a controllable PDS of length ` is in
EXPSPACE.

Proof. A non-deterministic Turing machine can guess
an input sequence x̄ of length ` and it can compute
and store each λ(s, x̄) in space that is polynomial in
`. In order to check that x̄ is controllable the Turing
machine can simply compare prefixes of the sequences
of the form λ(s, x̄): there are controllability problems if
there are prefixes σ and σ′ of such traces with different
lengths that have the same projection at a port p such
that after σ and σ′ the behaviour of the tester at p
differs (the tester at p cannot distinguish between these
cases). This can be checked in time that is polynomial
in terms of `. Finally, the Turing machine can check
in time that is polynomial in terms of ` whether x̄ is
a PDS. Thus, a non-deterministic Turing machine can
check whether a guess x̄ is a controllable PDS in space
that is polynomial in terms of ` and so exponential in
terms of the representation of ` (that takes O(log2 `)
space). The problem is therefore in non-deterministic
EXPSPACE. Finally, using Savitch’s Theorem [50] we
know that a deterministic Turing machine can also solve
the problem in exponential space. We therefore have
that the problem is in EXPSPACE.

Propositions 3.1 and 3.2 give the following.

Theorem 3.2. Given an FSM M and a bound `,
deciding whether there is a controllable PDS of length
` for M is in EXPSPACE and is PSPACE-Hard. This

holds even if we restrict attention to FSMs with two
ports.

As noted before, instead of using a PDS we could use
a set containing controllable separating sequences and
we have a polynomial upper bound on the sum of the
lengths of the sequences in such a set. Thus, in practice
we are likely to have a polynomial upper bound on the
length of PDSs in which we are interested.

Proposition 3.3. Given an FSM M with n states
and function f , that is bounded above by a polynomial,
deciding whether there is a controllable PDS of length
at most ` = f(n) is in NP.

Proof. A non-deterministic Turing Machine can guess
an input sequence x̄ = x1 . . . xj of length at most `
and can then generate the corresponding set Tr =
{x̄/λ(s, x̄)|s ∈ S} of traces in polynomial time. It is
then sufficient for the Turing Machine to check that:
a) x̄ is controllable for M ; and b) x̄ is a PDS for
M . In order to decide whether x̄ is controllable for
M it is sufficient to compare the prefixes of traces in
Tr; if two prefixes have the same projection at port
p then the action of the local tester at p must be
the same after each. Since the size of Tr is bounded
above by a polynomial in n, this can be checked in
polynomial time. In order to check whether x̄ is a
PDS we first check whether there are states s 6= s′ such
that traces x̄/λ(s, x̄) and x̄/λ(s′, x̄) have the same set
of projections on the ports and this can be achieved
in polynomial time. Finally, we need to check that
if the ith input xi in x̄ is at port p then for all
s 6= s′ we have that πp(x1 . . . xi−1/λ(s, x1 . . . xi−1)) =
πp(x1 . . . xi−1/λ(s′, x1 . . . xi−1)) and again this can be
checked in polynomial time. Thus, a non-deterministic
Turing Machine can solve the problem in polynomial
time and so the problem is in NP.

We now prove that the problem is NP-Hard, using a
reduction from the Bounded PCP.

Definition 3.3. The Bounded Post’s Correspon-
dence Problem (BPCP) is to decide, for sequences
α1, α2, . . . , αb and β1, β2, . . . , βb and K ≤ b, whether
there is a sequence a1a2 . . . aj of indices in [1..b] such
that j ≤ K and αa1αa2 . . . αaj = βa1βa2 . . . βaj .

It is known that the Bounded Post’s Correspondence
Problem is NP-complete [51].

We can use the construction, given in the proof
of Theorem 3.1, to define an FSM M in terms of
α1, α2, . . . , αb and β1, β2, . . . , βb. Recall that in this
construction m is the length of the longest sequence
in α1, α2, . . . , αb, β1, β2, . . . , βb. From the proof of
Theorem 3.1, we know that an input sequence x̄ is a
controllable PDS for M if and only if x̄ is of the form
init xma1

xma2
. . . xmaj

followed by x′ for some a1a2 . . . aj
such that αa1

αa2
. . . αaj

= βa1
βa2

. . . βaj
. Thus,M has

a controllable PDS of length at most mK + 2 if and
only if there is a solution to the corresponding instance

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 9

of the BPCP. In principle, to use this we require the
upper bound to be a polynomial in terms of the number
of states ofM. However, this can be achieve by making
the following small changes.

1. Remove states s′1, s
′
2, s
′
3, s
′
4 and rename states

s1, s2, s3, s4 to s0
1, s

0
2, s

0
3, s

0
4 respectively.

2. Include extra states of the form si1, s
i
2, s

i
3, s

i
4, 0 <

i ≤ K, such that the input of an xj a total of
m times takes si1, s

i
2, s

i
3, s

i
4 to si+1

1 , si+1
2 , si+1

3 , si+1
4

respectively (0 ≤ i < K). Naturally, output
sequence αj is produced from states si1 and si2 and
output sequence βj is produced from states si3 and
si4.

3. The input of x′ in sij leads to output sj (1 ≤ j ≤ 4,
0 < i ≤ K).

4. The input of an xj takes states sK1 , s
K
2 , s

K
3 , s

K
4 to

sK1 with fixed output.

5. If required, states are added so that the number
of states exceeds mK + 2. These states are all
distinguished from every other state by the initial
input of init.

The first three changes essentially ‘unfold’ the cycle,
in states s′1, s

′
2, s
′
3, s
′
4 of M. The fourth change ensures

that an input sequence of the form xma1
xma2

. . . xmaj
can

only be a controllable PDS if j ≤ K. This ensures that
the resultant FSM has a controllable PDS if and only
if it has a PDS that corresponds to a solution to the
given instance of the BPCP. The last step ensures that
we can use the number of states of the FSM as an upper
bound. We therefore have the following result.

Proposition 3.4. Given an FSM M with n states
and function f , that is bounded above by a polynomial,
deciding whether there is a controllable PDS of length
at most ` = f(n) is NP-Hard.

