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Abstract

Background: Network enrichment analysis is a powerful method, which allows to
integrate gene enrichment analysis with the information on relationships between
genes that is provided by gene networks. Existing tests for network enrichment
analysis deal only with undirected networks, they can be computationally slow
and are based on normality assumptions.

Results: We propose NEAT, a test for network enrichment analysis. The test is
based on the hypergeometric distribution, which naturally arises as the null
distribution in this context. NEAT can be applied not only to undirected, but to
directed and partially directed networks as well. Our simulations indicate that
NEAT is considerably faster than alternative resampling-based methods, and that
its capacity to detect enrichments is at least as good as the one of alternative
tests. We discuss applications of NEAT to network analyses in yeast by testing
for enrichment of the Environmental Stress Response target gene set with GO
Slim and KEGG functional gene sets, and also by inspecting associations between
functional sets themselves.

Conclusions: NEAT is a flexible and efficient test for network enrichment
analysis that aims to overcome some limitations of existing resampling-based
tests. The method is implemented in the R package neat, which can be freely
downloaded from CRAN (https://cran.r-project.org/package=neat).
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Background
The advent of high throughput technologies has driven the development of cell

biology over the last decades. The diffusion of microarrays and next generation se-

quencing techniques has made available a large amount of data that can be used to

increase our understanding of gene expression. The need to analyse and interpret

these data has led to the development of new methods to infer relationships between

genes, which require a combination of biological knowledge, statistical modelling and

computational techniques.

When the first data on gene expression became available, they were usually anal-

ysed considering each gene separately. However, researchers soon realized that genes

act in a concerted manner, and that cellular processes are the result of complex in-

teractions between different genes and molecules. Nowadays, sets of genes that are

responsible for many cellular functions have been identified, and are collected in

publicly available databases [1, 2].

One of the advantages of these sets of genes, whose function is already known, is

that they can be used to interpret the results of new experiments: this has led to
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the implementation of a large number of methods for gene enrichment analysis [3].

Their aim is to compare gene expression levels under two different conditions (ex-

perimental vs control), and to detect which sets of genes are differentially expressed

(enriched) in the experimental condition. To this end, genes are ordered in a list L in

decreasing order of differential expression, and enrichment is then tested in different

ways. Singular enrichment analysis [4, 5] tests the over or under-representation of

functional gene sets within the set of genes defined by the first k top genes in L.

The major limitations of this approach lie in the fact that the choice of k is arbi-

trary, and that the test does not take into account gene expression levels. Gene set

enrichment analysis [6, 7] overcomes these limitations, by making use of the whole

list L of genes, and testing the tendency of genes belonging to a functional set to

occupy positions at the top (or at the bottom) of L. A limitation that is common to

both single and gene set enrichment analysis, however, is that these methods base

computations on the level of overlap between sets of genes only, without considering

associations and interactions between genes.

Gene networks are an established tool to represent these interactions. In network

inference [8, 9], genes or molecules are represented as nodes of a graph and their

interactions are modelled as links between the nodes. These links can be represented

as either a directed or an undirected edge, and a graph is called directed if all edges

are directed, undirected if every edge is undirected and partially directed (or mixed)

otherwise [10]. An undirected edge displays association between two genes, while a

directed edge posits a direction in the relationship between them. Network estima-

tion represents a difficult task, and many different estimation methods have been

proposed [11, 12]. Marback et al. [13] classified them into six groups and pointed out

that their predictive performance can vary a lot within each group and according

to the structure of the network. In order to integrate evidence on gene associa-

tions unveiled by a number of experimental and computational studies into a single

network, curated gene networks for different species have been proposed, including

YeastNet [14] and FunCoup [15].

In an attempt to integrate the information on interactions between genes provided

by gene networks into enrichment analyses, researchers have recently developed

methods for network enrichment analysis [16–19]. The idea, here, is to test enrich-

ment between sets of genes in a network. Shojaie and Michaidilis [16] focus mainly

on network inference, proposing to represent the gene network with a linear mixed

model, so that enrichment tests can be then computed by testing a system of linear

hypotheses on the fixed effect parameters of the model. Glaab et al. [17], Alex-

eyenko et al. [18] and McCormack et al. [19], instead, assume that a gene network

is already available (either from the literature or as the result of a tailored inferen-

tial process) and focus their attention on the strategy that can be used to assess

enrichment between sets of nodes. In particular, Glaab et al. [17] propose a network

enrichment score based on a suitably defined network distance between two sets

of nodes, alongside an empirical method for setting a cut-off on this distance. In

contrast to this, Alexeyenko et al. [18] and McCormack et al. [19] derive network

enrichment scores on the basis of statistical tests against the null distribution of

no enrichment. The advantage of the approach proposed by Alexeyenko et al. and

McCormack et al. is that the assessment of enrichment is based on a significance
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testing procedure.

The idea of [18] and [19] is that the presence of enrichment between two sets of

genes, say A and B, can be assessed by comparing the number of links connecting

nodes in A and B with a reference distribution, which models the number of links

between the same two sets in the absence of enrichment. Both [18] and [19] assume

that the reference distribution is approximately normal, and they obtain its mean

and variance by means of permutations, i.e., computing the mean and variance of

the number of links between A and B in a sequence of random replications of the

network. Their tests rely on algorithms that permute the network, and mainly differ

between themselves for the fact that each algorithm aims to preserve different topo-

logical properties of the original network in the generation of network replicates.

These methods, however, suffer from three limitations. First of all, they require

the simulation of a large number of permuted networks, an activity that can be

computationally intensive and highly time consuming (especially for big networks).

Furthermore, they base the computation of the test on a normal approximation for

the reference distribution, whose nature is discrete. [19] shows that such an approx-

imation is inaccurate when the expected number of links between A and B is small.

A further drawback of these methods is that they have been implemented so far

only for undirected networks.

In this work we build upon the approach of [18] and [19] and propose an alterna-

tive test which we call NEAT (Network Enrichment Analysis Test). The main idea

behind this test is that, under the null hypothesis of no enrichment, the number of

links between two gene sets A and B follows an hypergeometric distribution. This

enables us to model the reference distribution directly via a discrete distribution,

without having to resort to a normal approximation. NEAT does not require net-

work permutations to compute mean and variance under the null hypothesis, and is

therefore faster than the existing resampling-based methods. Moreover, we develop

NEAT not only for undirected, but also for directed and partially directed networks,

thus providing a common framework for the analysis of different types of networks.

Methods
The starting point of enrichment analyses is the identification of one or more gene

sets of interest. These target gene sets are typically groups of genes that are differ-

entially expressed between experimental conditions, but they can also be different

types of gene sets: e.g., clusters of genes that are functionally similar in a given time

course, or genes that are bound by a particular protein in a ChIP-chip or ChIP-seq

experiment. Enrichment analysis provides a characterization of each target gene set

by testing whether some known functional gene sets can be related to it. Methods

for gene enrichment analysis assess the relationship between a target gene set and

each functional gene set simply by considering the overlap of these two groups. In

contrast to this, network enrichment analysis incorporates an evaluation of the level

of association between genes in the target set and genes in the functional gene set

into the test.

