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Abstract 22 

Since everyday actions are statistically structured, knowing which action a person has just completed allows 23 

predicting the most likely next action step. Taking even more than the preceding action into account improves 24 

this predictability, but also causes higher processing costs. Using fMRI, we investigated whether observers 25 

exploit 2nd-order statistical regularities preferentially if information on possible upcoming actions provided by 26 

1st-order regularities is insufficient. We hypothesized that anterior prefrontal cortex balances whether or not 2nd-27 

order information should be exploited. Participants watched videos of actions that were structured by 1st- and 28 

2nd-order conditional probabilities. Information provided by the 1st and by the 2nd order was manipulated 29 

independently. BOLD activity in the action observation network was more attenuated the more information on 30 

upcoming actions was provided by 1st- order structure, reflecting expectation suppression for more predictable 31 

actions. Activation in posterior parietal sites decreased further with 2nd-order information, but increased in 32 

temporal areas. As expected, 2nd-order information was integrated more when less 1st-order information was 33 

provided, and this interaction was mediated by anterior prefrontal cortex (BA 10). Observers spontaneously 34 

used both the present and the preceding action to predict the upcoming action, and integration of the preceding 35 

action was enhanced when the present action was uninformative. 36 
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1. Introduction 40 

Humans use knowledge about structural regularities to shape their expectations about upcoming events 41 

(Bubic, von Cramon, & Schubotz, 2010; Friston & Kiebel, 2009; Kok, Brouwer, van Gerven, & de Lange, 42 

2013; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008; Turk-Browne, Scholl, Johnson, & Chun, 43 

2010). A good example of this ability is action observation: actions provide a conditional structure of sequential 44 

action steps, so that knowing about a preceding action step improves predictability of the upcoming action 45 

(Zacks, Kurby, Eisenberg, & Haroutunian, 2011). Therefore, it appears that the more preceding action steps an 46 

observer takes into account, the more accurate the prediction will be. For instance, we do expect that a person 47 

will put a tea bag into a mug after switching on a kettle, but we do not if we observed that person putting a 48 

descaler into the kettle right before. Here, the 1st-order conditional probability of “putting a tea bag in a mug” 49 

after observing “switching on a kettle” is modulated by taking one additional previous action step into account, 50 

which constitutes a 2nd-order conditional probability. However, retrieving this 2nd-order information comes with 51 

processing costs, and may thus not always be worth the investment. This leads to the question: do observers 52 

always consider as many preceding action steps as possible to optimize their predictions, or do they only do so if 53 

their expectation is hardly informed by the directly preceding action? We know that humans do not take into 54 

account all available sources of information to make optimal decisions, but often jump to conclusions, taking 55 

heuristic shortcuts (Gigerenzer & Goldstein, 1996). A basic question in human cognition concerns this cost-56 

benefit ratio: How much information processing is invested (as a cost) to optimize expectations and behavior (as 57 

a benefit)? 58 

Behavioral and functional MRI (fMRI) findings strongly suggest predictive mechanisms are engaged 59 

during action observation. Humans are particularly fast and accurate at recognizing actions, even if visual 60 

information is sparse (Blake & Shiffrar, 2007) or parts of the action are occluded (Stadler, Schubotz, & von 61 

Cramon, 2011; Zacks et al., 2011). The so-called action observation network (AON), including premotor cortex, 62 

inferior parietal lobule, and posterior temporo-occipital regions (Caspers, Zilles, Laird, & Eickhoff, 2010) shows 63 

reduced activation for expected compared to unexpected actions (expectation suppression, see Summerfield & 64 

de Lange 2014; Summerfield et al. 2008). For instance, AON activation is attenuated by previous encounters of 65 

an action (Schiffer, Ahlheim, Ulrichs, & Schubotz, 2013), successful inference of action goals (Wurm, Hrkać, 66 

Morikawa, & Schubotz, 2014), or predictive regularities between action steps (Ahlheim, Stadler, & Schubotz, 67 

2014; Schubotz, Wurm, Wittmann, & von Cramon, 2014). This shows that the human brain exploits previous 68 

action steps to prepare for upcoming action steps. However, it is so far unknown how many previous action 69 



 

steps are considered to improve predictability, and whether this occurs as a function of the uncertainty regarding 70 

the next action step. 71 

In general, the predictability of an upcoming event depends on the degree of structure that underlies the 72 

event sequence, and knowledge of this structure allows for more accurate predictions. Using various paradigms 73 

and stimuli, it has been shown that humans spontaneously learn about 1st-order structures defined by conditional 74 

probabilities between successive items, which can be accessed directly through pairwise associations. Humans 75 

use knowledge of those probabilities to prepare for upcoming stimuli, both in abstract stimulus sequences as 76 

well as actions (Ahlheim et al., 2014; Baldwin, Andersson, Saffran, & Meyer, 2008; Fiser & Aslin, 2002; 77 

Swallow & Zacks, 2008; Turk-Browne, Scholl, Chun, & Johnson, 2009). However, most everyday actions are 78 

not guided by simple 1st-order conditional probabilities, but involve higher-order (e.g., 2nd-order structures). 79 

Contrary to 1st-order information, 2nd-order information cannot be assessed directly, but requires retrieving 80 

information about the event t-2 from memory, and integrating it with the 1st-order information. This integration 81 

is necessary, as the event t-2 alone does not constitute the 2nd order, but only in combination with the event t-1. 82 

While the beneficial effects of 1st-order regularities on neural processing and behavior are uncontroversial, it 83 

remains unclear whether and how 2nd-order regularities influence behavior and prediction of upcoming events, 84 

and how this depends on concurrently available 1st-order information. Findings are mixed, as some studies do 85 

not show an effect of higher-order structures (Gureckis & Love, 2010), while others show that learning of 86 

higher-order structures is slower (Remillard, 2008), or not different from 1st-order learning (Domenech & 87 

Dreher, 2010). Research in amnestic patients revealed a specific deficit in the learning of higher-order 88 

conditional structures, whereas learning of 1st-order associations remained intact (Curran, 1989). This suggests 89 

that the hippocampal formation, which is frequently damaged in amnesia, specifically contributes to learning of 90 

higher-order compared to lower-order structures, additionally to its critical role in episodic memory and 91 

associative knowledge (Fortin, Agster, & Eichenbaum, 2002; Kumaran & Maguire, 2009; Strange & Dolan, 92 

2001).  93 

In order to account for the mixed findings on learning of higher-order structures, it has been suggested 94 

that humans are biased towards attending to lower-order structures, and only attend to higher-order structures if 95 

the information provided by the lower-order structure is insufficient to reliably predict the upcoming event 96 

(Gureckis & Love, 2010). It is so far unclear whether the same principle holds for action observation, and which 97 

neural structures could underpin this process of integration of predictive information. Recent findings indicate 98 

that the search and use of further information is orchestrated by the lateral BA 10 (Badre, Doll, Long, & Frank, 99 

2012; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006). Badre et al. (2012) showed that activation in the BA 100 



 