We therefore have the following result.

Theorem 3.3. Given an FSM M with n states and
function f , that is bounded above by a polynomial,
deciding whether there is a controllable PDS of length
at most ` = f(n) is NP-Complete.

This is a relatively positive result: it shows that
if we restrict attention to the usual case (we have a
polynomial upper bound on the length of a useful PDS)
then the existence problem is NP-Complete. As far as we
are aware there is no corresponding result for single-port
FSMs but clearly the general bounded case for single-
port FSMs is PSPACE-Complete.

In the following section we consider the problem of
PDS generation for a class of FSMs that we call C-
FSMs.

FIGURE 5: A simple C-FSM.

4. PDS GENERATION: A SPECIAL CASE

In this section we prove that the PDS existence problem
is decidable for a special class of FSMs. In this class of
FSMs, if the input of x leads to no output at port p
for some state of an FSM M then the input of x leads
to no output at p for all states of M . This can be
seen as imposing a fixed pattern on the communication
that occurs between the testers at the ports through
interacting with M . Below (Proposition 4.2) we prove
that if an FSM is in this class of FSMs then an input
sequence is controllable for a state s if and only if it
is controllable for all non-empty sets of states; this
simplifies the reasoning regarding controllability. We
also prove (Proposition 4.3) that this class of FSMs does
not suffer from observability problems. We then show
that the FSM M can be mapped to a canonical FSM
χPmin(M), with PDSs being generated from χPmin(M).
This allows us to derive an upper bound on the length
of a shortest PDS (Lemma 4.1), with decidability being
a consequence of this.

An example of such an FSM is given in Figure 5.

Definition 4.1. An FSM M = (P, S, s0, X, Y, δ, λ)
is said to be consistent if for all s, s′ ∈ S, x ∈ X, and
p ∈ P, πp(λ(s, x)) = ε implies that πp(λ(s′, x)) = ε.

We will call an FSM that is consistent a C-FSM. We
now discuss the practical relevance of C-FSMs.

First, for an FSM M = (P, S, s0, X, Y, δ, λ) and
a subset of input alphabet X ′ ⊆ X, let M |X′ be
the restriction of M to the transitions with inputs
in X ′. Formally, M |X′ is the FSM M |X′ =
(P, S, s0, X

′, Y, δ′, λ′) where δ′(s, x) = δ(s, x) and
λ′(s, x) = λ(s, x) for x ∈ X ′. Even if an FSM M is
not a C-FSM, there may exist a subset of inputs X ′

such that M |X′ is a C-FSM. In such cases, the results
given for C-FSMs apply to M |X′ and hence to M .

Second, we might obtain a C-FSM if we fix the
configuration of a system. Consider, for example,
Mobile Multiplayer Game Protocols [52, 53]. These
might include the following.

The Computer Journal, Vol. ??, No. ??, ????

10 Hierons and Türker

1. MakeMove: a client applies an input (which
encapsulates their move) to the server and none
of the clients receive an output.

2. Message: a client sends an input (which
encapsulates a message) and the server issues
outputs (messages) to the friends (team members)
only.

3. Stat: a client sends an input (which encapsulates a
message) and the server supplies the output which
encapsulates stat. info (inventory, life, etc) only to
the friends (team members).

4. AddUSer: a client sends an input (which
encapsulates a request) to the server and only the
server receives this message and returns output
(success/failure) to the client.

5. JoinGame: a client sends an input (which
encapsulates a message) and the server sends an
output to all players when the new player is
successfully added to the game.

In the above, transitions corresponding to a single
input lead to the same pattern of communication
irrespective of state as long as we fix the users and the
set of friends for each user.

Third, if we consider now Heterogeneous Distributed
Computing (HDC) [54], we also find that some
procedures can be represented by C-FSMs. Given a task
and a set of physically distributed computers (slaves)
each of which have separate storages (buckets), a HDC
server aims to distribute tasks to the buckets of slaves,
so that slaves do computation [55]. One well known
example that uses this protocol is Generating Large
Prime Numbers (see, for example, [56]).

HDC recognises the fact that the slaves in the
distributed system may differ in their capabilities
through, for example, some having faster clock cycles,
GPUs, larger memory capacity, bigger disk farms,
printers and other peripherals. Thus the HDC server
may form groups of slaves such that two slaves are in
the same group if they have identical properties. It
is possible to select a group of slaves for a particular
task type using specification strings. For example in
the Amazon Elastic Compute Cloud (EC2) specification
string m1.large refers to systems with 7.5GB of RAM,
2 virtual cores, 850 GB of Hard Disk, on a 64-bit
platforms [57]. In [58] extensions of specification strings
are discussed.

The server may also form task-group matching such
that task types are mapped to groups if they can process
instances of these task types [54, 59]. Afterwards, the
HDC server distributes work to the slaves [54, 60].

A simple abstract scenario for HDC hence might
be as follows: assume that we have groups of slaves
G1 = {pc1, pc3, . . .}, G2 = {pck, pcl, . . .}, . . . Gk =
{pcm, pcn, . . .} such that two slaves reside in a group
if they share identical properties (note that Gi can be

thought of as a specification string for the slaves in set
Gi). We have a set of task types {T1, T2, T3, . . . Tp} and
we let GTi be the set of tasks that can be assigned
to slaves in Gi (1 ≤ i ≤ m). Clearly, such a
system is complex and the procedures used by such a
system cannot be represented by a C-FSM. However, as
discussed in [58, 61, 62] in such a system usually slaves
monitor their buckets and when a task request arrives,
slaves start executing the task. In order to achieve this
the server might use the following procedures.

1. PutConcurrentWork Spec. String: the
server sends an input (identical tasks) to a group
of slaves designated by the specification string.

2. PutWork Spec. String: the server sends an
input (a vector of tasks) to a group of slaves
designated by the specification string.

3. NoWork Spec. String: the server sends an
input (message) to a group of slaves, designated
by the specification string, declaring that there is
no suitable work for the group.

