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Abstract

Ecosystems consist of complex dynamic interactions among species and the environ-

ment, the understanding of which has implications for predicting the environmental

response to changes in climate and biodiversity. Understanding the nature of functional

relationships (such as prey-predator) between species is important for building predic-

tive models. However, modelling the interactions with external stressors over time and

space is also essential for ecosystem-based approaches to fisheries management. With

the recent adoption of more explorative tools, like Bayesian networks, in predictive

ecology, fewer assumptions can be made about the data and complex, spatially vary-

ing interactions can be recovered from collected field data and combined with existing

knowledge.

In this thesis, we explore Bayesian network modelling approaches, accounting for latent

effects to reveal species dynamics within geographically different marine ecosystems.

First, we introduce the concept of functional equivalence between different fish species

and generalise trophic structure from different marine ecosystems in order to predict

influence from natural and anthropogenic sources. The importance of a hidden variable

in fish community change studies of this nature was acknowledged because it allows

causes of change which are not purely found within the constrained model structure.

Then, a functional network modelling approach was developed for the region of North

Sea that takes into consideration unmeasured latent effects and spatial autocorrelation

to model species interactions and associations with external factors such as climate and

fisheries exploitation. The proposed model was able to produce novel insights on the

ecosystem’s dynamics and ecological interactions mainly because it accounts for the het-

erogeneous nature of the driving factors within spatially differentiated areas and their
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changes over time.

Finally, a modified version of this dynamic Bayesian network model was used to pre-

dict the response of different ecosystem components to change in anthropogenic and

environmental factors. Through the development of fisheries catch, temperature and

productivity scenarios, we explore the future of different fish and zooplankton species

and examine what trends of fisheries exploitation and environmental change are po-

tentially beneficial in terms of ecological stability and resilience. Thus, we were able

to provide a new data-driven modelling approach which might be beneficial to give

strategic advice on potential response of the system to pressure.
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Chapter 1

Introduction

1.1 Motivation

Some spectacular collapses in fish stocks have occurred in the past 20 years but the most

notable is the once largest cod stock in the world, the Northern cod stock off eastern

Newfoundland, which experienced a 99% decline in biomass (Tucker & Duplisea (2012)).

Cod unfortunately, is not alone and there are other stocks of various species that have

been reduced to only a small percentage of stock sizes in recent history. Some of these

regions may have moved to an “alternative stable state” or experienced a “regime shift”

and are unlikely to return to cod dominated community without some chance environ-

mental event beyond human control (Gröger et al. (2011)). Much of this effect is due to

direct mortality on fish through fishing and subsequent indirect effects or climate change

affecting species recruitment and survival. Understanding multi-decadal fluctuations of

fish populations and their variability related to regime shifts or other natural and an-

thropogenic disturbance is complicated because the abundance of fish populations is

driven by both environmental forcing, fishing and species associations (Rothschild &

Shannon (2004)). Therefore, in this thesis, a focus will be the use of state-of-the-art

computational techniques based upon dynamic Bayesian networks with hidden variables

to both integrate human expertise with extensive empirical data and model unmeasured

factors to both predict functional changes in different fish communities and model their

dynamics with interactions from the environment and anthropogenic forcing.
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Chapter 1. Introduction

Understanding the causes and consequences of change in marine ecosystems is a fun-

damental requirement for effective marine management and the development of robust

evidence based marine policies (Kenny et al. (2009)). It will allow precautionary man-

agement measures to be put in place as it is believed that changes in the marine en-

vironment are to become more rapid in the 21st century causing both ecological and

industrial implications (Fernandes et al. (2013)). If we accept that ecosystem changes

will occur in the future, then the challenge we face is how to predict such changes

with sufficient advance warning. It is important to be able to understand the under-

lying species dynamics and ecological networks to enable any impacts from functional

changes and/or future pressures to be managed and minimised in an effective way.

At present most of the management effort is directed at regulating activities and not mit-

igating for, or adapting to, inevitable and largely unmanageable changes. Many studies

using different techniques have been undertaken to utilize environmental information

and provide advice to meet management needs and understand future environmental

states (Lewy & Vinther (2004); Ulrich et al. (2011); Mackinson & Daskalov (2007);

Lynam & Mackinson (2015)). However such methods often limit the underlying inter-

actions from expanding beyond the current food web paradigm. Although, the majority

of traditional statistical approaches incorporate a large percentage of the higher trophic

groups, they lack important extrinsic drivers, such as climate variation (for example

Ecopath with Ecosim in Mackinson & Daskalov (2007)), which is fundamental for inter-

preting community dynamics. In addition, for such models to be valuable, they would

also need to reflect the link between an input that can be managed (fisheries catch) and

the response (e.g., change in species biomass), and therefore require an anthropogenic

involvement (Garćıa-Carreras et al. (2015)). While such methods have been successful

in providing insights into the high order dynamics and status of marine systems, the

techniques are not (in themselves) suitable for testing different management scenarios

or answering the “what if” type questions often asked by fisheries managers. Thus, it

is clear that new assessment tools that consider multiple species interactions and their

associations with external factors and can both predict and observe changes in pressure

and state are needed. This would enable the strengths of the integrated ecosystem

assessments to be combined with the scenario testing utility of traditional stock as-
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sessment models and therefore allow predictions to be made about future significant

changes in fish stock status.

Recently, an approach has been introduced to the area of biology, that is capable of

inferring network structures, capturing nonlinear, dynamic and arbitrary combinatorial

relationships: Bayesian Networks (BNs) (Heckerman et al. (1995)). BNs have been

applied to reveal gene regulatory networks using gene microarray data (Friedman et al.

(2000)) and were shown to reveal known pathways of neural information networks from

brain electrophysiology data (Smith et al. (2006)). Such a flexible technique capable

of identifying the complex relationships involved in bioinformatics potentially offers a

valuable method in ecological studies (Milns et al. (2010)). Therefore, this work aims to

adapt this novel methodology to infer the network structure directly from the collected

field data.

The main aim of the research presented here is to develop dynamic models that adopt

the functional network approach between species and their environment to model their

dynamics allowing for predictions to be made across spatial and temporal scales. In this

work, the importance of modelling unmeasured latent effects is recognised to predict

functional changes and capture species variance that might not be purely constrained

within the model structure. In addition, we aim at integrating the concept of functional

equivalence between different datasets in order to generalise species interactions and

the impact from natural and anthropogenic sources. Using a combination of structure

learning techniques with some expert knowledge we introduce a model that can pre-

dict species dynamics and their interactions with external factors throughout time and

within spatially differentiated scales. By applying this modelling approach, we want

to understand what are the key mechanisms and influences when forming ecological

networks but also to provide strategic advice on potential response of the system to

pressure.

In this introductory chapter, the motivations, aims, and contributions of this thesis are

fully explained.
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1.2 Thesis contributions

The main contributions of this thesis are:

• Functional Network Models The concept of functional network models and

their importance is defined in terms of modelling species dynamics and their in-

teractions with natural and anthropogenic factors. Such models are developed to

generalise between different species that have similar functions in different geo-

graphical regions in order to identify changes in underlying system structure and

predict influence from natural and anthropogenic sources.

• Exploration of Dynamic Bayesian Models with Hidden Variables Dy-

namic models with hidden variables are used to predict changes in species trophic

dynamics and variance. We explore the predictive qualities of recognised statisti-

cal metrics in combination with dynamic models to detect early-warning signals

of a functional collapse.

• Identification of Ecological Networks We apply a structure learning algo-

rithm to discover data-driven ecological interactions and associations that are

used in combination with dynamic models to predict species biomass.

• Hidden Spatial Dynamic Bayesian Network Model (HSDBN) We develop

a dynamic model that accounts for unmeasured latent effects and spatial auto-

correlation to predict species dynamics and biomass across spatial and temporal

scales. The proposed model is a data-driven functional network model that ac-

counts for multispecies associations and interactions and their changes over space

and time. It concerns the use of two hidden variables: one for modelling a missing

variable and the other- for general overall systemic changes.

• Exploration of the HSDBN model in combination with natural and an-

thropogenic scenarios We extend the hidden spatial dynamic model to predict

species dynamics and future biomass in combination with fisheries catch, temper-

ature and productivity scenarios to explore species trends in response to change

in pressures.
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1.3 Thesis outline

This thesis is organized as follows.

Chapter 2 explores the state of the literature and the gaps to fill. It first explains the

concepts related to marine food webs and highlights the importance of modelling func-

tional relationships between species and their environment, using the functional network

approach. Then, it moves onto emphasizing the advantages of using Bayesian networks

for modelling ecological data by providing examples from the literature.

Chapter 3 explores the state-of-the-art concepts used for this work. It starts by ex-

plaining static Bayesian networks and standard techniques related to structure and

parameter learning. Then, it focuses on dynamic Bayesian network models and specifi-

cally dynamic models with hidden variables and how to perform inference and learning

for these methods.

Chapter 4 introduces the concept of functional equivalence and then describes the use

of dynamic models with hidden variables in combination with statistical metrics to pre-

dict early-warning signals of functional changes and species biomass in different marine

ecosystems.

Chapter 5 explores the use of structure learning and dynamic models to predict species

biomass and functional relationships within the Gulf of St Lawrence. This chapter in-

troduces a novel modelling approach to predict species dynamics and interactions with

their environment within spatial and temporal scales across the North Sea.

Chapter 6 describes the use of the novel modelling approach to predict species trends

in response to change in fisheries catch, temperature and productivity scenarios.

Chapter 7 explores the use of functionally equivalent trophic structures between species

groups from different marine ecosystems to generalise influence from natural and an-

thropogenic sources.

Chapter 8 summarises the findings from this thesis, identifies advantages and disadvan-

tages and explores future improvements and developments.
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Chapter 2

Background

This chapter reports the state of the literature regarding modelling ecological data and

specifically the analysis of functional relationships between species and their environ-

ment. The first part explains the definitions related to marine food webs and some

of the threats that marine species are facing in recent years. It describes the use of

functional network models to understand ecosystem structure and resilience.

The second part of this chapter highlights the advantages of using Bayesian networks for

modelling ecological data by providing examples of different environmental studies and

describing some of the characteristics of this approach in regards to predictive ecology.

2.1 Fisheries and Ecoinformatics

Owing to the explosion in data collection and storage made available since the dawn

of parallel sequencing, there has been a demand for specialist techniques to analyse

and model data (Tucker & Duplisea (2012)). The advance of research in fields such as

machine learning (Bishop (2006)) and intelligent data analysis (Berthold et al. (2010))

has resulted in the development of many novel analysis tools in the area of bioinformat-

ics (Tucker & Duplisea (2012)). Conversely, ecological data analysis has been rather

much less explorative, however this is starting to change with the recent adoption of

machine-learning approaches in predictive ecology.

Ecology was first defined in 1869 as the “study of the interaction of organisms with their

environment” (Haeckel (1869)) and later as “the scientific study of the distribution and
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abundance of organisms (Andrewartha & Browning (1961)). Krebs (1994) combined

these definitions into the “scientific study of the interactions that determine the dis-

tribution and abundance of organisms”. “Interactions” in the above definition refer to

the interplay of organisms with biotic (of or relating to living organisms) and abiotic

(physical e.g. temperature) factors (Begon et al. (1990)).

For over a century, most studies have been looking at patterns in the distribution and

abundance of organisms, with respect to the study of interactions such as predator-prey

(consumer-resource) relations, which has specifically received most extensive considera-

tion (Olff et al. (2009)). However, recently, research has turned to better understanding

and predicting the impacts of human induced climate change and activities such as com-

mercial fisheries exploitation on the biodiversity and functioning of ecosystems. Specif-

ically, some of the key questions raised are: 1) which are the most vulnerable species

to extinction; 2) will the loss of some species affect other species and the structure of

the ecosystem; 3) should some species be given special consideration in conservation

schemes?

Although humans have been fishing for millennia, there has been a rapid development of

industrialized fishing over the past 50 years, which has impacted the marine food webs

through both the magnitude of the removals and the exploitation of species in waters

far beyond traditional fishing grounds (Board et al. (2006)). Food webs (Fig.2.1) con-

stitute functional relationships (such as predator-prey) by which energy and nutrients

are passed on from one species to another. By removing both target and non-target

species from the food web, fisheries directly influence fish abundance and ecosystem

productivity, potentially altering the nature of the species interactions in marine food

webs and communities.

In marine ecosystems, larger fish species or piscivorous fish (feeding on fish) have an im-

portant trophic (relating to feeding) role at or near the top of the food web, and as such

they bring high economical value to the commercial fisheries (Jennings et al. (2001)).

Consequently, piscivorous species (e.g. cod) become most susceptible to anthropogenic

exploitation, leading to reduced abundance and consequently affecting species further

down the food web (planktivorous fish) and causing alternative species to rise on top of

the food web. The effect of predators (e.g. piscivorous species) has been shown to in-
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Figure 2.1: A generalized marine food web showing the functional relationships between

trophic levels where direction of links represents prey-predator interactions.

fluence prey (e.g. planktivorous species) populations (a community of living organisms)

and vice versa and has been described to be of the same or greater magnitude than fish-

eries removals in determining the dynamics of marine food webs (Tyrrell et al. (2011)).

Planktivorous species (e.g. herring) are responsible for transforming the zooplankton

(small animals) into food available to higher trophic level species. Zooplankton feed on

phytoplankton (microscopic plants) which are the primary level produces, responsible

for the production of carbon in the marine environment.

Human activities can also affect the sustainability of fish populations through the use

of different management schemes (Jiao (2009)). Such changes have a direct effect on

production and cause misunderstanding in management systems when it cannot be dis-

tinguished between climatic and harvesting impacts (Jiao (2009)). Subtle changes in

key environmental variables like temperature, salinity, wind, ocean currents, can also

significantly change the abundance, distribution and availability of fish populations, ei-

ther directly or by affecting prey or predator populations (Jiao (2009)). For example, in

the North Sea is now suggested that pelagic fish are partly regulated through bottom-

up mechanisms as climate change has significant impacts on different phytoplankton

and consequently zooplankton species through functional relationships (Kenny et al.

(2009)).

Traditionally, fish stocks have been managed as separate units but recently the interest

of linking stocks with other components of the ecosystem such as climate and fisheries
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catch levels, has been considered as one aspect of an ecosystem-based approach to fish-

eries management (Kleisner et al. (2015)). The ecosystem-based approach to fisheries

management acknowledges that fisheries are part of the environment and cannot be

managed in isolation (Cury et al. (2005)) and requires recognition of the ecosystem

dynamics and structure. This requires the need to understand indicators (e.g. species

biomass and/or functional relationships between species) of ecosystem change that are

easy to interpret in order to measure the impacts of fishing, climate change, and other

factors across ecosystems and to provide management guidance at an ecosystem level

(Kleisner et al. (2015)). Consequently, the need to examine indicators suggests the im-

portance of applying a robust modelling technique to understand the ecosystem status

and capture the dynamics of different components of the community.

2.2 Functional Network Models

Ecosystems consist of complex dynamic interactions among species and the environ-

ment, the understanding of which has significant ecological and industrial implications

for predicting nature’s response to changes in climate and biodiversity. Such biotic and

abiotic interactions are further exacerbated by spatial and temporal variation of the

system and its components. Direct observation and quantification of such relationships

within real ecosystems may be beyond the scope of traditional fieldwork. Consequently,

computational inference of ecological networks presents an alternate route to unravel

ecosystem interactions.

Interactions among species make it difficult to predict how ecological communities will

respond to environmental degradation, yet to do so we must understand the functional

networks that form the systems (Dunne et al. (2002)). The functional network approach

to understand community structure and resilience is an on-going approach combining

known topological features of food webs with quantitative variation in species interac-

tions with their environment and surrounding stressors to predict community stability.

Different species may have similar functional roles (the functional status of an organism)

within a system depending on the region. For example, one species may act as a preda-

tor of another which regulates a population in one location, but another species may
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Figure 2.2: An example of a functional network model showing the functional relation-

ships where direction of links (black) represents prey-predator interactions between fish

species (sprat, herring and haddock) and a zooplankton species: Calanus finmarchicus

and negative influence of external stressors- temperature and fisheries catch- pelagic

trawlers (red) on the relevant species dynamics.

perform an almost identical role in another location. If we can model the function of

the interaction rather than the species itself, data from different regions can be used to

confirm key functional relationships, to generalise over systems and to predict impacts

of forces such as fishing and climate change. Examining functional network models is

necessary to help clarify ecological concepts and relationships and understand potential

system responses to management changes, and evaluate alternative management poli-

cies (McCann et al. (2006)). Finally, applying the functional network approach provides

a systematic way of presenting, describing and comparing the complexity of ecological

communities, where species are represented by nodes and interactions by links between

nodes.

One example of a functional network in a marine ecosystem is shown in Fig.2.2 which

represents the species of interest e.g. herring and the relevant components (e.g. fish-

eries catch, temperature, predator-haddock, etc.) relating to the herring’s dynamics.

Therefore, when defining ecosystem dynamics, it is necessary to incorporate multispecies

information and interactions with both physical and biological components that would

reduce uncertainty in predicting the species response to change in fisheries and climate.

The biological characteristics of any species stock are dependent upon and shaped over

time by its interactions with other species and the rest of the ecosystem (Mackinson &

Daskalov (2007)).

Ecosystem is a system that evolves both with time and space, thus the development of
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spatio-temporal functional network models is needed in order to understand the mech-

anisms controlling ecosystem changes (Chen et al. (2011)). Real ecosystems are seen to

be characterised with complex non-uniform dynamics, indicating that space and time

are important domains of ecological models. Specifically, ecosystems exhibit spatial

heterogeneity, forming spatial patterns of localised behaviour and species interactions

that can be crucial to the overall ecological dynamics (Chen et al. (2011)). In this case,

spatio-temporal models provide a powerful way to link fine scale local interactions to

coarse-scale global dynamics to predict impacts from natural and anthropogenic sources

and understand the underlying rules governing ecological dynamics.

Great variety of analytical models exist that describe the theory of ecological processes

over space and time but there has been less attention to fitting such models to data that

also describe the uncertainty associated with the data, models and parameters (Wikle

(2003)). Traditionally, the generalised linear mixed model provides a stochastic mod-

elling framework that captures complicated processes (McCulloch & Neuhaus (2001)).

However, it is challenging to account for the joint spatio-temporal structure due to the

complicated dynamic interactions across space and time (Wikle (2003)). Alternatively,

the spatio-temporal dependence can be modelled by factoring the joint distribution of

the ecological process into a series of conditional models (Wikle (2003)). These models

are known as hierarchical spatio-temporal dynamic models (Wikle et al. (1998)) that

take relatively simple spatial and temporal dependence attached to sub-processes in

order to examine the joint spatio-temporal dependence (Wikle (2003)).

The concept of hierarchical modelling has been around for nearly 50 years but in the

context of ecological modelling it is relatively new. In ecology, hierarchical modelling is

based on the notion that complicated real-world processes can be modelled “in a con-

ditional and probabilistically coherent framework that distinguishes the data, process,

and parameter portions of models”, according to Cressie & Wikle (2015). The method

accounts for various sources of uncertainty and it is easy to implement in complicated

high-dimensional settings (Wikle (2003)). In the Bayesian context, one can learn about

the process and parameters given the data through: [Y,P|D] α [D|Y,P][Y|P][P], where

“D” denotes data, “Y”- process, “P”- parameters and α denotes “proportional to”

and the constant of proportionality ensures that the integral of the left-hand side over
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the process and parameters is equal to 1 (from “Hierarchical Spatio-Temporal Mod-

els and Survey Research” by Wikle, Holan and Cressie in “Statistics Views”, 2013,

www.statisticsviews.com). Such a model is referred to as a Bayesian hierarchical model.