Information on associations and dependences between genes is represented by a

network, which consists of a set of N nodes V = {v1, ..., vN} that are connected by

edges (links). Each gene is thus represented as a node vi of the network, and a link
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between two nodes is drawn to signify interaction between the corresponding genes.

Examples of genome-wide curated networks that collect known gene associations

are YeastNet [14] and FunCoup [15].

A natural way to study the relation between two sets of genes A and B in a network

is to consider the presence or absence of links connecting nodes in the two groups

[18, 19]. In the inferred network, we expect that individual links may be slightly

unstable and noisy. However, we do expect that the inferred links contain a sign of

the relationships between gene sets. So, although links between individual genes in

sets A and B may be noisy, if there is a functional relationship between functions

described by sets A and B we expect the number of links between the two groups

to be larger (or smaller) than expected by chance. If this is the case, we say that

there is enrichment between A and B.

Links between two nodes of a network can be either directed (arrows) or undirected.

The presence of an arrow between two genes implies a directionality in the relation

between them, whereas an undirected edge does not provide information on the

direction of the relation. The upcoming subsection considers directed networks. In

this case, one can distinguish two cases: whether genes in the target set regulate

genes of the functional set, or genes in the functional gene set regulate genes in

the target set (enrichment from A to B, or from B to A). This distinction does

not occur for undirected networks, which are the subject of the next subsection: in

this case, A and B are exchangeable, and we simply talk of enrichment “between”

A and B. A workflow diagram summarizing the input and the output of NEAT is

shown in Figure 1.

Enrichment test for directed networks

In a directed network, we assess the presence of enrichment from A to B by con-

sidering the number of arrows going from genes in A to genes belonging to B. We

denote this by nAB . The observed nAB can be thought of as a realization from a

random variable NAB , with expected value µAB . To assess the relation from A to B,

we compare µAB with the number of arrows that we would expect to observe from

A to B by chance, which we denote as µ0. We say that there is enrichment from A

to B if µAB is different from µ0. Furthermore, we say that there is over-enrichment

from A to B if µAB is higher than µ0, and under-enrichment (or depletion) if µAB

is lower than µ0.

We propose a test based on the hypergeometric distribution to assess the signif-

icance of this difference. The motivation behind this choice is the following. The

hypergeometric distribution models the number of successes in a random sample

without replacement: in our case, we can mark arrows in the network that reach

genes in B as “successful”, and the remaining ones as “unsuccessful”. Then, we can

view the arrows that go out from genes in A as a random sample without replace-

ment from the population of arrows present in the graph: if there is no relation

(i.e., no enrichment) between A and B, then the distribution of NAB (the number

of successes in the sample) is

NAB ∼ hypergeom(n = oA,K = iB , N = iV ), (1)
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where the sample size oA is the outdegree of A (the total number of arrows going

out from genes that belong to A), the number of successful cases in the population

iB is the indegree (number of incoming arrows) of B and the population size iV is

the total indegree of the network (which is equal to the total number of arrows).

It is certainly possible to imagine alternative choices for the null distribution of

NAB . Alexeyenko et al. [18] and McCormack et al. [19] assume that NAB is normal

with mean µ0 and variance σ2
0 , and they use network permutations to estimate µ0

and σ2
0 . However, the normal distribution is continuous and symmetric, so that their

choice implies somehow that the behaviour of NAB should be roughly symmetric,

and could be well approximated with a continuous random variable. In addition,

estimation of µ0 and σ2
0 by means of network permutations can be highly time con-

suming. Alternatively, one could consider for NAB an hypergeometric distribution

with different parameters, defined for example, by considering all possible edges

in the network (instead of the edges that are actually present in the network) as

a population. We prefer model (1) over this alternative, because the choice of the

parameters therein allows to condition on two quantities that we consider crucial,

which are the outdegree of A and the indegree of B. Moreover, in our experience so

far, we have observed that tests based on alternative parametrizations often result

in poor performances.

The null mean and variance of NAB can be immediately derived from model (1). In

particular, in the absence of enrichment we expect to observe, on average, µ0 = oA
iB
iV

arrows from nodes in A to nodes in B. Thus, we expect µ0 to increase as the number

of arrows leaving A, or reaching B, increases. Biological assessment of enrichment

can therefore be carried out by testing the null hypothesis of no enrichment

H0 : µAB = µ0

against the alternative hypothesis of enrichment

H1 : µAB 6= µ0.

In a test with a discrete test statistic and two-sided alternative, such as the one

that we propose, the p-value can be computed in different ways [20–22]. Let T

be a discrete test statistic and t be the observed value of T . A first possibility

is to compute the p-value for the two-tailed test by doubling the one-tailed p-

value, p1 = 2 minP0[(T ≤ t), P (T ≥ t)], where P0 denotes the distribution of T

under the null hypothesis. An evident drawback of this formula, however, is that

p1 can exceed 1, and therefore p1 does not represent a probability. Even though a

simple modification p2 = min(p1, 1) could avoid the problem, we prefer to subtract

P0(T = t) from p1 (P0(T = t) is non-null for discrete T , and this is the reason why

p1 can exceed 1) and to compute the p-value using

p = 2 min[P0(T < t), P0(T > t)] + P0(T = t) (2)

= 2 min [P0(NAB > nAB), P0(NAB < nAB)] + P0(NAB = nAB),

which always lies within the interval [0, 1] and differs from p1 by a factor equal to

P0(T = t). A p-value close to 0 can be regarded as evidence of enrichment, because
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it entails that the number of links from A to B is significantly smaller or higher

than we would expect it to be in the absence of enrichment. Therefore, for a given

type I error probability α, we conclude that there is evidence of enrichment from A

to B if p < α, while if p ≥ α there is not enough evidence of enrichment.

As an example, consider the network in Figure 2. Suppose that we are interested to

test whether there is enrichment from the set A = {1, 4} to the set B = {3, 5, 7}.
It can be observed that there are 5 arrows going out from A, and 2 of them reach

B. The whole network consists of 15 arrows, of which 4 reach B. Thus, nAB = 2,

oA = 5, iB = 4 and iV = 15. The idea behind (1) is that, if the 5 arrows that are

going out from A are a random sample (without replacement) from the 15 arrows

that are present in the network, then the proportion of arrows reaching B from A

should be close to the proportion of arrows reaching B in the whole network, and

in the absence of enrichment we should observe on average µ0 = 1.33 edges. In this

case, it seems that arrows going out from A tend to reach B more frequently (40%)

than other arrows do (27% of the 15 arrows in the network reach B). However,

the computation of the p-value leads to p = 0.48: the observed nAB = 2 does not

provide enough evidence to reject the null hypothesis, so that the conclusion of the

test is that there is no enrichment from A to B.

We can also consider sets B = {3, 5, 7} and C = {2, 5} (note that the two groups

share gene 5), and test enrichment from B to C. In this case, nBC = 3 arrows out

of oB = 4 (75%) reach C from B, whereas in the whole network iC = 4 arrows out

of dV = 15 (27%) reach C. The null expectation is here µ0 = 1.07; if we fix the type

I error probability equal to α = 5%, the p-value p = 0.03 leads to the conclusion

that there is enrichment from B to C.