Therefore procedures like NoWork, PutWork
and PutConcurrentWork will execute through
restricted communication patterns. However, let us
suppose that task types and groups of slaves have been
chosen such that {GT1, . . . , GTm} is a partition of the
set of task types: given a task type Ti there is only
one Gj to which Ti can be allocated. Further, let us
suppose that when a task or vector of tasks is allocated
to a group it is allocated to all slaves in that group.
Now, if the server asks slaves to execute a task from
T3, for example, then it will contact the same set of
slaves, irrespective of the actual task, and so the server
issues the procedure call PutConcurrentWork G1 with
its data (assuming T3 ∈ GT1). If we extend the inputs
so that they include the specification string that defines
the task type then the above operations define a C-
FSM.

This example included two approaches that helped
us model a system as a C-FSM. First, we restricted
the scenario so that, for example, the {GT1, . . . , GTm}
is a partition of the set of task types. Second,
we extended the set of inputs by introducing several
‘variants’ of an input with each variant being defined
by a specification string that represents a set of values
for some input parameter. The situation here is
that while an input (operation name) x does not
have a fixed communication pattern, it does have a
fixed communication pattern if we choose a particular
specification string. In principle, we could have one
input for each possible parameter value for x but we
obtain a smaller model if, as above, we group together
parameter values that lead to the same communication
pattern.

C-FSMs have the following important properties, the
first two relating to controllability.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 11

Proposition 4.1. Given distinct states s and s′ of
C-FSM M , if input sequence x̄ is controllable from state
s then x̄ is controllable from s′.

Proof. Let us suppose that x̄ = x1x2 . . . xr, trace x1/y1

x2/y2 . . . xr/yr labels a walk from state s and trace
x1/y

′
1 x2/y

′
2 . . . xr/y

′
r labels a walk from state s′. By

definition, x̄ is controllable from s if and only if for
all 1 < i ≤ r we have that if port(xi) = p then
πp(xi−1/yi−1) 6= ε. But since M is a C-FSM, this is
the case if and only if for all 1 < i ≤ r we have that
if port(xi) = p then πp(xi−1/y

′
i−1) 6= ε. By definition,

this is the case if and only if x̄ is controllable from s′

and so the result follows.

We can extend this result to a set of states.

Proposition 4.2. Given C-FSM M with state set
S, state s ∈ S and set S′ ⊆ S of states of M , if input
sequence x̄ is controllable from s then x̄ is controllable
from S′.

Proof. Let us suppose that x̄ = x1x2 . . . xr and trace
x1/y1 x2/y2 . . . xr/yr labels a walk from state s. By the
definition of controllability, we require to prove that
for all si, sj ∈ S′ and proper prefixes x̄i and x̄j of x̄
with |x̄i| ≤ |x̄j | and |x̄i| < r, if port(xi+1) = p then
(πp(λ(si, x̄i)) = πp(λ(sj , x̄j))) =⇒ (x̄i = x̄j). Since M
is a C-FSM, πp(λ(si, x̄i)) = πp(λ(sj , x̄j)) implies that
there are no inputs or outputs at p in the subsequence
xi+1/yi+1 xi+2/yi+2 . . . xj/yj of x1/y1 x2/y2 . . . xr/yr.
Since x̄ is controllable from s and the input xj+1 is at
port p, we have that xi+1/yi+1 xi+2/yi+2 . . . xj/yj = ε
and so x̄i = x̄j as required.

The following relates to observability problems.

Proposition 4.3. Given C-FSM M , states s and s′

of M , and input sequence x̄, if λ(s, x̄) 6= λ(s′, x̄) then
there is some port p such that πp(λ(s, x̄)) 6= πp(λ(s′, x̄)).

Proof. Let x̄′ be the shortest prefix of x̄ such that
λ(s, x̄′) 6= λ(s′, x̄′). Then x̄′ = x̄′′x for some
x ∈ X and by the minimality of x̄′ we have that
λ(s, x̄′′) = λ(s′, x̄′′). Since λ(s, x̄′) 6= λ(s′, x̄′),
λ(δ(s, x̄′′), x) 6= λ(δ(s′, x̄′′), x). Thus, there must be
some port p such that πp(λ(s, x̄′)) 6= πp(λ(s′, x̄′)).
But if x̄ = x̄′x̄′′′ then since M is a C-FSM we know
that πp(λ(δ(s, x̄′), x̄′′′)) and πp(λ(δ(s, x̄′), x̄′′′)) contain
the same number of outputs and so πp(λ(s, x̄)) 6=
πp(λ(s′, x̄)) as required.

In other words, for a given C-FSM when an input
sequence x̄ ‘globally distinguishes’ states s, s′ of M then
x̄ also ‘locally distinguishes’ the states s, s′ of M .

We can therefore conclude that when testing from
C-FSMs there are no observability problems and an
input sequence is controllable for a state if and only
if it is controllable for all non-empty sets of states. It
will transpire that these properties simplify the PDS
existence problem.

In the following we use a canonical FSM [33]. A
canonical FSM (χPmin(M)) of a C-FSM M with respect
to port p is an FSM that captures only the controllable
walks of M . In other words, by considering walks of
χPmin(M), we avoid controllability problems. We will
show that by the virtue of Proposition 4.3, using the
canonical FSM χPmin(M) of M will allow us to avoid
controllability and observability problems.

The construction of the FSM χPmin(M) uses ideas
from [63]. Given FSM M , the canonical FSM χPmin(M)
is constructed in two steps. First we construct a partial4

FSM χmin(M), second we construct χPmin(M).
The partial FSM χmin(M) = (P, Smin, s

′
0, X,

Y, δmin, λmin), is constructed as described in [33]. The
first step is to reveal the adjacent transitions that can
be followed without raising a controllability problem.
In order to do this, we first construct the Arrive and
Depart lists which are defined as follows:

Let T be the set of transitions of M .

• Departp(si) = {(si, sj , x/y) ∈ T |x ∈ Xp} is the set
of transitions from si whose input is at p.