This framework allows to incorporate spatial and temporal dependencies at the process-

modelling stage of the hierarchy. In addition, distributions for the parameters can be

specified allowing for complex dependence structures such as spatially and/or temporally

dependant parameters (“Hierarchical Spatio-Temporal Models and Survey Research”,

2013). Finally, this approach allows focus on the process of interest (Y) separately from

the data which leads to including expertise when specifying the model and accounting for

multiple sources of information about the same process (“Hierarchical Spatio-Temporal

Models and Survey Research”, 2013).

Conventional statistical analyses are inadequate in understanding the underlying mech-

anisms that link climate, ocean and biotic systems across spatial and temporal scales

within an ecosystem. Traditional approaches based on system dynamics manage to rep-

resent changing behaviours in time but fail to represent spatial processes (Chen et al.

(2011)). Geographic information system and remote sensing are some examples for spa-

tial analysis but they represent a static view of the environment, failing to capture the

dynamics of a system (Engelen et al. (1997)). Approaches such as the Smooth Transi-

tion AutoRegressive (STAR) models have been used to test spatial heterogeneity and

non-linear time series but have failed to account for the associated uncertainty when

multiple variables and factors are involved (Pede et al. (2014)). Therefore, allowing for

an explorative systems level approach to provide a probability of ecological responses is

required. Such approach is important as it would let people to ask the “what if” type

questions, creating different management scenarios in the benefit of marine resources

sustainability, and creating a balance between anticipating functional changes and the

regulation of human activities.

2.3 Bayesian Networks for Modelling Ecological Data

Bayesian networks (BNs) are a relatively recent modelling approach in the area of bi-

ology that is capable of inferring network structures, capturing nonlinear, dynamic and
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arbitrary combinatorial relationships (Heckerman et al. (1995)). Formerly, BNs have

been applied to reveal gene regulatory networks using gene microarray data (Friedman

et al. (2000)). Therefore, being able to identify the complex relationships involved in

bioinformatics, the work presented onwards in this thesis, aims to adapt this novel

methodology to infer the network structure directly from the collected field ecological

data.

Bayesian networks are models that graphically and probabilistically represent relation-

ships among variables. They are becoming increasingly popular for modelling uncertain

and complex domains such as ecosystems and environmental management (Varis et al.

(1990); Lee & Rieman (1997); Marcot et al. (2001); Uusitalo et al. (2005)). There

is some research into using BNs for modelling fish populations (Hammond & O’Brien

(2001); Marcot et al. (2001); Lee & Rieman (1997)). Other environmental topics include

habitat suitability models, risk assessments, management evaluation, decision support

and ecosystem services modelling (e.g. Chen & Pollino (2012); Haines-Young (2011);

Smith et al. (2007); Tattari et al. (2003)). Lately, the BN methodology has been ex-

panded to model the social dynamics of fishermen (Haapasaari et al. (2007); Haapasaari

& Karjalainen (2010)). Most environmental BN applications often include decision anal-

ysis and encoded expert knowledge (Uusitalo (2007)). For example, Varis et al. (1990)

developed a Bayesian network with decision and utility variables (an influence diagram)

to evaluate management strategies of a eutrophic lake. Kuikka & Varis (1997) estimated

the effect of climatic change on watersheds, and Marcot et al. (2001) combined some

data with their mostly expert-opinion-based analysis of population viability. Uusitalo

et al. (2005) used BNs to obtain an estimate on the maximum salmon smolt production

capacity in the Baltic Sea, which is an important management variable on which no

actual data exist.

As applied in ecology, the BNs represent an approach of analysing multiple associations

between groups of species and their environment which is a more comprehensive route

to revealing interactions within the ecosystem (Aderhold et al. (2012)) directly from

the data, rather than taking an “existing” network structure and analysing it in terms

of summary statistics. BNs are efficient in integrating variables presented at different

scales (Wooldridge (2005)), allow empirical data to be combined with existing knowledge
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(Uusitalo (2007)), operate within a data poor environment (Uusitalo (2007)), integrate

the uncertainty associated with species dynamics due to the action of multiple driving

factors and they can be easily combined with decision analytic tools to aid management

(Marcot et al. (2001)). These features make BNs attractive for modelling environmental

systems where uncertainty is pervasive (Hamilton et al. (2015)).

What makes BNs attractive to environmental management is that they represent prob-

abilistic dependencies among species and ecosystem factors that influence the variables

likelihood in an intuitive, graphic form (Jensen (2001)), therefore the manager has a

quantitative indication of the range of possible scenarios consistent with the data to

enable management advice (Cooke (1999)). The use of BNs methodology facilitates the

communication of modelling results and the representation of a variety of perspectives

as a means of modelling likelihoods of natural and anthropogenic effects (Levontin et al.

(2011)). By having the ability to demonstrate graphically how assumptions affect the

probability of outcome, BNs aid improving communication among ecologists, decision-

makers, and stakeholders who may lack formal training in the underlying scientific dis-

ciplines (Kuikka et al. (1999)). Additionally, by incorporating nodes in their graphical

structure, BNs can investigate potential management decisions as they calculate and

update probabilities of conditions and outcomes, providing managers with alternative

solutions or strategies (McCann et al. (2006)).

Essentially, BNs serve as tools to quantify the relationships between ecological-response

variables such as species biomass, distribution and environmental predictor variables

such as their habitat and/or fisheries exploitation, climate. Probabilistic methods such

as BNs provide estimates of the uncertainty associated with predictions, as demon-

strated by Fernandes et al. (2010). With the recent adoption of BNs in predictive

ecology, few assumptions can be made about the data and complex, spatially varying

interactions can be recovered from collected field data, as demonstrated by Trifonova

et al. (2015). In BN modelling, some sources of uncertainty include: lack of clear un-

derstanding of the system and processes within, missing and/or biased data (Hamilton

et al. (2015)). The way BNs manage with such uncertainties is through developing

alternative model structures and accounting for these uncertainties in the distribution

of probabilities across the BN nodes and their states (Chen & Pollino (2012)). The
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approach of creating multiple models, which reflect the different hypothesis of the sys-

tem, deals with structural uncertainties and accepts that several different models can

adequately represent the same system albeit from different perspectives (Krueger et al.

(2012)). A fundamental advantage of Bayesian inference is that it allows for the use of

informative prior distributions on uncertain model parameters (Uusitalo et al. (2012)).

For example, literature data may be used to define priors, with study-specific data being

used to update those priors.

2.4 Integration of Expertise and Multiple Data Sets

A practical approach to overcome problems derived from low data quality, noise and

measurement errors typical during the collection of ecological datasets is to incorporate

existing knowledge into a computational framework. This way statistical inference can

increase the knowledge in the areas that are still lacking evidence and help construct

more precise models. Expertise is often applied to develop BN modelling structure. Ex-

pert knowledge can be combined with data regarding variables on which different levels

of accuracy (e.g. absence/presence and quantity data) exist (Marcot et al. (2001)).

Specifically, the expert judgement can be used to parameterize the BN models, which

is of significant importance for environmental studies which do not have enough quan-

titative data for use by statistical modelling approaches (Smith et al. (2007)). The use

of expert knowledge is especially advantageous when the data are scarce or missing,

though this should be incorporated with caution as often expertise can be biased in

the decision making (Morgan & Henrion (1990)). However, expert bias can be reduced

by using rigorous methods for eliciting and applying expert judgement (Krueger et al.

(2012)). Finally, expertise is used to assist selecting variables and measuring uncertain-

ties associated with those variables (Marcot et al. (2001)).

The number of experts formally consulted in environmental modelling studies varies

(Krueger et al. (2012)). BNs constructed for water quality and watershed management

have been conceptualised with the inputs from 3 to 6 experts (Marcot et al. (2001);

de Santa Olalla et al. (2007); Lynam et al. (2010)), while expert numbers increase when

the models were constructed and developed during workshops (Vilizzi & Copp (2013)).
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Generally, a participatory approach with workshops including experts, stakeholders and

final users has been used to construct and develop BN models (Ticehurst et al. (2007);

Inman et al. (2011); Richards et al. (2013)), whilst some other studies have validated

the structure using questionnaires (de Santa Olalla et al. (2007); Franco (2014)).

Another way to incorporate expertise is by integrating prior knowledge into the system.

Priors reflect our knowledge of the subject before new data is collected, and can be

highly informative, when there is a lot of knowledge about the subject already, or very

uninformative, if not much is known (Uusitalo (2007)). These priors are then updated

with data, to obtain a synthesis of old knowledge and new data, which can then be

applied as a prior in a different study (Uusitalo (2007)). In this way, the approach of

scientific learning is explicit, providing the opportunity for assumptions made by the

experts to be openly discussed. The use of prior knowledge reduces the need for large

datasets and most importantly, the use of BN priors also provides the opportunity to

identify key gaps in the ecosystem knowledge and thus inform future research priorities.

Another way to overcome noisy data issue is to integrate heterogeneous data sources to

improve the reliability and accuracy of the modelled results and predictions. BNs can

be informed simultaneously with different types of data and sources, quantitative and

qualitative data (McCann et al. (2006)). For example, these can include datasets from

field monitoring or laboratory studies; process equations, derived from peer-reviewed

studies; datasets, derived from models (Chen & Pollino (2012)). Some example envi-

ronmental studies include Wooldridge & Done (2004) who predicted coral bleaching in

the Great Barrier Reef using a BN based on various data (e.g. temperature, reef shape,

bathymetry). They used a BN as a framework to investigate dependencies among

potential drivers and responses to ultimately update prior beliefs. Another example

related to reef studies comes from Franco (2014) in which multi-scale scenario-based

analyses, conducted for two different geographical reef datasets, quantified the effects of

multiple stressors (e.g. anthropogenic and climatic stressors) on the reefal components,

providing information on the actual state and possible future state of the ecological

framework. Milns et al. (2010) evaluated the potential usefulness of BN algorithms

by applying inference to avian count and habitat data. They examined properties of

the revealed ecological functional networks and evaluated them against known features
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of the ecosystem. Hamilton et al. (2015) used a BN approach to develop a habitat

suitability model. Expert knowledge was elicited through surveys designed to describe

the strength of relationships between the habitat suitability of the species of interest-

crayfish and three other environmental variables. A series of 18 alternative models were

developed based on the same model structure but parameterised using different sources

expert judgement, field data or a combination of the two.

2.5 Summary

In this chapter, we explained the main definitions relating to food webs and functional

relationships. We described the impact of fisheries on the marine food webs, high-

lighting the importance of ecosystem-based approach to fisheries management to better

understand ecosystem structure and dynamics. Additionally, we explained the func-

tional network approach as a potential method to examine community structure and

resilience and the recent adoption of machine-learning techniques such as BNs that are

becoming increasingly important in predictive ecology to understand ecological rela-

tionships in response to anthropogenic exploitation and climate change. We highlighted

the recent use of BNs in the field of environmental studies, providing some specific

examples in the area of fisheries. Also, we described some of the BN characteristics

which have assisted in the application of this approach to become so advantageous in

the area of ecological modelling, specifically outlining the ability of BNs to integrate

multispecies information and interactions with both physical and biological components

throughout space and time. Conventional statistical studies have failed to link response

variables to multiple stressors through an ecosystem. Therefore, the need to adopt a

more explorative systems level approach such as BNs capable of capturing the underly-

ing mechanisms in a complex dynamic environment is needed. Hence, in this research

we want to develop an approach to robustly identify key functional interactions that are

of importance to the underlying ecosystem and its components in order to understand

the ecological dynamics and structure and predict the long-term ecosystem change in

response to anthropogenic disturbance and climate.

In the next chapter, we explore in detail some of the modelling techniques to build
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functional network models that will be used later.
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Chapter 3

Preliminaries

In this chapter, we illustrate the fundamentals of the Bayesian network framework. As

discussed in the previous chapter, they may be particularly appropriate for investigating

many questions related to modelling ecological data. We also illustrate an extension

of static BNs- dynamic Bayesian networks for modelling temporal data and specifically

focus on describing the characteristics of a type of a DBN- hidden Markov model.

Finally, we explain the use of a hidden variable and how it can be used when modelling

fish population data.

3.1 Bayesian Networks

Bayesian Networks (BNs) (Nielsen & Jensen (2009); Friedman et al. (2000)) use graph

theory in combination with statistics to capture relationships or dependencies among

independent variables. The dependencies are qualitatively represented through graph-

based structures (networks) while the strength of the relationships is quantitatively

shown by conditional probability tables (CPTs) for continuous or discrete data. The

graph-based structure in combination with the CPTs provides ecologists and other ex-

pertise with a user-friendly framework to communicate the results (Chen & Pollino

(2012)). The graphical structure of BNs is particularly convenient when we aim in de-

scribing an ecological network to model all the interactions between species and their

environment.

A BN is defined as a probabilistic graphical model that encodes a joint probability
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distribution over a set of variables, X1...XN by exploiting conditional independence re-

lationships, represented by a directed acyclic graph (DAG) (Friedman et al. (1999)). In

the DAG, the nodes are the variables and the edges (or links) represent the conditional

relationships between them. It is relevant to think of the BN as a “graph”, describing

groups of species as the “nodes” within the graph, and interactions as the “edges” that

join the nodes (Faisal et al. (2010)). The edges are connected from a parent node to a

child node, and the lack of possible links in the DAG encodes conditional independences.

Conditional independence between the random variables X and Y given Z is defined

as

p(X|Y,Z) = p(X|Z) (3.1)

Therefore, once the value of Z is known, X and Y are independent.

The DAG represents the set of conditional independence relationships, which are

explained by the directed separation (d-separation) criterion (?). Given three subsets

of disjoint nodes: V1, V2 and V3, it is V3 that “d-separate” V1 from V2 if among the

arcs between V1 and V2, there is a node V for which one of the following applies:

• v has converging arcs (all the arcs from the adjacent nodes point to v) and none

of v or its children are in V3;

• v is in V3 and does not have converging arcs.

In general, a BN can encode a set of conditional independence relationships between

variables, and it can be shown that a node is conditionally independent of its non-

descendants given its parents (?), which defines the Markov property of a BN. The

Markov property of BNs allows showing the global distribution of a network G as the

product from the local distributions (CPDs) associated with each variable Xi. In a BN,

a node is conditionally independent of all the other nodes in the graph given its Markov

blanket, which is defined as the node’s parents, children and children’s parents. Given

that, the CPD associated with each variable (either continuous or discrete) X encodes

the probability of observing its values given the values of its parents, and is described
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in the CPT and all the CPTs in a BN together provide an efficient factorisation of the

joint probability:

p(x) =

n∏
i=1

p(xi|pai) (3.2)

where pai are the parents of the node xi (which denotes both node and variable).

A simple example of a generic Bayesian network is shown in Figure 3.1 (the ex-

ample is adapted from Murphy (2001)). The DAG (Fig.3.1a) shows 4 nodes, each

representing a variable called Species with discrete values. The links between the nodes

indicate that Species 1 directly influences Species 2 and Species 3 which in turn influ-

ence Species 4. The conditional probability table (Fig.3.1b) quantifies the strength of

each link. Although BNs are defined in the aspect of conditional independence, it does

not necessarily mean that the arcs should represent cause-effect relationships. In this

research, the links between variables represent dependence, which are predictive in an

informative, not causal aspect (Milns et al. (2010)).

Figure 3.1: A simple Bayesian network over 4 variables. (a) shows the DAG component

whilst (b) shows the conditional probability distribution attached to the node Species

4. T=True and F=False.
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3.1.1 Bayesian Inference

Once the CPTs are defined, another useful aspect of BNs is to examine inference.

Bayesian inference also called probabilistic reasoning or belief updating allows to deter-

mine the state of a set of variables given the state of others as evidence. Each node in

the DAG is characterised by a state which can change depending on the state of other

nodes and information about those states propagated through the DAG. By using this

kind of inference, one can change the state or introduce new data or evidence (change a

state or confront the DAG with new data) into the network, apply inference and inspect

the posterior probabilities (Koller & Friedman (2009)). Given a BN B with graphical

structure G and parameters Θ, we want to analyse the effect of a new evidence E on the

distribution of X using the knowledge encoded in the BN, which means to analyse the

posterior distribution: P(X|E,B) = P(X|E,G,Θ), which represents the distributions of

the variables given in the observed evidence.

BNs use Bayes rule to perform inference (Murphy (2001)). Using Bayes rule, the pos-

terior probability can be calculated P(A|B), based on the values P(A)- the prior prob-

ability, P(B |A)- the likelihood and P(B). If we want to calculate P(A|B) given the

observed data for P(B |A), Bayes rule is:

P (A|B) =
P (B|A)P (A)

P (B)
(3.3)

Using Bayes rule together with the joint distribution described by a BN, we can infer

the probability distribution on the value of a target variable, given the observed data

of other variables in the network. For example, in the network from Fig.3.1, if it is

observed that Species 4 is True, Sp4=T, and we want to find the probability that it is

Species 3 is True, Sp3=T, then by Bayes rule:

P (Sp3 = T |Sp4 = T ) =
P (Sp4 = T |Sp3 = T )P (Sp3 = T )

P (Sp4 = T )
(3.4)

=

∑
sp1,sp2 P (Sp1 = sp1, Sp2 = sp2, Sp3 = T, Sp4 = T )∑

sp1,sp2,sp3 P (Sp1 = sp1, Sp2 = sp2, Sp3 = sp3, Sp4 = T )
(3.5)

=
0.4138

0.6125
(3.6)

= 0.6755 (3.7)
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Similarly, if we want to find the probability that Species 2 is True, Sp2=T, given that

Species 4 is True, Sp4=T :

P (Sp2 = T |Sp4 = T ) =
P (Sp4 = T |Sp2 = T )P (Sp2 = T )

P (Sp4 = T )
(3.8)

=

∑
sp1,sp3 P (Sp1 = sp1, Sp3 = sp3, Sp2 = T, Sp4 = T )∑

sp1,sp2,sp3 P (Sp1 = sp1, Sp2 = sp2, Sp3 = sp3, Sp4 = T )
(3.9)

=
0.2938

0.6125
(3.10)

= 0.4796 (3.11)

In this case, P(Sp3 =T |Sp4 =T ) > P(Sp2 =T |Sp4 =T ) so it is more likely that Species

3 has a bigger influence on Species 4.

Exact inference in BNs can be a complicated task. Therefore many alternative exact and

approximated methods are often used in practice, for example some methods include:

Monte-Carlo sampling and variational methods. In this work, the junction tree inference

algorithm was applied, which uses a greedy search procedure to find a good ordering

for variable elimination. (Murphy, 1998). The research presented in later chapters uses

the Bayes Net Toolbox (Murphy et al. (2001)) to implement the junction three engine

for the prediction of node values in BNs.