10 increases with relative uncertainty about a potential action outcome, but only in participants that showed a 101 

so-called explorative behavior, i.e. participants that were searching for additional information from unknown 102 

choices. This links the BA 10 to explorative choice. In a similar vein, Daw et al. (2006) showed that activation 103 

in the lateral BA 10 is higher for explorative, or information-gathering, choices. Exploration can be understood 104 

as search for information, and higher activation in the BA 10 is also frequently observed during episodic or 105 

source memory retrieval tasks (Ramnani & Owen, 2004), that is, when information needs to be gathered from 106 

memory. Furthermore, the BA 10 has been associated with the integration of different sources of information 107 

(Nee, Jahn, & Brown, 2013). 108 

In the present fMRI study, we tested the hypothesis that observers’ exploitation of 2nd-order statistical 109 

information in action sequences depends on how much information was already provided by the 1st order. We 110 

used fMRI to test whether information from an observed action's 2nd-order statistical structure is used the more 111 

the less informative the action's 1st-order statistical structure is and whether this cost-efficient integration of 112 

information would be signified by BA 10 activity.  113 

We presented observers with videos of action sequences structured by 1st- and 2nd-order conditional 114 

probabilities. That is, the probability of a given action step t was to a quantifiable amount determined by the 115 

preceding action step t-1 (1st-order statistical structure) and to another amount by the combination of the 116 

preceding (t-1) and the last but one preceding action step t-2 (2nd-order statistical structure). Importantly, the 117 

amount of information provided by 1st- and by 2nd-order structure was varied independently. This enabled us to 118 

estimate both effects independently and also their interaction. We modeled the BOLD effect at the beginning of 119 

action t as a function of the amount of information provided by the action t-1 alone and by the combination of 120 

action t-1 and t-2. We expected three effects: 121 

1) First, we expected to replicate findings from our previous studies (Ahlheim et al., 2014; Wurm et al., 122 

2014), showing that facilitating the prediction of the upcoming action step leads to attenuation of activity in the 123 

AON. The more informative action t-1, the better the prediction of the upcoming action t. Accordingly, we 124 

expected the BOLD response in the action observation network to decrease with the amount of information 125 

provided by action t-1.  126 

2) At the same point in time, integrating information from action t-2 with information from action t-1 127 

can effectively modulate expectations based on the relation between the actions t-1 and t, and thereby increase 128 

predictability of action t. Unlike 1st-order information, 2nd-order information cannot be accessed through direct 129 

associations between stimuli, but requires action t-2 to be retrieved from working memory and integrated with 130 

action t-1. Moreover, previous encounters of a particular combination of preceding action steps need to be 131 



 

retrieved from long-term memory in order to derive information on upcoming actions from the combination. We 132 

expected the retrieval and integration of 2nd-order information to be reflected in the hippocampal formation, due 133 

to its role in learning of higher-order sequences (Curran, 1989; Fortin et al., 2002; Kumaran & Maguire, 2009; 134 

Strange & Dolan, 2001). Activation of the hippocampus has furthermore been found to correlate positively with 135 

amount of information provided on an upcoming event (Harrison, Duggins, & Friston, 2006). We assumed that 136 

this effect generalizes to higher-order structures and hypothesized that activation in the hippocampal formation 137 

will correlate positively with the amount of information provided by the 2nd order. Furthermore, we expected 138 

use of 2nd-order information to draw on the AON. Here, we considered two potential scenarios. First, given that 139 

the exploitation of 2nd-order information improves predictability of the upcoming action, it can be expected to 140 

result in a further attenuation of the AON, paralleling the effect of 1st-order information, and pointing towards 141 

an interpretation of AON activity as reflecting a gain in predictability. Alternatively, activation in the AON 142 

could also be expected to increase with the amount of 2nd-order information. This is because the more 143 

information is provided by the 2nd-order structure, the more the predictions based on the 1st-order change and 144 

thus, integrating 2nd-order information is more demanding. This pattern would point towards sensitivity of the 145 

AON to the integration costs of 2nd-order information with the previously provided 1st-order information. 146 

3) Lastly, we were particularly interested in the question as to how exploitation of 2nd-order 147 

information depends on the amount of information already provided by the 1st-order – that is, which brain areas 148 

show a stronger modulation by 2nd-order information when 1st-order is low compared to when it is high. We 149 

hypothesized that integration of 2nd-order information should be especially enhanced when action t-1 alone was 150 

less informative about the upcoming action t and the need for further information is high. Thus, we expected a 151 

stronger modulation of the BOLD-signal by the 2nd-order information for trials with low compared to high 1st-152 

order information. We expected Brodmann Area 10 at the frontal pole to show this interaction effect, as it has 153 

not only be reported to be activated by integration of information (Nee et al., 2013) but also to orchestrate 154 

uncertainty-driven search for information (Badre et al., 2012; Daw et al., 2006). 155 

 156 

157 



 

2. Methods 158 

2.1 Participants 159 

Twenty-two healthy, right-handed participants volunteered for the study and were paid 80 € for their 160 

participation. The local ethics committee of the University of Münster approved the experimental protocol and 161 

written informed consent was obtained from each participant. Three participants had to be excluded after 162 

completing the experiment, one because of poor performance in the control task (score below two SD from 163 

mean), and two because of self-reported inattentiveness and sleep during the fMRI session. All following 164 

analyses are based on the data of the remaining 19 participants (mean age 25.35 ± 2.13 years, 14 females). 165 

 166 

2.2 Stimuli and Task 167 

We employed a paradigm that required constant monitoring of sequences of action steps that were 168 

structured by 1st- and 2nd-order conditional probabilities. To construct sequential actions devoid of semantic 169 

expectations, we used eight objects from the constructional toy Baufix® and defined the grasping and 170 

manipulation of an object as one action step. Overall, we created a total of 140 action sequences, ranging from 171 

four to nine action steps. Base-rate probability of occurrence was nearly identical for all action steps, ranging 172 

from 12% to 14%. Therefore, predictions of upcoming action steps could not reliably be based on frequency.  173 

To prevent participants from episodically remembering entire video clips as a basis for prediction we 174 

shot every sequence in seven versions, each with different starting scaffolds, which consisted of various 175 

different mounted objects (see Figure 1a for an illustration of the video clips). 176 

Action videos were displayed on a grey background in the middle of a computer screen. A fixation 177 

circle with a duration of 3 s, or adjusted length after question trials, preceded all videos. Within the videos, onset 178 

asynchronies of the single action steps ranged from 1.28 s to 12.24 s (mean 4.39 s).  179 

Approximately half of the video clips (64 of 140 during the training, 32 of 70 during the fMRI session) 180 

were followed by questions trials. Here, participants were required to answer questions concerning the previous 181 

video, e.g., “Has a long screw been used?”. Responses were given via computer mouse with the right button 182 

(i.e., middle finger of the right hand) corresponding to the answer “no” and the left button (i.e., right index 183 

finger) corresponding to “yes”. Half of the questions required a positive answer and all participants responded 184 

according to the same response contingencies. Questions were presented for 3 s or until the first response, and 185 

had to be answered within 3 s (see Figure 1a). The duration of the fixation circle following responses was 186 

adapted to compensate for different response times and could range from 2 to 5 s. Questions were followed by a 187 

feedback of 2 s indicating correct (“+”), incorrect (“-“), or delayed (“/”) responses. 188 



 

Figure 1 

 

 

 

a) Illustration of the trial course. A fixation circle preceded each 

video and 46% of the videos were followed by a two-alternative 

forced choice question. Feedback on correctness of responses was 

only given during the training sessions. b) Excerpt of the 

employed transition matrix. Rows 1-4 show 1st-order conditional 

probabilities between action steps, rows 5-12 show 2nd-order 

conditional probabilities. Objects in rows depict the preceding 

objects of the transition. Red marked are two examples for 

possible 1st-order transitions with high or low information. 