• ArriveP (si) = {(sj , si, x/y) ∈ T |ports(x/y) = P}
is the set of transitions ending at si that involve
the set P of ports.

For each si ∈ S and P ⊆ P there can be vertex sPi
representing the situation in which the state is si and
the next input must be at a port in P (since otherwise
there will be a controllability problem).

The set Smin of states of χmin(M) is defined by the
following.

1. For all 1 ≤ i ≤ n and P ⊆ P, sPi ∈ Smin if
ArriveP (si) 6= ∅.

2. State sP0 is in Smin and sP0 is the initial state of
χmin(M).

The state sP0 represents the situation before testing
starts: the SUT is in the initial state and, since
no inputs have been applied, the first input can be
applied at any port without causing a controllability
problem. The set Tmin of transitions of χmin(M) (and
so the functions δmin and λmin) is defined by, for
each transition t = (si, sj , x/y) ∈ T and sPi ∈ Smin

with port(x) ∈ P , including in Tmin the transition
(sPi , s

Pt
j , x/y) where Pt = ports(x/y). As an example,

consider the FSM M given in Figure 5. The Arrive and
Depart lists for FSM M are given in Table 1 and the
canonical FSM χmin(M) is given in Figure 6b.

The following results are known [33].

Proposition 4.4. For each controllable walk ρ̄ in M
that starts at s0, there is a unique controllable walk ρ̄′

in χmin(M) that starts at sP0 such that ρ̄ and ρ̄′ have
the same label.

4An FSM is partial if there is at least one state s and input x
such that the response to x when in state s is not specified.

The Computer Journal, Vol. ??, No. ??, ????

12 Hierons and Türker

Depart1(s1) (s1, s1, x1/ < ε, o′2 >) Arrive1,2(s1) (s1, s1, x1/ < ε, o′2 >)

Depart2(s1) (s1, s2, x2/ < o1, ε >) Arrive1,2(s1) (s3, s1, x2/ < o1, ε >)

Depart1(s2) (s2, s3, x1/ < ε, o2 >) Arrive1,2(s2) (s1, s2, x2/ < o1, ε >)

Depart2(s2) (s2, s2, x2/ < o′1, ε >) Arrive1,2(s2) (s2, s2, x2/ < o′1, ε >)

Depart1(s3) (s3, s3, x1/ < ε, o2 >) Arrive1,2(s3) (s2, s3, x1/ < ε, o2 >)

Depart2(s3) (s3, s1, x2/ < o1, ε >) Arrive1,2(s3) (s3, s3, x1/ < ε, o2 >)

TABLE 1: Arrive and Depart lists for FSM M given in Figure 5.

Proposition 4.5. For each walk ρ̄′ in χmin(M) that
starts at sP0 , there is a unique controllable walk ρ̄ in M
that starts at s0 such that ρ̄ and ρ̄′ have the same label.

The final step is to create a completely specified
FSM χPmin(M) = (P, Sp

min, X, Y, δ
P
min, λ

P
min) in which

for each state s and port p there is a state s{p}; this will
allow us to explore controllable PDSs that start with
input at p. This is achieved by applying the following
to χmin(M).

1. For every state s of M such that s{p} is not in Smin.

(a) Add the state s{p}.

(b) For every input x at p, if si = δ(s, x) and y =
λ(s, x) then add the transition (s{p}, sPi , x/y)
such that P = ports(x/y).

2. For every input x and state s ∈ Smin such that
there is no transition from s with input x, add a
self-loop transition from s to s with input x and
output ε at all ports.

The completely specified canonical machine χPmin(M)
of M is given in Figure 6b. We can now show how
controllable PDS construction for M relates to PDS
construction for χPmin(M). Note that we require a
particular type of PDS for χPmin(M): since a PDS will
be applied by distributed testers we require that the
trace before we apply an input at p has fixed projection
at p (see Definition 2.7). In the following, a PDS for
χPmin(M) is said to be non-redundant if it does not lead
to the execution of any of the self-loops added to make
χPmin(M) completely-specified. In the following, given
an input sequence x̄ of length ` and i ≤ ` we let x̄i
denote the prefix of x̄ that has length i.

Proposition 4.6. An input sequence x̄ is a control-
lable PDS that starts with input at p for set S′ =
{s1, s2 . . . , sr} ⊆ S of states of M if and only if x̄ is a

non-redundant PDS for set S′′ = {s{p}1 , s
{p}
2 , . . . , s

{p}
r }

of states of χPmin(M) such that for all 1 < i ≤ |x̄|,
if xi ∈ Xq then for all s

{p}
i , s

{p}
j ∈ S′′ we have that

πq(λPmin(s
{p}
i , x̄i−1)) = πq(λPmin(s

{p}
j , x̄i−1)).

Proof. First let us suppose that x̄ is a controllable PDS
for S′ = {s1, s2, . . . , sr} that starts with input at p.
Since x̄ is controllable, the label of the walk in M from
si that has input portion x̄ is the same as the label of

the walk in χPmin(M) from s
{p}
i that has input portion

x̄. Thus, since x̄ distinguishes the states in S′ it also
distinguishes the states in S′′. Further, since x̄ is a
controllable PDS for S′, by definition for all 1 < i ≤ |x̄|,
if xi ∈ Xq then for all s

{p}
i , s

{p}
j ∈ S′′ we have that

πq(λPmin(s
{p}
i , x̄i−1)) = πq(λPmin(s

{p}
j , x̄i−1)). Finally,

since x̄ is controllable in M , it is non-redundant in
χPmin(M) and so the result holds.

Now let us suppose that x̄ is a non-redundant PDS

for set S′′ = {s{p}1 , s
{p}
2 , . . . , s

{p}
r } of states of χPmin(M)

such that for all 1 < i ≤ |x̄|, if xi ∈ Xq then for all

s
{p}
i , s

{p}
j ∈ S′′ we have that πq(λPmin(s

{p}
i , x̄i−1)) =

πq(λPmin(s
{p}
j , x̄i−1)). Similar to before, the label of the

walk from s
{p}
i in χPmin(M) that has input portion x̄ is

the same as the label of the walk from si in M that has
input portion x̄. Thus, x̄ distinguishes the states in S′

and so, by Proposition 4.3, x̄ distinguishes the states
from S′ in distributed testing.