3.1.2 Parameter Estimation

The aim, now, is to calculate the parameters of a distribution (or a set of distributions,

depending on the dimension of the variables) for each node in the network and for every

configuration of its parents. Given a probability distribution X and a dataset D =

x1,x2,...,xn, we want to learn a set of parameters Θ for X that maximizes the likelihood

L(θ) that the data D comes from X. We need to compute the posterior distribution of

the parameters p(θ|D), thus this is often problematic for high dimensional data and

approximate methods are applied. For example, the parameters θ can be calculated by

maximising the posterior probability of the parameters given the data D :

θ̂ = arg max
θ

p(θ|D) = arg max
θ

p(D|θ)p(θ) (3.12)

However, this estimation applies only when there are no missing data. The latter equa-

tion can be simplified by maximising the marginal likelihood function, i.e. arg maxθ p(D|θ)
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given the uniform prior distribution of the parameters. Often, the log-likelihood is con-

sidered so that the log-likelihood of the dataset Di, i = 1...M, is a sum of terms, one

for each node k :

Lk =
1

M

M∑
i=1

logp(xk|pa(xk), Di) (3.13)

When the data are missing and/or incomplete, the posterior distribution becomes in-

tractable as the log-likelihood is not decomposable and approximation methods such as

Monte-Carlo, Gaussian approximation and the Expectation Maximisation (EM) algo-

rithm need to be used (Dempster et al. (1977)). In this work, we focus on using EM

which is an iterative procedure in two steps that aims to estimate the parameters. In

a BN, this extends to including unobserved or hidden variables, which are variables for

which no instances of the dataset are specified. In the first step of the EM, the hidden

values for the unobserved data are inferred using the applied model structure, while in

the second step the estimated likelihood function is maximised. When the algorithm

converges to a local maximum, the parameters are estimated. Hidden variables will be

discussed later on in the chapter.

3.1.3 Structure Learning

The network structure can be imposed by the expert (who is constructing the model

architecture) or learned from the data. In the case of using data, structure learning is

a NP-hard problem because the number of DAGs on N variables is super-exponential

in N. Some methods to look for local optima in the structure space include score-

based learning algorithms, for example hill-climbing. Score-based approaches consist of

forming a set of possible network structures, each represented by a score of how well it

fits the data and then select the one with the highest score. Specifically, the hill-climb

belongs to the family of local search which begins with an empty network. In each

stage of the search, networks in the current neighbourhood are found by applying a

single change to a link in the current network such as add arc, delete arc or reverse

arc and choose the one change that improves the score the most. The hill-climb can be

performed with a random restart which conducts several hill-climbing runs, perturbing

the result of each one as the initial network for the next (Bouckaert (1995)). At each
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iteration, a score is computed to determine if the new network fits the data better than

the previous one. The algorithm stops when there is no more improvement and the final

network is selected. The Bayesian Information Criterion (BIC, Schwarz et al. (1978)) is

used for scoring candidate networks. The BIC is a combination of a log likelihood model

and a penalization term which penalizes complicated models against simpler ones:

BIC = logP (Θ) + logP (Θ|D)− 0.5k log(n) (3.14)

where Θ represents the model, D is the data, n is the number of observations (sample

size) and k is the number of parameters. log P (Θ) is the prior probability of the network

model Θ, log P (Θ|D) is the log-likelihood while the term k log(n) is a penalty term,

which helps to prevent over-fitting by biasing towards simpler, less complex models.

Another option to calculate the score is to use the Akaike Information Criteria (AIC)

(Akaike (1974)) which illustrates a penalization term of 2k instead of 0.5k log(n). In

this thesis, we apply the BIC as being more suitable because it takes into account the

number of observations (n). Other score-based approaches include simulated annealing

(Bouckaert (1995)) and genetic algorithms (Larranaga et al. (1997)).

3.1.4 Model Evaluation

After learning a BN, we want to evaluate the performance of the model. We present

two methods which are used to evaluate the research in this thesis.

The first method makes a comparison of the network structure to documented knowl-

edge. Specifically, in this thesis we compare interactions learned by the BN model to

documented interactions by the expert which have been confirmed, usually through bio-

logical experiments from collected field data. A “true” network is formed from modelled

interactions, where a directed edge X → Y , between two species X and Y , exists if

a confirmed species interaction between that pair of species can be found through ex-

pertise knowledge. The learnt BN structure can be compared to the true network in

terms of true and false positives and negatives. A true positive (TP) is an edge that is

present in both the learnt and true networks. A false positive (FP) is an edge that is

present in the learnt network but not in the true network. A false negative (FN) is an

edge that is in the true network but not in the learnt network, whilst a true negative
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(TN) is an edge that is not in the true or learnt network. In terms of directionality of

the edges in the learnt network, we assume dependence between the nodes or variables,

so unless stated otherwise, the direction of an edge in the learned network is not used

to represent causality but the equivalent classes of each identified link or edge.

Another method of BN performance evaluation is the prediction of node values. In

the case of BN that represents a functional network of species interactions, we predict

species biomass (more on prediction further below).

3.2 Introduction of Time Series, State-space Models and

Autoregressive process

A time series is a chronological sequence of observations on a variable of interest (Xuan

(2004)). A mathematical description of the time sequence could be a sequence of random

variables {xt|t ε T}, where T is an index set of integers, e.g. {1,2,3..}. The distribution

of this sequence is specified by the joint distribution of every finite subset of {xt |t ε T}

where {xt1, xt2,...,xtk} for all integer k (Xuan (2004)).

A time series is said to be stationary if the distribution of {xt1, xt2,...,xtk} is the same

as the distribution of {xt1+h, xt2+h,...,xtk+h} for all choices of {t1,t2,...,tk} and h such

that t1,t2,...,tk ε T and t1+h, t2+h,...,tk+h ε T (Xuan (2004)). In another way, a

time series is said to be stationary if there are no systematic change in the mean and

variance. A time series which is not stationary, is called non-stationary. One way to

capture periodic non-stationarities is to add extra hidden nodes to represent the current

”regime”, thereby creating mixtures of models (Murphy (2002)), this will be addressed

in more detail further below.

A simple example of a stationary time series is a white noise series. {ut | t ε T} is

a collection of identical-distributed and mutually independent random variables with

common mean zero and constant variance σ2 (Xuan (2004)). Actually, white noise time

series is purely random and it is often included in more complicated probabilistic models

as the random error.

Let {ut | t ε T} be a white noise process with mean zero and variance σ2. A process
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{xt | t ε T} is said to be an autoregressive time series of order p: AR(p), if

xt = δ + β1xt−1 + β2xt−2 + ...+ βpxt−p + ut (3.15)

where {βi} are constants (Xuan (2004)). The AR format is similar to the multiple

regression model. Specifically, the prefix “auto” comes from the fact that xt is regressed

on the past values of itself.

Let us look at an example of an AR process with δ=0 (first-order case) which becomes:

xt = βxt−1 + ut (3.16)

When |β| = 1, xt is called a random process and then:

xt = x0 +
t∑
i=1

ui (3.17)

It follows that Var(xt) = Var(x0)+tσ2. As the variance changes with t, the process

becomes non-stationary (Xuan (2004)).

When |β| > 1, the random term ut will eventually disappear and the equation becomes:

xt = βxt−1 (3.18)

and the process will follow a non-stationary deterministic path.

Only when |β| < 1,

V ar(xt) =
σ2

1− β2
(3.19)

the process is stationary.

In this thesis, the data is a time-series, generated by a dynamic system. One may be

interested either in online analysis, where the data arrives in real-time, or in offline,

where the data has already been collected (Murphy (2002)). Here, we are interested in

the offline analysis, where one common task is to predict future observations given all

the observations up to the present time, which we will denote by y1:t= (y1,...,yt). We

are genuinely not sure about the future so we would like to compute a best estimate.

Additionally, we would like to know how confident is the best estimate. Hence, we will

try to compute a probability distribution over the possible future observations, which

we denote by: P(yt+h|y1:t), where h > 0 is the horizon, meaning how far into the fu-

ture we want to predict. Specifically, we are interested to predict future outcomes as a
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function of the inputs. Let u1:t denote our past inputs and ut+1:t+n denote our next n

inputs, which leads to compute P(yt+n|ut+1:t+n, y1:t).

“Classical” approaches that predict time-series data include linear models such as AR-

MAX or non-linear models such as neural networks. However, in this thesis we apply

probabilistic models (or generally, state-space models that relate to modelling time-

series data) because such techniques offer a natural mechanism for incorporating expert

knowledge relating to the network structure. They also allow predictions to be made

across very different platforms and organisms (Tucker & Duplisea (2012)) through the

use of a network structure and inference that allow us to ask “what if ?” type questions

of the data. They can handle multi-dimensional (multi-variate) inputs and/or outputs.

Finally, state-space models allow for hidden variables to be included in the model, these

are variables that we cannot measure (missing or unobserved) but we would like to es-

timate their state. By incorporating hidden variables into the model, we might be able

to define structure much closer to the “true” structure of the domain we are modelling

(Murphy (2002)).

In a state-space model, we can assume that there is some underlying hidden state that

generates the observed data and that this hidden state evolves in time as a function

of our inputs (Murphy (2002)). Here, the goal becomes to infer the hidden state given

the observed data up to the present time. We will denote the hidden state as Xt at

time t, which consequently defines computing: P(Xt|y1:t,u1:t), this is called the belief

state. Astrom (1965) has proven that the belief state is a sufficient statistic for pre-

diction/control purposes, so we do not need to keep the past observations. We can

update the belief state recursively using Bayes rule. Similarly to prediction, we have

a probability distribution over Xt, rather than a best estimate, in order to efficiently

reflect on our uncertainty about the “true” state of the world (Murphy (2002)).

We now discuss the more general state-space models, called dynamic Bayesian networks

and one of the most common kind of state-space models: the hidden Markov model.
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3.3 Dynamic Bayesian Networks

Modelling time series is achieved by using an extension of the BN known as the Dy-

namic Bayesian Network (DBN), where nodes represent variables at particular time

slices. DBNs are directed graphical models of stochastic processes that characterise the

unobserved and observed state in terms of state variables (as they include a temporal

dimension), which can have complex interdependencies (Murphy (2002)). The DBN

structure provides an easy way to specify such conditional independencies between the

acting variables and hence to provide a compact parameterization of the complex real-

time ecological data in this thesis. Also, DBNs allow expertise to monitor and update

a system as time progresses and make robust predictions of the behaviour of the sys-

tem (Mihajlovic & Petkovic (2001)). The terminology of static BNs: nodes, edges and

probabilities, also applies to DBNs. Note that “dynamic” refers to modelling a dynamic

system and not the assumption that model structure changes in time.

The states of a DBN satisfy the Markovian condition which is defined as: the state of a

system at time t depends only on its immediate past, its state at time t-1 (Mihajlovic &

Petkovic (2001)). This property is often considered as a definition of First order Markov

property : the future is independent of the past given the present (Murphy et al. (1999))

meaning each variable is directly influenced only by the previous variable (Fig.3.2)

Figure 3.2: A Bayesian network representing a first-order Markov process.

A DBN is defined to be a pair (B1, B→) where B1 is a BN with a prior P(Z1) and B→

is a two-slice temporal BN (2TBN) which defines P(Zt|Zt−1) by means of a DAG:

P (Zt|Zt−1) =

N∏
i=1

P (Zit |Pa(Zit)) (3.20)

where Zit is the i ’th node at time t and Pa(Zit) are the parents of Zit in the graph

(Murphy (2002)). The i ’th node at time t could be a component of the input, hidden

or output variables since: Zt=(Ut,Xt,Yt) which represent the input, hidden and output

variables respectively. The nodes in the first temporal slice of a 2TBN do not have any
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parameters associated with them, but each node in the second slice of the network has

an associated CPD which defines P(Zit|Pa(Zit)) for all t > 1.

The semantics of a DBN can be defined by “unrolling” the 2TBN which provides T

time slices (T is the length of the sequence) resulting in a joint distribution:

P (Z1:T ) =
T∏
t=1

N∏
i=1

P (Zit |Pa(Zit)) (3.21)

An example of a 2TBN and an unrolled version for a sequence of length T=4 is shown

in Fig.3.3. Here, Z
(1)
t =Ut, Z

(2)
t =Yt, Pa(Ut)=Ut−1 and Pa(Yt)=Ut, so the joint becomes:

P (U1:T , Y1:T ) = P (U1)P (Y1|U1)

T∏
t=2

P (Ut|Ut−1)P (Yt|Ut) (3.22)

In addition, the parameters for slices t = t, t+1, .. do not change over time, i.e., the

model is time invariant which allows unbounded amount of data to be modelled with a

finite number of parameters (Murphy (2002)).

Figure 3.3: (a) A 2TBN and (b) the same model unrolled for T=4 slices.

We can see from Fig.3.3 that the DBN framework not only allows for connections within

time slices: intra-slice connections (e.g. U1 → Y1 at t-1 Fig.3.3a) but also for connec-

tions between time slices (inter-slice connection e.g. U1 → U2 from t-1 to t respectively

Fig.3.3b) which incorporate condition probabilities between variables from different time

slices (Mihajlovic & Petkovic (2001)). In this way, we extend the first-order Markovian

condition by allowing for higher order interactions between variables. For example, a

τ th-order model allows arcs from {Ut−τ ,...,Ut−1} to Ut. Another example of a DBN is

shown in Fig.3.4 where the network includes only inter-slice connections between vari-

ables. Not necessarily all the states of a DBN need to be observed. States that are not

directly observed (hidden states) may influence other variables that we can measure or

calculate. This is another way of extending beyond the first-order models: define obser-

vations to be dependant on a hidden variable. So overall, in a DBN, each state at time t
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may depend on states at time t-1 and/or on current states of some other nodes at time t.

Figure 3.4: A dynamic BN where nodes represent variables at a point in time.

3.3.1 Learning and Inference

The techniques for inference and learning DBNs are mostly straightforward extensions

of the techniques for inference and learning static BNs by unrolling the DBN for T slices

and apply static BN algorithms.

Similarly to static BNs, learning starts with some a priori knowledge about the model

structure and parameters. The prior probability distribution over the model parame-

ters and structure is used to represent this initial knowledge, which is updated using

data to obtain a posterior probability distribution over model parameters and structure

(Ghahramani & Jordan (1997)). Specifically, assuming a prior distribution over model

structure and parameters, a data set is used to obtain the posterior distribution using

Bayes rule (we provided an example of how to use Bayes rule in 3.1.1 Bayesian Infer-

ence).

Since only a subset of states can be observed at each time slice, we can do inference

by calculating all the unknown states in the network. This inference problem can be

represented as finding P(Xt−1
0 |U

t−1
0 ), where Ut−1

0 is a finite set of continuous observa-

tions, Ut−1
0 = {u0,u1,...,ut−1} and Xt−1

0 is the corresponding set of hidden variables Xt−1
0

={x0,x1,...,xt−1}. (Mihajlovic & Petkovic (2001)).
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According to the type of DBN and its structure, different calculations might be needed.

That is why sometimes it could be more appropriate to estimate the summary statistics

for P(Xt−1
0 |U

t−1
0 ) by choosing some number of states or a single state and calculate only

their values throughout the different time slices (Mihajlovic & Petkovic (2001)). In this

case, the P(Xt−1
0 |U

t−1
0 ) is expressed as a Gaussian function and the mean and variance

for xt, denoted as 〈xt|Ut−1
0 〉 and 〈xtxt'|Ut−1

0 〉 respectively for every t are estimated (Mi-

hajlovic & Petkovic (2001)).

Another interesting inference problem is predicting future observation and/or estimat-

ing hidden states based on past observations. Having observed {u1...ut}, to predict the

next observation Ut+1, based on the data D and model M, the prediction will be:

P (Ut+1|D) =

∫
P (Ut+1|θ,M,D)P (θ|M,D)P (M |D) dθ dM (3.23)

which integrates out the uncertainty associated with the structure and parameters θ

(Ghahramani & Jordan (1997)).

The prediction of a hidden state in the next time slice can be defined as an inference

calculation of P(xt+1|Ut
0) or P(ut+1|Ut

0), according to Mihajlovic & Petkovic (2001) and

they have shown:

P (xt+1|Ut
0) =

∑
xt
P (xt+1|xt)αt(xt)∑

xt
αt(xt)

(3.24)

and similarly:

P (ut+1|Ut
0) =

∑
xt+1

αt+1(xt+1)∑
xt
αt(xt)

(3.25)

Often, it is more appropriate to express the prediction problem in the sense of ex-

pected or maximum likelihood estimates. Assuming a data set D with observations

{U(1)...U(N)}, the likelihood of the data set, according to Ghahramani & Jordan (1997)

is defined as:

P (D|θ,M) =

N∏
i=1

P (U (i)|θ,M) (3.26)

The maximum likelihood parameters are obtained by maximising the log likelihood:

L(θ) =

N∑
i=1

log P(U (i)|θ) (3.27)
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If the observation vector includes all the variables in the BN, we further factor each

term in the log likelihood:

logP (U i|θ) = log
∏
j

P (U
(i)
j |U

(i)
pa(j), θj) (3.28)

=
∑
j

logP (U
(i)
j |U

(i)
pa(j), θj) (3.29)

where j indexes over the DBN nodes, paj are the parents of j and θj are the parameters

that define the conditional probability of Uj given its parents (Ghahramani & Jordan

(1997)). In this way, the likelihood splits into local terms of each node and its parents.

When there are hidden variables present, the log likelihood cannot be decoupled as in

(3.24) but it is:

L(θ) = logP (U |θ) = log
∑
X

P (U,X|θ) (3.30)

where
∑

X is the sum over the set of hidden variables X, required to obtain the marginal

probability of the data (Ghahramani & Jordan (1997)). Here, the EM algorithm (more

detail in 3.1.2 Parameter Estimation) is applied which alternates between maximising

the log likelihood with respect to some distribution over the hidden variables and θ

respectively.

Although, inference can measure the performance of the network, to measure the good-

ness of inference, the prediction accuracy is usually calculated which is the proportion of

variables’ (fish species in this thesis) values that have been predicted correctly. In this

work, the prediction accuracy is calculated after applying non-parametric bootstrap ap-

proach (re-sampling with replacement from the training set, Fernandes et al. (2013)) to

obtain statistical validation in the predictions and calculating the sum of squared error

(SSE) relating to model performance. This allowed for a quick analysis and comparison

of the prediction accuracies of the modelling results with the real species data. The

bootstrapping technique allows to obtain an unknown characteristic of an unspecified

distribution by drawing subsets from the observed data iteratively, and computing a

statistic for each subset. For a great number of iterations, the bootstrap distribution

approximates the actual distribution.
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3.4 Hidden Markov Model

Hidden Markov models (HMMs) have been extensively used as a data-driven modelling

approach in speech recognition (Juang & Rabiner (1991); Rabiner (1989)), where signals

are encoded as temporal variation of a short time power spectrum (Al-ani (2011)).

Other HMM applications include computational biology (Krogh et al. (1994)), fault

detection (Smyth (1994)), signal processing (Vaseghi (2008)) and telecommunication

(Hirsch (2001)). The fact that these models represent in a natural way the individual

component states of a dynamic system makes them so advantageous in different fields.

Most importantly, HMMs can be used to describe discrete stochastic changes in a system

with ongoing continuous dynamics. That is why, specifically for this thesis, this kind of

model was chosen to model data that vary over time and can be thought of as having

been generated by a process that iterates between different states at different time

points. Of particular interest is the missing set of indicator variables that describes

which state gave rise to a particular observation. Such missing or hidden indicator

variables are not independent but are governed by a stationary Markov chain (McGrory

& Titterington (2009)).

In an HMM, the sequence of observations {Ut} is modelled by assuming that each

observation depends on a discrete hidden state St and that the sequences of hidden

states are distributed according to a Markov process (Ghahramani & Jordan (1997)).

The joint probability for the sequences of states and observations can be factorised,

according to Ghahramani & Jordan (1997):

P ({St, Ut}) = P (S1)P (U1|S1)
T∏
t=2

P (St|St−1)P (Ut|St) (3.31)

The hidden state is represented by a single multinomial variable that can have one of

K discrete values, St ∈ {1,..., K} (Ghahramani & Jordan (1997)). The state transition

probabilities, P(St|St−1) are specified by a single K xK transition matrix (Ghahramani

& Jordan (1997)). For real-valued observation input, P(Ut|St) is modelled in a Gaussian

form:

P (Ut = u|St = i) = N(u;µi,Σi) (3.32)
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where N (u;µ, Σ) is the Gaussian density with mean µ and covariance Σ

or modelled as a mixture of Gaussians:

P (Ut = u|St = i) =
M∑
m=1

P (Mt = m|St = i)N(u;µm,i,Σm,i) (3.33)

where M is a hidden variable that specifies which mixture component to use and

P(Mt=m|St=i)= C (i,m) is the conditional prior weight of each mixture component

(Murphy (2002)).

