
To appear in EPTCS.

Towards linking correctness conditions for concurrent objects
and contextual trace refinement

Brijesh Dongol
Department of Computer Science, Brunel University London

Brijesh.Dongol@brunel.ac.uk

Lindsay Groves
School of Engineering and Computer Science, Victoria University of Wellington

lindsay@ecs.vuw.ac.nz

Correctness conditions for concurrent objects describe how atomicity of an abstract sequential object
may be decomposed. Many different concurrent objects and proof methods for them have been de-
veloped. However, arguments about correctness are conducted with respect to an object in isolation.
This is in contrast to real-world practice, where concurrent objects are often implemented as part of
a programming language library (e.g., java.util.concurrent) and are instantiated within a client
program. A natural question to ask, then is: How does a correctness condition for a concurrent ob-
ject ensure correctness of a client program that uses the concurrent object? This paper presents the
main issues that surround this question and provides some answers by linking different correctness
conditions with a form of trace refinement.

1 Introduction

Concurrent objects provide operations that may be invoked by the parallel threads of a concurrent client,
enabling more efficient computation in, for example, modern multi-core architectures. A concurrent
object could be a commonly-used data structure such as a stack, queue, or set, or could implement a
novel programming paradigm such as a software transactional memory object, which allows several
reads and writes to be treated as a single atomic transaction [7].

Correctness conditions, such as linearizability [8], for concurrent objects cannot be defined in terms
of pre/post conditions for their operations due to the possibility of interference while the operations are
executing. Instead, they are defined in terms of a relation between (concurrent) histories of a concrete
implementation and (sequential) histories of its abstract counterpart, which records occurrence of certain
events at the concrete and abstract levels, such as invocations and responses of method calls [2].

Many papers have been devoted to verifying linearizability of concurrent object implementations [1];
however, these typically only consider behaviours of the concurrent object at hand in isolation — they
do not provide any guarantees to the client programs that use concurrent objects. Therefore, letting P[O]
denote a client program P that uses object O, we consider the following question:

Provided concurrent object OC is correct with respect to sequential object OA, how are the
behaviours of P[OA] related to those of P[OC]?

This question was been examined by Filipović et al. [3], who establish a link between two correctess
conditions: sequential consistency and linearizability with a notion of refinement called observational
refinement, which is essentially data refinement as defined by He et al. [6]. They show that sequential
consistency and observational refinement coincide when threads are data independent (i.e., there is no



2 Linking correctness conditions and contextual trace refinement

Init: Head = null

push(v) ==

H1: n := new(Node);

H2: n.val := v;

repeat

H3: ss := Head;

H4: n.next := ss;

H5: until

CAS(Head,ss,n)

H6: return

pop ==

repeat

P1: ss := Head;

P2: if ss = null

P3: then return empty

P4: ssn := ss.next;

P5: lv := ss.val

P6: until

CAS(Head,ss,ssn);

P7: return lv

Figure 1: The Treiber stack

Init: S = 〈〉

push(v) == atomic { S := 〈v〉aS }

pop ==

atomic {
if S = 〈〉 then

return empty

else lv := head(S) ;

S := tail(S) ;

return lv

}

Figure 2: Abstract stack specification

data shared between client threads), while linearizability coincides with observational refinement when
data dependence is allowed.

This paper provides a brief overview of our investigation, which examines this question in a more
general setting than Filipović et al. A more detailed account of this work will be published elsewhere.

2 Concurrent objects and their clients

Figure 1 presents a simplified version of a non-blocking stack example due to Treiber [10], which has
become a standard case study from the literature.1 The implementation has fine-grained atomicity, and
each line of the push and pop operations corresponds to a single atomic step. Synchronisation is achieved
using an atomic compare-and-swap (CAS) instruction, which takes as input a (shared) variable gv, an
expected value lv and a new value nv:

CAS(gv, lv, nv) =̂ atomic { if gv = lv then gv := nv ; return true

else return false }

The Treiber stack implements the abstract stack specification in Figure 2, where ‘〈’ and ‘〉’ delimit
sequences, ‘〈〉’ denotes the empty sequence, and ‘a’ denotes sequence concatenation. The abstract stack
consists of a sequence of elements S together with two operations push and pop. Note that when the stack
is empty, pop returns a special value empty that cannot be pushed onto the stack.

A correctness condition is a relationship between the histories of the concrete and abstract systems.
Each history records the interactions between a client and its objects. Typically, these are invocation
and return events of operation calls, which form the object’s external interface. Concurrent histories
may consist of both overlapping and non-overlapping operation calls, inducing a partial order on events.
Correctness conditions define how, if at all, this order is maintained in the corresponding abstract history.
There are several well-known existing correctness conditions [7]. In this paper, we study two of these in
detail: sequential consistency and linearizability.