The definition of χPmin(M) uses sets of ports as
labels on states and this might appear to lead to
a combinatorial explosion. However, the number of
states of χPmin(M) is bounded above by the number
of transitions of M plus one (for the initial state) plus
an additional |S||P| states of the form s{p}. Let n be
the number of states, k be the number of ports and
m be the number of inputs of C-FSM M . Also let
nmin be the number of states of machine χPmin(M), then
nmin ≤ nk+nm+1. Thus, χPmin(M) can be constructed
in polynomial time.

We now present some definitions and observations
related to PDSs and then we give an upper bound on
the length of minimal controllable PDSs for C-FSMs5.

Given an input sequence x̄, we will let Bx̄ denote the
set of sets of ‘current states’ that can occur if we know
that x̄ has been applied from a state in S′′. Thus, if one
or more states in S′′ leads to output ȳ when x̄ is applied
then one of the sets in Bx̄ is the set of states that can be
reached from states in S′′ = {s{p}1 , . . . , s

{p}
n } by walks

with label x̄/ȳ (the set {δPmin(s{p}, x̄)|λPmin(s{p}, x̄) =
ȳ}). More formally, we have that Bx̄ = {{δPmin(s{p}, x̄)|
λPmin(s{p}, x̄) = ȳ}|∃s{p} ∈ S′′.ȳ = λPmin(s{p}, x̄)}.

While applying an input sequence x̄i, different states
of S′′ may produce different traces. This will lead to the
splitting of the set S′′ into smaller sets of states. On the

5This upper bound is used in the proof that the decision
problem is in PSPACE; it seems likely that smaller upper bounds
can be found but that is not a concern here.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 13

FIGURE 6: Canonical forms of FSM given in Figure 5

other hand if a state s{p} produces a different output
trace from all other states in set S′′ \ {s{p}} then s{p}

is distinguished from states S′′ \ {s{p}}.
We use δPmin(B, x̄i) to denote the set Bx̄i . Clearly, the

application of a PDS x̄ from set S′′ will lead to a set
Bx̄ of cardinality n; each set is a singleton set. We now
give an upper bound on PDS length for C-FSMs.

Lemma 4.1. Given a C-FSM M with n states, k
ports, and m inputs, M has a controllable PDS if and
only if it has one of length at most n(nmin)n where
nmin = nk + nm+ 1.

Proof. Consider the FSM χPmin(M) of M with set Smin

of states. Let S′′ = {s{p}1 , s
{p}
2 , . . . , s

{p}
n } and let x̄ be a

shortest PDS for state set S′′ of χPmin(M).
Now let us assume that S′′ = B, x̄ = x̄ax̄

′xbx̄b
where x̄′ = x0x1 . . . x|x̄′| is a fragment of PDS x̄ such
that |δPmin(B, x̄a)| < |δPmin(B, x̄ax0)| = |δPmin(B, x̄ax̄′)|
< |δPmin(B, x̄ax̄′xb)|.

We will prove that for any distinct proper prefixes x̄′′,
x̄′′′ of x̄′ we have that δPmin(B, x̄ax̄′′) 6= δPmin(B, x̄ax̄′′′).
We will use proof by contradiction and assume that
there exist proper prefixes x̄′′, x̄′′′ of x̄′ such that δPmin

(B, x̄ax̄′′) = δPmin(B, x̄ax̄′′′) and |x̄′′| < |x̄′′′|.
Now let us suppose that x̄′′′ = x̄′′x̄0 and x̄′ = x̄′′′x̄1 =

x̄′′x̄0x̄1. Since x̄ is a PDS for S′′ we must have that
x̄1xbx̄b distinguishes any two states that are in the
same set in δPmin(B, x̄ax̄′′x̄0). From Propositions 4.2
and 4.3 we know that no walk of χPmin(M) causes
controllability and observability problems in M . Hence,
since δPmin(B, x̄ax̄′′) = δPmin(B, x̄ax̄′′x̄0), we can replace
x̄′ (which equals x̄′′x̄0x̄1) by x̄′′x̄1 in x̄. But this leads
to a shorter controllable PDS, which contradicts the
minimality of x̄.

We can now note that the number of possible values
for a set Bx̄a is bounded above by the number of possible
mappings from the n states in S′′ to the states reached
from S′′ by x̄a. Since there are nmin possible values
that a state in S′′ can be mapped to, this gives an upper
bound of (nmin)n. Further, Bx̄ initially contains only
one set and finally contains n sets and so there are at
most n− 1 points at which the size of Bx̄ increases. We

can therefore conclude that a minimal PDS can be seen
as being a sequence of at most n− 1 subsequences each
of length at most (nmin)n. Moreover, Proposition 4.6
implies that x̄ is a PDS for state set S′′ of χPmin(M) if
and only if x̄ is a PDS for FSM M and so the result
follows.

Thus we conclude that PDS existence check for C-
FSM is decidable (it is sufficient to check all input
sequences of length at most n(nmin)n).

Theorem 4.1. Given a C-FSM M , checking the
existence of a controllable PDS is decidable.

We will show that the problem is PSPACE-Complete.
First we define a nondeterministic Turing Machine T
that can decide the existence of a PDS for a state
set S′ of C-FSM M . T will apply inputs one at a
time and maintain a current set C of pairs of states
such that (s, s′) is in C if and only if s ∈ S′ and the
sequence of inputs received takes M from s to s′. T
also maintains an equivalence relation r defined by two
states s, s′′ ∈ S′ being related under r if and only if the
currently guessed input sequence x̄ does not distinguish
s and s′ (λ(s, x̄) = λ(s′′, x̄)). Finally, T maintains a
set of ports Pc from which an input can be supplied
(the ports where no differences in outputs have been
observed).