Rabiner (1989) speaks of an HMM “generating” a sequence. The HMM is composed

of number of states which are interconnected by state-transition probabilities. Start-

ing from the initial state, a sequence of states is generated by moving from state to

state according to the state transition probabilities until an end state is reached (Eddy

(1996)). The sequence of states is a Markov chain because the choice of the next state

is dependant on the current state (Eddy (1996)). However, in the case of HMMs the

state sequence is hidden. Only the sequence that the hidden states generate is observed.

Let us consider an example: assuming we have a video sequence and we would like to de-

cide whether a speaker is in a frame (example taken from Jia Li, Hidden Markov Model.

Department of Statistics, The Pennsylvania State University, www.sites.stat.psu.edu).

The underlying states are: with a speaker (state 1) vs. without a speaker (state 2).

Let St denote whether there is a speaker in the frame for t= 1...,T. If one frame has a

speaker, it is very likely that the next frame would also contain a speaker because of the

frame-to-frame dependence. Conversely, a frame without a speaker is much more likely

to be followed by another frame without a speaker. Thus, the St’s are not independent

but we assume that the state sequence follows a Markov chain. Here, the goal is to

find out the state sequence, given the observed sequence of feature vectors that can be

extracted for each frame. It is expected that the probability distribution of a feature

vector differs according to the state. By using the dependence among states, we can

make better predictions of the states than guessing each state separately using only the

feature vector of that frame.

An HMM can be represented as an instance of a DBN, for example in Fig.3.5 which de-

fines the conditional independence assumptions: St+1 ⊥ St−1|St (the Markov property)

and Ut ⊥ Ut′ |St, for t' 6= t.
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Figure 3.5: A hidden Markov model, where the square nodes represent discrete hidden

nodes and circle nodes represent observed nodes.

The HMM consists of one hidden discrete node and one continuous or discrete observed

node per slice. We assume the distributions P(S(t)|S(t−1)) and P(U(t)|S(t)) are indepen-

dent of t for t > 1. We also assume the observation model P(U(t)|S(t)) is independent

of t for t > 1, but it is conventional to assume this is true for all t. As with static BNs,

the CPD of each node is defined given its parents, that is defining P(S1), P(St|St−1)

and P(Ut|St) which was explained above.

The difference between a DBN and an HMM is that the DBN represents the hidden

variable in terms of a set of random variables, X1
t ,...,X

Nh
t whilst in the HMM, the state

space consists of a single random variable St and the HMM has a fixed structure whilst

the DBN allows for more general graph structures (Murphy (2002)). In an HMM, we

have to define the transition model P(St|St−1), the observation model P(Ut|St) and the

initial state distribution P(S1), whilst in a DBN Ut also represents sets of variables.

Similarly to DBNs, the HMM models the conditional distribution of a sequence of out-

puts, given a sequence of input observations. To be able to do that, the HMM can be

augmented to allow for input variables Ut in a way that there is an input dependant

state transition probability, P(St|St−1,Ut) (Bengio & Frasconi (1995)). Like DBNs, we

can assume that the parameters are time-invariant, thus we only need to specify P(S1),

P(S2|S1) and P(U1|S1). Consequent CPDs are assumed to be the same as in the first

two slices.
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3.4.1 Learning Hidden Markov Models

The log probability of the hidden variables and observations for an HMM following

Ghahramani & Jordan (1997) is defined as:

logP ({St, Yt}) = logP (S1) +

T∑
t=1

logP (Yt|St) +

T∑
t=2

logP (St|St−1) (3.34)

Each of the terms from (3.34) can be decoupled into summations over S. According to

Ghahramani & Jordan (1997), the transition probability is:

P (St|St−1) =
K∏
i=1

K∏
j=1

(Pij)
St,iSt−1,j (3.35)

with Pij being the probability of transitioning from state j to state i, arranged in a

K xK matrix P. Then

logP (St|St−1) =
K∑
i=1

K∑
j=1

St,iSt−1,j logPij

= S′t(logP )St−1 (3.36)

using matrix notation (Ghahramani & Jordan (1997)). If we assume a vector of initial

state probabilities, π, then

logP (S1) = S′1 log π (3.37)

The emission probabilities depend on the form of the observations. If Yt is a discrete

variable which can have D values, we represent it using D-dimensional unit vectors to

receive:

logP (Yt|St) = Y ′t (logE)St (3.38)

where E is a DxK emission probability matrix (Ghahramani & Jordan (1997)).

We cannot compute (3.34) directly because of the hidden state variables. However,

the EM algorithm allows solving this problem by computing the expectation of (3.34)

under the posterior distribution of the hidden states given the observation (Ghahramani

& Jordan (1997)). The expectation can be expressed as a function of 〈St〉 and 〈StS′t−1〉

(1 ≤ t ≤ T ), where 〈St〉 is a vector containing the probability that the model was in

each of the K states at time t given its current parameters and sequence of observations

(Dean & Kanazawa (1989)). The second term, 〈StS′t−1〉, is a matrix containing the
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joint probability that the model was in each of the K2 pairs of states at times t-1 and

t (Ghahramani & Jordan (1997)). Then, the M step of the EM is straightforward: we

take derivatives of (3.34) with respect to the parameters, set to 0, and solve subject

to the sum-to-one constraints that provide valid transition, emission and initial state

probabilities (Ghahramani & Jordan (1997)).

3.4.2 Hidden Variables

Variables that are not observed are the so-called hidden variables and are used to model

missing data and/or unmeasured effects. Current methods for learning hidden variables

require experts to choose a fixed network structure or a small set of possible structures

but sometimes this might not be feasible within some domains (Friedman et al. (1997)).

For example in a medical domain, in which we have the observed symptoms (e.g., fever,

headache, blood pressure etc.), and the medication prescribed by the doctor but the

disease is a hidden quantity. If we were to know the disease, the treatment becomes

independent of most of the symptoms. When we do not know the disease, all symptoms

are related to each other.

By introducing hidden variables into the models, simpler models can be learned that

are less prone to overfitting and more efficient for inference. For example, the apparent

complexity of a predicted variable can be explained imagining it is a result of two sim-

ple processes, the “true” underlying state, which may evolve deterministically, and our

measurement of the state, which is often noisy (Murphy (2002)). We can then “explain

away” unexpected outliers in the observations, as opposed to strange fluctuations in

“reality”.

In most domains, the observed variables represent only some characteristics of a system,

which can have a negative effect on the learning procedure. It has been shown that the

hidden variable is only beneficial when it is connected to other observed variables in

the network (Friedman et al. (1997)) as the hidden variables are parameterised through

the observed variables by using the EM algorithm. For example, look at the structure

of the Autoregressive Hidden Markov model (ARHMM), where the hidden variable is

a parent to each observed variable (Fig.3.6). Russell et al. (1995) and Binder et al.
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(1997) applied the EM to learn parameters with possible hidden variables. They also

extended this to the case of continuous nodes and dynamic Bayesian networks. Kwoh

and Gillies (1996) applied the same idea, but also described the technique of inventing

hidden nodes to describe dependencies between variables. If all the hidden nodes are

discrete, we can use the junction tree algorithm to perform inference which unrolls the

DBN into a static network and applies the jtree algorithm.

In this thesis, the hidden variable is used to model unobserved variables and missing

data which can infer some underlying state of the series when applied through an au-

toregressive link (ARHMM, Fig.3.6) that can capture relationships of a higher order

(Murphy et al. (2001)). In this work, the hidden variable was chosen to most easily

reflect the complex interdependencies between and among species groups and their en-

vironment. Specifically, we used the hidden variable in our models to capture changes in

the species variance and/or to reflect on temporal changes of the underlying processes

in different ecosystems. In addition, the hidden variable allows examining unmeasured

effects that are often not constrained within the model structure or measured data. For

example, we used the hidden variable to model a group of species for which we did not

have measured data but we predicted the state of the hidden variable with the help of

experts who defined part of the network structure.

3.5 Autoregressive Hidden Markov Model

Sometimes time series may consist of observations generated by different mechanisms

at different time points (Xuan (2004)). In this case, the time series observations would

alternate back and forth between different states. When changing into a different state,

the time series could be characterised with a significant change in their means or frequen-

cies. The Autoregressive Hidden Markov model (ARHMM) can handle such fluctuations

of the time series. It is a combination of an autoregressive time series model and a hid-

den Markov model. It is also referred as time series with change in regime (or states) by

the econometricians (Xuan (2004)). The ARHMM often leads to models with a higher

likelihood of convergence than general HMMs, especially when modelling complex and

noisy time-series data. The standard HMM assumption Yt ⊥ Yt′ | Xt can be relaxed as
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shown in Fig.3.6, which shows an ARHMM. This type model allows for Yt−1 to predict

Yt (not only from Xt as with the general HMM) as well which often results in models

with higher likelihood (Murphy (2002)). If Y is discrete, the CPD can be represented

as a table and if Y is continuous, one way to show the CPD is:

P (Yt = yt|Xt = i, Yt−1 = yt−1) = N(yt;Wiyt−1 + µi,Σi) (3.39)

where Wi is the regression matrix given that Xt is in state i (Murphy (2002)).

Figure 3.6: An autoregressive hidden Markov model, where H denotes an unmeasured

hidden variable.

The ARHMM is specifically applied to model correlations in sequential data (Xuan

(2004)). The hidden variable (H in the ARHMM) is used to model unobserved variables

and missing data and can infer some underlying state of the series when applied through

an autoregressive link (Fig.3.6) that can capture relationships of a higher order (Murphy

(2002)). In this way, the ARHMM enhances the HMM by introducing a direct stochastic

dependence between observations (Murphy (2002)). Specifically, the observation vector

Y with components {y0,y1,y2,...,yt−1} is drawn from an autoregressive process (Rabiner

(1989)). So the current observation Yt not only depends on the last observations but

also on the current states. Each of the observations is modelled as a Markov chain and

observations are assumed to be conditionally independent given the state (Stanculescu

et al. (2014)):

P (Yt|Yt−1, Xt) =

N∏
n=1

P (Y N
t |Y

N,Xt
t−1 ) (3.40)
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The probability density function for Y is Gaussian autoregressive (or order p), the

components of Y are related by:

Yk = −
p∑
i=1

aiYk−i + ek (3.41)

where ek,k=0,1,2,...,K-1 are Gaussian, independent identically distributed random vari-

ables with zero mean and covariance σ2 and ai,i=1,2,...,p are the autoregression or

coefficient predictors (Rabiner (1989)).

X = {x1,x2,...,xt}is the hidden state sequence with N possible states. X is assumed to

be a Markov chain with transition matrix A = [aij ] and initial distribution vector π =

[πi]. The hidden states of an ARHMM can take one of J values and are also organised

as a first-order Markov chain with parameters θj|i = P(Xt = j |Xt−1 = i) and πj = P(X1

= j ) (Stanculescu et al. (2014)). Conditioned on the state Xt, the emission process is

also a first-order Markov chain, parametrised by φl|kj = P (Yt = l |Yt−1 = k,Xt = j )

and πl|j = P(Y1 = l |X1 = j ) (Stanculescu et al. (2014)). According to Stanculescu

et al. (2014), the joint probability distribution is given for a sequence of length T :

P (X1:T , Y1:T ) = πx1πy1|x1

T∏
t=2

θxt|xt−1φyt|yt−1xt′ (3.42)

Similarly to the HMM, the ARHMM models hidden discrete states Xt and observations

Yt. To recall, in the HMM, the current observation is independent of all the other

observations given the current state. Here, the ARHMM allows for correlation amongst

observations by adding direct dependencies between them which makes the ARHMM a

genuinely better model for handling temporal data (Stanculescu et al. (2014)).

3.5.1 Inference and Learning

Similarly, the main inference problem for ARHMMs is computing P(Xt|Y1:t). We use

the EM algorithm for parameter estimation with hidden variables. We use θ = {π,A, φ}

to define the set of parameters. The likelihood function is obtained from the joint

distribution by marginalising over the hidden variables (Bishop (2006)):

P (Y |θ) =
∑
X

P (Y,X|θ) (3.43)
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We start the EM algorithm with some initial value set in the parameters, which we

denote by θold. In the E-step of EM, the objective is to find the expectation of the

likelihood. Thus, we use the posterior distribution of the hidden variables to evaluate

the expectation of the complete-data likelihood function, as a function of the param-

eters θ, to give the function Q(θ, θold), according to Bishop (2006). The remaining

part of the E-step is to compute marginal posterior distribution of the hidden variable

and the joint posterior distribution of two successive hidden variables. To do this, the

forward-backward algorithm can be applied. The idea behind this algorithm is to find

out a recursive way to represent the variable sequence. The next task is to maximize

the expectation likelihood, which is the so called M-step of EM algorithm or specifically

to maximise the logarithm expectation likelihood Q(θ,θold).

Solving the problem of HMM parameter learning is the generation of all possible se-

quences of observed events and hidden states with their probabilities. The joint proba-

bility of two sequences, given the model, is calculated by multiplying the corresponding

probabilities in the matrices. Such procedure has a complexity of O(2TNT ) where T

is the length of the sequences of observed events and N is the is the total number of

symbols in the state alphabet (Bishop (2006)).

3.6 Conclusion

Several algorithms and modelling approaches have been described to detect the best

possible model to build functional network models that describe species associations and

interactions within their environment. Each method with its strengths and weaknesses

can be applied to discover the underlying mechanism and the relationship hidden in the

data under analysis.

In the next chapter, we show how we can use the hidden Markov model across geographic

regions to make predictions of complex real time ecological data. Specifically, we show

how we can use a hidden variable to detect unmeasured effects about the underlying

state of different ecosystems.
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Chapter 4

Exploring Regime Metrics into

Bayesian Network Models with

Hidden Variables to Detect

Early-Warning Signals of

Functional Changes in Fisheries

Ecology

4.1 Introduction

In this chapter, dynamic Bayesian networks have been applied to predict future biomass

of geographically different but functionally equivalent fish species. A hidden variable is

incorporated to model functional collapse, where the underlying food web structure dra-

matically changes irrevocably (known as a regime shift). Regime (functional) changes

can affect the abundance and distribution of fish populations, either directly or by af-

fecting prey or predator populations (Jiao (2009)). The main question for environmental

management is whether such changes could have been detected by early-warning signals.
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There is a growing literature that addresses indicators that can be used as early-warning

signals of an approaching critical transition (or a regime shift) (?). We examined if the

use of a hidden variable can reflect changes in the trophic dynamics of the system and

also whether the inclusion of recognised statistical metrics would improve predictive

accuracy of the dynamic models.

We explored functional relationships (such as predator, prey) that are generalizable be-

tween different oceanic regions allowing predictions to be made about future biomass.

In particular, we exploited multiple fisheries datasets in order to identify species with

similar functional roles in different fish communities. The species were then used to pre-

dict functional collapse in their respective regions through the use of Dynamic Bayesian

Networks (DBNs) with hidden variables. This represents the most challenging infer-

ence problem here as we make computationally complex predictions involving dynamic

processes. However, the hidden variable is chosen to most easily reflect complex inter-

dependencies between the acting variables. Thus, we are specifically interested in using

the architecture of an Autoregressive hidden Markov model (ARHMM) that incorpo-

rates a hidden variable (Fig.4.1).

Figure 4.1: An autoregressive hidden Markov model, where H denotes an unmeasured

hidden variable.

In this chapter, we investigate the reliability of our modelling approach in detecting

early-warning signals of functional change across different geographic regions. We ex-

plore how the hidden variable reflects the regime metrics (the applied statistical indi-

cators of functional changes in the study) and the variability of exploited fisheries and

to what extent including them in our models impacts the expected values of the hidden
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variable. We also explore how these models can be used to identify species that are

key to regime shifts in different regions. An earlier work by Tucker & Duplisea (2012)

explores functionally equivalent species but here we further adopt the approach to pre-

dict functional collapse by investigating early-warning signals and comparing learned

Bayesian network (BN) topology prior to and after suspected regime changes. At larger

spatial scales, although fishing can still be the dominant driver of regime changes, the

consequences of fishing are not predictable without understanding the trophic dynamics

(Jiao (2009)). A clear example is the Scotian Shelf, where fishing has led to a restructur-

ing of the ecosystem (Jiao (2009)). We investigate whether exploiting expert knowledge

(in the form of diet matrix, that represents the prey-predator functional relationships

between species) of this region or learning model structure from the data alone is a

better approach when predicting food web dynamics.

4.2 Description of the Geographic Regions and Biomass

Data to Model Regime Shifts

We apply our modelling approach to predict species biomass and functional change in

three different geographical regions: North Sea (NS), Georges Bank (GB) and East

Scotian Shelf (ESS) (Fig.4.2). For all of the datasets, the biomass was determined from

research vessel fish trawling surveys assuring consistent sampling from year to year,

resulting in 44 species for NS (1967-2009), 44 species for GB (1963-2008), and 42 for

ESS (1970-2006). In addition to survey data on fish biomass, grey seal abundance and

plankton time series were also included in the analysis.

GB is a relatively small productive fishing bank historically supporting large catches

of common groundfish such as cod and haddock. The ESS, though geographically not

far from GB is a much different system with lower productivity and diversity. A key

characteristic of the ESS is the presence of a small sandy arc 200 km offshore called

Sable Island, which is the largest grey seal breeding colony in the world. The NS is

a shallow warm sea with high fish community diversity and productive multi-species

fisheries.

Large groundfish declines occurred on GB and ESS which resulted in the year 1988 being
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designated as a collapse year for GB and 1992 for ESS. Despite the extremely high fishing

pressure in NS and complex climate-ocean interactions, it is difficult to distinguish a

radical switch in the system that might be termed a regime shift. However, experts

refer to some ecosystem changes in the period of late 1980s to mid-1990s.

Figure 4.2: Regions of the three surveys (shaded area) corresponding to the three

datasets: Georges Bank (GB), East Scotian Shelf (ESS) and the North Sea (NS).

4.3 Methods

4.3.1 Introducing an Algorithm for Learning Functional Equivalence

This part of the experiments involves applying classification. Feature selection is used

to identify the relevant species for optimal classification.

We select a number of species that are associated with cod collapse by using wrapper

feature selection with a Bayesian Network Classifier on GB data where the class node is

a binary variable that represents functional collapse in GB. The greedy K2 search algo-

rithm (Cooper & Herskovits (1992)) is used to build the BN classifiers. This involves a

greedy search technique where links are incrementally added to an initially unconnected

graph and scored using the metric given in equation (4.1), where n is the number of

nodes, Fijk is the frequency of occurrences in the dataset that the node xi takes on the

value vik (where there are ri possible instantiations) and the parent nodes πi take on
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the instantiation wij (where there are qi possible instantiations).

log
n∑
i=1

qi∑
j=1

(ri − 1)!

(Fij + ri − 1)!

ri∑
k=1

Fijk (4.1)

A bootstrap approach (Efron & Tibshirani (1995)) is employed to repeat the following

1000 times:

• score each species using the likelihood score from (4.1) and take the mean over

the bootstrap, this is known as filter feature selection (Inza et al. (2004)) which

scores each variable independently;

• learn BN structure with the K2 algorithm and score the proportion of times that

links are associated with the class node during the bootstrap. This is a form of

wrapper feature selection (Inza et al. (2004)) which scores each variable by taking

into account their interaction with other variables through the use of a classifier

model.