Enrichment test for undirected networks

When dealing with undirected networks, the presence of enrichment between A and

B is assessed considering the number of edges that connect genes in A to genes in

B. We denote this by nAB . Given the undirected nature of the links in the network,

there is no distinction between indegree and outdegree of a node, and it only makes

sense to consider the degree of a node, which is the number of vertices that are

linked to that node. The null distribution (1) should thus be adapted accordingly.

Let us define the total degree dS of a set S as the sum of the degrees of nodes that

belong to it: then, in the absence of enrichment we can view nAB as the number of

successes in a random sample of size dA, drawn from a population of size dV . The

null distribution of NAB for undirected networks is thus

NAB ∼ hypergeom(n = dA,K = dB , N = dV ),

where dA, dB and dV are the total degrees of sets A,B and V .

The null hypothesis is then that µAB = µ0 = dA
dB

dV
, the alternative that µAB 6= µ0.

The p-value is computed using formula (2).

As an example, consider the network in Figure 3A and suppose that we are inter-

ested to test the presence of enrichment between the pairs of sets (A,B), (A,C) and

(B,C). Sets A and B are linked by nAB = 4 edges, and their degrees are dA = 4

and dB = 15, while dV = 36. Thus, µ0 = 1.67 and pAB = 0.023. In the same
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way, it is possible to compute pAC = 0.465 and pBC = 0.038. Figure 3B shows the

relation between the three sets fixing α = 5%: enrichment is present between the

pairs (A,B) and (B,C), but not between sets A and C.

Enrichment test for partially directed networks

A partially directed network (or “mixed” network) is a network where both directed

and undirected edges are present. It is possible to view such a network as a directed

network, where every undirected edge connecting two nodes v and w represents in

fact a pair of arrows, the former going from v to w and the latter from w to v.

If such an adaptation is adopted, model (1) can be applied and partially directed

networks can be analysed within neat as directed networks.

Software

NEAT is implemented in the R package neat [23], which can be freely downloaded

from CRAN: https://cran.r-project.org/package=neat. The manual and a vignette

illustrating the package are also available from the same URL. The package allows

users to specify the network in different formats, it includes functions to plot and

summarize the results of the analysis and is accompanied by a set of data and

examples, including the enrichment analysis of the ESR gene sets that we discuss

in the upcoming Section.

Results
Performance evaluation

We assess the performance of NEAT by means of simulations. Table 1 summa-

rizes some aspects of these simulations, that are the subject of the next two

subsections. The R scripts and data files for each simulation can be found at

https://github.com/m-signo/neat. We first consider directed networks, and check

whether the performance of NEAT is influenced by the degree distribution of the

network, or by the level of overlap between sets of nodes. We then consider undi-

rected networks, and carry out a comparison of NEAT with the NEA test of [18]

and with the LP, LA, LA+S and NP tests of [19].

We compare the performance of the methods under the null hypothesis by check-

ing whether the empirical distribution of p-values in the absence of enrichment is

uniform using the Kolmogorov-Smirnov test, and by computing the following ratios:

R1 =
Number of enrichments at 1% level

0.01×Number of tests where H0 is true

and

R5 =
Number of enrichments at 5% level

0.05×Number of tests where H0 is true
.

The idea behind R1 and R5 is that if the null hypothesis H0 is true, we expect a

good test to reject it with a frequency that is close to α. So, the target value for R1

and R5 is 1.

Furthermore, we compare the capacity of different tests to correctly detect enrich-

ments and non-enrichments by computing specificity and sensitivity at α = 5%

level, and the area under the ROC curve (AUC). The specificity is the proportion

https://cran.r-project.org/package=neat
https://github.com/m-signo/neat
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of correctly detected non-enrichments, and we expect it to be as close as possible

to 1−α. The sensitivity indicates the proportion of correctly detected enrichments,

whereas the AUC is a measure of the overall capacity of a test to discriminate en-

richments and non-enrichments across all values of α. Therefore, a test will show

a good performance whenever it achieves a specificity close to 1− α, and values of

sensitivity and AUC as high as possible (ideally 1).

Simulation with directed networks

In simulations S1 and S2, we generate two random networks with 1000 nodes and

with fixed indegree and outdegree distributions using the algorithm implemented

by [24]. The indegree and outdegree distributions of nodes are power law with

exponent 4 and minimum degree 20 in simulation S1, and a mixture of two Poisson

distributions, with parameters λ1 = 40 and λ2 = 100 and weights q1 = 99% and

q2 = 1%, in simulation S2.

We consider 50 sets of nodes whose size ranges between 50 and 100, and we test

enrichment from A to B and from B to A for every pair of sets: this means that,

in total, we compute 50× 49 = 2450 tests. In the original networks, no preferential

attachment (i.e., no enrichment) between any couple of these sets is present; we

generate enrichments by increasing or reducing the number of arrows for 200 pairs

of sets. In each case, enrichment is created by adding or removing arrows randomly

from one group to the other, in such a way that nAB increases or reduces by a

proportion uniformly ranging from 10% to 50%.

Table 2 shows that the empirical distribution of p-values in absence of enrichment

is approximately uniform both in simulation S1 and S2. The sensitivity is higher

in simulation S2, whereas the specificity is close to the target value (95%) in both

cases. As a result, the area under the ROC curve is slightly higher in simulation S2.

Overall, the test shows in both cases a good capacity to discriminate enrichments

and non-enrichments.

In simulation S3 we check whether the proportion of overlap between sets A and

B, that we measure with the Jaccard index

JAB = |A ∩B|/|A ∪B|,

could have an effect on specificity and sensitivity. We consider the same network used

in simulation S2, and we test enrichment between pairs of sets with fixed size |A| =
|B| = 50, but with increasing overlap (we consider |A ∩ B| ∈ {0, 5, 10, 15, ..., 50}).
Under H0 we do not modify the network, whereas under H1 we introduce enrich-

ments adding 35 arrows going from genes in A to genes in B. For every value of

overlap, we consider 2000 test (H0 is true in 1000 cases, and false in the remaining

1000). Figure 4 shows that the specificity remains constant and close to 95% for

any level of overlap; the sensitivity, on the other hand, is slightly higher when the

level of overlap is moderate.

Simulation with undirected networks

As alternative methods for network enrichment analysis are available for undirected

networks only, we compare NEAT with them in two simulations where we consider
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undirected networks with 1000 nodes. We generate two random networks with fixed

degree distribution, using the algorithm implemented by [24]; the degree distribution

follows a power law in simulation S4 and a mixture of Poisson distributions in

simulation S5, with the same parameters used in simulations S1 and S2. Likewise,

we consider 50 sets of nodes, whose sizes vary between 50 and 100 nodes. We

test enrichment between every pair of sets A and B, so that the total number of

comparisons is here 50 × 49/2 = 1225. We introduce enrichments for 100 pairs of

sets by adding or removing edges randomly between them, in such a way that nAB

is increased or reduced by a proportion uniformly ranging from 10% to 50%.

