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Abstract: Human hands can precisely perform a wide range of tasks. This paper investigates key performance 

differences when conventional robotic hand controllers are combined with Neural Networks (NN). Tests are performed 

on a novel 3D printed multi-finger ambidextrous robot hand. The ambidextrous hand is actuated using pneumatic 

artificial muscles (PAMs) and can bend its fingers both left and right, offering full ambidextrous functionality. Force 

sensors are placed on the fingertips. In our control method, the grasping trajectory of each finger combines its data 

with that of the neighboring fingers to obtain accurate results.  

Keywords: robot hand, ambidextrous hand design, grasping algorithms, control methods; pneumatic systems, 
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Introduction  

     Robotic manipulators have become increasingly 

important in the field of flexible automation. Neural 

Networks (NNs) can flexibly map nonlinear functions. 

Networks can be trained and applied both on or off-line. 

Of the many neural network types, two of the most widely 

used are multi-layer perception (MLP) and radial basis 

function (RBF) [1]. Back propagation is most popular 

method of implementing multi-layer perception (MLP). 

There are three major learning paradigms: supervised 

learning, unsupervised learning and reinforcement 

learning. Each learning paradigm is suitable to solving a 

specific set of problems. A three-layer NN with full 

interconnections is shown in Figure 1.  

The output of the two-layer NN is as follows: 

𝑦𝑖 =  𝜎(∑ 𝑤𝑖𝑙𝜎𝐿
𝑙=1 (∑ 𝑣𝑙𝑗

𝑛
𝑗=1 𝑥𝑗 + 𝑣𝑙0) + 𝑤𝑖0)       (1) 

where i =1, 2, 3,…… …., m, L is the number of neurons, 

𝜎 is the activation function, and w is weight. 

 Neural networks have been widely applied in robot 

control and motion planning [2] [3]. They have been used 

to achieve motion control of manipulators [4], to help 

robots follow predetermined trajectories on city streets [5] 

and to achieve visual control of robotic arms [6]. A real-

time learning neural robot controller was used to solve the 

inverse kinematics problem [7], and an artificial neural 

network was used to help a robotic arm system with six 

degrees of freedom to track and grasp a moving object [8]. 

Neural Networks can be implemented into robotic 

structures in several ways and with different controllers to 

provide improved solutions. For instance in [9], a learning 

process is designed for the two-links PAM manipulator to 

have an adaptive and dynamic self-organizing structure 

using NN and fuzzy logic. An NN was connected to PID 

loops in [10] to create an intelligent phasing plane switch 

control (PPSC) to overcome nonlinearities in PAM pressure 

feedback. NNs have also been integrated into particle 

swarm optimization to increase system accuracy [11]. 

The present paper combines neural networks with 

the PID, Bang-bang and Back-stepping algorithms. These 

controllers (PID, BSC, Bang-bang and SMC) are discussed 

in great detail in [12]. Table 5 summarizes the controllers 

combined with NNs and their respective experimental 

results. Force sensors are implemented on the fingertips 
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of the ambidextrous robot hand. Use of these sensors 

with intelligent controllers increased robot hand 

autonomy as the grasping trajectory of each finger is 

based not only on its own feedback data, but also on that 

of the closest fingers. 

Figure 1. Three layer Neural Network (NN). 

Combining Neural Networks with 
grasping algorithms  

Unlike pressure sensors that are connected to PAMs 

and always detect variations when a robot hand is 

interacting with objects, force sensors are deployed only 

on strategic points of the fingers. Therefore, when an 

object comes into contact with robotic fingers at points 

not covered by force sensors, the fingers continue to close 

as directed by the grasping algorithms. A neural network 

is thus integrated into the grasping algorithm as a security 

measure. In the following, 𝐹𝑓  refers to a force F applied 

by each of the four other fingers (where f is a notation), 

𝐹𝑡   is the target force and 𝐹𝑓(𝑡)  is the force received 

from each finger. For the force feedback of each 

finger  𝐹𝑓(𝑡) , the values of the closest fingers 𝐹𝑓−1(𝑡) 

and 𝐹𝑓+1(𝑡) are also considered. In case 𝐹𝑓(𝑡) = 0 but 

𝐹𝑓−1(𝑡) or 𝐹𝑓+1(𝑡) receives a high force feedback, two 

different outcomes are possible. Either the object is not in 

contact with the sensor 𝐹𝑓 or the object is not in contact 

with the finger at all. In the first case, the grasping 

controller must stop as the finger is actually in contact 

with the object. In the second case, not all fingers are 

needed to grasp the object. The detection of this case is 

translated as follows (where a constant 0.9 is the ratio 

experimentally defined to react to the object’s presence): 

  𝐹𝑐𝑓 ≥ 0.9 ∗ 𝐹𝑡 (2) 

where 𝐹𝑐𝑓 = [𝐹𝑓−1(𝑡)⋃ 𝐹𝑓+1(𝑡)] and 𝐹𝑓(𝑡) ≃ 0 

 If Eq. (2) is true, then at least one of the fingers close 

to the finger 𝑓  is close to the object. If Eq. (2) is true 

and 𝐹𝑓(𝑡) ≃ 0 , then the object is either not in contact 

with the sensor or with the finger. So the grasping 

controller must either stop or make the finger return to its 

vertical position. In the finger 𝑓  is in contact with the 

object, the reacts differently by reading the angular angle. 