Species are ranked based upon the two feature selection approaches to examine their

relevance to functional collapse in GB. Next, we identify the equivalent species in the

other two datasets (NS and ESS) using species identified by feature selection from GB in

combination with the features discovered using Algorithm 1. The algorithm is applied to

both the NS and ESS to identify equivalent species. The functional equivalence search

algorithm (Tucker & Duplisea (2012)) works by using a BN model, where the given

function is in the form of a predefined structure, BN1, and a set of variables, vars1,

parameterised on data1, (here a BN model parameterised on the GB data). Simulated

annealing (Kirkpatrick et al. (1983)) is applied to identify variables in another dataset,

data2, (here species in the ESS and NS datasets) that best fit this model. We set

iterations = 1000 and tstart = 1000 as these were found through experimentation to

allow convergence to a good solution. The fit is scored using the log likelihood score

(Cooper & Herskovits (1992)). In Algorithm 1 UnifRand represents a random value

generated from a uniform distribution with limits between (0,1).
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Algorithm 1 The functional equivalence search algorithm.

1: Input: tstart, iterations, data1, data2, vars1, BN1

2: Parameterize Bayesian Network, BN1, from data1

3: Generate randomly selected variables in data2 : vars2

4: Use vars2 to score the fit with selected model BN1 : score

5: Set bestscore = score

6: Set initial temperature: t = tstart

7: for i = 1 to iterations do

8: Randomly replace one selected variable in data2 and rescore: rescore

9: dscore = rescore - bestscore

10: if dscore ≥ 0 OR UnifRand and (0,1) < exp(dscore/t) then

11: bestscore = rescore

12: else

13: Undo variable switch in vars2

14: end if

15: Update the temperature: t = t x 0.9

16: end for

17: Output: vars2

4.3.2 Hidden Variable Models to Predict Regime Shifts and Species

Biomass

The experiments involve the prediction of a pre-selected variable (here functional col-

lapse, represented by the hidden variable) based on the values of other variables (here

species biomass). After choosing the species, we want to predict their biomass and

the functional collapse in the relevant geographic region. Given a graphical structure

(Fig.4.1), and a probability distribution over Y[t ] where Y = Y1...Yn are the n variables

observed along time t, DBNs naturally perform prediction using inference. To predict

functional collapse, we compute P (Xt|Y t, Y t−1), where Xt represents the hidden vari-

able (functional collapse) and Y t represents all observed variables at times t. First, we

infer the biomass at time t by using the observed evidence (or species biomass) from

t-1 and then use the predicted variable states (or species biomass) to infer the hidden
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state at time t. The hidden variable was parameterised using the EM algorithm. We

used an exact inference method: the junction tree algorithm.

The statistical metrics we chose to apply as “regime metrics”, that would help us in

identifying a functional collapse by modelling early-warning signals in the time-series,

were variance and autocorrelation (?). According to theoretical expectations of critical

slowing down (or an approaching functional collapse), the metrics would appear to in-

crease prior to the expected regime shift and follow a consistent decline throughout time

following the collapse potentially resulting in a clear early-warning signal to forewarn a

major ecosystem change.

The metrics were calculated on a window of data, set to size 10, so that each metric

captures the value of interest over the previous 10 years. Two sets of experiments were

then conducted: one that excludes the regime metrics to examine the expected state of

the fitted hidden variable (ARHMM) and check predictive accuracy of the model. In

the other, metrics were included in the model (ARHMM + metrics) to see if they im-

prove prediction of species biomass and whether the hidden variable would capture the

predictive qualities of the metrics in terms of detecting a regime shift. Non-parametric

bootstrap analysis (Friedman et al. (1999)) was applied 250 times for each variant of

the model to obtain statistical validation in the predictions. We found the window size

and number of iterations through experimentation to be optimum when dealing with

limited time series.

An F-test was performed over a sliding window of five years to detect any significant

changes in the slope of the hidden variable from both models before and after the time

of the expected collapse (Gröger et al. (2011)). Given a breakpoint in the time series,

the minimum of this sequence of p-values gives a potential estimate of the first signals

of ecosystem change in time. Levene’s test on homoscedasticity was performed on the

variance before and after the predicted functional change (Gröger et al. (2011)). Note,

if the p value is small (p≤.05), we accept the null hypothesis and conclude that the two

distributions (before and after the regime shift) are distinct, however if the p value is

large (p≥.05), the data do not give us any reason to accept the null hypothesis, which

does not necessarily mean that the two distributions are identical but there is no com-

pelling evidence that they differ significantly. All statistical tests were reported at 5%
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significance level. To highlight, there are many approaches such as Benjamini Hochberg

to adjust the false discovery rate, although, here this was not performed. However, the

techniques of sliding window and bootstrap of sampling with re-placement were pre-

ferred in order to maximise the confidence in the learned models and obtain statistical

validation in the predictions. In addition, the expected value of the hidden variable

was explored with and without the influence of recognised statistical metrics that are

known to predict functional change. Comparison of the expert knowledge versus data

alone was also performed, as explained below. The results are explored and discussed

with caution in terms of the wider fisheries literature.

4.3.3 Learning Data-Driven Networks versus Pre-defined Diet Matri-

ces

Finally, we explore whether exploiting expert knowledge in the form of diet matrices

based upon stomach surveys is a better approach to learning model structure than us-

ing biomass data alone when predicting food web dynamics. Specifically, we wanted to

learn data-driven features of networks to see whether we would be able identify “true”

relations between species. Then, we would compare the learned features versus a diet

matrix. The diet matrix reports a predator and the biomass of its main fish prey. The

matrix is build for a number of predators based on a survey of stomach contents data

for each one of the regions.

In this part of the experiments, learning the dynamic BN structure, the species biomass

data was discretised and a greedy search algorithm: REVEAL (Liang et al. (1998))

was applied to learn the structure of the DBN model for each region. The purpose of

the discretization process was to transform a range of numeric attributes in the dataset

into nominal attributes, assigning each interval to the class distribution. Automatic

discretization to bin the data, using splits based on quantiles of the data itself, was

applied. The discretization was needed here as there is currently only one structure

learning algorithm (REVEAL) for DBNs that the BN toolbox in Matlab can handle

(Murphy et al. (2001)). This assumes all nodes are discrete and observed, and that

there are no intra-slice connections. Hence, we can find the optimal set of parents for
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each node separately, without worrying about directed cycles or node orderings. The

algorithm sets a penalty term to 0, which gives the maximum likelihood model. This

is equivalent to maximizing the mutual information between parents and child. A non-

zero penalty invokes the BIC criterion, which lessens the chance of over-fitting (Murphy

et al. (2001)).

Similarly, to prediction, a non-parametric bootstrap was also applied 250 times to iden-

tify statistical confidence in the discovered network links with threshold ≥ 0.5. Features

with statistical confidence above the threshold are labelled “positive” or “negative” if

the confidence is below the threshold. We measure the number of “true positives”,

correct features of the generating network (based upon a pre-defined diet matrix, estab-

lished by stomach content surveys for the relevant region) or “false negatives”, correct

features labelled as negatives (Friedman et al. (1999)).

4.4 Results

4.4.1 Identified Functionally Equivalent Species from Different Geo-

graphic Regions

The wrapper feature selection approach managed to identify the species likely to be

associated with cod collapse on GB, Table 4.1 illustrates the resulting ordered list of

most relevant variables (BN wrapper confidence reported in brackets). For example,

herring (Clupea harengus) was identified as a key species and it is known that there

were large abundance changes in the late 1980s (Beaugrand et al. (2003)). Similarly,

the approach identified two zooplankton species (Calanus and Pseudocalanus) as key

to the functional collapse and it is known from other sources that there were relatively

large changes then (Kane (2007)), and these changes can have bottom-up effects which

affect species such as cod (Beaugrand et al. (2003)). The confidences resulting from

the Bayesian wrapper method applied to GB showed that thorny skate was the most

important species implicated in the functional decline due to an ecosystem regime shift

which coincided with an increase in abundance (Fogarty & Murawski (1998)). When

this structure is imposed on the ESS and NS using the functional equivalence search, a

small number of equivalent species are recognised in both regions with high confidence.
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Table 4.1: Wrapper feature selection results for GB region.

GB Wrapper Feature Selection

1. Thorny skate (1.0) 14. Lady crab (0.24)

2. Blackbelly rosefish (0.98) 15. Spotted flounder (0.23)

3. Herring (0.97) 16. Calanus spp. (0.20)

4. Fourbeard rockling (0.82) 17. American lobster (0.13)

5. Cusk (0.75) 18. American plaice (0.13)

6. Pseudocalanus spp. (0.65) 19. Ocean pout (0.09)

7. Gulf stream flounder (0.47) 20. Little skate (0.07)

8. Centropages typicus (0.44) 21. Sea scallop (0.07)

9. Atlantic rock crab (0.41) 22. Sand lance (0.05)

10. Witch flounder (0.29) 23. Winter flounder (0.03)

11. American angler (0.28) 24. Moustache sculpin (0.02)

12. White hake (0.26) 25. Silver hake (0.02)

13. Krill (0.25) 26. Longfin hake (0.02)
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The species from ESS and NS that were identified by the functional equivalence

search algorithm are ranked based upon the confidence associated with their equivalent

species in GB (Table 4.2, confidence reported in brackets).

Table 4.2: The functionally equivalent species to GB dataset for ESS and NS. These

are each ordered based upon their relevance to species in Table 1.

Functionally Equivalent Species

ESS NS

1. Cod (1.0) 1. European plaice (0.98)

2. Pollock (0.58) 2. Atlantic halibut (0.93)

3. Grenadier (0.51) 3. Cod (0.87)

4. White hake (0.50) 4. Lumpfish (0.78)

5. Mackerel (0.23) 5. Thorny skate (0.53)

6. Rockfish (0.22) 6. Whiting (0.50)

7. Grey seals (0.20) 7. Argentine (0.42)

8. Argentine (0.15) 8. Megrim (0.35)

9. Atlantic halibut (0.12) 9. Haddock (0.29)

10. Spiny dogfish (0.11) 10. Atlantic wolfish (0.24)

11. Little skate (0.09) 11. American plaice (0.21)

12. Atlantic wolfish (0.07) 12. Common dragonet (0.20)

13. American plaice (0.04) 13. Solenette (0.16)

14. Red hake (0.04) 14. Poor cod (0.13)

15. Silver hake (0.03) 15. Sprat (0.05)

16. Little hake (0.01) 16. Pollock (0.02)

A striking feature of the identified ESS species is the presence of many deepwater

species like argentine (Argenti silus) and grenadier (Nezumia bairdi). That could be

an indication of the water cooling that occurred in the late 1980s and early 1990s.

Grey seals were also included as they were implicated in the functional decline and

lack of recovery of many groundsh stocks on the ESS. In the NS, most of the selected

species are commercially desirable and some experienced large declines in biomass in

this period, though the nature of the species is not dissimilar to GB when compared with

ESS, which showed the appearance of some qualitatively different species. For example,
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megrim (Lepidorhombus whiffiagonis) and solenette (Buglossidium luteum), not fished

commercially, are also selected as being implicated by other groundfish decline. Such

species would probably be less likely to be considered as indicator species of regime shifts

elsewhere. Cod and haddock appeared to be more important in the NS, compared to

ESS, which might suggest that catch is a more significant factor driving change in the

NS, while on the ESS, it may be that other factors cause functional change in the

ecosystem. However, here the functional equivalence search algorithm performed well

in terms of identifying key species, associated with functional changes in the relevant

regions which would be potentially beneficial when investigating the reliability of our

modelling approach in terms of detecting signals of functional change.

4.4.2 Prediction Accuracy of Hidden Variable Models in the East Sco-

tian Shelf and North Sea

We now explore the hidden variable models for East Scotian Shelf (ESS) and North Sea

(NS) learnt from the selected functionally equivalent species. We focus on the relation-

ship of the hidden variable to the two regime metrics and the accuracy of the models

in predicting species biomass.

The expected value of the hidden variable for ESS managed to capture some of the key

predictive qualities of the metrics in terms of identifying a regime shift that is known to

have occurred. The ESS hidden variable model (ARHMM) from Fig.4.3a demonstrates

a large fluctuation between 1980 and 1990 with a steep increase in 1984 and 1989 prior to

the time of the expected regime shift and it was then followed by a consistent decline fol-

lowing the collapse in 1992. The hidden variable increase coincides with a steep increase

in variance (Fig.4.3c) in 1985, all above the 95% confidence upper interval. However,

lowest p-value (F21,13 = 11.59, p < .0001) was reported at the time of the known collapse

in 1992 (balanced design of the sliding window during the F-test). The assumption of

homoscedasticity was not met (F1,25 = 4.05, p < .05), indicating variance inequality be-

fore and after the collapse. The autocorrelation showed little variation and it remained

close to 1, as already illustrated for ecosystems undergoing a transition (Dakos et al.

(2012)). To recall, according to theoretical expectations of critical slowing down, both
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hidden variable and variance appear to increase prior to the expected regime shift and

follow a consistent decline throughout time following the collapse correctly resulting in

a clear early-warning signal to forewarn a major ecosystem change. After the addition

of the metrics in the model, the hidden variable was more stable and still reflective of

capturing the correct dynamics and characterised by rising trends in time prior to the

expected transition (ARHMM + metrics in Fig.4.3b - Note this starts from 1980 due

to the windowing required for calculating the metrics). In 1990, the lowest p-value was

recorded (F9,15 = 23.90, p < .0001) which was actually lower than the p-value reported

by the ARHMM, suggesting that the hidden variable in combination with the metrics

might be performing better in earlier detection of change in the time series.

(a) Expected hidden value (ARHMM) (b) Expected hidden value (ARHMM + metrics)

(c) Mean variance

Figure 4.3: The expected values of the discovered hidden variable from ARHMM (a),

ARHMM + metrics (b) and mean variance (c) for ESS. The dashed line indicates the

time of the regime shift in 1992. The solid line indicates upper and lower 95% confidence

intervals, obtained from bootstrap predictions’ mean and standard deviation.

Although, the hidden variable in combination with the metrics performed well in

terms of capturing early-warning signals of a regime shift that is known to have occurred,
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the ARHMM + metrics model had some negative impact on the predictive performance

of species biomass. Genuine species biomass variations throughout time were captured

by both models, however, the ARHMM alone produced more accurate overall results of

species biomass (SSE ARHMM: 4.83 and SSE ARHMM + metrics: 13.65).

The ARHMM + metrics managed to capture the variance in cod biomass, specifically

the steep drop from late 1980s to early 1990s, followed by consistently low biomass pre-

dictions, due to the underlying functional changes occurring in the ecosystem (Fig.4.4a).

Similar predictions were modelled for another species- the silver hake, prior the time of

the regime shift the model captured the genuinely stable biomass but after the collapse,

the model reflected on the declining and fluctuating trend of the biomass throughout

time (Fig.4.4b).

(a) Cod, ESS

(b) Silver hake, ESS

Figure 4.4: Biomass predictions generated by ARHMM + metrics of cod (a), and silver

hake (b) for ESS region. 95% confidence intervals report bootstrap predictions’ mean

and standard deviation. Dashed line indicates predictions by the model, whilst solid

indicates standardised observed biomass for the time period 1980-2006.

The expected value of the hidden variable for NS (Fig.4.5a) was characterised by

some fluctuation up to early 1980s followed by a small decrease below the lower con-

56



Chapter 4. Exploring Regime Metrics into Bayesian Network Models with Hidden
Variables to Detect Early-Warning Signals of Functional Changes in Fisheries Ecology

fidence level coinciding with the time around the functional changes in late 1980s to

mid-1990s. Nevertheless, the F-test did not detect any significantly different changes in

the slope of the hidden variable. These values are much smaller than for the expected

values of the hidden variables in GB and ESS. Perhaps this is not surprising as it was

found in (Tucker & Duplisea (2012)) that the hidden variable in the NS data did not

seem to reflect a distinct regime shift and this fits with the general consensus that the

NS has not suffered such a radical switch as the other two regions. Both hidden variable

and variance (Fig.4.5c) show a trough in late 1980s which could be a reflection of the end

of the “gadoid outburst” where groundfish were very abundant for about the previous

25 years (Beaugrand et al. (2003)). Here, the condition for equality of variance before

and after the predicted functional change was fulfilled (F1,31 = 1.40, p = 0.08). The

hidden variable from the ARHMM + metrics (Fig.4.5b) was more explicit and clear,

finding the lowest p-value (F10,12 = 0.27, p < .05) in 1988 when first functional changes

are believed to have occurred in the system according to experts. NS is a diverse sys-

tem, subject to external anthropogenic forcing and internal environmental variation and

as such, it is suggested that it seems to exhibit a range of discontinuous disturbances

which would be more difficult to interpret by the hidden variable alone (?). However,

the effect of the metrics on the hidden variable assisted in the correct identification of

the time period where we would expect some functional change or disturbance in NS.
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(a) Expected hidden value (ARHMM) (b) Expected hidden value (ARHMM + met-

rics)

(c) Mean variance

Figure 4.5: The expected value of the discovered hidden variable from ARHMM (a),

ARHMM + metrics (b) and mean variance (c) for NS. The dashed lines indicate the

time period of the regime shift. The solid line indicates upper and lower 95% confidence

intervals, obtained from bootstrap predictions’ mean and standard deviation.

Results for NS showed reliable prediction of species biomass, with improved ability of

the dynamic models when used in combination with the published metrics (SSE model:

5.50, SSE model+ metrics: 2.82). Let us look at the predictions for cod: we notice

that the model in combination with the metrics has successfully managed to capture

the genuine declining trend of cod biomass (Fig.4.6a), whilst for the haddock the model

managed to reflect on the fluctuating trend of the biomass in time with some individual

year effects in most recent years (Fig.4.6b).

58



Chapter 4. Exploring Regime Metrics into Bayesian Network Models with Hidden
Variables to Detect Early-Warning Signals of Functional Changes in Fisheries Ecology

(a) Cod, NS

(b) Haddock, NS

Figure 4.6: Biomass predictions generated by ARHMM + metrics of cod (a), and had-

dock (b) for NS region. 95% confidence intervals report bootstrap predictions’ mean

and standard deviation. Dashed line indicates predictions by the model, whilst solid

indicates standardised observed biomass for the time period 1977-2009.

To summarise, the models that included the regime metrics performed better in

terms of capturing the correct dynamics earlier in the time series. The hidden variable

alone managed to reflect the ecosystem dynamics but that was more evident in the ESS

region with a larger regime shift.

4.4.3 Comparison of Data-Learned Networks to Expert Diet Matrices

in the East Scotian Shelf and North Sea

We now turn to the analysis of the learned networks by separating the data before

and after the regime shift according to experts and comparing them to the networks

generated by data split from our hidden variable models (timing identified from F-test

significant results in the first part of the study). Some high confidence relationships were

identified which represent likely models of the functional interactions between species.
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The direction of the discovered significant links did not mean causation and it was not

considered in the comparison with the generating diet matrix as we were interested in

finding correctly identified species associations. Note that some of the discovered links,

not directly relating to the diet matrix, could have been explained by either intermediate

variables not included in the model or common observed effects acting on the model

variables, however this was not the purpose here.

For ESS the learned network before the regime shift based on the experts’ split was

complex, identifying 7 significant features (four true positives) whilst the network after

was rather simplified, finding only two significant links (one true positive), suggesting

the influence of a radical switch in the system following the fisheries collapse. The

network before 1990 (Fig.4.7b) (as found by ARHMM + metrics) identified 8 significant

links (four true positives) and after (Fig.4.7c)- five significant links (four true positives).