Clearly, these pieces of information can be updated
when a new input is received: after an input is guessed,
T updates the current set information, the equivalence
relation r and finally the set of ports (a port is removed
from Pc if the latest input leads to different outputs at
this port). Since the problem is to decide existence, T
does not need to store the sequence of previous inputs
received. Further, the input sequence received defines
a PDS for S′ if and only if no two different states from
S′ are related under r. We now prove that the PDS
problem is in PSPACE for C-FSMs.

Proposition 4.7. Given a C-FSM M , checking the
existence of a controllable PDS is in PSPACE.

Proof. We will show that a non-deterministic Turing

The Computer Journal, Vol. ??, No. ??, ????

14 Hierons and Türker

Machine T can decide whether there is a PDS using
polynomial space. T will guess inputs one at a time.
It will maintain the set C of pairs of states, equivalence
relation r, the set of allowable ports Pc as described
above and this uses polynomial space.

In each iteration, the Turing Machine first guesses an
input x from a port in Pc. After guessing a new input x
and updating C, r, and Pc the machine checks whether
the input sequence received defines a PDS for S: this
is the case if and only if r relates no two different states
of S. Thus, if M has a PDS for S then T will find such
a PDS using polynomial space.

Consider the case where M does not have a PDS
for S: we require that the non-deterministic Turing
Machine terminates. In order to ensure this we use
the result that if C-FSM M has n states then M has
a PDS for S if and only if it has such a PDS with
length at most n(nmin)n. T therefore includes a counter
that counts how many inputs have been received: the
machine terminates with failure if the counter exceeds
the upper bound. Therefore we need additional O(log2

(n(nmin)n)) = O(n log2(nmin)) space for the counter
and so the space required is still polynomial.

We have defined a non-deterministic Turing Machine
that requires only polynomial space in order to solve
the problem and so the problem is in nondeterministic
PSPACE. We can now use Savitch’s Theorem [50],
which tells us that a problem is in PSPACE if and only
if it is in non-deterministic PSPACE, and the result
follows.

Thus we conclude that deciding whether a given C-
FSM has a PDS is PSPACE-Complete.

Theorem 4.2. Given a C-FSM M , checking the
existence of a controllable PDS is PSPACE-Complete.

Proof. First observe that the reduction presented in
Proposition 3.1 generates a C-FSM. Thus we know that
deciding whether an FSM has a controllable PDS is
PSPACE-Hard. Consequently Propositions 3.1 and 4.7
together imply that the problem is PSPACE-Complete.

5. CONCLUSIONS

Many algorithms for automatically generating test
sequences from a single-port FSM M use input
sequences that distinguish the states of M and several
such automated test generation algorithms use PDSs.
This paper has extended the concepts of PDSs to
distributed testing. We explored the problem of
deciding whether a multi-port FSM has a PDS, proving
that this problem is generally undecidable. We also
gave a class of multi-port FSMs (C-FSMs) for which the
existence of a PDS is decidable but PSPACE-Complete.
C-FSMs encapsulate a class of designs for which the
PDS problem is decidable; if a developer can design
a distributed system as a C-FSMs then this would

simplify testing. Multi-port FSMs were initially used
in the context of protocol conformance testing and so
are relevant there. Section 4 also described other classes
of systems for which multi-port FSMs can be used but
there are likely to be classes of systems for which they
are not appropriate.

These results are largely negative and might suggest
that, although there are potential benefits to using
PDSs, this is unlikely to be practical. However, we
might have an upper bound ` on the length of PDSs of
interest and for this case the problem is PSPACE-Hard
and in EXPSPACE. We observed that we can use a set of
separating sequences of polynomial size to distinguish
the states of a multi-port FSM and so in practice a
bound ` is likely to be a polynomial in the size of M .
For such bounds the decision problem is NP-Complete.
As far as we are aware there is no corresponding result
for single-port FSMs but it is not hard to show that
bounded PDS existence is PSPACE-Complete for single-
port FSMs.

The results in this paper are for completely-specified
multi-port FSMs. One can adapt the definition of
a controllable PDS to partial multi-port FSMs by
requiring that an input cannot be applied in a state
where it is not specified. A number of the results
(the undecidability result and the lower bounds) then
immediately transfer to partial multi-port FSMs - since
completely-specified multi-port FSMs form a special
case. The upper-bound proofs can also be adapted
for partial multi-port FSMs; when a non-deterministic
Turing machine is guessing a controllable PDS it has
the additional step of checking that an input is not
applied in a state where it is not specified. Thus, the
decidability and complexity results are the same for
partial FSM.

There are several lines of future work. First, it would
be interesting to investigate realistic conditions under
which the problems studied can be solved in polynomial
time. There may also be scope to develop heuristics for
devising controllable PDSs and it is encouraging that
although the PDS existence problem is PSPACE-Hard
for single-port FSMs it has been found that SAT solvers
can be effective in solving this problem [64]. Finally,
there is the potential to develop new automated test
generation algorithms for distributed testing.

REFERENCES

[1] Chow, T. S. (1978) Testing software design
modelled by finite state machines. IEEE
Transactions on Software Engineering, 4, 178–187.

[2] Hennie, F. C. (1964) Fault-detecting experiments
for sequential circuits. Proceedings of Fifth Annual
Symposium on Switching Circuit Theory and
Logical Design, Princeton, New Jersey, November,
pp. 95–110.

[3] Lee, D. and Yannakakis, M. (1996) Principles and

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 15

methods of testing finite-state machines - a survey.
Proceedings of the IEEE, 84, 1089–1123.

[4] Moore, E. P. (1956) Gedanken-experiments. In
Shannon, C. and McCarthy, J. (eds.), Automata
Studies. Princeton University Press.

[5] Petrenko, A. and Yevtushenko, N. (2005) Testing
from partial deterministic FSM specifications.
IEEE Transactions on Computers, 54, 1154–1165.

[6] Tretmans, J. (1996) Conformance testing with
labelled transitions systems: Implementation
relations and test generation. Computer Networks
and ISDN Systems, 29, 49–79.