Tables 3 and 4 show the results for simulations S4 and S5, respectively. As concerns

the behaviour under the null hypothesis, the distribution of p-values is uniform

in both cases for NEAT and LA, and in one case for LA+S (simulation S4) and

NP (S5). NEA and LP, instead, do not produce uniform distributions: as it can be

observed from Figure 5, the reason is that the distribution is strongly left-skewed for

NEA, whereas for LP the distribution is right-skewed (the same patterns occur also

in simulation S5). In both simulations, most of the methods achieve a specificity

close to 95% as expected; comparison with the other tests shows that the sensitivity

and AUC of NEAT are overall good.

Table 5 compares the speed of computation for the different methods. NEAT turns

out to be the fastest method by far, being 22 times faster than NP (the fastest

alternative) and more than 3000 times faster than NEA (the slowest alternative).

This result is mostly due to the fact that NEAT does not require the generation of

a large number of permuted networks to compute the test.

Network enrichment analysis: an application to yeast

The budding yeast Saccharomyces cerevisiae is a unicellular eukaryote organism

that can be easily grown in laboratory. Because of these features, it represents a

model organism that has been extensively studied, and it was the first eukaryote

whose genome was completely sequenced [25]. Since then, a large number of studies

has aimed to detect associations between genes. In an attempt to collect these results

into a unique source, Kim et al. [14] developed YeastNet, an undirected gene network

that aims to integrate the results of a large number of high-throughput studies

on Saccharomyces cerevisiae. In its most recent version (v3), YeastNet comprises

362512 edges connecting 5808 genes. We use this network of known associations in

the following analyses.

Network enrichment analysis of environmental stress response in yeast

After analysing gene expression patterns of yeast Saccharomyces cerevisiae in re-

sponse to different stressful stimuli, Gasch et al. [26] inferred the existence of a set of

868 genes that reacted in a similar way to different, hostile environmental changes.

This set of genes, called Environmental Stress Response (ESR), is believed to con-

stitute a coordinated, initial reaction to the emergence of any hostile condition in

the cell. It consists of two subgroups of genes, containing genes that are repressed

and induced under stressful conditions, respectively.

We take these two gene sets as target sets, and for each of them we test enrichment

with the following functional gene sets: 99 gene sets that are part of the GO Slim
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biological process ontology (we do not consider the groups “biological process” and

“other” in the analysis) and 106 known KEGG pathways.

At α = 1% level, NEAT detects over-enrichment between 23 GO Slim sets and the

set of repressed genes, and between 25 GO Slim sets and the set of induced genes.

Furthermore, 15 KEGG pathways are found to be over-enriched with the set of

repressed ESR genes, and 47 with the set of induced genes.

Gasch et al. [26] reports that genes that are repressed in the ESR are involved in

growth related processes, various aspects of RNA metabolism, nucleotide biosynte-

sis, secretion, encoding of ribosomal proteins and other metabolic processes. These

results are in strong agreement with the list of over-enrichments detected by NEAT,

shown in Table 6. As a matter of fact, most of the over-enrichments detected by

NEAT are related to RNA transcription, nucleotide secretion and translation of

ribosomal proteins (rows 1-18 and 24-35 in Table 6), growth-related processes (row

22) and further metabolic processes (rows 23 and 33-35).

Gasch et al. [26] observed that inference for the set of genes that are induced by

the ESR is more complicated, because most of the genes in this group lack func-

tional annotations. It is worthwhile to observe that NEAT detects a large number

of enriched KEGG pathways (47 out of 106). This preliminary observation points

out a major feature of the Environmental Stress Response: the cell reacts to the

emergence of different hostile conditions by activating a number of known cellular

pathways that involve energy production, metabolic reactions and molecular trans-

portation (see Table 8).

Our results for this gene set do not only match the ones of the original study - iden-

tifying many processes and pathways that are related to carbohydrate metabolism

(rows 1-3 in Table 7 and 1-9 in Table 8), fatty acid metabolism (rows 4-6 in Table

7 and 10-18 in Table 8), mythocondrial functions and cellular redox reactions (rows

5-9 in Table 7 and 19-21 in Table 8), protein folding and degradation (10 in Table 7

and 22 in Table 8) and cellular protection during stressful conditions (rows 11-13 in

Table 7 and 23 in Table 8) - but they also unveil further enrichments that involve

molecular transportation (rows 3, 6, 14-18 in Table 7) and amino-acid metabolism

(rows 24-36 in Table 8).

Tables 9, 10 and 11 compare the p-values obtained with NEAT with those obtained

with LA+S [19], which, according to the conclusions of [19] and to our own sim-

ulations, can be considered as the main competitor of NEAT. The tables show a

large overlap between the over-enrichments detected by the two methods at a 1%

significance level: the two methods jointly detect 34 over-enrichments (19 GO Slim

sets and 15 KEGG pathways) for the set of repressed ESR genes, and 67 (24 GO

Slim sets and 43 KEGG pathways) for the set of induced ESR genes. There is only

a small number of discrepancies between the two methods and these are mostly

borderline cases. In particular, LA+S detects 4 over-enrichments that are not de-

tected by NEAT (rows 39 in Table 9, 26-27 in Table 10 and 48 in Table 11), whereas

NEAT detects 9 over-enrichments that are not detected by LA+S (rows 19-22 in

Table 9, 25 in Table 10 and 43-46 in Table 11). As concerns computing time, NEAT

computed the required task (410 tests in total) in 23 seconds, whereas the same

computation with LA+S required 19 minutes and 31 seconds. In summary, the two

methods lead to very similar conclusions, but NEAT is considerably more efficient.
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Network enrichment analysis of GO Slim sets: overlap does not imply enrichment

Gene ontologies [1] consist of a large number of gene sets, which are involved in

different cellular functions or biological processes, or that are active in a specific

component of the cell. These sets of genes are typically employed to enrich sets of

differentially expressed genes that have been experimentally detected (the analy-

sis of the ESR gene sets in the previous subsection provides an example of this).

However, network enrichment analysis is a more general instrument, which allows

to assess the relation between pairs of gene sets in a network. One might wonder,

for instance, whether gene sets within an ontology tend to be strongly related to

each other, or whether there is a strong separation between them.

We consider gene sets in the GO Slim biological process ontology for Saccharomyces

cerevisiae (we once more exclude the two general groups “biological process” and

“other” from the analysis). As a result of the hierarchical structure of Gene Ontolo-

gies, 12 gene sets are nested within another group. We exclude these 12 sets from

the analysis: the remaining 87 gene sets do not have hierarchical relations with each

other, and pairs of these sets display overall a low overlap (1.7 % on average), which

is null in most cases (62% of pairs of sets do not share genes). If overlapping of

sets was taken by itself as evidence of a relation between two gene sets, one would

therefore conclude that most of these gene sets are unrelated.