When comparing the networks of experts’ split and data split, three of the significant

links were preserved, one of them was a true positive. Learning the structure before

and after the data split for ESS was a much better case in terms of detecting more

correct associations with the diet matrix (Fig.4.7a). To recap, species selected in ESS

were based on a regime shift in GB using the functional equivalence search, suggesting

the successful algorithm performance in terms of capturing the correct structure and

food web dynamics.

60



Chapter 4. Exploring Regime Metrics into Bayesian Network Models with Hidden
Variables to Detect Early-Warning Signals of Functional Changes in Fisheries Ecology

(a) Diet matrix, ESS

(b) Network before regime shift, ESS
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(c) Network after regime shift, ESS

Figure 4.7: Diet matrix (a) with the network before (b) and after (c) the regime shift

for ESS, generated by the data split using REVEAL. The width of edges corresponds to

the computed confidence level (bold line: 0.5 and light line: 0.1). The squared nodes are

significant themselves. For the diet matrix direction, of links represents predator-prey

interactions. In bottom network (c): AP- American plaice and GA- Greater argentine.

For NS, the learned network before the experts’ split identified five significant fea-

tures (one true positive) and the network after- 7 significant features but none of them

were true positives. The network before 1988 (as found by ARHMM + metrics) iden-

tified four significant links (Fig.4.8b) and after: one significant link, no true positives

(Fig.4.8c). The relatively low number of correctly identified associations of the NS net-

works with the diet matrix compared to ESS, could be due to the possible influence of

factors such as climate or fisheries exploitation that might have some common effects on

different variables. But most importantly, the NS diet matrix was also relatively “poor”

compared to ESS in terms of quantity of species recorded. However, we can see that

the number of significant links was lower in the network after the regime shift, similarly

to ESS, suggesting the potential influence of a functional collapse in this ecosystem. Fi-

nally, some of the discovered features of these networks could be due to indirect effects

of modifications of food webs which would not be straightforward to detect by data

collection alone.
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To summarise, the bootstrap methodology of learning the model structure in combi-

nation with the data split from our hidden variable models managed to detect pair-

wise relations of high confidence between species providing us with assumptions about

the relevant food web structure and dynamics. Also, in both regions, significant links

found before the data split, were generally reduced after, implying a signal of functional

changes in the ecosystems.

(a) Diet matrix, NS

(b) Network before regime shift, NS
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(c) Network after regime shift, NS

Figure 4.8: Diet matrix (a) with the network before (b) and after (c) the regime shift

for NS, generated by the data split using REVEAL. The width of edges corresponds to

the computed confidence level (bold line: 0.5 and light line: 0.1). For the diet matrix,

direction of links represents predator-prey interactions.

4.5 Summary

In this chapter, we have explored the use of regime metrics in conjunction with hid-

den variables which proved useful (compared to those without) in terms of detecting

early-warning signals (significantly rising variance and hidden variable fluctuations) of

functional changes but it seemed to have an impact on biomass prediction. The hidden

variables fitted to models that exclude these metrics appear to reflect some of their

characteristics in terms of capturing the correct trophic dynamics.

Here, the use of machine-learning techniques is unique because it exploits functional

equivalence between different datasets and uses the identified species in combination

with a hidden dynamic model to predict functional collapse and species biomass. The

recognition of a hidden variable in ecological studies is important because it may par-

tially represent something external to the fish community which is not purely found
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within the constrained model structure (Tucker & Duplisea (2012)). This is very differ-

ent from more traditional statistical approaches whose fitting is conditioned completely

upon the model structure. Changes in conditions external to the fish community such

as oceanographic conditions may have driven the collapse in East Scotian Shelf. For

the North Sea, what is occurring is less clear. It is a highly exploited and complex en-

vironment, which may be more variable and able to cope with disturbances, compared

to other regions.

Here, the modelling approach differs from other methods in how correlative structures

discovered in one region can be imposed upon another. The Bayesian network topol-

ogy allows us to explore such structures explicitly prior to and after suspected regime

changes. Overall, the learned network features managed to find some overlap with the

diet matrices, though not many, maybe due to implicit correlations (and so more hidden

variables may need to be structured into the models to deal with this). Nevertheless,

the general finding was that prior to collapse there were more correctly identified links

and these seemed to disappear after the regime shift. This can provide insights into

why fished ecosystems collapse and why they sometimes do not recover. It may even

give us an insight into signals of an imminent collapse perhaps while there is still time

to prevent it.

In the following chapter, we further explore the use of a hidden variable by using data

of external factors such as temperature and fisheries catch that might be influencing the

fish community. We continue to use the functional network approach but now account

for species interactions and associations with their environment across spatial scales. In

addition, we develop a novel approach of modelling species dynamics by incorporating

a second hidden variable to model unmeasured spatial effect.
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Chapter 5

Spatio-temporal Bayesian

Network Models for Revealing

Trophic Dynamics and Functional

Networks in Fisheries Ecology

5.1 Introduction

In recent decades, it has become clear that ecosystem structure and function can change

over relatively short time scales (Scheffer et al. (2001)). Fishing pressure can change

the structure of marine populations and consequently influence the nature of their re-

sponses to climate (Planque et al. (2010)), which could have impacts on the value of

commercial fisheries (Perry et al. (2005)). Therefore being able to predict the dynam-

ics of the species and their environment at spatially and temporally resolved scales, is

of growing importance for the protection of natural biodiversity and human resources

which poses new challenges for analytical tools and computational statistics (Aderhold

et al. (2012)).

One way to understand ecosystem dynamics is examination of the functional relation-

ships (such as prey-predator) between species along with their interaction with stressors

such as temperature change and fisheries exploitation in their potential habitat (space)
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and across time. In this way, learning functional relationships can provide a metric for

assessing community structure and resilience in response to natural and anthropogenic

influences, which is influential for future management options and long-term viability

of populations (Gaston et al. (2000)).

The objective of this chapter is to model species dynamics and their interactions at ge-

ographically and temporally varied areas within two separate geographic regions: Gulf

of St Lawrence and North Sea. Firstly, we examine how aggregated species interact at

different spatial scales and over time within the Gulf to understand what mechanisms

are involved in shaping the ecological networks and functional dynamics of food webs.

Specifically, we explore how pre-defined functional relationships vary in time and space

in order to better understand community structure.

Then, we move onto evaluating the potential usefulness of Bayesian inference for ecolog-

ical data by examining the predictive capability of different dynamic Bayesian network

(DBN) architectures for the North Sea. We correct for spatial autocorrelation by intro-

ducing a spatial node- a parent node representing the spatial neighbourhood of a node.

We also account for latent effects by introducing two hidden variables- one general to

detect overall change in the species biomass and another specific to capture spatial un-

measured effects. We produce a novel approach of modelling ecosystem dynamics that

accounts for the heterogeneous nature of the driving factors within each spatial area

and their changes over time. We examine the models’ accuracy in predicting biomass,

in response to any changes in temperature and fisheries catch or given there is a change

in another species group biomass and therefore aid towards the better understanding of

trophic dynamics in this complex ecosystem.
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Figure 5.1: Regions (shaded area) of the Gulf of St Lawrence (a) and the North Sea (f).

5.2 Description of Spatio-temporal Survey Data to Model

Functional Networks across Two Geographic Regions

5.2.1 Gulf of St Lawrence

We analysed data from the northern Gulf of St. Lawrence (48.00◦N, 61.50◦W, Fig.5.1a)

groundfish and shrimp summer survey (1990-2013). The survey utilises a stratified

random sampling design (Doubleday (1981)) with a standard tow using a benthic ot-

ter trawl. For each tow, all the fish were weighed and a sub-sample (200 individuals

per species) was taken for computing length-frequency distributions. These length-

frequency distributions were the basis of the data used here.

For the purpose of the analysis, the length-frequency distributions were used to calculate

biomass over the same species and within the same year. Then, fish and invertebrate

species were aggregated into the relevant trophic group by summing up the biomass (I -

invertebrates, P - pelagics, SP - small piscivorous fish and LP - large piscivorous and top

predators) (FishBase was used as a guidance point). This was performed for each of the

20 spatial clusters (explained in 5.3.1 Introducing a Technique to Learn the Structure of

Bayesian Network Models for the Gulf of St Lawrence and North Sea) and for each year

in the time window: 1990-2013, ending up with four variables for each spatial cluster

across the time window. The data were standardised (sample mean removed from each
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observation, which is then divided by the standard deviation) prior to conduction of the

experiments.

5.2.2 North Sea

The analyses are based on the database of the International Bottom Trawl Survey

(IBTS) for Quarter 1 (January to March), maintained by the International Council for

the Exploration of the Sea (ICES) and conducted within ICES areas between 51-62◦

latitude (Fig.5.2, only areas 1 to 7 were considered in the study here due to limited

quality and consistency of the data on the remaining spatial areas). These data are

publicly available from the ICES Database of Trawl Surveys (DATRAS; www.ices.dk).

The IBTS is a scientific fishing survey that follows a standard protocol: at each station,

a GOV trawl is towed at 3 to 4 knots for a predefined duration. All species caught

in relatively low numbers are counted and measured, while for very large catches, sub-

samples are taken and the resulting data scaled to the total catch. The data are recorded

as length-frequencies by tow for each species and converted to catch per unit effort

(CPUE; numbers per length class per hour) using tow durations.

In the study, CPUE was extracted for the time window: 1983-2010 and converted to

biomass (kg per hour), using length-weight relationships and summing up over the

same species and within the same year (www.fishbase.org). Next, fish species were

aggregated by summing up the biomass into the relevant trophic group: pelagics (P),

small piscivorous (SP) and large piscivorous and top predators (LP) (FishBase was used

as a guidance point). Similarly to the Gulf, the nature of individual species summed

into the trophic groups varied between the spatial areas but this was not of importance

since they were always aggregated into the correct group. This was performed for each

of the 7 areas and for each year in the time window. We also have available biomass

data for different zooplankton species (source: ICES Working Group on Integrated

Assessments of the North Sea- WGINOSE) but we decided to sum the biomass from

selected copepod species to represent the zooplankton for the whole of North Sea in the

time window 1983-2010.

Sea surface temperature (temperature) and net primary production (Net PP, refers
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to the net production of carbon by primary level producers such as phytoplankton)

data were model outputs (averages per area and year: 1983-2010) from the European

Regional Seas Ecosystem Model (ERSEM; for more detail: Lenhart et al. (2010), van

Leeuwen et al. (2013)) due to limitations in spatial and temporal resolution of these

observations. Catch data (landings per area and year: 1983-2010), measured in tonnes

live weight, were also obtained from the ICES database (ICES Historical Catch Statistics

1950-2010) but data was spatially combined and assigned to the northern (areas 1 and

3), central (areas 2, 4 and 7) and southern (areas 5 and 6) North Sea due to historical

changes in collection and compilation of the landings data. This resulted in 6 observed

(and continuous) variables: catch, temperature, Net PP, P, SP and LP for each spatial

area and across the time window. Similarly to the Gulf, the data for NS was also

standardised.

Figure 5.2: ICES statistical rectangles within the North Sea (areas 1 to 7 were used in

this study). Source: ICES, Manual for the International Bottom Trawl Surveys.
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5.3 Methods

5.3.1 Introducing a Technique to Learn the Structure of Bayesian Net-

work Models for the Gulf of St Lawrence and North Sea

We learn the structure of static BNs from temporal data for each of the spatial regions

(20 clusters for the Gulf of St Lawrence and 7 areas for the North Sea) by applying

a hill-climb optimization technique. We perform the hill-climb with random restart

(n=10 ) (for more detail refer to Chapter 3: Preliminaries). In this way, we apply the

search for some number of iterations (n=500 ) until we hit a local maximum. We used

the Bayesian Information Criterion (BIC, Schwarz et al. (1978)) for scoring candidate

networks. In addition, to learn the network structure for each year in the time window,

the hill-climbing was conducted on a window of data (size of window=10 ). In this way,

we would be able to capture any significant functional interactions over the previous 10

years. The learned BN links represent dependence, these are spatial relationships that

are predictive in an informative, not causal aspect (Milns et al. (2010)). We define a

confidence threshold - the minimum confidence (estimate of the probability of finding a

link) for an edge (or a link) to be accepted as an edge in the learned network structure.

We found the window size and number of iterations through experimentation to be

optimum when dealing with limited time series.

Gulf of St Lawrence A library of simple BNs, representing species interactions or

functional relationships, based on expertise knowledge (Table 5.1, I -invertebrates, P -

pelagics, SP -small piscivorous and LP -large piscivorous and top predators) was created.

K-means (Hartigan & Wong (1979)) was applied to cluster the number of sampling

stations (originally over 200 sampling stations per year, Fig.5.4a) on the mean latitude

and longitude, resulting in 20 spatial clusters (or sub-regions, Fig.5.4b). Each spatial

cluster was individually analysed to identify how the known functional relationships

vary across time, but also to discover relationships between trophic groups, producing

structures for 20 static BN models, equivalent to each one of the sub-regions in the

Gulf of St. Lawrence oceanic area. Note that we detect the equivalence classes of

each functional relationship and score the confidence of each relationship being in the
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network over space and time. Adopting random restarts was preferably chosen compared

to conditional independence tests for example as we wanted to learn the confidence of

each functional relationship being in the network and not just examine the dependency

relationships. We defined functional relationships of high confidence as those in which

we have the greatest confidence of being in the network (threshold ≥ 0.3).

Table 5.1: Pre-defined Functional Relationships

Pre-defined Functional Relationships and Descriptions

1. I− > SP < −P Competition

2. P < −I− > SP Predation

3. P < −I− > SP, I− > LP Predation

4. P < −I− > SP,P− > LP Predation

5. P < −I− > SP− > LP,P− > LP Predation

6. P < −I− > SP,LP < −SP− > P Intraguild Predation

7. LP < −I− > P− > SP− > LP Omnivory

8. P < −I− > SP− > LP Predation

North Sea For the North Sea, we first conducted an Autoregressive Hidden Markov

model (ARHMM) and used the learned hidden variable from the ARHMM to incorpo-

rate it into the relevant spatial dataset (to recall 7 spatial areas) prior to the hill-climb

to help us identify trophic interactions of high confidence between species groups and

with their environment. Here, another hill-climb was also conducted to identify func-

tional relationships between groups of species, without the influence of stressors. The

trophic aggregated species matrix (21 x32, 7 areas with three species groups each and

longer time series) was conducted through the hill-climb for 4000 iterations. We de-

fined interactions of high confidence in time as those in which we have the greatest mean

confidence of being in the generated network (threshold≥0.2). During this hill-climb,

we generate a dynamic model, which we will refer to as global hidden DBN: GHDBN,

the structure for which was imposed by only incorporating the resulting data learned

species group interactions during the same hill-climb.
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5.3.2 Spatial Autocorrelation

Spatial autocorrelation, the phenomenon that observations at spatially closer locations

are more similar than observations at more distant observations, is nearly ubiquitous in

ecology and can have a strong impact on statistical inference (Aderhold et al. (2012)).

To incorporate potential spatial autocorrelation in our modelling approach, we connect

each node in the network to an enforced parent node that represents the average biomass

from the spatial neighbourhood (the three or four nearest neighbours) of the current

geographic location (or area). Specifically, for the Gulf of St Lawrence, we produced

two variants of our BN model: one that excludes a spatial node and one including the

spatial node to compare the predictive performance between the two model variants.

In the North Sea, we enforce three parent nodes that represent the average biomass of

the relevant trophic group (P, SP or LP) from the spatial neighbourhood of the current

area. The same hill-climb procedure was used to learn the connections of each P, SP

and LP spatial node in the relevant spatial network.

5.3.3 Generating Dynamic Bayesian Network Models to Predict Biomass

in the Gulf of St Lawrence and North Sea

The experiments involved prediction of aggregated species biomass by inferring DBNs

for each spatial area within the two separate geographic regions. The method of pre-

dicting the biomass was identical to the approach used in Chapter 4, (sub-section 4.3.2

Hidden Variable Models to Predict Regime Shifts and Species Biomass) and similarly,

a non-parametric bootstrap (Friedman et al. (1999)) was applied 250 times for each

variant of the model. Model performance, in terms of sum of squared error (SSE), was

assessed for each model.

Gulf of St Lawrence For the Gulf, once the structure of the BN model was learned

from the hill-climb, a DBN was inferred and two sets of experiments were conducted:

one that excludes the spatial node (we will refer to this model variant as non-spatial

DBN) and in the other, spatial node was included in the model (spatial DBN) to see if

the node improves prediction.
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North Sea For the North Sea, the experiments involved prediction of aggregated

species biomass by inferring different dynamic Bayesian architectures: ARHMM, DBN,

DBN with spatial nodes included (SDBN), hidden DBN (HDBN) and a novel modelling

approach that we developed for this thesis: hidden DBN with spatial nodes included

(HSDBN) (Table 5.2). The North Sea is genuinely a more complex marine region (com-

pared to the Gulf) with dynamic climate-ocean interactions and ecological associations.

That is why here, we evaluate the usefulness of different dynamic BN approaches with

varying complexity and parameters, that might potentially reflect the different hypoth-

esis of the North Sea system.

The network structure for ARHMM was fixed for all areas, whilst the network archi-

tectures for the other models were imposed by using structure learning from data in

combination with external expertise on the North Sea zooplankton dynamics in the case

of HDBN and HSDBN. The network architecture also varied within each spatial area.

Table 5.2: Summary of the applied dynamic BN models on the North Sea. Models are

ordered based upon complexity level in regards to number of hidden variables (HVs)

and spatial nodes.
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Here, we are also interested in predicting a pre-selected variable (here species dy-

namics, represented by the hidden variable) from each modelling approach based on the

values of other variables (here biomass of species groups). Computation of the hidden

variable has already been discussed in Chapter 4 and similarly, it was parameterised

using the Expectation Maximization algorithm.

The hidden variable from every model was statistically tested for the presence of an

increasing or decreasing trend using the Mann Kendall test (Jennings et al. (2002))

and the distribution of the hidden variable was compared to the observed variable it

might represent (e.g. group of species biomass or zooplankton biomass) using the Mann-

Whitney U test. The null hypothesis, that is being tested by Mann-Whitney U, is that

the distributions of two groups (here, hidden variable and biomass) are identical. Note,

if the p value is small (p≤.05), we reject the null hypothesis and conclude that the two

distributions are distinct, however if the p value is large (p≥.05), the data do not give

us any reason to reject the null hypothesis which does not necessarily mean that the two

distributions are identical but there is no compelling evidence that they differ signifi-

cantly (Cheung & Klotz (1997)). All statistical tests were reported at 5% significance

level.

5.3.4 DBN with Two Hidden Variables and Spatial Nodes: HSDBN

We designed a dynamic BN model in which we incorporated two hidden variables: one

discrete to model the general trophic dynamics (general HV ) and another continuous

specific hidden variable (specific HV ) to see if we can learn the trophic level of zoo-

plankton, which is missing due to limited spatial resolution but will be validated against

the measured zooplankton for the whole of North Sea. This approach discourages the

appearance of implicit interactions by including the unobserved hidden variables. This

is the hidden DBN: HDBN, for which we propose a balanced architecture between

structure learning from data and experts’ knowledge on zooplankton dynamics, rep-

resented in this model by the specific HV. The HDBN is a functional network model

in which nodes represent species groups and edges (connections between nodes) rep-

resent potential interactions of species groups with other groups, with abiotic factors
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(e.g. temperature) and anthropogenic factors (e.g. commercial catch) that influence

the species groups biomass. The strengths of such influences vary geographically and

temporally.