Transitions with high information provided by the 1st-order 

structure are marked with criss-cross lines (red for 1st-order 

conditional probabilities, light or dark blue for 2nd-order 

conditional probabilities). Light blue fields show exemplary 

transitions with low, dark blue fields with high modulatory 

influence of the 2nd-order structure. 

2.2.1 Markov Matrix 189 

The succession of action steps within the sequences followed pre-defined 1st- and 2nd-order conditional 190 

probabilities (see Figure 1b for an excerpt of the transition matrix). First-order conditional probability refers to 191 

the probability of each action step based on the immediately preceding action, ranging from 12.5% to 37.5% 192 

(rows 1-4 in the transition matrix, Figure 1b). The larger the difference between probabilities of the possible 193 

upcoming actions, the more information about the upcoming action was provided by the 1st-order structure. For 194 

instance, the blue cube provided more 1st-order information than the short screw, as it allowed for a better 195 

prediction of the upcoming action. Paralleling the 1st-order, the 2nd-order conditional probability refers to the 196 

probability of each action step based on the combination of the two preceding actions, ranging from 12.5% to 197 

87.5% (rows 5-12 in the transition matrix, Figure 1b). Here, the larger the difference between probabilities of 198 

the possible upcoming actions, i.e., between all actions within one row of the matrix, the more information was 199 

provided by the 2nd-order structure. For instance, if a screw nut preceded the short screw, it provided much 200 

information on the upcoming action: the previously balanced probabilities on the 1st-order structure would 201 

become biased, and putting the triangle would become the most likely action step. Contrary to that, a long screw 202 

preceding the short screw provided little information, as the probability ratio between the next possible actions 203 

stays the same. As can be seen from the matrix, the amount of information provided by the 2nd-order structure 204 



 

varied independently of the information provided by the 1st-order structure. This feature of the statistical 205 

structure is important as it allowed us to test if the amount of information provided by the 1st order affects 206 

exploitation of the 2nd order as an additional source of information. 207 

 208 

 209 

2.3 Experimental Procedure 210 

Prior to the fMRI scan, each participant completed three 90-minute training sessions on three 211 

successive days to acquire implicit knowledge of the statistical structure. Since we wanted to test if human 212 

observers spontaneously attend to different levels of statistical structure, participants did not receive explicit 213 

learning instructions at any point either in training or during the fMRI session, and were not told that there was a 214 

certain systematic concerning the structure of the action sequences. Participants were familiarized with the eight 215 

different objects as well as with the type of question they would be asked before they started the training 216 

sessions.  217 

The course of the fMRI session was identical to the training session, but no feedback was provided 218 

after question trials. To account for the limits in maximal duration of fMRI sessions, only 70 out of the 140 219 

action sequences were presented, resulting in approximately 45 minutes of fMRI scan. The selected 70 220 

sequences were a representative sample of the total set of sequences, while ensuring that rare action 221 

combinations (i.e. with low 1st- or 2nd-order conditional probabilities) occurred with sufficient frequency. 222 

To test our prediction that participants would be capable of learning both 1st- and 2nd-order conditional 223 

probabilities, we implemented two post-scanner tests to assess participants’ knowledge of the action syntax.  224 

The first computer-based post-test was a serial reaction time task (SRTT, Nissen & Bullemer 1987) 225 

wherein pictures of the eight Baufix objects occurred at different locations on the screen. Unknown to the 226 

participants, the succession of the objects was defined by the same statistical structure as in the main 227 

experiment. Participants had to press a button, specifically assigned to each of the objects on an eight-button 228 

response pad as fast as possible. Wrong answers were followed by a negative feedback. This test was designed 229 

to test whether reaction times (RTs) would be modulated by both 1st- and 2nd-order conditional probability of the 230 

occurring object. 231 

The second post-test was a paper-pencil test. Eight video clips were presented in randomized order. 232 

Videos ended after the actor had used one object and reached for another. The participants’ task was to mark 233 

those objects out of the set of eight that they expected to be used next and to weight them according to their 234 

respective probability. They made this judgment in the form of eight crosses, which they could assign among the 235 



 

eight objects. For instance, if participants saw a clip in which the long screw had been used and they expected 236 

the board and the screw nut afterwards with equal probabilities, they assigned four crosses to each of them. The 237 

number of eight crosses allowed participants to select up to all eight possible objects and to weigh them 238 

accurately (each cross corresponded to p= .125). 239 

 240 

2.4 Data Acquisition 241 

A 3T Siemens Magnetom Trio (Siemens, Erlangen, Germany) system equipped with a standard 242 

birdcage head coil was used in the functional imaging session. Participants lay supine in the scanner and their 243 

right hand was placed on a four-button response-box. Index and middle finger were placed on the response 244 

buttons and response contingencies were the same as in the training sessions. Participants’ heads and arms were 245 

stabilized using form-fitting cushions, and earplugs were provided to attenuate scanner noise. The experiment 246 

was presented via a mirror that was built into the head coil and adjusted individually to provide a good view of 247 

the entire screen.  248 

During the functional imaging, 28 axial slices (128.8 mm field of view, 4 mm thickness, 0.6 mm 249 

spacing; in-plane resolution of 3x3 mm) parallel to the bi-commissural line (AC-PC) were collected using a 250 

single-shot gradient echo-planar (EPI) sequence (2000 ms repetition time; echo time 30 ms, flip angle 90°, serial 251 

recording, 1260 repetitions) blood-oxygenation level-dependent (BOLD) contrast. After the functional imaging, 252 

28 slices of anatomical T1-weighted MDEFT images (4 mm thickness, 0.6 mm spacing) were acquired. 253 

High-resolution 3D T1-weighted whole brain MDEFT sequences (128 sagittal slices, 1 mm thickness) 254 

were recorded for each participant in a separate session for improved localization of activation foci. Functional 255 

data were offline motion-corrected using the Siemens motion protocol PACE (Siemens, Erlangen, Germany). 256 

Further processing was conducted with the LIPSIA software package, version 2.1 (Lohmann et al., 2001). To 257 

correct for temporal offsets between the slices acquired in one scan, a cubic-spline interpolation was used. To 258 

remove low-frequency signal changes and baseline drifts from the BOLD signal, we applied a high-pass filter of 259 