If, however, we do not limit our attention to the overlap between pairs of sets, but

consider also known associations between genes in the two sets as represented in

YeastNet [14], we obtain a different conclusion. We have used NEAT to test whether

there is enrichment between each pair of sets. In a random network where no rela-

tions between the sets are present, we would expect to detect 37 enrichments (on

average) out of 3741 tests for α = 1%; instead, we detect 1409 enrichments, 38 times

more than expected. Out of these, 710 are under-enrichments, and 699 are over-

enrichments. An under-enrichment, here, indicates that two GO Slim sets are poorly

connected to each other: the high number of under-enrichments, therefore, might be

not particularly surprising or interesting, as we do expect that unrelated gene sets

within the ontology are poorly connected. The high number of over-enrichments,

on the other hand, is striking: this indicates that many groups within the ontology

are highly connected to each other - something that would occur rather rarely, if

there was no relation between the sets.

This result points out a major difference between gene enrichment analysis and

network enrichment analysis: whereas in the first case the extent of overlapping be-

tween two gene sets is taken by itself as evidence of enrichment, network enrichment

analysis bases the evaluation of enrichment on the level of connectivity that exists

between the two sets in a network. Of course, the two facts are not completely

unrelated. Figure 6 shows that there is a certain correlation between overlap of

gene sets (Jaccard index) and network enrichment, so that we tend to find network

enrichment in the presence of higher levels of overlap. This correlation is, however,

low (the Pearson correlation coefficient between JAB and pAB is -0.15), pointing

out that there does not necessarily have to be enrichment for highly overlapping

gene sets, and vice versa. As an example, the GO Slim sets “cytokinesis” and “nu-

clear organization” do not share genes, but are detected as enriched (p = 0.0003)

in YeastNet. This result can be explained by the fact that “nuclear organization”
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includes genes involved in the assembly and disassembly of the nucleus, which is a

preliminary step in cell cytokinesis.

Conclusion
Network enrichment analysis is a powerful extension of traditional methods of gene

enrichment analysis, that allows to integrate them with the information on con-

nectivity between genes provided by genetic networks. Whereas gene enrichment

analysis bases the test for enrichment solely on the overlap between two gene sets

and ignores the relationships between individual genes, network enrichment analysis

exploits a larger amount of information by making use of gene networks, and it is

thus capable to detect enrichment even between two gene sets that do not share

genes.

In this paper, we have presented a Network Enrichment Analysis Test (NEAT) that

aims to overcome some limitations which affect the network enrichment tests of

[18] and [19]. First of all, we believe that a normal approximation does not make

justice to the discrete nature of NAB . We have showed that this approximation can

be avoided if one models NAB directly, using a hypergeometric distribution with

suitably specified parameters. In addition, the normal approximation employed by

[18, 19] requires the computation of a large number of network permutations to

obtain the mean and variance under H0: this operation can be very time consuming

for big networks and it makes the computation of the test rather slow. The use

of the hypergeometric distribution, instead, allows to specify the null distribution

of NAB without resorting to permutations, thus speeding up computations consid-

erably. A further drawback of existing methods for network enrichment analysis

[16–19] is that they have been implemented only for undirected networks. We ad-

dress this problem by considering different types of networks (directed, undirected

and partially directed) and by proposing two different parametrizations, which take

into account the different nature of directed and undirected links.

We believe that NEAT could constitute a flexible and computationally efficient test

for network enrichment analysis. Our simulations show that NEAT has a good ca-

pacity to correctly classify enrichments and non-enrichments. Comparison of NEAT

with other methods points out an overall good performance in terms of sensitivity

and of specificity, as well as the computational efficiency of the proposed method.

The examples illustrated in the previous Section show that NEAT can retrieve en-

richments that were detected with gene enrichment analysis, but it can also unveil

further enrichments that would be overlooked, if known associations between genes

were ignored. Even though the focus of this paper is on gene regulatory networks,

NEAT is a rather general test: it can be applied to networks that arise in different

contexts and disciplines, whenever the interest is to infer the relationship between

groups of vertices. This can include, for example, other types of biological networks,

as well as social, economic or technological networks.

List of abbreviations
AUC: area under the ROC curve

CRAN: Comprehensive R Archive Network

ESR: Environmental Stress Response
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GO: Gene Ontology [1]

KEGG: Kyoto Encyclopedia of Genes and Genomes [2]

LA: Link Assegnation test described in [19]

LA+S: Link Assegnation + Second-order conservation test described in [19]

LP: Link Permutation test described in [19]

NEA: the test for Network Enrichment Analysis described in [18]

NEAT: Network Enrichment Analysis Test, described in Section “Methods” and implemented in [23]

NP: Node Permutation test described in [19]

Availability of data and materials

Software: NEAT is implemented in the R package neat [23], which can be freely downloaded from CRAN:

https://cran.r-project.org/package=neat. The manual and a vignette illustrating the package are available from the

same URL.

Simulations: the R scripts and data files for the simulations presented in Section “Performance evaluation” can be

found at https://github.com/m-signo/neat.

Applications to yeast data: the data analysed in Section “Network enrichment analysis: an application to yeast” are

available inside the R package neat (see the help page yeast of the package).
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Figures
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Figure 1 Workflow diagram of a typical network enrichment analysis with NEAT.
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Figure 2 Example: NEAT in directed networks. Left: directed network consisting of 8 nodes
connected by 15 arrows. Set A contains nodes 1 and 4 (red) and set B nodes 3, 5 and 7 (orange).
Right: bipartite representation of the same network: it can be observed that nAB = 2, oA = 5,
iB = 4 and iV = 15. It follows that µ0 = 1.07 and p = 0.48.

[scale=0.35]figure3.pdf

Figure 3 Example: NEAT in undirected networks. Left: undirected network with 12 nodes. We
are interested to infer the relation between sets A (nodes 1 and 5), B (2, 4 and 7) and C (6 and
8). Right: representation of the relations between sets: enrichment is detected between sets A and
B (p = 0.023) and between sets B and C (p = 0.038), but not between sets A and C (p = 0.465).

[scale=0.45]figure4.pdf

Figure 4 Specificity and sensitivity in simulation S3. The plot shows the values of specificity and
sensitivity for different levels of overlap (every point in the plot is computed on the basis of 1000
tests). We observe that the specificity of the test does not vary substantially for different levels of
overlap, and is always close to 95% as expected. The sensitivity, instead, slightly reduces as the
percentage of overlap increases.

https://cran.r-project.org/package=neat
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[scale=0.4]figure5.pdf

Figure 5 Histogram of p-values in absence of enrichment in simulation S4. The test of
Kolmogorov-Smirnov indicates that the distribution is uniform for NEAT (p = 0.34), LA
(p = 0.11) and NP (p = 0.32). The distribution of p-values is highly left-skewed for NEA, and
right-skewed for LP.

[scale=0.4]figure6.pdf

Figure 6 Relation between overlap (JAB) and p-values. Note that p-values are represented on a
negative log-scale to enhance readability.



Signorelli et al. Page 16 of 22

Tables

Table 1 An overview of simulations S1-S5. In Simulations S1 and S2, we compare the performance
of NEAT in two directed networks with different degree distribution. In simulation S3, we check the
performance of the test for different levels of overlap, ranging from 0% to 100%. In Simulations S4
and S5, we compare NEAT to alternative tests in two undirected networks with different degree
distribution.