Next, we further improved the HDBN by allowing for spatial autocorrelation and learn-

ing another dynamic BN model: HSDBN. Specifically, we enforced three parent nodes:

P sp., SP sp. and LP sp., that represent the spatial values (of the equivalent P, SP

and LP variables) to account for the effect of spatial autocorrelation. In the HSDBN

modelling approach, we account for the heterogeneous nature of the driving factors

(both biotic and abiotic) within each area and their changes over time. Hence, we

can explore multiple species associations, model their dynamics with interactions from

external stressors such as temperature and fisheries exploitation and compare the pre-

dictive performance of the model with HDBN and other probabilistic models already

being used in the literature. The HSDBN structure for each area varies but the general

form is presented in Fig.5.3. We incorporated the same unobserved hidden variables

from the HDBN: general HV and specific HV. The specific HV was always connected

to P and Net PP and temperature to Net PP (according to expert). In this way, we

can inspect the state of the two HVs to see if they reflect any spatial and temporal

changes in the trophic dynamics or capture spatial unmeasured effects which are not

purely found within the constrained model structure.
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Figure 5.3: General structural form of the HSDBN model. Solid line represents fixed

edges across areas. The three spatial nodes (P sp., SP sp., LP sp.), general HV, catch

and temperature are individually linked to either P, SP or LP (represented by the dotted

surrounding), depending on the spatial area (grey line). Connectivity between P, SP

and LP also differs spatially. Edges between nodes (or variables) represent dependence

relationships.

5.4 Results for the Gulf of St Lawrence

To recall, K-means was applied to cluster the number of sampling stations (Fig.5.4a), re-

sulting in 20 spatial clusters (or sub-regions) within the region of St Lawrence (Fig.5.4b).

Note that differences in density of the clustered stations could explain the slight spatial

contrast between Fig.5.4a and Fig.5.4b.

5.4.1 Identified Functional Relationships within Spatio-temporal Scales

We now examine how learned by the hill-climb relationships amongst trophic groups of

species vary across time and space. The relationship between invertebrates and pelag-
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(a) Sampling stations before clustering (b) Sampling stations after clustering

Figure 5.4: Locations of the sampling stations before clustering (a) and after clustering

in the region of St Lawrence(b).

ics (I-P) was found to be strongly significant (range: 0.3-1) and consistent in time and

space (Fig.5.5a,b). Cluster 7 was the only cluster in which the relationship was found

throughout the entire time series and in cluster 5 the relationship was found to be with

highest confidence throughout time. Temporally, the confidence for the I-P relationship

in majority of the clusters was found to be generally increasing with a small decline over

recent years.

The invertebrates- small piscivorous fish (I-SP) relationship had the highest confidence

throughout time in cluster 4. The relationship was relatively consistent in time for

individual clusters, although we notice that different clusters were characterised with

some specific temporal trends. For example, cluster 5 had a distinguished increase in

early to mid-2000, whilst the opposite was found for cluster 19 (Fig.5.6a).

For cluster 19, the invertebrates- large predators (I-LP) relationship was identified

throughout the entire time series but the most highly significant confidence was found

for cluster 17 (range: 0.3-0.8). Temporally, both relationships: I-SP and I-LP, for ma-

jority of clusters were relatively stable but with declining trend at end of the time series.

We now consider the pelagics- small piscivorous fish (P-SP) relationship (Fig.5.5c,d).

As with the I-P relationship, here P-SP was also the most highly confident for cluster 5

(range: 0.3-1). This P-SP relationship was highly consistent in time for clusters 4 and

16, in which the relationship was found throughout the entire time series. Compared
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to P-SP, for the pelagics- large predators (P-LP) relationship, cluster 10 was the one

in which the relationship was highly confident (range: 0.3-1). However, cluster 5 was

the one in which the relationship was consistent throughout time. Across time, both

relationships varied for the different clusters and it was difficult to find any temporal

trends. However, some clusters declined around 2007 to 2010 (for example 7, Fig.5.6b)

whilst clusters 5 and 19 (Fig.5.6b) increased around the same time and in most recent

years. The increase around early to mid-2000, that we saw for I -SP, was also found for

cluster 7.

The most highly confident small piscivorous- large predators (SP-LP) relationship

(Fig.5.5e,f) in time that was also consistent in the series was found for cluster 20 (range:

0.3-1). The relationship was also consistent in time for cluster 9. Across time, simi-

larly to the previous relationship, some clusters were relatively stable but some decline

occurred around 2007 onwards (cluster 5, Fig.5.6c), whilst in other clusters increase in

confidence was found for more recent years (for example cluster 7, Fig.5.6c). Cluster 19

was characterised with relatively low confidence throughout time (Fig.5.6c).
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(a) I-P, Year 2001 (b) I-P, Year 2011

(c) P-SP, Year 2004 (d) P-SP, Year 2013

(e) SP-LP, Year 2008 (f) SP-LP, Year 2013

Figure 5.5: The learned I-P, P-SP and SP-LP relationships for all 20 spatial clusters

(size of scattered bubbles is equivalent to the estimated confidence by the hill-climb).

The clusters mentioned in 5.4.1 are numbered.
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(a) I-SP

(b) P-LP

(c) SP-LP

Figure 5.6: The learned I-SP, P-LP and SP-LP relationships for clusters 5, 7 and 19

(represented by solid, dash and dot line respectively) for the time window: 2000-2013.

Next, we consider the variation of the pre-defined known functional relationships

(Table 5.1) temporally and spatially. First, function 1 and 2 were identified in all

clusters. However, the significance of both functions varied across time with some
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consistency in terms of spatial clusters. We find the emergence of “characteristic scales”

of functional relationships, identified at spatially-specific geographic scales. Temporally,

there was some decline in the significance of function 1 and function 2, specifically in

more recent years: 2010 to 2013 in all clusters. At the same time clusters like 9, 5 and

20 were found to be with relatively strong significance throughout time, outlining the

importance of habitat quality at specific locations implying that in some regions prey

are more affected by predators than in others. Function 3 and 4, 5, 6, 7 and 8 were

not identified for all clusters and were only found in some years. However, again there

was some spatial consistency in terms of different functions identified outlining only

some clusters, highlighting the fact that relationships are scale dependant but also the

importance of functional relationships for the local food web dynamics and structure.

Other possible explanations include species abundance and distributional changes but

in either case fishing could have had an important role.

5.4.2 Prediction Performance of Dynamic and Spatial Dynamic Mod-

els

We now turn to the generated predictions by the DBNs for each spatial cluster. To recall,

two variants of each model were produced: non-spatial DBN, excluding the spatial node

and spatial DBN in which the spatial node was enforced and connected to each one of the

other variables. Predictive performance between the two model variants was compared

(Table 5.3). In general, predictive accuracy was improved once the spatial node was

included in the model. Only for some clusters (6, 11, 17 and 18), better predictions were

reported by the non-spatial DBN. In some clusters (for example 5 and 15), the predictive

accuracy was significantly improved by the spatial DBN. Some clusters were genuinely

easy to predict by both model variants, for example clusters 2 and 17. Conversely,

some clusters were characterised by both models with lower predictive accuracy, for

example clusters 9 and 10. The discovered spatial heterogeneity here in terms of the

varying spatially predictive accuracy is a reflection of some of the mechanisms involved

in shaping the local population dynamics. Such results can potentially provide us with

insights on the ecological stability and resilience of the species dynamics and structure.

82



Chapter 5. Spatio-temporal Bayesian Network Models for Revealing Trophic
Dynamics and Functional Networks in Fisheries Ecology

Table 5.3: SSE of DBN and spatial DBN. 95% confidence intervals reported in brackets

DBN spatial DBN DBN spatial DBN

1. 5.58 (±9.29) 1. 4.38 (±7.08) 11. 12.44 (±20.56) 11. 16.54 (±34.34)

2. 0.24 (±0.36) 2. 0.14 (±0.12) 12. 69.90 (±308.02) 12. 30.55 (±64.30)

3. 16.20 (±29.92) 3. 10.76 (±17.16) 13. 12.68 (±16.63) 13. 12.06 (±9.63)

4. 10.09 (±14.70) 4. 9.68 (±12.58) 14. 196.11 (±271.68) 14. 109.37 (±102.42)

5. 44.20 (±51.17) 5. 11.27 (±12.47) 15. 77.45 (±605.26) 15. 23.62 (±47.80)

6. 20.20 (±40.42) 6. 20.22 (±34.29) 16. 17.15 (±18.40) 16. 14.86 (±13.46)

7. 25.29 (±55.38) 7. 19.47 (±26.86) 17. 5.88 (±8.78) 17. 6.12 (±6.67)

8. 38.72 (±46.22) 8. 19.59 (±11.78) 18. 2.68 (±3.94) 18. 3.43 (±3.72)

9. 125.19 (±240.49) 9. 92.14 (±111.67) 19. 80.32 (±112.90) 19. 77.19 (±72.43)

10. 104.31 (±167.02) 10. 60.62 (±62.38) 20. 13.20 (±22.08) 20. 10.70 (±13.64)

Now, let us look at some generated predictions for I, P, SP and LP throughout

time for some of the clusters (e.g. 5 and 15). We notice that the trophic group of the

invertebrates- I, was generally harder to predict (Fig.5.7a,e), comparing to the other

functional groups, which could be nature of the aggregated species and specifically, their

small size and high mortality rate compared to species from the groups of SP and LP.

We also notice that it was harder to distinguish any temporal trends but rather the

species groups were characterised with temporal variability and strong individual year

effects.

83



Chapter 5. Spatio-temporal Bayesian Network Models for Revealing Trophic
Dynamics and Functional Networks in Fisheries Ecology

(a) I, Cluster 5 (b) P, Clsuter 5

(c) SP, Cluster 5 (d) LP, Cluster 5

(e) I, Cluster 15 (f) P, Cluster 15

(g) SP, Cluster 15 (h) LP, Cluster 15

Figure 5.7: Biomass predictions generated by the spatial DBN for clusters 5 and 15 for

the four trophic groups: I, P, SP and LP. Solid line indicates predictions and dash-dot

line indicates standardised observed biomass. 95% confidence intervals report bootstrap

predictions’ mean and standard deviation.
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5.4.3 Summary for the Gulf of St Lawrence

In this work, we have exploited the use of BNs with spatial nodes in order to iden-

tify patterns of functional relationships which proved significant in terms of predictive

accuracy of our models, further concluding the spatial heterogeneity in this oceanic

region. Our results showed spatially and temporally differentiated ecological networks.

These networks indicate spatial relationship of species and habitat with the particular

mechanisms varying from facilitation through trophic interactions. While the precise

explanation behind the varying spatio-temporal confidence of some of the discovered re-

lationships is not known, we expect them to be reflective of the underlying interactions

within the community, thus suggesting similarity to the majority of the weak and some

strong interactions expected of stable systems (Milns et al. (2010)).

Overall, the identified functional relationships were found to be consistently confident in

time however we notice the spatially-specific differentiation. Such spatial heterogeneity

could result from habitat fragmentation leading to decreased dispersal or the optimal

habitat being located in a more restricted area, leading to increased aggregation (Frisk

et al. (2011)). Individual year effects are very strong for this area as time increases,

as already suggested by Duplisea & Castonguay (2006), which makes it difficult to de-

termine temporal trends. However, some of the clusters’ temporal increase in early to

mid-2000 (for example, cluster 5 and 7 from Fig.5.6) could be owed to the fisheries mora-

torium in the area placed in 1994. In addition, our findings of recent temporal decline

for some of the clusters’ relationships (P-LP (cluster 5), SP-LP (cluster 19), Fig.5.6)

we suggest to be due to predation release of small abundant species by the selective

fishing of larger predators (Frisk et al. (2011)). Note again, the temporal variation of

the systems was set apart in geographically-specific order, possibly due to site-specific

fisheries exploitation targeting particular species.

Overall, we found high spatial heterogeneity in terms of the models’ predictive accu-

racy, which we suggest to be due to the mechanisms involved in shaping the underlying

species dynamics. For example resource availability, habitat selection, processes like

dispersal and metapopulation effects (Frisk et al. (2011)) but also commercial fishing

could have influence on the local community stability and structure, resulting in our

85



Chapter 5. Spatio-temporal Bayesian Network Models for Revealing Trophic
Dynamics and Functional Networks in Fisheries Ecology

modelling approach identifying spatially-specific differences. The fact that our models

managed to predict some clusters more accurately compared to others suggests that

there are differences in the local population dynamics in terms of resilience to fisheries

exploitation and climate. This could potentially provide managers with information

on where commercial effort should be directed and what species to be targeted. Most

importantly, we managed to show that once the spatial node is included in the model,

predictive accuracy is improved and this highlights the general knowledge that one clus-

ter’s dynamics is influencing another, thus highlighting the need to account for spatial

connectivity.

5.5 Results for the North Sea

5.5.1 Comparative Evaluation of Biomass Predictions

To recall, the predictive capability of the applied models is measured by how accurate

are the modelled biomass predictions (sum of squared error estimation) comparing to

the observed standardised biomass.

The results on biomass predictions of species groups showed great variability in their

predictive accuracy from the applied probabilistic models: ARHMM (Table 5.4a), DBN

(Table 5.4b), SDBN (Table 5.4c), HDBN (Table 5.4d) and HSDBN (Table 5.4e). Com-

parison of the predictive performance across all model types indicates varying spatially

predictive accuracy which is a reflection of the models’ features in combination with the

spatially specific characteristics of each area and species aggregation.

When comparing the overall biomass (least SSE per area), the Hidden Spatial Dy-

namic Bayesian Network model (HSDBN) (Table 5.4e) managed to perform most accu-

rately in certain spatial areas (1, 3, 4 and 6), compared to the other tested modelling

approaches, which is reassuring that the inference scheme can handle the increased

model complexity. HSDBN reported predictions with highest accuracy for most of the

individual species groups (look at * in Table 5.4e). Interestingly, P and SP species were

predicted more accurately compared to LP, highlighting the importance of species-

specific effects in their habitat following external disturbances. For the remaining areas

(2, 5 and 7), the Spatial Dynamic Bayesian Network model (SDBN, Table 5.4c) produced
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better overall predictions. Although the general improvement in predictive accuracy of

the HSDBN model over the competing probabilistic models, we notice the similar level

of accuracy (least SSE difference: ≤5.0, between the generated overall predictions of

two models) for some of the areas. For example, the Hidden Dynamic Bayesian Network

(HDBN) and Dynamic Bayesian Network models (DBN) performed respectively with

a similar level of accuracy, following the HSDBN for areas 3 and 4 (Table 5.4b, 5.4d,

5.4e).

Finally, the biomass predictions generated during the BN structure learning for the

whole of North Sea by the Global Hidden Dynamic Bayesian Network model (GHDBN,

Table 5.4f) were overall less accurate compared to HSDBN. Interestingly, the GHDBN

performed with similar level of accuracy to the SDBN for areas 2 and 7, confirming

the significance of the spatial relationship between these areas and their neighbours.

The GHDBN will not be further addressed as a competing model in the discussion, we

simply wanted to state the overall predictive accuracy during the learning process of a

static BN.

Table 5.4: Sum of Squared Error (SSE) of P, SP and LP biomass predictions generated

by ARHMM (a), DBN (b), SDBN (c), HDBN (d) and HSDBN (e). The * indicates

most accurate predictions for individual species groups.

(a) ARHMM

Area P SP LP

1. 24.79 24.71 27.29

2. 20.57 31.02 20.05

3. 21.87 20.16 25.68

4. 33.14 19.54* 33.07

5. 27.38 21.52 26.68

6. 30.12 25.52 12.79*

7. 24.53 22.49 27.27

(b) DBN

Area P SP LP

1. 22.88* 20.31 33.86

2. 32.82 33.95 26.55

3. 21.51 15.35 22.57

4. 25.80 22.65 26.71

5. 27.02 32.28 32.38

6. 26.82 30.95 20.88

7. 27.76 25.77 24.35*
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(c) SDBN

Area P SP LP

1. 34.26 25.66 27.17

2. 13.13* 30.38 17.04*

3. 25.16 19.76 30.38

4. 26.83 26.25 27.48

5. 27.31 20.77 26.86

6. 29.41 20.21 14.72

7. 23.75* 21.09* 27.36

(d) HDBN

Area P SP LP

1. 23.52 24.33 33.54

2. 20.92 31.99 24.20

3. 19.15 19.40 20.52*

4. 26.46 23.08 25.02

5. 31.05 22.93 25.14*

6. 27.09 26.52 21.15

7. 29.21 28.50 32.71

(e) HSDBN

Area P SP LP

1. 23.46 20.11* 25.46*

2. 20.38 30.05* 25.03

3. 18.32* 14.90* 21.59

4. 25.65* 21.35 23.69*

5. 26.75* 20.76* 34.16

6. 24.85* 19.48* 14.67

7. 30.86 22.53 30.14

(f) GHDBN

Area P SP LP

1. 26.84 24.03 27.69

2. 14.65 29.20 19.90

3. 27.07 29.33 20.99

4. 26.08 23.72 28.56

5. 27.66 24.50 31.17

6. 26.19 21.31 15.14

7. 27.92 16.16 29.74

We now look at the groups of species: pelagics (P), small piscivorous (SP) and large

piscivorous (LP) and their biomass predictions in time for some of the areas on which

the HSDBN performed most accurately. The imposed HSDBN network structures for

these areas are shown in the Appendix. We also illustrate our model’s predictive accu-

racy through the use of “what if” type descriptions of the network structures in these

areas in response to actual data changes (ICES DATRAS database and ERSEM model

outputs).

The HSDBN managed to capture the species biomass variations in time for area 3

(Fig.5.8a,c,e), specifically reflecting on the general decline of the P group, although,
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failing to pick up some of the outlier observations for P and LP. Our HSDBN model

predicted the general P and late 1990s SP biomass decline (Fig.5.8a,c) when the fish-

eries catch was high, however this started to change in more recent years in response to

fisheries catch becoming low, which led to some increase only in the SP biomass. Inter-

estingly, we notice some similarity in the reproduced individual year effects between SP

and LP (Fig.5.8c,e), which coincided with increase in the SP biomass and surrounding

spatial P biomass in recent years.

For area 6, even some of the outliers, that the HSDBN did not detect perfectly, we can

see from Fig.5.8b,d,f, that the model reflected on the temporal biomass variations of P

and explicit decline of the SP and LP groups. Similarly to area 1, our model was able to

re-create the decline in the SP and LP biomass when fisheries catch started to decline

in late 1990s to early 2000 and the surrounding spatial P biomass started to increase.

Again similarly to area 1, the reproduced individual year effects for the P biomass were

relatively strong, although we see some increase in early 2000 when the surrounding

spatial SP biomass started to increase but the spatial LP biomass continued to decline.

(a) P, Area 3 (b) P, Area 6

(c) SP, Area 3 (d) SP, Area 6
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(e) LP, Area 3 (f) LP, Area 6

Figure 5.8: Biomass predictions of P, SP and LP generated by the HSDBN for areas 3

(a,c,e) and 6 (b,d,f). Solid line indicates predictions and dotted line indicates standard-

ised observed biomass. 95% confidence intervals report bootstrap predictions’ mean and

standard deviation. Note the negative scale is due to standardisation.

5.5.2 Analysis of the General and Specific Hidden Variables within

Spatio-temporal Scales

To recall, in our HSDBN approach, we inspect the states of the two HVs- one general

to model the general trophic dynamics and a specific HV to learn the spatial effect of

zooplankton as it was missing in the model (due to limitation in spatial resolution) but

is here validated against the measured zooplankton for the whole of North Sea. We

show examples of learned hidden variables for only two of the areas.