1/89 – 1/70 Hz, defined by an algorithm implemented in the Lipsia software package. Functional data slices 260 

were aligned with a 3D stereotactic coordinate system. The matching parameters (six degrees of freedom, three 261 

rotational, three translational) of the T1-weighted 2D-MDEFT data onto the individual 3D-MDEFT reference 262 

set were calculated. These parameters were used in a transformation matrix for a rigid spatial registration, 263 

normalized to a standardized Talairach brain size (x = 135, y = 175, z = 120 mm; Talairach & Tournoux, 1988) 264 

by linear scaling. Thereafter the normalized transformation matrices were applied to the functional slices in 265 

order to transform them using trilinear interpolation and align them with the 3D-reference set in the stereotactic 266 



 

coordinate system. The spatial resolution of the resulting functional data was 3 mm * 3 mm * 3 mm (27 mm3). 267 

A spatial Gaussian filter of 8 mm full width at half maximum (FWHM) was applied to the data. 268 

 269 

2.5 Data Analyses 270 

2.5.1 Information Theoretical Modeling 271 

To operationalize the amount of information provided by the 1st and 2nd order, respectively, we used 272 

measures derived from information theory and an ideal observer model to estimate conditional probabilities of 273 

action steps (cf. Ahlheim et al. 2014; Bornstein & Daw 2012; Harrison et al. 2006; Strange, Duggins, Penny, 274 

Dolan, & Friston, 2005). Therefore, simulated probabilities were calculated across the training session, and 275 

continued through the scanning session. The base probabilities (p) of single items were calculated as the number 276 

of occurrences n of item xt divided by the sum of all items xi that have appeared so far (see equation 1). 277 

Conditional probabilities were calculated by dividing the probability of co-occurrence of two items by the 278 

preceding item’s base probability (see equation 1b); this formula was extended for the case of 2nd-order 279 

conditional probabilities. 280 

 281 

p xt( )=
n xt( )+1

xi +1
i
∑

 282 

Equation 1a. Calculation of base probabilities. 283 

p xt | xt−1( )= p(xt∩ xt−1)
p(xt−1)

 284 

Equation 1. Calculation of 1st-order conditional probabilities.  285 

 286 

The amount of information provided by an event can be quantified as the degree to which uncertainty 287 

about an upcoming event is reduced. Uncertainty can be represented as entropy (H) (Equation 2), which is 288 

higher when unexpected events are probable (Cover & Thomas, 1991; Shannon, 1948). Entropy is therefore also 289 

referred to as expected surprise. The surprise of an event is defined as the negative logarithm of its probability, 290 

i.e. the surprise of an event is higher if the event was less likely. Formally, entropy is maximal if all possible 291 

events are equally likely to occur, so that pevent = 1/nevents. On the 1st order, the entropy about possible upcoming 292 

events (members of X) after occurrence of one other event (member xt-1 of all X) can be quantified as forward 293 

entropy (Ahlheim et al. 2014; Bornstein & Daw 2012, see Equation 3). If the forward entropy H(X|xt-1) is 294 

smaller than the general entropy H(X), occurrence of xt-1 provided information about the occurrence of X. This 295 



 

information I1 can be quantified as the difference between the general entropy H(X) and the forward entropy 296 

(taking the preceding event into account, i.e., H(X|xt-1)). The same logic applies to information provided by the 297 

2nd order I2, which can be quantified as the difference between the 1st-order forward entropy H(X| xt-1) and the 298 

2nd-order forward entropy H(X| xt-1, xt-2) (Equation 4). To ensure that differences between 1st- and 2nd-order 299 

forward entropy were not driven by different 1st-order conditional probabilities, we normalized the forward 300 

entropy by the 1st-order probability of co-occurrence.  301 

 302 

H X( )= p xt
i( )∗−log p xt

i( )
i
∑  303 

Equation 2. Calculation of the general entropy. 304 

 305 

H X xt−1( )= p xt−1( ) p xt
i | xt−1( )∗−log p xt

i | xt−1( )
i
∑  306 

Equation 3. Calculation of the 1st-order forward entropy. 307 

 308 

H X xt−1, xt−2( )= p xt−1, xt−2( ) p xt
i | xt−1, xt−2( )∗−log p xt

i | xt−1, xt−2( )
i
∑  309 

Equation 4. Calculation of the 2nd-order forward entropy. 310 

 311 

2.5.2 Behavioral Analysis of post-fMRI Tests 312 

The behavioral analysis was conducted with the statistic software package R, version 3.1 (R 313 

Foundation for Statistical Computing, Vienna, Austria) and SPSS statistics version 22 (SPSS Inc. Chicago, 314 

Illinois, USA). If not indicated otherwise, all inferential decisions were based on an alpha level of .05.  315 

 316 

3) SRTT Analysis 317 

The first post-fMRI test, the SRTT, was designed to measure whether RTs were modulated by 1st- and 318 

2nd-order conditional probability. This would provide evidence for implicit learning of the respective orders. To 319 

test for this, we conducted a multiple regression analysis separately for each participant, which included the 320 

predictors of 1st-order conditional probability and 2nd-order conditional probability (see Equation 1) as well as 321 

the trial number to control for general learning effects. Using multiple regressions enables us to identify how 322 

much each predictor contributes to the observed data in the context of the simultaneously available predictors. 323 



 

Only correct trials with an RT between 100 ms and 2000 ms were included in the analysis. On average, 7 % (45 324 

of 651 trials) were excluded per participant. One participant had to be excluded due to excessively prolonged 325 

RTs (z> 2), resulting in 18 participants in the final analysis of the SRTT. To account for the non-normal 326 

distribution of the RT data, all RTs were logarithmized prior to analysis. For each participant, we obtained one 327 

standardized regression coefficient that reflected how strongly their RTs were modulated by the 1st-order 328 

conditional probabilities, and one that reflected how strongly RTs were modulated by 2nd-order conditional 329 

probabilities, while controlling for effects of the respective other predictor. Those standardized regression 330 

coefficients were tested for significant deviation from zero, using separate one-sample t-tests (cf. Bornstein & 331 

Daw, 2012 for a similar approach).  332 

 333 

2) Paper-Pencil Analysis 334 

The second post-fMRI test was a paper-pencil test where we assessed participants’ explicit knowledge 335 

of the 1st-order structure. One participant failed to complete the post-test and was thus excluded from the 336 

analysis. We aggregated the number of crosses for the underlying true probability level (0, 12.5, 25, 37.5), for 337 

instance, how many crosses a participant distributed on average for a 0.25 conditional probability between 338 

action steps. This data was entered into a univariate ANOVA with the factor PROBABILITY (0, 0.125, 0.25, 339 

0.375) to test for significant differences between the levels. To test for the expected increase of probability 340 

ratings with implemented probabilities, planned paired t-tests between the successive probability levels were 341 

conducted. 342 

 343 

2.5.3 fMRI Data analysis 344 

For the statistical evaluation of the BOLD signal, a design matrix was generated modeling events with 345 

a delta (stick) function, convolved with the hemodynamic response function (gamma function; Glover 1999). 346 