Simulation Network type Degree distribution Graph density Mean overlap Maximum overlap
S1 Directed Power law 3% 4% 11.3%
S2 Directed Mixture of 2 Poisson 4% 3.6% 9.5%
S3 Directed Mixture of 2 Poisson 4% - -
S4 Undirected Power law 3% 3.8% 12%
S5 Undirected Mixture of 2 Poisson 4% 3.6% 11%

Table 2 Performance of NEAT in simulations S1 and S2. pKS denotes the p-value of the
Kolmogorov-Smirnov test for uniform distribution, AUC is an abbreviation for “area under the ROC
curve”. In both simulations, the distribution of p-values under H0 is uniform and the specificity is
close to the expected 95% value. Sensitivity and AUC are higher in simulation S2.

Simulation pKS R1 R5 Sensitivity Specificity AUC
S1 0.510 1.56 1.17 73% 94% 0.894
S2 0.125 1.20 1.12 78% 94% 0.927

Table 3 Results of simulation S4. The best results for each indicator are in bold. pKS denotes the
p-value of the Kolmogorov-Smirnov test for uniform distribution, AUC is an abbreviation for “area
under the ROC curve”. The distribution of p-values under H0 is evidently not uniform for NEA and
LP. NEAT shows the highest values of sensitivity and AUC, and its specificity is close to the target
value (95%).

Test pKS R1 R5 Sensitivity Specificity AUC
NEAT 0.399 1.33 1.14 69% 94% 0.920
NEA 0.001 0 0.87 68% 96% 0.918
LP 0 2.13 1.51 68% 92% 0.908
LA 0.255 1.60 1.17 60% 94% 0.897

LA+S 0.409 1.87 1.17 63% 94% 0.913
NP 0.037 1.24 1.28 58% 94% 0.884

Table 4 Results of simulation S5. The best results for each indicator are in bold. pKS denotes the
p-value of the Kolmogorov-Smirnov test for uniform distribution, AUC is an abbreviation for “area
under the ROC curve”. The distribution of p-values under H0 can be considered uniform for NEAT,
LA and NP, and is questionable for LA+S. NEAT shows the highest values of sensitivity and AUC,
and its specificity is exactly equal to the target value (95%).

Test pKS R1 R5 Sensitivity Specificity AUC
NEAT 0.343 0.62 0.98 79% 95% 0.925
NEA 0.024 0 0.82 73% 96% 0.912
LP 0 1.33 1.51 78% 92% 0.904
LA 0.111 1.16 1.33 73% 93% 0.908

LA+S 0.024 1.16 1.13 76% 94% 0.910
NP 0.323 1.42 1.16 70% 94% 0.908

Table 5 Speed comparison. The table compares the time (in seconds) that each method required to
compute 1225 tests for enrichment in simulations S4 and S5, using a processor with 2.5 GhZ CPU
frequency. NEAT turns out to be by far the fastest method.

Test Software Simulation S4 Simulation S5
NEAT R package neat 0.6 0.7
NEA R package neaGUI 2125.4 2151.5
LP CrossTalkZ 28.6 44.7
LA CrossTalkZ 14.4 18.0

LA+S CrossTalkZ 21.8 27.6
NP CrossTalkZ 12.9 15.8
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Table 6 Network enrichment analysis of the repressed ESR gene set. The table lists the 23 Go Slim
BP gene sets and the 15 KEGG pathways which the set of repressed ESR genes is found to be
over-enriched with at 1% significance level.

Gene set nAB µ0 log10(p-value)
Go Slim BP sets:

1 cytoplasmic translation 6878 2641.9 <-300
2 ribosomal large subunit biogenesis 3408 1097.8 <-300
3 ribosomal small subunit biogenesis 5861 2073.7 <-300
4 ribosome assembly 1782 621.9 <-300
5 RNA modification 2944 1062.0 <-300
6 rRNA processing 9187 3290.2 <-300
7 tRNA processing 2037 901.0 <-300
8 translational elongation 1786 782.3 -283.8
9 ribosomal subunit export from nucleus 1420 561.4 -281.8
10 translational initiation 939 462.5 -112.1
11 transcription from RNA polymerase III promoter 565 228.4 -107.7
12 snoRNA processing 634 303.3 -82.0
13 regulation of translation 1952 1328.6 -73.5
14 DNA-dependent transcription, termination 774 447.0 -57.5
15 transcription from RNA polymerase I promoter 1005 646.4 -49.5
16 protein alkylation 1063 759.4 -31.4
17 tRNA aminoacylation for protein translation 400 233.1 -29.4
18 peptidyl-amino acid modification 1088 883.0 -13.2
19 nuclear transport 3154 2003.5 -162.4
20 organelle assembly 2090 1362.7 -96.1
21 nucleobase-containing compound transport 1453 1155.4 -20.8
22 cytokinesis 1024 806.9 -16.0
23 vitamin metabolic process 325 274.0 -3.1

KEGG pathways:
24 Ribosome biogenesis in eukaryotes 9824 3661.0 <-300
25 Ribosome 18640 8731.7 <-300
26 RNA polymerase 3057 1541.2 <-300
27 RNA transport 4341 2906.4 -177.6
28 Aminoacyl-tRNA biosynthesis 1433 960.9 -58.2
29 RNA degradation 2560 1939.3 -51.9
30 mRNA surveillance pathway 1768 1413.5 -24.0
31 Pentose phosphate pathway 1126 947.1 -9.7
32 Spliceosome 2649 2523.6 -2.3
33 Purine metabolism 5579 3623.0 -263.6
34 Pyrimidine metabolism 4541 2884.5 -234.9
35 Cyanoamino acid metabolism 218 158.8 -6.3
36 One carbon pool by folate 541 392.5 -15.0
37 Sulfur relay system 238 196.5 -2.9
38 Carbapenem biosynthesis 117 89.8 -2.7
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Table 7 Network enrichment analysis of the induced ESR gene set (GO Slim sets). The table lists
the 25 Go Slim BP gene sets which the set of induced ESR genes is found to be over-enriched with at
1% significance level.

GO Slim BP gene set nAB µ0 log10(p-value)
1 carbohydrate metabolic process 1296 671.2 -110.9
2 oligosaccharide metabolic process 442 165.3 -77.3
3 carbohydrate transport 202 65.8 -45.0
4 lipid metabolic process 693 484.4 -19.9
5 peroxisome organization 181 124.8 -6.0
6 lipid transport 120 79.7 -4.9
7 generation of precursor metabolites and energy 585 294.8 -54.0
8 cellular respiration 210 118.4 -14.5
9 proteolysis involved in cellular protein catabolic process 639 488.5 -10.9
10 protein folding 476 296.9 -22.7
11 response to oxidative stress 813 242.2 -202.7
12 response to chemical stimulus 1489 885.1 -83.4
13 response to starvation 459 331.4 -11.2
14 transmembrane transport 910 644.4 -24.2
15 endocytosis 395 245.5 -19.3
16 protein targeting 628 478.8 -10.9
17 ion transport 464 380.2 -4.8
18 amino acid transport 137 109.4 -2.1
19 cofactor metabolic process 523 219.0 -73.7
20 nucleobase-containing small molecule metabolic process 722 404.5 -49.2
21 membrane invagination 278 120.6 -37.0
22 vacuole organization 335 200.2 -18.9
23 protein maturation 49 27.7 -3.9
24 cell morphogenesis 113 79.4 -3.6
25 sporulation 352 306.4 -2.1
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Table 8 Network enrichment analysis of the induced ESR gene set (KEGG pathways).The table
lists the 45 KEGG pathways which the set of induced ESR genes is found to be over-enriched with at
1% significance level.