[7] Tretmans, J. (2008) Model based testing with la-
belled transition systems. In Hierons, R. M.,
Bowen, J. P., and Harman, M. (eds.), For-
mal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, Lec-
ture Notes in Computer Science, 4949, pp. 1–38.
Springer.

[8] Duale, A. Y. and Uyar, M. U. (2004) A method
enabling feasible conformance test sequence gen-
eration for EFSM models. IEEE Transactions on
Computers, 53, 614–627.

[9] Grieskamp, W. (2006) Multi-paradigmatic model-
based testing. Formal Approaches to Software
Testing and Runtime Verification (FATES/RV
2006), Lecture Notes in Computer Science, 4262,
pp. 1–19. Springer.

[10] ISO/IEC (1995) Information technology - Open
Systems Interconnection, 9646 Parts 1-7.

[11] Boyd, S. and Ural, H. (1991) The synchronization
problem in protocol testing and its complexity.
Information Processing Letters, 40, 131–136.

[12] Chen, J., Hierons, R. M., and Ural, H. (2004)
Conditions for resolving observability problems
in distributed testing. 24rd IFIP International
Conference on Formal Techniques for Networked
and Distributed Systems (FORTE 2004), Lecture
Notes in Computer Science, 3235, pp. 229–242.
Springer-Verlag.

[13] Chen, W.-H. and Ural, H. (1995) Synchronizable
test sequences based on multiple UIO sequence.
IEEE/ACM Transactions on Networking, 3, 152–
157.

[14] Dssouli, R. and von Bochmann, G. (1985) Error
detection with multiple observers. Protocol
Specification, Testing and Verification V, pp. 483–
494. Elsevier Science (North Holland).

[15] Dssouli, R. and von Bochmann, G. (1986)
Conformance testing with multiple observers.
Protocol Specification, Testing and Verification VI,
pp. 217–229. Elsevier Science (North Holland).

[16] Guyot, S. and Ural, H. (1995) Synchronizable
checking sequences based on UIO sequences.
Protocol Test Systems, VIII, Evry, France,
September, pp. 385–397. Chapman and Hall.

[17] Hierons, R. M. and Ural, H. (2008) The effect of
the distributed test architecture on the power of
testing. Computer Journal, 51, 497–510.

[18] Hierons, R. M. (2010) Reaching and distinguishing
states of distributed systems. SIAM Journal on
Computing, 39, 3480–3500.

[19] Jourdan, G. V., Ural, H., and Yenigun, H. (2006)
Minimizing coordination channels in distributed
testing. IFIP International Conference on Formal
Techniques for Networked and Distributed Systems
(FORTE 2006), Lecture Notes in Computer
Science, 4229, pp. 451–466. Springer-Verlag.

[20] Sarikaya, B. and v. Bochmann, G. (1984) Synchro-
nization and specification issues in protocol test-
ing. IEEE Transactions on Communications, 32,
389–395.

[21] de Almeida, E. C., Marynowski, J. E., Suny,
G., Traon, Y. L., and Valduriez, P. (2010)
Efficient distributed test architectures for large-
scale systems. IFIP WG 6.1 International
Conference, Natal, Brazil, November 8-10, 2010.
Proceedings, Lecture Notes in Computer Science,
6435, pp. 174–187. Springer.

[22] Cacciari, L. and Rafiq, O. (1999) Controllability
and observability in distributed testing. Informa-
tion and Software Technology, 41, 767–780.

[23] Rafiq, O. and Cacciari, L. (2003) Coordination
algorithm for distributed testing. The Journal of
Supercomputing, 24, 203–211.

[24] Lucas, C., Elbaum, S., and Rosenblum, D. S.
(2012) Detecting problematic message sequences
and frequencies in distributed systems. SIGPLAN
Not., 47, 915–926.

[25] Hierons, R., Merayo, M., and Nunez, M.
(2008) Controllable test cases for the distributed
test architecture. Automated Technology for
Verification and Analysis, Lecture Notes in
Computer Science, 5311, pp. 201–215. Springer
Berlin / Heidelberg.

[26] Hierons, R. M. (2011) Controllable testing
from nondeterministic finite state machines with
multiple ports. IEEE Transactions on Computers,
60, 1818–1822.

The Computer Journal, Vol. ??, No. ??, ????

16 Hierons and Türker

[27] Luo, G., Dssouli, R., and v. Bochmann, G. (1993)
Generating synchronizable test sequences based on
finite state machine with distributed ports. IFIP
Workshop on Protocol Test Systems, pp. 139–153.
Elsevier (North-Holland).

[28] Tai, K.-C. and Young, Y.-C. (1998) Synchronizable
test sequences of finite state machines. Computer
Networks and ISDN Systems, 30, 1111–1134.

[29] Khoumsi, A. (2002) A temporal approach for
testing distributed systems. IEEE Transactions on
Software Engineering, 28, 1085 – 1103.

[30] Wang, C. and Schwartz, M. (1993) Fault detection
with multiple observers. IEEE/ACM Transactions
on Networking, 1, 48–55.

[31] Young, Y. C. and Tai, K. C. (1998) Observational
inaccuracy in conformance testing with multiple
testers. IEEE 1st workshop on application-specific
software engineering and technology, pp. 80–85.

[32] Aho, A., Dahbura, A., Lee, D., and Uyar, M.
(1991) An optimization technique for protocol
conformance test generation based on UIO
sequences and rural Chinese postman tours. IEEE
Transactions on Communications, 39, 1604 –1615.

[33] Hierons, R. M. (2010) Canonical finite state
machines for distributed systems. Theoretical
Computer Science, 411, 566–580.

[34] Ural, H. and Zhu, K. (1993) Optimal length test se-
quence generation using distinguishing sequences.
IEEE/ACM Transactions on Networking, 1, 358–
371.

[35] Luo, G. L., v. Bochmann, G., and Petrenko,
A. (1994) Test selection based on communicating
nondeterministic finite-state machines using a
generalized Wp-method. IEEE Transactions on
Software Engineering, 20, 149–161.