All modeled actions had a minimal inter-stimulus-interval of 2 seconds. The first two actions of each sequence 347 

were discarded, as 2nd-order information was not available for those. The general linear model included five 348 

regressors, which were modeled time-locked to the onset of the action steps and with a duration of 1 s. Onset of 349 

action steps was defined as the moment the hand started to reach towards the next object. The first regressor 350 

served as a baseline and was modeled with an amplitude of 1.  351 

To model information provided by the 1st order, we included a parametric regressor in which entries in 352 

the amplitude vector corresponded to the amount of information provided by the 1st order (I1). Paralleling this 353 

account, we included another parametric regressor in which entries in the amplitude vector corresponded to the 354 



 

amount of information provided by the 2nd order (I2). To assess whether exploitation of the 2nd-order information 355 

depended on whether the 1st-order structure provided more or less information, we constructed an additional 356 

parametric regressor which modeled only those events for which the amount of information provided by the 1st 357 

order fell within the 1st or 4th quartile of the distribution of information provided by the 1st order (lowest and 358 

highest 25%). The amplitude entries on this regressor corresponded to the interaction term of 1st- and 2nd-order 359 

information, calculated as their mean-centered product (see Figure 2a for an illustration for the course of the 360 

parametric regressors during an excerpt of the experiment).  361 

In addition to the parameters modeling amount of provided information, we included the 1st-order 362 

conditional surprise, i.e., the negative logarithm of each action step’s conditional probability, as a nuisance 363 

regressor. Amplitudes of all parametric regressors where separately z-scored for each participant. 364 

To account for question trials and general effects of observing actions, we included question trials with 365 

a duration of 3 s and video clips with a duration according to the duration of the video, both with an amplitude 366 

of 1.  367 

We corrected for multiple comparisons by applying a two-step correction approach, resulting in a 368 

correction at p< .05 at the cluster level. In the first step, an initial z-threshold of 2.57 (p< .01, two-tailed) was 369 

defined. All voxels showing activation above this threshold entered the second step of the correction. Here, a 370 

Monte Carlo simulation was used to define thresholds for cluster-size and cluster-value at a significance level of 371 

p< .05. The combination of cluster size and cluster value decreases the risk of neglecting true activations in 372 

small structures. Thus, all reported activations were significant at p< .05, corrected for multiple comparisons at 373 

the cluster level. 374 

375 



 

 376 

Figure 2 

 

a) Example course of the parametric regressors for 1st-order information (red), 2nd-order information (blue), and their interaction term (black) 
during an excerpt of the experiment. b) Parametric effects of the amount of information provided by the 1st- order statistical structure. PMv: 
ventral premotor cortex, mIPS: midposterior intraparietal sulcus, pMTG: posterior middle temporal gyrus. c) Parametric effects of the 
amount of information provided by the 2nd- order statistical structure. mIPS: midposterior intraparietal sulcus, pMTG: posterior middle 
temporal gyrus, SPOC: superior parieto-occipital cortex, TempPole: temporal pole. d) Overlay of the parametric effects of the 1st- and 2nd-
order statistical structure in observed action videos. Effects of 1st-order information are displayed in red, 2nd-order in blue. Effects of both 
parameters overlapped in the midposterior intraparietal sulcus (yellow) and comprised 1188mm3 (59.46% of the activation cluster revealed 
in the 1st-order contrast) in the right and 432mm3 (5.05%) in the left hemisphere. e) Interaction of parametric effects of the amount of 
information provided by the 2nd-order statistical structure and the amount of information provided by the 1st-order structure. The bar chart 
depicts beta-values in the BA 10 when the interaction term modeled only events with high 1st-order information (light blue, t(18)= -0.18, p= 
.855), low 1st-order information (dark blue, t(18)= -3.12, p= .006), and the interaction effect when events with high or low 1st-order 
information were modeled (middle blue, t(18)= -3.41, p= .003). Error bars depict ± 1 standard deviation. pMTG: posterior middle temporal 
gyrus, IPS: intraparietal sulcus, preCun: precuneus. 
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378 



 

3. Results 379 

Participants answered on average 26.4 out of 32 question trials correctly (SD = 3.27), indicating a high 380 

attentiveness during the fMRI session. 381 

 382 

3.1 Behavioral Results 383 

3.1.1 Results of the post-fMRI SRTT 384 

The multiple regression testing for effects of the 1st-order and 2nd-order conditional probabilities on the 385 

logarithmized RTs revealed a significant negative relationship between 1st-order conditional probability and 386 

RTs, showing that higher 1st-order probabilities led to faster RTs (t(17)= -6.92, p < .001, two-tailed, M= -0.12, 387 

SD= 0.07 of the standardized coefficients). This effect was consistent across all participants. The effect of the 388 

2nd-order conditional probability was also significant (t(17) = 2.37, p= .030, two-tailed, M= 0.03, SD= 0.06), 389 

indicating slower RTs with higher 2nd-order probabilities (see Figure 3). Thirteen out of the 18 tested 390 

participants showed a positive correlation between 2nd-order conditional probabilities and RTs. As we conducted 391 

multiple regressions, those results show that RTs were slower for higher 2nd-order conditional probabilities 392 

whilst controlling for an effect of 1st-order conditional probabilities.  393 

We furthermore wanted to test whether the effect of 2nd-order conditional probabilities depended on the 394 

degree to which expectations based on 1st-order conditional probabilities had been modulated by these 2nd-order 395 

conditional probabilities. To that end, we conducted a median split of the data for each participant, dividing 396 

trials by whether the 2nd order modulated the 1st order to a greater or lesser extent. We performed two multiple 397 

regressions parallel to the multiple regression described above, with 1st-order and 2nd-order conditional 398 

probability, as well as trial number, as predictors. The resulting standardized coefficients for the 2nd-order 399 

conditional probability depending on how strongly the 2nd order changed the expectations based on the 1st-order 400 

conditional probabilities were tested against each other using a paired t-test. A marginally significant difference 401 

was revealed (t(17)= 2.04, p= .057, two-sided). Thus, RTs showed a trend for being more strongly modulated by 402 

2nd-order probabilities if those modulated the expectations based on 1st-order probabilities strongly (M= 0.11, 403 

SD= 0.15) compared to if the modulation was weak (M= 0.03, SD= 0.11; see Figure 3). 404 

 405 

 406 

 407 

 408 



 

Figure 3 

 

Results of the serial reaction time post-test. a) Mean beta weights expressing the relationship between 1st - and 2nd-order conditional 
probabilities and reaction times. Reaction times decreased with increasing 1st-order conditional probabilities and increased with increasing 
2nd-order conditional probabilities b) Comparison between effects of 2nd-order conditional probabilities on reaction times in dependence on 
the degree to which 1st-order conditional probabilities were modulated by the 2nd order. Reaction times showed a trend towards a stronger 
modulation by 2nd-order conditional if 1st-order conditional probabilities were modulated to a larger extent. Error bars depict ± 1 standard 
deviation. * p< .05, + p< .06. 