KEGG pathway nAB µ0 log10(p-value)
1 Starch and sucrose metabolism 1436 394.2 <-300
2 Pentose and glucuronate interconversions 414 110.7 -119.9
3 Glycolysis / Gluconeogenesis 1235 616.3 -116.5
4 Fructose and mannose metabolism 562 200.0 -106.7
5 Galactose metabolism 511 173.9 -104.5
6 Amino sugar and nucleotide sugar metabolism 567 264.2 -63.4
7 Other glycan degradation 79 11.7 -44.2
8 Pyruvate metabolism 633 355.9 -42.8
9 Propanoate metabolism 189 107.3 -12.9
10 Glycerolipid metabolism 444 172.1 -72.7
11 Peroxisome 633 313.3 -61.2
12 Fatty acid degradation 419 215.0 -37.2
13 Arachidonic acid metabolism 117 36.7 -28.1
14 Sphingolipid metabolism 227 103.6 -27.3
15 Glycerophospholipid metabolism 450 270.9 -24.5
16 alpha-Linolenic acid metabolism 69 27.1 -11.7
17 Fatty acid elongation 138 75.3 -10.8
18 Biosynthesis of unsaturated fatty acids 134 103.9 -2.5
19 Glutathione metabolism 467 204.8 -59.9
20 Citrate cycle (TCA cycle) 487 267.3 -35.6
21 Ubiquinone and other terpenoid-quinone biosynthesis 96 41.8 -13.1
22 Protein processing in endoplasmic reticulum 1121 866.0 -17.4
23 Longevity regulating pathway 987 544.0 -70.6
24 beta-Alanine metabolism 397 104.0 -118.0
25 Taurine and hypotaurine metabolism 132 24.3 -59.4
26 Tyrosine metabolism 382 163.5 -51.8
27 Tryptophan metabolism 292 113.3 -48.2
28 Valine, leucine and isoleucine degradation 276 107.5 -45.3
29 Alanine, aspartate and glutamate metabolism 488 262.2 -38.0
30 Histidine metabolism 267 127.4 -28.8
31 Arginine and proline metabolism 301 154.3 -27.0
32 Lysine degradation 294 150.4 -26.6
33 Phenylalanine metabolism 171 71.4 -25.0
34 Glycine, serine and threonine metabolism 350 264.3 -6.7
35 Cysteine and methionine metabolism 338 285.3 -2.8
36 Arginine biosynthesis 167 134.0 -2.4
37 Butanoate metabolism 460 84.8 -202.8
38 Pentose phosphate pathway 604 288.0 -64.0
39 Regulation of autophagy 303 126.7 -43.3
40 Insulin resistance 337 172.8 -30.1
41 Glyoxylate and dicarboxylate metabolism 368 201.6 -27.3
42 Methane metabolism 435 254.2 -26.2
43 Nicotinate and nicotinamide metabolism 154 99.8 -6.7
44 Nitrogen metabolism 88 52.8 -5.4
45 Thiamine metabolism 57 32.9 -4.1
46 Selenocompound metabolism 122 89.3 -3.2
47 Sulfur metabolism 133 105.3 -2.2
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Table 9 Repressed ESR gene set: comparison between NEAT and LA+S. The table reports the
gene sets that are found to be over-enriched (α = 1%) by at least one of the two methods. µ0
denotes the expected value of NAB in the absence of enrichment. The last two columns report log10
p-values for the proposed NEAT and the LA+S test of [19], respectively.

µ0 log10(p-value)
Gene set NEAT LA+S NEAT LA+S
GO Slim BP sets:

1 cytoplasmic translation 2641.9 3583.5 <-300 -290.9
2 ribosomal large subunit biogenesis 1097.8 1602.4 <-300 -269.2
3 ribosomal small subunit biogenesis 2073.7 3013.2 <-300 -236.8
4 ribosome assembly 621.9 872.1 <-300 -95.9
5 RNA modification 1062.0 1422.7 <-300 -213.7
6 rRNA processing 3290.2 4623.2 <-300 <-300
7 tRNA processing 901.0 1137.6 <-300 -103.3
8 translational elongation 782.3 1019.5 -283.8 -71.2
9 ribosomal subunit export from nucleus 561.4 693.4 -281.8 -151.2
10 nuclear transport 2003.5 2452.5 -162.4 -33.0
11 translational initiation 462.5 594.8 -112.1 -33.6
12 transcription from RNA polymerase III promoter 228.4 281.6 -107.7 -43.6
13 organelle assembly 1362.7 1719.2 -96.1 -8.0
14 snoRNA processing 303.3 349.8 -82.0 -26.5
15 regulation of translation 1328.6 1577.5 -73.5 -12.9
16 DNA-dependent transcription, termination 447.0 575.2 -57.5 -11.7
17 transcription from RNA polymerase I promoter 646.4 874.2 -49.5 -5.2
18 tRNA aminoacylation for protein translation 233.1 256.7 -29.4 -11.2
19 protein alkylation 759.4 1000.0 -31.4 -1.2
20 nucleobase-containing compound transport 1155.4 1445.1 -20.8 -0.1
21 cytokinesis 806.9 925.9 -16.0 -1.8
22 peptidyl-amino acid modification 883.0 1102.4 -13.2 -0.1
23 vitamin metabolic process 274.0 245.8 -3.1 -5.5

KEGG pathways:
24 Ribosome biogenesis in eukaryotes 3661.0 5212.5 <-300 <-300
25 Ribosome 8731.7 11954.0 <-300 -283.3
26 RNA polymerase 1541.2 2058.0 <-300 -76.1
27 Purine metabolism 3623.0 4136.9 -263.6 -66.9
28 Pyrimidine metabolism 2884.5 3402.5 -234.9 -61.0
29 RNA transport 2906.4 3193.2 -177.6 -75.4
30 Aminoacyl-tRNA biosynthesis 960.9 934.2 -58.2 -49.8
31 RNA degradation 1939.3 2051.3 -51.9 -19.9
32 mRNA surveillance pathway 1413.5 1477.3 -24.0 -12.7
33 One carbon pool by folate 392.5 344.2 -15.0 -19.5
34 Pentose phosphate pathway 947.1 979.2 -9.7 -4.6
35 Cyanoamino acid metabolism 158.8 132.2 -6.3 -7.2
36 Sulfur relay system 196.5 172.7 -2.9 -3.9
37 Carbapenem biosynthesis 89.8 75.1 -2.7 -4.1
38 Spliceosome 2523.6 2432.2 -2.3 -4.1
39 Synthesis and degradation of ketone bodies 39.8 29.8 -0.3 -2.2
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Table 10 Induced ESR gene set: comparison between NEAT and LA+S (GO Slim sets). The table
reports the gene sets that are found to be over-enriched (α = 1%) by at least one of the two
methods. µ0 denotes the expected value of NAB in the absence of enrichment. The last two columns
report log10 p-values for the proposed NEAT and the LA+S test of [19], respectively.