• Sequential consistency [9] is a simple condition requiring the order of operation calls in a concrete
history for a single process to be preserved. Operation calls performed by different processes may
be reordered in the abstract history even if the operation calls do not overlap in the concrete history.

1We assume that garbage collection is used — this avoids the so-called ABA problem, where modifications to a shared
pointer may go undetected when to the value changes from some value A to another value B then back to A.



Brijesh Dongol and Lindsay Groves 3

• Linearizability [8] strengthens sequential consistency by requiring the order of non-overlapping
operations to be preserved. Operation calls that overlap in the concrete history may be reordered
when mapping to an abstract history.

Concurrent clients. Correctness conditions are usually defined in terms of a most general client which
characterises the allowable behaviours of a concurrent object; however, they do not allow us to reason
about specific clients that use these concurrent objects.

Example 1. The program below consists of threads 1 and 2, a shared stack s, and shared variables x, y
and z. Thread 1 pushes 1 then 2 onto s, then pops the top element of s, and stores it in x. Concurrently,
thread 2 pops the top element of s and stores it in y, then reads the value of x and stores it in z.

Init x, y, z = 0, 0, 0;

Thread 1:

T1: s.push(1);

T2: s.push(2);

T3: x := s.pop();

Thread 2:

U1: y := s.pop();

U2: z := x;

The program executes by interleaving the atomic statements of the two threads. In addition, depending
on the implementation of s, we will get different behaviours of the client program because the effects
of the concurrent operations on s may appear to occur in different orders. For example, s could be an
instance of the Treiber Stack (Figure 1) (which is linearizable with respect to Figure 2), or some other
stack that satisfies a different correctness condition (e.g., quiescent consistency [7]) with respect to the
abstract stack in Figure 2.

With an example client program in place, we now return to the main question for this paper: How
does one judge correctness of a system consisting of both a client and the objects it uses? More specif-
ically, how does a correctness condition guaranteed by a concurrent object that a client uses affect the
behaviour of the client itself? We will also consider what sorts of client behaviours should be examined.
We address these issues as follows:

• First, we pin down the aspects of the system that are visible to an external observer. Following
Filipović et al. [3], we take the observable state to be the state of the client variables, and the
unobservable state to be the state of the objects they use. Therefore for the program in Figure 1,
variables x, y and z are observable, but none of the variables of the stack implementation s are
observable. This allows us to reason about a client with respect to different implementions of s.

• Second, we determine when a system may be observed. Unlike Filipović et al. [3], who only
observe the state at the beginning and end of a client’s execution, we take the states throughout a
client’s execution to be visible. This allows us to accommodate, for example, reactive or interactive
clients, which may not terminate.

Taking both issues into account, our notion of correctness for the combined system will be a form of
contextual refinement, which holds iff every (observable) trace of a client that uses a concurrent object is
equivalent to some (observable) trace of the client using the abstract specification.

We say that TS contextually trace refines AS with respect to the client program P (denoted ASvP TS)
iff every trace of P[TS] is a possible trace of P[AS]. In this paper, we wish to know not only whether there
is an abstract client trace equivalent to every concrete client trace, but also whether contextual refinement
holds for every client program. To this end, we say TS contextually trace refines AS (denoted AS v TS)
iff TS contextually trace refines AS with respect to every client program P.



4 Linking correctness conditions and contextual trace refinement

3 Linking correctness and contextual trace refinement

We now use the framework from the previous sections to explore the links between some well-known
correctness conditions and contextual trace refinement.

Sequential consistency. Our main result for sequential consistency and contextual trace refinement
is negative — sequential consistency does not guarantee contextual trace refinement of the underlying
clients, regardless of whether the client program in question is data independent.
Lemma 2. Suppose N is a client object and OA, OC are concurrent objects such that OC is sequentially
consistent with respect to OA. Then it is not necessarily the case that N[OA]v N[OC] holds.
Example 3. Consider the program below, where the client threads are data independent — x is local to
thread 1, while y and z are local to thread 2 — and s is assumed to be sequentially consistent.

Init x, y, z = 0;

Thread 1 ==

T1: s.push(1);

T2: s.push(2);

T3: out1 := s.pop();

T4: x := out1;

Thread 2 ==

U1: z := 1;

U2: out2 := s.pop();

U3: y := out2;

Suppose thread 1 is executed to completion, and then thread 2 is executed to completion. Because s is
sequentially consistent, the first pop (at T3) may set out1 to 1, the second (at U2) may set out2 to 2. This
gives the execution 〈(x,y,z) 7→ (0,0,0), (x,y,z) 7→ (1,0,0), (x,y,z) 7→ (1,0,1), (x,y,z) 7→ (1,2,1)〉,
which cannot be generated when using the abstract stack AS from Figure 2 for s.