 409 

3.1.2 Results of the post-fMRI paper-pencil test 410 

The results of the paper-pencil post-test, which assessed knowledge of the 1st-order structure, further 411 

corroborated the significant effect of 1st-order conditional probabilities on RTs. The repeated-measures ANOVA 412 

testing for an overall effect of the factor PROBABILITY on the assigned weight turned out significant (F(3, 413 

51)= 18.17, p< .001, partial ƞ= .52). As we expected rated probabilities to reflect actually implemented 414 

probabilities, planned paired t-tests were conducted between the single successive levels. We found no 415 

difference between probabilities of 0 and 0.125 (t(17)= 1.61, p= .063, one-tailed, d= 0.38), a marginally 416 

significant difference between probabilities of 0.125 and 0.25 (t(17)= 2.09, p= .026, one-tailed, d= 0.49) and a 417 

significant difference between 0.25 and 0.375 (t(17)= 3.48, p= .002, one-tailed, d= 0.82), with an alpha-level of 418 

.017, adjusted for the three comparisons (see Figure 4; note that the mean assigned values were scaled by the 419 

factor 12.5 to match the scaling of the implemented probabilities). This indicates that participants formed 420 

predictions based on the 1st-order conditional probabilities, and that their representation of 1st-order conditional 421 

probabilities was more precise for higher probability values. None of the participants claimed conscious 422 

knowledge of the structure when interviewed after the experiment. 423 

 424 



 

Figure 4 

 

Results of the paper-pencil post-test, showing that assigned probabilities increased 
as implemented probabilities increased. Number of assigned crosses was 
multiplied by 12.5 to achieve same scaling as underlying probabilities. Error bars 
depict ± 1 standard deviation. * p< .017, + p< .03. 

 425 

3.2 fMRI Results 426 

Manipulating the amount of information provided by the 1st and 2nd order of the statistical structure 427 

independently of each other allowed us to assess functional correlates of the exploitation of each of the levels 428 

independently. Furthermore, it enabled us to investigate how the amount of information provided by the 1st 429 

order affects exploitation of further information provided by the 2nd order. 430 

1) Effects of 1st-order information 431 

The contrast testing for a modulation of the BOLD response by the amount of information provided by 432 

the 1st-order structure yielded an attenuation of activation in the predicted network of ventral premotor cortex 433 

(PMv), the midposterior part of the intraparietal sulcus (mIPS), and the fusiform gyrus and posterior middle 434 

temporal gyrus (pMTG), which is classically reported for action observation (see Table 1 for a list of all 435 

activations, Figure 2b). Since information provided by the 1st-order structure and information provided by the 436 

2nd order were modeled simultaneously, this finding shows that increased predictability based on information 437 

provided by the 1st-order structure can reduce activation even when information from the 2nd-order structure is 438 

also available.  439 

 440 

 441 

 442 

 443 



 

Table 1: MNI coordinates and maximal z-scores of significantly activated clusters following correction for 444 

multiple comparison for the parametric contrast of information provided by the 1st-order structure 445 

Localization MNI coordinates 
z-values, 

local maxima 

Cluster size 

(mm3) 

 x y z   

ventral premotor cortex  -41 1 33 -4.39 11691 

37 4 33 -4.22 9855 

midposterior intraparietal sulcus -17 -62 48 -3.99 8559 

25 -53 42 -3.38 1998 

midposterior intraparietal sulcus/ Precuneus 

(BA 19) 

13 -65 54 -2.87 567 

28 -71 22 -2.97 810 

Fusiform gyrus /  

posterior middle temporal gyrus 

-50 -59 0 -3.96 6939 

40 -50 -21 -3.06 1107 

 446 

2) Effects of 2nd-order information 447 

We expected 2nd-order information to draw onto activation in the AON as well, though we considered either a 448 

positive or a negative correlation as possible.  449 

Higher 2nd-order information was associated with a decrease of activation in mIPS, which overlapped 450 

with the cluster observed in the 1st-order contrast (1188 mm3 in the left, 432 mm3 in the right hemisphere; see 451 

Figure 2d for a conjunction of the two contrasts). The mIPS was the only area for which an overlap was 452 

revealed. We found an increase in activation with higher 2nd-order information in pMTG and superior parieto-453 

occipital cortex (SPOC). An unhypothesized positive correlation between BOLD activation and 2nd-order 454 

information was furthermore revealed in the right temporal pole (see Table 2 for a list of all activations, Figure 455 

2c). Those findings show that 2nd-order information is spontaneously integrated, independent of 1st-order 456 

information. To additionally test which areas are more sensitive towards 1st- than towards 2nd-order information, 457 

we calculated the direct contrast between the two parametric regressors. This contrast revealed significantly 458 

higher activation for the 2nd-order in the premotor cortex and the pMTG, showing that activation there was more 459 

strongly attenuated by 1st-order information (see supplementary Table 1 and supplementary Figure 1). 460 

To test for the hypothesized correlation between 2nd-order information and activation in the 461 

hippocampal formation reflecting effects for retrieval of 2nd-order information, we additionally conducted an 462 

ROI analysis in the anterior hippocampus. ROI coordinates were taken from a previous publication of our group 463 



 

(Ahlheim et al., 2014) and were based on reported effects of sensitivity of the hippocampus to entropy 464 

(Bornstein & Daw, 2012; Harrison et al., 2006; Strange et al., 2005). The center of the ROI in the left 465 

hippocampus was at x = −25, y = −16, z = −18, and the center of the ROI in the right anterior hippocampus was 466 

at x = 31,y = −17, z = −19. Both ROIs had a sphere with a radius of two adjacent voxels (6 mm). Unexpectedly, 467 

neither ROI showed a significant modulation by 2nd-order information (all p> .09, Bonferroni-corrected alpha-468 

level of .025; see Table 3 for inferential statistics). 469 

 470 

 Table 2: MNI coordinates and maximal z-scores of significantly activated clusters following correction for 471 

multiple comparison for the parametric contrast of information provided by the 2nd-order structure. 472 

Localization MNI coordinates 
z-values, 

local maxima 

Cluster size 

(mm3) 

 x y z   

dorsal premotor cortex  

local maximum in pCC 

28 -11 54 3.82 
4725 

 7 -12 39 3.58 

midposterior intraparietal sulcus -29 -59 30 -2.91 594 

25 -50 36 -3.31 3294 

posterior middle temporal gyrus -50 -68 18 3.11 405 

37 -62 9 4.23 4455 

superior parieto-occipital cortex (BA 18) -20 -89 15 3.00 648 

16 -92 21 4.56 13851 

Temporal pole 52 4 -30 3.50 4401 

 473 

Table 3: Inferential statistics of hippocampal ROI analyses. 474 

 t(18) p 

Parametric effect of 1st-order 

information 

left hippocampus 1.75 .097 

right hippocampus 0.42 .683 

Parametric effect of 2nd-order 

information 

left hippocampus 1.29 .212 

right hippocampus 1.75 .096 

Parametric effect of interaction 

term 

left hippocampus -0.25 .806 

right hippocampus -0.07 .943 

 475 



 