[36] Petrenko, A., Yevtushenko, N., and v. Bochmann,
G. (1996) Testing deterministic implementations
from nondeterministic FSM specifications. Testing
of Communicating Systems, Darmstadt, Germany,
September 9–11, pp. 125–141. Chapman and Hall.

[37] Dorofeeva, R. El-Fakih, K., Maag S., Cavalli,
A.C., and Yevtushenko, N. (2010) FSM-based
conformance testing methods: A survey annotated
with experimental evaluation. Information &
Software Technology,52, 1286–1297.

[38] Ural, H. (1992) Formal methods for test sequence
generation. Computers Communications, 15, 311–
325.

[39] Hierons, R. M. and Türker, U. C. (2016)
Distinguishing sequences for distributed testing:
Adaptive distinguishing sequences. The Computer
Journal , In press

[40] Lee, D. and Yannakakis, M. (1994) Testing
finite-state machines: State identification and
verification. IEEE Transactions on Computers, 43,
306–320.

[41] Gonenc, G. (1970) A method for the design of
fault detection experiments. IEEE Transactions
on Computers, 19, 551–558.

[42] Hierons, R. M., Jourdan, G.-V., Ural, H., and Yeni-
gun, H. (2009) Checking sequence construction us-
ing adaptive and preset distinguishing sequences,
IEEE International Conference on Software En-
gineering and Formal Methods, Hanoi. November
23-27, pp. 157–166. IEEE, USA.

[43] Hierons, R. M. and Ural, H. (2006) Optimizing the
length of checking sequences. IEEE Transactions
on Computers, 55, 618–629.

[44] Ural, H., Wu, X., and Zhang, F. (1997) On
minimizing the lengths of checking sequences.
IEEE Transactions on Computers, 46, 93–99.

[45] Hierons, R. M. and Ural, H. (2008) Checking se-
quences for distributed test architectures. Dis-
tributed Computing, 21, 223–238.

[46] Hopcroft, J. E. (1971) An n log n algorithm
for minimizing the states in a finite automaton.
International Symposium on the Theory of
Machines and Computations, Technion, Haifa,
Israel, August 16–19, pp. 189–196, Academic
Press, INC., LONDON.

[47] Hierons, R. M. (2015) Generating complete
controllable test suites for distributed testing.
IEEE Transactions on Software Engineering, 41,
279-293.

[48] Bannour, B., Escobedo, J. P., Gaston, C., and
Gall, P. L. (2012) Off-line test case generation for
timed symbolic model-based conformance testing.
24th IFIP WG 6.1 International Conference on
Testing Software and Systems, Aalborg, Denmark,
November 19-21, Lecture Notes in Computer
Science, pp. 119–135. Springer.

[49] Sokolovskii, M. (1971) Diagnostic experiments
with automata. Kibernetica, 7, 44–49.

[50] Savitch, W. J. (1970) Relationships between non-
deterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4, 177
– 192.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Preset Distinguishing Sequences 17

[51] Garey, M. R. and Johnson, D. S. (1979) Computers
and Intractability. W. H. Freeman and Company,
New York.

[52] Manweiler, J., Agarwal, S., Zhang, M.,
Roy Choudhury, R., and Bahl, P. (2011) Switch-
board: A matchmaking system for multiplayer
mobile games. International Conference on Mobile
Systems, Applications, and Services, Bethesda,
MD, USA, June 28 - July 01, pp. 71–84, ACM,
USA.

[53] Andersson, A. (2012) Multiplayer Game Server for
Turn-Based Mobile Games in Erlang. PhD thesis
Uppsala universitet/Institutionen för information-
steknologi, Sweden.

[54] Maheswaran, M., Braun, T. D., and Siegel, H. J.
(1999) Heterogeneous distributed computing. En-
cyclopedia of Electrical and Electronics Engineer-
ing, pp. 679–690. John Wiley.

[55] Xiang, Y. and Levitin, G. (2011) Service
task partition and distribution in star topology
computer grid subject to data security constraints.
Rel. Eng. & Sys. Safety, 96, 1507–1514.

[56] (GIMPS), Great Internet Mersenne Prime Search
(2015). http://www.mersenne.org/

[57] Elastic compute cloud (amazon EC2), A. (2015).
https://aws.amazon.com/documentation/ec2/

[58] Crago, S. P., Dunn, K., Eads, P., Hochstein, L.,
Kang, D., Kang, M., Modium, D., Singh, K.,
Suh, J., and Walters, J. P. (2011) Heterogeneous
cloud computing. 2011 IEEE International
Conference on Cluster Computing (CLUSTER),
Austin, Texas, USA, 26-30 September, pp. 378–
385, IEEE, USA.

[59] Reiss, C., Tumanov, A., Ganger, G. R., Katz,
R. H., and Kozuch, M. A. (2012) Heterogeneity
and dynamicity of clouds at scale: Google trace
analysis. ACM Symposium on Cloud Computing,
San Jose, CA, USA, October 14 - 17, pp. 7:1–7:13,
ACM, USA.

[60] Frederic Magoules, Tan, K.-A., Jie Pan (2009)
Introduction to Grid Computing, 2 edition. CRC
Press.

[61] Minnebo, W. and Van Houdt, B. (2012) Pull versus
push mechanism in large distributed networks:
Closed form results. International Teletraffic
Congress, Krakow, Poland, Sept, pp. 1–8.

[62] Huang, H. and Wang, L. (2010) P&P: A combined
push-pull model for resource monitoring in cloud
computing environment. IEEE International
Conference on Cloud Computing, Miami, Florida,
USA, July, 5–10, pp. 260–267, IEEE, USA

[63] Hierons, R. M. and Ural, H. (2003) Synchronized
checking sequences based on UIO sequences.
Information and Software Technology, 45, 793–
803.

[64] Güniçen, C., Türker, U. C., Ural, H., and Yenigün,
H. (2012) Generating preset distinguishing se-
quences using SAT. Computer and Information
Sciences II, pp. 487–493. Springer, London.

The Computer Journal, Vol. ??, No. ??, ????