Lemma 2 differs from the results of Filipović et al. [3], who show that for data independent clients,
sequential consistency implies observational refinement. In essence, their result holds because observa-
tional refinement only considers the initial and final states of a client program — the intermediate states
of a client’s execution are ignored. Thus, internal reorderings due to sequentially consistent objects have
no effect when only observing pre/post states. One can develop hiding conditions so that observational
refinement is treated as a special case of contextual trace refinement, allowing one to obtain a positive re-
sult for sequential consistency equivalent to the result by Filipović et al. Full development of this theory
is left for future work.

Linearizability. We now consider the link between linearizability and contextual trace refinement.
Example 4. Consider the program in Example 3, but now assume that the stack s is linearizable, e.g., is
the Treiber stack. Reasoning that the traces generated by this program are valid (i.e., have a correspond-
ing abstract trace) requires case analysis. In the final state we have either x = 1 or x = 2. For traces
that end with x = 1, U2 must linearize before T3, but after T2. Therefore, U1 also occurs before T3. For
traces that end with x = 1, either U2 linearizes before T1 or T3 linearizes before U2. The graph below
depicts all possible traces of the client using the concrete implementation.

(0,0,0) (0,0,1)

(2,0,0)

(1,0,1)
(0,1,1)

(0,E,1)

(2,0,1)

(0,2,1)
(2,E,1)

(1,2,1)

(2,1,1)

Each of these traces is also a possible trace of the client when it uses the abstract object.



Brijesh Dongol and Lindsay Groves 5

The next lemma states that when a concurrent object is linearizable with respect to an abstract object,
then it also guarantees contextual trace refinement of clients that use it.

Lemma 5. Suppose N is a client object, and OA and OC are concurrent objects such that OC is lineariz-
able with respect to OA. Then N[OA]v N[OC] holds.

4 Conclusions

In this paper, we have set up a framework for studying the links between different correctness conditions
for concurrent objects and contextual trace refinement, which generalises the results of Filipović et
al. [3]. We study sequential consistency and linearizability, and show that sequential consistency does
not ensure contextual trace refinement. We have also shown that linearizability between an abstract
specification and its linearizable implementation implies contextual trace refinement.

Gotsman and Yang [4] also extend Filipović et al.’s work, treating non-termination as abort, and con-
sidering both safety and progress properties (lock-freedom). Our trace-based framework can distinguish
between non-terminating and aborting programs [5], and hence is more general than Gotsman and Yang
[4]; though liveness properties are to be considered in future work.

References
[1] B. Dongol & J. Derrick (2015): Verifying Linearisability: A Comparative Survey. ACM Comput. Surv. 48(2),

pp. 19:1–19:43, doi:10.1145/2796550.
[2] B. Dongol, J. Derrick, L. Groves & G. Smith (2015): Defining Correctness Conditions for Concurrent Objects

in Multicore Architectures. In J. T. Boyland, editor: ECOOP, LIPIcs 37, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, pp. 470–494, doi:10.4230/LIPIcs.ECOOP.2015.470.

[3] I. Filipovic, P. W. O’Hearn, N. Rinetzky & H. Yang (2010): Abstraction for concurrent objects. Theor.
Comput. Sci. 411(51-52), pp. 4379–4398, doi:10.1016/j.tcs.2010.09.021.

[4] A. Gotsman & H. Yang (2011): Liveness-Preserving Atomicity Abstraction. In L. Aceto, M. Henzinger &
J. Sgall, editors: ICALP(2), LNCS 6756, Springer, pp. 453–465, doi:10.1007/978-3-642-22012-8 36.

[5] I. J. Hayes, S. Dunne & L. Meinicke (2010): Unifying Theories of Programming That Distinguish Nontermi-
nation and Abort. In C. Bolduc, J. Desharnais & B. Ktari, editors: MPC, LNCS 6120, Springer, pp. 178–194,
doi:10.1007/978-3-642-13321-3 12.

[6] J. He, C. A. R. Hoare & J. W. Sanders (1986): Data Refinement Refined. In B. Robinet & R. Wilhelm, editors:
ESOP, LNCS 213, Springer, pp. 187–196, doi:10.1007/3-540-16442-1 14.

[7] M. Herlihy & N. Shavit (2008): The Art of Multiprocessor Programming. Morgan Kaufmann.
[8] M. P. Herlihy & J. M. Wing (1990): Linearizability: a correctness condition for concurrent objects. ACM

Trans. Program. Lang. Syst. 12(3), pp. 463–492, doi:10.1145/78969.78972.
[9] L. Lamport (1979): How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor.

IEEE Trans. Computers 46(7), pp. 779–782, doi:10.1109/12.599898.
[10] R. K. Treiber (1986): Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM

Almaden Res. Ctr.

http://dx.doi.org/10.1145/2796550
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.470
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1007/978-3-642-22012-8_36
http://dx.doi.org/10.1007/978-3-642-13321-3_12
http://dx.doi.org/10.1007/3-540-16442-1_14
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/12.599898

	Introduction
	Concurrent objects and their clients
	Linking correctness and contextual trace refinement
	Conclusions