3) 1st-order dependent exploitation of 2nd-order information 476 

We hypothesized that exploitation of the 2nd-order information depends on the amount of information 477 

provided by the 1st-order structure. To test this, we included an interaction term modeling only those events for 478 

which the 1st-order structure provided least information (lowest 25% of the distribution) or the most information 479 

(uppermost 25% of the distribution). The interaction therefore reveals areas that were significantly more 480 

strongly modulated by information provided by the 2nd-order structure if the 1st-order structure provided only 481 

little information about the upcoming event. We found that activation in the PMd, the IPS, the precuneus, and 482 

the occipito-temporal lobe were more strongly modulated by information provided by the 2nd order of the 483 

statistical structure when less information was provided by the 1st-order structure.  484 

Additionally, the interaction contrast yielded the predicted modulation of activity in lateral BA 10. BA 485 

10 did not show a significant modulation by 2nd-order information or 1st-order information alone, which 486 

indicates that it is more strongly modulated by information provided by the 2nd order if integration of this 487 

information was actually beneficial, i.e. when the 1st-order provided less information (see Table 4 for a list of all 488 

activations, Figure 2e). As can be seen from the bar chart in Figure 2e, this interaction effect was indeed driven 489 

by the cases in which 1st-order information was low.  490 

Notably, the pattern of this revealed interaction effect also held when modeling all instead of only the 491 

most (un-) informative 25% of trials (data not shown).  492 

 493 



 

Table 4: MNI coordinates and maximal z-scores of significantly activated clusters following correction for 494 

multiple comparison for the interaction contrast of information provided by the 2nd-order structure, depending 495 

on the amount of information provided by the 1st-order structure. 496 

Localization MNI coordinates 
z-values, 

local maxima 

Cluster size 

(mm3) 

 x y z   

anterior prefrontal cortex:  BA 10 32 52 9 -3.23 
5481 

BA 11 14 50 -15 -3.82 

dorsal premotor cortex  -23 -8 60 -4.27 5076 

 22 -2 57 -3.72 4428 

Parietal and occipital 

lobe 

intraparietal sulcus -29 -44 57 -5.49 

201285 

33 -40 56 -4.68 

Precuneus -9 -62 68 -4.90 

13 -65 46 -4.56 

superior parieto-

occipital cortex 
-15 -101 -6 -5.20 

posterior middle 

temporal gyrus 

-38 -87 -13 -5.13 

39 -70 -17 -4.47 

Thalamus 16 -26 12 -4.00 1080 

Cerebellum 10 -71 -33 -3.03 621 

Temporal pole 52 4 -30 3.50 4401 

 497 

498 



 

4. Discussion 499 

While it is well established that humans use predictive information in their environment to prepare for 500 

upcoming events, it is still unclear to what extent and under which conditions they do so. It is one of the 501 

currently most urgent questions how the brain selects the sources of information to generate predictions 502 

(Blokpoel, Kwisthout, & van Rooij, 2012; Phillips, 2013). The present study investigated whether information 503 

from an action's 2nd-order statistical structure is exploited in dependence on the information provided on the 1st 504 

level; in other words, whether the brain predicts upcoming actions in a cost-benefit sensitive manner. 505 

Our results show that the brain exploits 1st- as well as 2nd-order statistical information, and that it does 506 

so in a cost-benefit effective manner. Our findings are threefold: first, the information derived from the action at 507 

t-1 saves processing costs of the upcoming action. Second, at the same point in time, information from the t-2 508 

action is additionally exploited and facilitates the observer's predictions further. And finally, information 509 

derived from the t-2 action is exploited more when the last action alone is less useful in shaping expectations. 510 

 511 

Attenuation in the action observation network based on 1st-order statistical information 512 

The first aim to the present study was to replicate and expand previous findings concerning the neural 513 

correlates of an increase in predictability by the 1st-order structure in action sequences (Ahlheim et al., 2014). 514 

We established in our behavioral post-tests that human observers learned 1st-order conditional probabilities and 515 

were particularly good at discriminating between action pairs of high conditional probability, even though no 516 

participant reported noticing those regularities in a post-experimental survey.  517 

Previous studies reported that valid prediction of upcoming events leads to decreased activity levels in 518 

brain areas that code for these events, and that predictive information facilitates perception (Bar, 2004; den 519 

Ouden, Kok, & de Lange, 2012; Kok, Jehee, & de Lange, 2012; Summerfield et al., 2008). We extended these 520 

findings to the case of action observation and found that an increase in the amount of 1st-order information led to 521 

the predicted attenuation of activity in the action observation network, composed of PMv, mIPS, and posterior 522 

temporal cortex (Caspers et al., 2010; Jeannerod, 2001). This shows that prediction of the upcoming action step 523 

was facilitated by information provided by the 1st-order structure. The established attenuation in this network 524 

adds to previous findings, showing that prediction-facilitating effects of 1st-order structure also occur in the 525 

presence of a 2nd-order structure.  526 

 527 

Integration of 2nd-order statistical information 528 



 

To test whether human observers are capable of processing the 2nd-order conditional probabilities in 529 

our paradigm, we modeled the amount of information provided by the 2nd-order structure. We found that 530 

activation of the mIPS decreased with the additional information provided by the 2nd order, on top of the 531 

decrease that mIPS showed as a function of 1st-order information. The mIPS was the only component of the 532 

AON that showed this pattern. The mIPS has been found to be a central focus of execution as well as 533 

observation of reaching movements (Vingerhoets, 2014). It is particularly interesting here that the mIPS area 534 

that we found is suggested to underlie the coupling of reaching and eye movements that is needed when we 535 

pursue visual hand input during reaching (Vesia & Crawford, 2012). Using temporally occluded targets during 536 

smooth pursuit eye movements, Lencer and co-workers (2004) found that this area bridges target occlusion, 537 

pointing to a role in anticipatory saccade tuning. In our paradigm, using 2nd-order information increases the 538 

predictability of the upcoming action step further, which allows for a more precise prediction of which object is 539 

going to be grasped next, and where this object can be found in the scene. This interpretation is in line with a 540 

recent finding showing that separable subregions of the intraparietal sulcus are modulated by processing 541 

unexpected events as well as events that require an adaptation of a currently valid predictive model (O’Reilly et 542 

al., 2013).  The further attenuation of mIPS activation with 2nd-order information here reflects the further 543 

reduced processing costs of the upcoming reaching of the object, as target and direction of the reaching can be 544 

better predicted.  545 

Contrary to 1st-order information, 2nd-order information could not be accessed directly through a 546 

pairwise association between action t-2 and t. Instead, it was necessary to retrieve information about the action 547 

step t-2 from memory and furthermore integrate this information with the information provided by the action t-1 548 

on the 1st order, as the action step at t-2 alone was not informative of t. Potentially, these additional processing 549 

costs could further account for the unpredicted finding of increased RTs with 2nd-order conditional probabilities 550 

in our post-fMRI SRTT: here, RTs increased with higher 2nd-order conditional probabilities whilst controlling 551 

for an effect of 1st-order conditional probabilities. Further, a trend-level effect (p= .057) tentatively suggests that 552 

these processing costs, reflected in RT increase, is higher when 2nd-order information changed expectations 553 

based on the 1st-order conditional probabilities to a larger extent. Studies on learning of 2nd-order statistical 554 

regularities using a SRTT reported a decrease of RTs as reflection of statistical learning (Curran, 1989; 555 