Thus angular feedback is read in reference to the angle of 

the vertical position. In Eq. 2  𝐹𝑐𝑓   refers to adjacent 

fingers to both sides of concerned finger.   

In Eq. 3, 𝜃𝑓(𝑡) refers to the angle of each finger and 

a constant of 0.8 is the ratio experimentally defined to 

determine whether there is an abnormal increase of 

grasping angles. 

 𝜃𝑓−1(𝑡) < 0.8 ∗ 𝜃𝑓(𝑡) (3) 

and  𝜃𝑓+1(𝑡) < 0.8 ∗ 𝜃𝑓(𝑡) (4) 

 

If both (3) and (4) are correct, then the angle of finger 

𝑓 is much smaller than those of its adjacent fingers 𝑓 −

1 and𝑓 + 1. Consequently, the more the finger 𝑓 closes, 

the bigger 𝜃𝑓(𝑡)  becomes. Thus, a constant below 1 is 

used to check if 𝜃𝑓−1(𝑡)  or 𝜃𝑓+1(𝑡)  have stopped 

increasing at a smaller angle. If the finger 𝑓  does not 

touch any objects, then it reverts to its vertical 

position. 𝜃𝑓(𝑡) is then compared to a value close to 𝜋/2 

to determine whether finger 𝑓  is perpendicular to the 

palm. In so, finger 𝑓  reverts to its vertical position 

without contacting any objects. These algorithms are 

summarized in Fig. 2. 𝐹0  is the thumb, for which the 

angle is not considered. 

 

Figure 2. Neural network mapping (from thumb F0 to little finger F4). 

Results obtained with NNs 

Table 1-4 shows the results obtained with the 

proposed approach, while Figs. 3 and 4 show the hand 

grasping a ball and a water bottle. The position of the 

fingers changes depending on the shape of the object 

being grasped. Table 1-4 also summarizes the angles and 

force received by the different fingers during grasping. The 

force target is 2.25 N ± 10% for the bottle and 1 N ± 5% for 

the ball. The indicated angles are those of the proximal 

phalanges. 
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When the hand grasps the bottle, the fingers come 

into contact with the object within 0.2 sec, but the angles 

continue to increase until 0.45 sec because the fingers 

continue closing until the bottle is pressed up against the 

thumb on the far side. 

Figure 3. Ambidextrous robot hand holding a ball. 

Figure 4. Ambidextrous robot hand holding a water bottle. 

The middle finger is longer than the others, thus the 

force sensor on the tip of the middle finger does not come 

into contact with the object. However, because of the 

implemented NN, the force data collected from the 

neighboring fingers also play key part in the grabbing 

process as shown by the angle reached in Table 2.. 

The fingers react in a totally different way when 

grabbing a ball. The forefinger comes into contact with the 

object at 0.1 sec and its movement stops at 0.3 sec (as 

opposed to 0.4 sec for the bottle), as the object is bigger 

and the target force is smaller. Also, this grabbing action 

only involves the thumb and forefinger. As seen in Figs. 5 

and 6, the different finger shape results in the middle 

finger having the slowest movement, whereas the little 

finger is the fastest. 

As it applies no force and its angle becomes much 

smaller than that of the forefinger, it is deduced the 

middle finger is not in contact with the object. Therefore 

the finger starts rising before 0.3 sec. Next the NN is 

applied in the same way to the ring finger at 0.4 sec, and 

finally the little finger starts returning to its vertical 

position at 0.5 sec. The little finger moves more slowly 

than the middle and ring fingers because compressed air 

is already being used to drive their movement. The speed 

of the middle and ring fingers barely varies, as the PAM is 

in the middle of their contraction. Thus, a small increase 

of pressure still implies an important variation of the PAMs’ 

lengths. The movement speed of the little finger increases 

at 0.8 sec, when the middle finger approaches the vertical 

position and has its own speed reduced. The compressed 

air is therefore only involved in the movements of the ring 

and little fingers. Finally, only the forefinger maintains its 

closing position, whereas the middle, ring and little finger 

return to their vertical positions. While the grabbing 

movement for the bottle was completed in 0.45 sec, that 

for the ball took 1 sec because it comprised both closing 

and opening movements. 