µ0 log10(p-value)
GO Slim BP set NEAT LA+S NEAT LA+S

1 response to oxidative stress 242.2 248.5 -202.7 -253.7
2 carbohydrate metabolic process 671.2 663.9 -110.9 -123.3
3 response to chemical stimulus 885.1 912.4 -83.4 -92.8
4 oligosaccharide metabolic process 165.3 158.1 -77.3 -104.5
5 cofactor metabolic process 219.0 225.6 -73.7 -76.2
6 generation of precursor metabolites and energy 294.8 293.4 -54.0 -56.1
7 nucleobase-containing small molecule metabolic process 404.5 417.4 -49.2 -41.0
8 carbohydrate transport 65.8 77.7 -45.0 -52.8
9 membrane invagination 120.6 118.3 -37.0 -51.7
10 transmembrane transport 644.4 684.7 -24.2 -16.2
11 protein folding 296.9 296.3 -22.7 -26.6
12 lipid metabolic process 484.4 495.7 -19.9 -23.3
13 endocytosis 245.5 248.7 -19.3 -19.3
14 vacuole organization 200.2 199.7 -18.9 -22.4
15 cellular respiration 118.4 125.2 -14.5 -14.1
16 response to starvation 331.4 318.4 -11.2 -15.8
17 protein targeting 478.8 485.1 -10.9 -15.8
18 proteolysis involved in cellular protein catabolic process 488.5 494.1 -10.9 -9.8
19 peroxisome organization 124.8 123.5 -6.0 -6.0
20 lipid transport 79.7 90.4 -4.9 -2.8
21 ion transport 380.2 410.7 -4.8 -2.1
22 protein maturation 27.7 30.9 -3.9 -3.0
23 cell morphogenesis 79.4 80.8 -3.6 -3.7
24 sporulation 306.4 301.7 -2.1 -2.5
25 amino acid transport 109.4 113.0 -2.1 -1.6
26 response to osmotic stress 181.8 178.3 -1.6 -2.1
27 protein phosphorylation 587.6 564.3 -1.4 -2.7
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Table 11 Induced ESR gene set: comparison between NEAT and LA+S (KEGG pathways).The
table reports the gene sets that are found to be over-enriched (α = 1%) by at least one of the two
methods. µ0 denotes the expected value of NAB in absence of enrichment. The last two columns
report log10 p-values for the proposed NEAT and the LA+S test of [19], respectively.

µ0 log10(p-value)
KEGG pathway NEAT LA+S NEAT LA+S

1 Starch and sucrose metabolism 394.2 400.6 <-300 <-300
2 Butanoate metabolism 84.8 98.0 -202.8 <-300
3 Pentose and glucuronate interconversions 110.7 127.5 -119.9 -185.7
4 beta-Alanine metabolism 104.0 122.9 -118.0 -209.8
5 Glycolysis / Gluconeogenesis 616.3 618.7 -116.5 -149.3
6 Fructose and mannose metabolism 200.0 206.2 -106.7 -160.7
7 Galactose metabolism 173.9 193.2 -104.5 -126.4
8 Glycerolipid metabolism 172.1 193.2 -72.7 -103.2
9 Longevity regulating pathway - multiple species 544.0 508.2 -70.6 -79.1
10 Pentose phosphate pathway 288.0 284.2 -64.0 -105.8
11 Amino sugar and nucleotide sugar metabolism 264.2 277.6 -63.4 -66.7
12 Peroxisome 313.3 332.9 -61.2 -55.8
13 Glutathione metabolism 204.8 221.6 -59.9 -77.8
14 Taurine and hypotaurine metabolism 24.3 28.5 -59.4 -92.8
15 Tyrosine metabolism 163.5 169.9 -51.8 -62.6
16 Tryptophan metabolism 113.3 130.9 -48.2 -59.4
17 Valine, leucine and isoleucine degradation 107.5 124.8 -45.3 -56.8
18 Other glycan degradation 11.7 12.9 -44.2 -66.3
19 Regulation of autophagy 126.7 135.2 -43.3 -45.5
20 Pyruvate metabolism 355.9 388.8 -42.8 -41.6
21 Alanine, aspartate and glutamate metabolism 262.2 284.5 -38.0 -36.7
22 Fatty acid degradation 215.0 225.0 -37.2 -43.7
23 Citrate cycle (TCA cycle) 267.3 299.5 -35.6 -32.9
24 Insulin resistance 172.8 176.5 -30.1 -30.4
25 Histidine metabolism 127.4 147.8 -28.8 -25.8
26 Arachidonic acid metabolism 36.7 44.1 -28.1 -40.6
27 Glyoxylate and dicarboxylate metabolism 201.6 224.8 -27.3 -23.7
28 Sphingolipid metabolism 103.6 116.3 -27.3 -26.2
29 Arginine and proline metabolism 154.3 180.2 -27.0 -24.8
30 Lysine degradation 150.4 160.2 -26.6 -31.5
31 Methane metabolism 254.2 262.7 -26.2 -23.7
32 Phenylalanine metabolism 71.4 81.5 -25.0 -26.4
33 Glycerophospholipid metabolism 270.9 285.1 -24.5 -22.3
34 Protein processing in endoplasmic reticulum 866.0 857.1 -17.4 -20.7
35 Ubiquinone and other terpenoid-quinone biosynthesis 41.8 47.1 -13.1 -12.3
36 Propanoate metabolism 107.3 122.9 -12.9 -9.9
37 alpha-Linolenic acid metabolism 27.1 30.5 -11.7 -11.2
38 Fatty acid elongation 75.3 76.1 -10.8 -12.9
39 Glycine, serine and threonine metabolism 264.3 281.1 -6.7 -3.5
40 Nicotinate and nicotinamide metabolism 99.8 111.9 -6.7 -4.7
41 Nitrogen metabolism 52.8 60.7 -5.4 -4.0
42 Thiamine metabolism 32.9 36.8 -4.1 -3.2
43 Selenocompound metabolism 89.3 97.0 -3.2 -1.9
44 Cysteine and methionine metabolism 285.3 310.6 -2.8 -1.0
45 Arginine biosynthesis 134.0 154.2 -2.4 -0.6
46 Sulfur metabolism 105.3 121.9 -2.2 -0.5
47 Biosynthesis of unsaturated fatty acids 103.9 102.1 -2.5 -3.1
48 Regulation of mitophagy - yeast 554.4 510.4 -1.6 -5.1
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