Remillard, 2008). Speculating on possible reasons for the diverging results, it should be noted that our SRTT 556 

differed in a critical point from a standard SRTT: Statistical regularities among the action steps were already 557 

established at the beginning of the testing, whereas the association between observed object and button press 558 



 

was not. How and when the processing costs of higher-order information begin to turn into a behavioral benefit 559 

thus needs to be explored further. 560 

On the neural level, we expected that the retrieval of information about the action step t-2, which is 561 

necessary to asses 2nd-order information, would be reflected in an increased hippocampal activation with more 562 

2nd-order information. Yet, using an ROI analysis, we did not find evidence for an increase of activation (p> .09) 563 

with increasing information provided by the 2nd-order structure in the hippocampus. We found, however, an 564 

unhypothesized increase of activation in the right temporal pole, the more information was provided by the 2nd-565 

order, as well as in the pMTG and the SPOC. The temporal pole is considered as “semantic hub” where 566 

semantic information about entities is processed, irrespective of their modality (Patterson, Nestor, & Rogers, 567 

2007). In particular, it decodes conceptual object properties that go beyond the object’s properties, as for 568 

instance the associated manipulation or the usual location of the object (Peelen & Caramazza, 2012). 569 

Furthermore, the temporal pole has been found to show a higher activation for initially biased perceptual 570 

decisions, and to pass this perceptual bias to visual areas (Summerfield & Koechlin, 2008). In the present study, 571 

higher 2nd-order information led to an increase in predictability of the upcoming action step and its associated 572 

object – in other words, the expectation of the upcoming action became more biased. This allows for a retrieval 573 

of semantic knowledge about the object – for instance, its shape or how it will be grasped and manipulated. We 574 

suggest that this retrieval of conceptual knowledge also drove the activation in the temporal pole in our study. 575 

Conceptual information is then passed to visual areas, i.e. the SPOC and pMTG. Area SPOC, at the mesial 576 

boundary between IPS and occipital lobe, is proposed to store internal representations of reach-to-grasp goals 577 

(Vesia & Crawford, 2012). We propose that here enhanced activation in SPOC reflects the maintenance of 578 

likely reach targets and their locations, which informs monitoring of the reaching movement in more parietal 579 

sites. Processing of this target, which is an object, is additionally enhanced in pMTG, which is a key-site of the 580 

processing man-made tools (Beauchamp & Martin, 2007). It should be noted though that we did not distinguish 581 

between different aspects of an action, that is the involved object and its manipulation. However, the amount of 582 

information provided by a certain object or action step varied depending on its position in the sequence, 583 

ensuring that the identity of the object itself could not be the cause of the effects revealed here. 584 

 585 

Evidence for information-state dependent use of 2nd-order information 586 

To test the hypothesis that exploitation of the 2nd-order statistical structure depends on the amount of 587 

information provided by the 1st order, we conducted a parametric analysis for those events on which the 1st order 588 

was of very high or low informative value and tested for an interaction effect of 1st- and 2nd-order information. 589 



 

We found that activation in the PMd, the IPS, the pMTG, and the SPOC was more strongly modulated by the 590 

interaction term. Those areas, which have been described as the core areas of the AON (Caspers et al., 2010), 591 

were thus modulated more strongly by 2nd-order information when 1st-order information was low. This provides 592 

evidence for our hypothesis that higher-order information is preferentially used if 1st-order information is 593 

insufficient to generate precise predictions. Exploitation of 2nd-order information causes higher processing costs, 594 

as a retrieval of the action at t-2 is necessary and 2nd-order information needs to be integrated with 1st-order 595 

information. Thus, we hypothesized exploitation of 2nd-order information to depend on a cost-benefit criterion: 596 

we expected 2nd-information to be used the more, the less information was provided by the 1st order. Areas 597 

implementing this cost-benefit criterion should show a correlation with the interaction term of 1st-and 2nd-order 598 

information, rather than with either main effect. We hypothesized that BA 10 implements this cost-benefit trade-599 

off by bolstering search for additional information from the action at t-2 if action t-1 was of only little 600 

informative value. With the current paradigm and methods, some uncertainty remains as to whether BA 10 601 

activation reflects the cost-benefit optimized exploitation of 2nd-order information or the increased search for 602 

additional information from preceding actions. 603 

 In line with our hypothesis, we found that activity in the lateral BA 10 was correlated with the 604 

interaction term. This correlation resulted from a stronger correlation of activity in the BA 10 with 2nd-order 605 

information if the 1st order provided only little information, i.e. if the action step t-1 did not allow for a 606 

sufficiently precise prediction of action t. Notably, significant activation of the BA 10 was only revealed in the 607 

interaction contrast. This corroborates our hypothesis that BA 10 recruitment increases under low 1st-order 608 

predictability and enhances the exploitation of 2nd-order information. Across a variety of different paradigms, 609 

BA 10 has been reported to be activated when several relations among tasks or rules have to be integrated or 610 

organized (Golde, Cramon, & Schubotz, 2010; Koechlin & Hyafil, 2007; Nee et al., 2013; Ramnani & Owen, 611 

2004; Schubotz, 2011). Here, and in line with findings from Golde et al. (2010), we showed that the BA 10 is 612 

also engaged when information derived from actions needs to be integrated. A particularly interesting parallel to 613 

our paradigm is the engagement of BA 10 in uncertainty-driven search for information, when available cues 614 

provide insufficient information (Badre et al., 2012). Whereas information in the study by Badre and co-workers 615 

(2012) could be gained by searching the environment, in the present study information was gained through 616 

retrieval of the action at t-2. Our results suggest that BA 10 may particularly contribute to a strategic retrieval of 617 

associations if these associations provide a clear gain in information. In other words, BA 10 may implement an 618 

efficiency criterion for the exploitation of higher-order information, presumably both in actions as well as in 619 

abstract stimuli. 620 



 

 621 

Conclusion  622 

The present findings provide several novel insights about the neurofunctional mechanisms underlying 623 

the prediction of observed action sequences. It shows that human observers spontaneously use both 1st- and 2nd-624 

order statistical structure to predict upcoming actions, especially when little information is provided by the 1st 625 

order. In particular, 1st-order statistical information in action sequences is automatically exploited and results in 626 

a faster and more efficient processing of the upcoming action step, manifesting in smaller RTs and a significant 627 

attenuation in the action observation network, respectively. Furthermore, information provided by the 2nd-order 628 

structure is retrieved and integrated to sharpen expectations, as indicated by activation increase in the temporal 629 

pole, and by attenuation in the IPS. Findings suggest that frontolateral BA 10 moderates the retrieval and 630 

integration of 2nd-order information, in line with the emerging understanding of this brain area as a hub for 631 

strategic integration of information from various sources.  632 

 633 

Notes 634 

Supplemental material for this article is available at https://dx.doi.org/10.6084/m9.figshare.3443633.v3. 635 
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