Experimental Analysis 

Table 5 compares different behaviors observed with 

other grasping algorithms (SMC, PID, Bang-bang and BSC) 

developed at earlier stages.  

The sliding-mode control (SMC) introduced in [13] uses a 

grasping loop combined with average rising times, 

percentages of overshoot, number of oscillations, 

grasping times and settling times. SMC and other methods 

differ in significant ways. For instance, SMC runs in parallel, 

thus the percentage of overshoot is not applicable. The 

grasping and settling times are the same for the SMC 

because no backward control is implemented as in bang-

bang control. However, the grasping and settling times are 

different for the bang-bang control because of the 

algorithm’s low sensitivity.Generally, SMC is easier to 

implement from a mechanical point of view, whereas PID 

is easier to implement from an algorithmic point of view. 

The implementation and calibration of grasping 

algorithms receiving feedback from the force sensors is 

much faster than from pressure transducers as the 

hysteresis of PAMs does not need to be taken into account 

with force sensors.
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Table 1. Force (N) against time (sec) at the fingertips when the hand grabs a bottle. 

Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

Forefinger 88 79 65 39 30 25 18 13 9 9 

Middle finger 93 84 75 44 32 27 20 11 10 8 

Ring finger 86 76 67 36 29 23 16 11 10 9 

Little finger 85 69 57 34 28 20 13 9 8 8 

Table 2.Finger angles (deg) against time (sec) when the hand grabs a bottle. 

Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

Forefinger 88 79 65 39 30 25 18 13 9 9 

Middle finger 93 84 75 44 32 27 20 11 10 8 

Ring finger 86 76 67 36 29 23 16 11 10 9 

Little finger 85 69 57 34 28 20 13 9 8 8 

Table 3. Force (N) against time (sec) at the fingertips when the hand grabs a ball. 

Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Forefinger 0 0 0.3 0.8 0.99 1.05 1.06 1.06 1.04 1.05 1.03 1.04 1.04 1.04 

Middle finger 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ring finger 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Little finger 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 4. Finger angles (deg) against time (sec) when the hand grabs a ball. 

Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Forefinger 93 82 56 38 27 20 20 20 19 19 19 19 19 19 

Middle finger 88 83 64 43 25 12 16 31 44 60 73 87 91 87 

Ring finger 90 79 49 27 5 0 0 9 23 46 65 82 85 84 

Little finger 87 75 47 26 3 3 3 3 7 17 39 72 86 86 

 

                        (a)                                         (b) 
Figure 5. Finger forces and angles against time when the hand grabs a ball. 

Bang-bang control is the fastest algorithm but also 

the least efficient one. It is not smooth enough to adapt 

itself to object shapes and can crush them. As explained 

in [15], the shooting function of the bang-bang controller 

is usually regularized with additional controllers. However, 

bang-bang control can be used to grab heavy objects. The 

higher the PAM pressure, the slower the PAMs contract, 

which is why their elasticity automatically opposes the 

shooting function. 

BSC may be the most accurate algorithm, but is also 

the slowest one. As for PID control, BSC permits the 

fingers to adapt to the shape of objects with backward 

movements. Nevertheless, through the use of 

proportional and integrative controls, PID loops allow the 

fingers to move faster. The combination of PID control and 

SMC results in the accelerated rising time with SMC. As for 

conventional SMC, BSC depends on derivative and double 

derivative controls. This is the reason why the grasping 

time is much higher with the BSC, as it is not combined 

with proportional or integrative controls. Therefore, it 

takes 0.39 sec for the fingers to stabilise themselves with 

BSC, against 0.23 sec for SMC, 0.25 sec for PID control and 
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0.20 sec for bang-bang control. Indeed, as for SMC, the 

main advantage of BSC is its ability to regulate nonlinear 

actuators. This is the reason why these two algorithms 

receive feedback from pressure or position sensors, as in 

[16]. Nevertheless, in our case, the feedback is received 

from force sensors directly implemented on the 

mechanical structure instead of the actuators themselves, 

as in previous research [17][18].

 

Conclusion 

This paper presents a feasibility analysis for 

combining conventional controllers with neural networks. 

While conventional methods such as PID control are 

widely used and have been found to be reliable, 

combining them with artificial intelligence approaches 

offers better accuracy rates. All the tests are carried out 

on a novel 3D printed multi-finger ambidextrous robot 

hand. Force sensors are used to trigger the algorithm. The 

grasping trajectory of each finger is combined with data 

with the adjacent fingers to improve accuracy. Tables 1 to 

4 and Figs. 5 and 6 show the finger force against time and 

angle. Table 5 presents testing results. Neural Networks 

are found to be useful  in control applications and could 

be used as a safeguard against conventional controller 

failure. 
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(a)                                        (b)  
Figure 6. Finger forces and angles against time when the hand grabs a ball.

 

Table 5. Performance comparison of conventional controllers when 
combined with NN.   
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