The general HV for area 6 (figure not shown) captured some of the species biomass

characteristics and it successfully managed to reflect on a temporal decline (trend iden-

tified, p<.05 ) in the series, coinciding with decline in the LP biomass for area 6 (Z =0.4,

d.f.=26, p=0.34). The specific HV for area 6 is capturing the zooplankton dynamics

with high similarity: (Z =1.02, d.f.=26, p=0.31, Fig.5.9a).

Results from both HDBN and HSDBN for area 5 showed that the zooplankton was

actually modelled by the general HV, rather than the specific HV, the opposite of what

we were aiming to find. Although the general HV managed to reflect on some zoo-

plankton variations in time (Fig.5.9b), no temporal trends were found in either HV

and no statistical similarity was found with either zooplankton or other species group

biomass. Following the SDBN (failed to identify any statistical similarity or trend by
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the general HV ), it was the ARHMM that produced most accurate biomass predictions

for 5 and the HVs generated by this model were characterised by a temporal decline

(trend identified, p<.05), coinciding with decline in the P biomass for area 5 (Z =-0.71,

d.f.=26, p=0.48).

(a) Area 6 (b) Area 5

Figure 5.9: The expected value of the specific HV (solid line) for area 6 (a) and general

HV for area 5 (b) generated by HSDBN with the observed standardised biomass for

the zooplankton (dotted line). The solid line indicates upper and lower 95% confidence

intervals, obtained from bootstrap predictions’ overall mean and standard deviation.

Note the negative scale is due to standardisation.

To summarise, the general HV managed to capture changes in the variance of species

groups biomass but that varied with the HSDBN predictive accuracy in different spatial

areas. These results outline the importance of the spatially-specific driving factors on

species dynamics and provide insights on spatial patterns in terms of ecological stability

and resilience. The specific HV from our HSDBN managed to learn the zooplankton

biomass variations in all areas (general HV for area 5), that provides us with more

accuracy on the structure and functioning of the underlying ecological networks but

also suggest the existence of strong regional differences for some areas.

5.5.3 Analysis of the Discovered Interactions between Species and

their Environment

Discovered Interactions Within a Spatial Area We now investigate trophic asso-

ciations and interactions with key stressors (temperature and commercial catch) identi-
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fied within each area. Results from Table 5.5 showed that interactions of species groups

with both anthropogenic and environmental factors, are of key importance when deter-

mining the local trophic dynamics and functional networks. In particular, there were

high confident links identified between catch and all groups of species in areas 2, 3 and

7. In areas 1, 4 and 6 interaction with catch was found only for some of the species

groups. Conversely, area 5 was the only area in which there were no confident links

found with either one stressor. In this area, a single trophic interaction was found.

Interestingly, there were high confident links identified between temperature and some

of the higher trophic level species groups rather than Net PP on which temperature has

a direct influence, suggesting the extensive linkages of some species following potential

bottom-up effects.

Table 5.5: Learned trophic associations and interactions with key stressors (catch and

temperature) for each of the 7 spatial areas (the estimated mean confidence of each

interaction, learned by the hill-climb for the time window: 1993-2010, is reported in

brackets). The time window starts from 1993 due to the windowing required during the

hill-climb.
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Discovered Interactions Between Spatial Areas We now look at the discovered

interactions across the whole of North Sea for each type of functional relationship: P -SP,

P -LP and SP -LP (Fig.A.5 shown in Appendix). The majority of confident links were

identified for P -SP, followed by P -LP. Our results showed that links of high confidence

were discovered between areas 1-3 (P -SP and P -LP), 2-5 (P -SP and SP -LP), areas

located relatively spatially closer to each other. However at the same time we found

high confident links between areas 1-6 (all functional relationships) and 1-7 (P -SP and

P -LP), located at further distances. Next, we present the temporal variations of the

identified relationships between some of the areas. Individual year effects were very

strong for all relationships, however we notice the spatially-specific differentiation. The

P -SP (Fig.5.10a) relationship was generally characterised with some temporal decline

around late 1990s to early 2000 followed by increase over recent years but that was

more evident between areas 1-3 and 1-7, rather than 2-5, which was generally of

higher confidence (≥0.5) in time, except for some decline occurring in more recent years.

Similarly, P -LP (Fig.5.10b) was characterised by a declining trend again between areas

1-3, whilst 2-3 was consistently increasing in time. The SP -LP (Fig.5.10c) relationship

had a general trend of temporal increase from early 2000 which was evident between all

areas.

(a) P-SP
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(b) P-LP

(c) SP-LP

Figure 5.10: Estimated confidence by the hill-climb of each functional relationship oc-

curring across the whole of North Sea: (a) P -SP between areas 1-3 (solid line), 1-7

(dashed) and 2-5 (dotted); (b) P -LP between areas 1-3 (solid), 2-3 (dashed) and 4-5

(dotted); (c) SP -LP between areas 1-6 (solid), 3-4 (dashed) and 4-6 (dotted). Note

the time window starts from 1993 due to the windowing required during the hill-climb.

5.5.4 Summary for the North Sea

To summarise, results from our experiments showed that there was great spatial and

temporal variation of the trophic dynamics in this ecosystem, however the high pre-

dictive accuracy of our hidden spatial dynamic BN (HSDBN) and its successful hidden

variable characteristics in modelling the biomass changes and spatial unmeasured ef-

fect help us define this model as a final choice, out of the presented models, that we

propose for further use by experts when looking at trophic dynamics in different ecosys-

tems. Here, the HSDBN is the most thorough and comprehensive model choice which

incorporates the effect of spatial autocorrelation but also the impact of fishing and
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environmental stressors when modelling the spatial and temporal food web dynamics

within the North Sea. The difference in predictive accuracy is to be expected as the Au-

toregressive Hidden Markov model (ARHMM) undertakes relatively simple modelling

assumptions and fixed structure, that are unable to describe the species dynamics as ac-

curately as our HSDBN. The general HSDBN improvement over the dynamic BN model

(DBN) underlines the negative effect of information loss when only incorporating a sin-

gle hidden variable and the similar performance of the hidden dynamic BN (HDBN) to

HSDBN for some of the areas was due to structural similarity and increased modelling

complexity but also due to less prominent spatial effects. The successful performance of

the spatial dynamic BN (SDBN) in some areas highlights the uniform nature of the local

trophic dynamics, because the importance of the driving factors is understated by the

significance of the spatial relationship between neighbouring areas. Such results allowed

us to identify patterns in the different spatial areas in terms of importance of the mech-

anisms involved in modelling the trophic dynamics. For example, we showed that the

general HV for area 6 managed to reflect on the temporal decline, specifically for the LP

group, whilst the general HV for area 5 modelled the zooplankton dynamics (whilst

specific HV modelled the P species group), highlighting the importance of fisheries for

the ecological stability in some areas and that some species groups are more important

for the functioning of the local ecological networks, compared to others. In addition, our

results of predictive accuracy in terms of “what if” type descriptions further outline the

heterogeneous nature of the species dynamics in area 6, following the mutual influence

of external disturbances and trophic interactions and their importance for the structure

and stability of the local functional network. Interestingly, better biomass predictions

for area 5 were produced by the SDBN, suggesting the stronger spatial relationship

that the neighbouring areas might have with the species dynamics in area 5 but also

its potential importance for habitat suitability, which could be further investigated by

experts in terms of management schemes.

Our results show highly confident but spatially and temporally differentiated ecological

networks that indicate spatial relationship of species and habitat with the particular

mechanisms varying from facilitation through trophic interactions. Revealed trophic

associations and interactions of species groups with their environment were consider-

95



Chapter 5. Spatio-temporal Bayesian Network Models for Revealing Trophic
Dynamics and Functional Networks in Fisheries Ecology

ably better than random but we note that perfect reconstruction is unlikely due to the

noisy data and complex ecological process involved (Faisal et al. (2010)). However, our

findings complement traditional methods and have extended our knowledge into the

complexity of North Sea dynamics and its ecological structure and stability.

In the next chapter, we modify our model to predict species dynamics in the North Sea

further into the future in combination with fisheries and temperature scenarios to give

strategic advice on short-term system response to pressure. The modelling work was

extended to potentially benefit fisheries management in terms of assessment of choices

on “optimum” levels of fisheries catch for different commercially important fish species.
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Chapter 6

A Dynamic Bayesian Network

Model to Predict Trends of

Ecosystem Change in Response

to Fisheries Catch, Temperature

and Productivity Scenarios

6.1 Introduction

In this chapter, we use a modified version of a dynamic Bayesian network model to

predict the response of different ecosystem components to change in anthropogenic and

environmental factors within the North Sea. Through the development of fisheries catch,

temperature and productivity scenarios, we explore the future of different fish and zoo-

plankton species and examine what trends of fisheries exploitation and environmental

change are potentially beneficial in terms of ecological stability and resilience. In the

context of ecosystem-based approach to fisheries management, by using a multispecies

ecosystem model that acknowledges fisheries are part of the environment, the species

effects can be quantified across space and over time, under different fisheries exploita-
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tion and climate scenarios.

The North Sea has been exploited for centuries by the surrounding countries and the

state of its environment has been altered greatly by human activities (Jennings & Kaiser

(1998)). However, in late 1990s the EU began a fleet reduction scheme and most recently,

the European Unions Common Fisheries Policy (CFP) introduced significant changes to

how fisheries are to be managed, including a landings obligation and management plans

that take account of biological and technical interactions (Regulation (2013)). There is

a growing recognition of the complexity of North Sea trophic dynamics and functional

ecological networks, and together with fisheries legislative changes and climate warm-

ing trends taking place, there is an increasing demand for tools with which to explore

alternative hypotheses about ecosystem function and response to change and address

applied questions in the field of fisheries management (Mackinson & Daskalov (2007)).

In the present work, we are specifically interested in the characteristics of Bayesian

networks (BNs) to demonstrate the effects of various assumptions on the forward pro-

jections of variables of interest. Specifically, a dynamic BN model was applied to investi-

gate the consequences of specific fisheries catch, temperature and productivity scenarios

on different fish and zooplankton species. Through the developed scenarios, we explore

the trends of ecosystem components and examine potential trade-offs and sensitivities.

The approach we are using is a modified version of a dynamic hidden spatial BN model,

which uses the functional network approach to predict species dynamics, accounting

for species associations and interactions with external stressors and unmeasured hidden

effects at spatial and temporal scale. Now, we extend this approach to model species

dynamics further into the future by developing a set of scenarios, accounting for spatial

heterogeneity and ecological complexity, which is important because species interactions

can increase or reduce future changes at different scales, influencing the emergence of

winners and losers (Barange et al. (2014)). Hence, we aim at predicting species year-to-

year variations and understanding their dynamics, which is essential to give strategic

advice on potential response of the system to pressure. We are interested in assess-

ing choices on “optimum” levels of fisheries catch and potentially provide advice on

short-term predictions to support fisheries management.
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6.2 Description of the Spatio-temporal Data to Model Nat-

ural and Anthropogenic Scenarios

The analyses are based on the same dataset from Chapter 5 for the North Sea, that is

why we only briefly mention some of the key points of the dataset.

We only consider data collected within ICES (International Council for Exploration of

the Seas) areas 1 to 7 (Fig.5.2 from Chapter 5, sub-section 5.2.2 North Sea) due to

limited quality and consistency of the data on the remaining spatial areas. Individual

fish species were aggregated by summing up the data into the relevant trophic group:

pelagics (P), small piscivorous (SP) and large piscivorous and top predators (LP).

However, here the main focus from the modelled fisheries catch scenarios will be on the

individual species biomass: cod (Gadus morhua), haddock (Melanogrammus aeglefinus),

herring (Clupea harengus), European plaice (Pleuronectes platessa), sole (Solea solea),

saithe (Pollachius virens) and whiting (Merlangius merlangus). The fish survey data

covers the period: 1983-2015. We also have available biomass data (overall for the North

Sea) for different zooplankton species: Calanus finmarchicus, Calanus helgolandicus and

small copepods: Acartia, Temora, Para-pseudocalanus for the time window 1983-2010.

The fish Sea surface temperature (temperature), net primary production (Net PP) and

catch data cover the time window: 1983-2010. The data was standardised (sample

mean removed from each observation, which is then divided by the standard deviation)

prior to conduction of the experiments but for the purpose of visualising the results, we

reversed the standardisation of the modelled values.

6.3 Methods

6.3.1 Description of the Model to Predict Species Trends in Response

to Natural and Anthropogenic Scenarios

We used a modelling approach that integrates the functional network approach with

a dynamic Bayesian network model to predict trends of different fish and zooplankton

species from specific fisheries catch, temperature and Net PP scenarios. This approach

is a modified version of the hidden spatial dynamic Bayesian network model developed
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in Chapter 5 (we still refer to the model as Hidden Spatial Dynamic Bayesian Network

model or HSDBN). This model is an extension of the model from the previous chapter

in terms of predicting species data further into the future and modelling individual

fish species dynamics under different effects from biotic and abiotic scenarios. We

incorporate only one hidden variable (HV ) and instead of a second HV, as originally in

the previous chapter, we incorporate the observed zooplankton biomass for the North

Sea. In addition to the three spatial nodes: P sp., SP sp. and LP sp., we add an

additional spatial node as a parent node to the fish species variable, to account for

the effect of spatial autocorrelation (refer back to Chapter 5, sub-section 5.3.2 Spatial

Autocorrelation). The observed variables in the model include total catch, fish species

catch, temperature, Net PP, total zooplankton biomass, fish species biomass and three

aggregated trophic species groups: P, SP and LP and the equivalent spatial nodes from

above. This totals 13 observed variables per area. The HSDBN structure varies but

the general form is presented in Fig.6.1a, with example for one of the areas in Fig.6.1b.

Hence, we can explore multiple species associations and model their future dynamics

with interactions from external stressors and under specific scenario conditions. Using a

recognised model structure, we can compare the modelled scenario outputs across spatial

and temporal scales, accounting for the spatial heterogeneity and ecological complexity.
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(a) HSDBN model structure

(b) Cod, Area 4

Figure 6.1: General structural form of the HSDBN model (a). Solid line represents fixed

edges across areas. The spatial nodes (P sp., SP sp., LP sp., Fish species sp.), HV, catch

and temperature are individually linked to either P, SP or LP (represented by the dotted

surrounding), depending on the spatial area (grey line). Connectivity between P, SP

and LP and with the fish species also differs spatially. Network structure for area 4 (b)

that models the dynamics of cod. The edges shown by a dotted line are defined by the

expert.
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6.3.2 Modelling Species Trends in Response to Fisheries Catch, Tem-

perature and Productivity Scenarios

The experiments involved prediction of survey data under scenarios of fisheries catch,

temperature and Net PP. Given the probability distribution over Y[t ] where Y=Y1...Yn

are the n variables observed along time t, to predict the biomass of each species and/or

trophic group, we inferred the biomass at time t+1...t+5 by using the observed evidence

(or available data) from t-1 and t. The choice of 2020 as the horizon for this study was

chosen to limit uncertainty but most importantly, we wanted to provide some practical

advice in terms of management objectives in line with the need to restore fish stocks.

We used an exact inference method: the junction tree algorithm (Murphy (1998)).

The hidden variable is specified as a discrete node which is parameterised using the

Expectation Maximization algorithm in a maximum likelihood sense and assumes a

discrete distribution. Similarly to Chapter 5, a non-parametric bootstrap (Friedman

et al. (1999)) was applied 250 times for each modelling scenario.

First, we predict the survey data for each area using historical observations, we refer

to this model output as Historical. Then, we use different fixed year levels from each

individual fish species catch data to design our fisheries catch scenarios. We aim at

having scenarios at varying levels of fisheries catch: low, medium and high (these to be

referred from now on as scenarios of L.FC., M.FC. and H.FC. respectively). We choose

from the fisheries catch data three years equivalent to these levels and keep each level

fixed from the chosen “scenario” year until the year 2015. We keep the other measured

variables unchanged. For example, in order to model the dynamics of cod in area 4 in

response to change in fisheries catch, we chose from the cod catch data the year 1995

to represent the year from which the scenario of M.FC. starts. Fig.6.2a illustrates the

data input assuming this scenario and the generated output. Note, that the data input

for testing the model prior to the scenario year includes all of the observed variables

(and one HV ) up to 1995 and after 1995 to 2015, the input is only the fixed value of the

total fisheries catch and cod catch (5x104 tonnes live weight) (Fig.6.2b). In this way,

we rule out the simple idea that observed values after the “scenario” year are causing

the results to stabilize.
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We perform this for each individual fish species and across each area, according to the

originally published model structure. For example, in area 4 catch is a direct parent

to LP, so in this area, we would investigate fisheries catch scenarios for individual LP

fish species such as cod (Fig.6.1b). In area 1, catch is a direct parent to P, so in area 1

we examine the influence of fisheries catch on pelagic species only, such as herring. In

this way, we can keep the historically driven interactions between variables and examine

their modelled long-term biomass trends under potential changes in stressors such as

fisheries catch. At the same time, we predict the trophic biomass (P, SP and LP) for

each area and from the same fisheries catch scenarios that were applied to the individual

fish species. Hence, we can examine how different ecosystem components respond to

varying levels of fisheries catch, accounting for the heterogeneous nature of the modelled

variables and driving factors within each area and their changes over time.

(a) Data input and output for Medium Fisheries Catch scenario for cod, area 4
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(b) Medium Fisheries Catch scenario for

cod, area 4

Figure 6.2: An example matrix from a Medium Fisheries Catch scenario model with

initial input used in model definition, the input during model testing and the generated

output (a). The time window for each variable is shown in brackets. Note, the time

window for the output starts from 1989. “[]” represents variables for which no evidence

is introduced and which are predicted. “Z ” stands for zooplankton. The observed cod

catch prior to the scenario year of 1995 (solid line) and fixed catch level for the Medium

Fisheries Catch scenario (dashed line) is shown in (b).

We generate a 10% increase temperature scenario (T.I.) and Net PP scenarios: 30%

increase and 30% decline (referred from now on as: Net.I. and Net.D) to understand

the effects of temperature on primary production and its potential knock-on effects on

different zooplankton species and trophic biomass higher up the food chain. We did

consider a scenario of temperature decline but we only present the results following

a potential increase in temperature. We used the year 1990 as a “divergent year”,

from which we would start the scenario conditions by manipulating the temperature

or Net PP data to either increase or decline but keeping the rest of the observed data

unchanged, e.g. if the average sea surface temperature for 1990 is 9◦C, then for 1991

it would 9.9◦C. For these two types of scenarios, the number of observed variables in

the experimental set-up is 12 (total catch, temperature, Net PP, Calanus finmarchicus,

Calanus helgolandicus, small copepods, P sp., SP sp., LP sp., P, SP and LP).
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6.4 Results

In the following, we describe the outputs from the modelled fisheries catch, temperature

and Net PP scenarios by examining future trends of individual fish and zooplankton

species at spatial and temporal scales. We explain the results from the scenarios in terms

of how much worse (or better) the ecosystem components are predicted to become. Our

results demonstrate some variability in the future trends of different species, which we

explain through the use of “what if” type descriptions of the other variables in the

model structure.

6.4.1 Fisheries Catch Scenarios

Cod

First, looking at the Historical output (Fig.6.3c), the model managed to capture the

cod variations throughout time and predicted some increase in recent years which were

then followed by some decline. These results highlight that there are some signs of

recovery in recent future years possibly due to strict management regulations placed

since the Millennium (Horwood et al. (2006)), which if continued, will hopefully give the

stock a chance to rebuild completely in this area where the cod was formerly abundant

(Engelhard et al. (2014)). However, at the same time, the cod interactions with other

species groups and its spatial values (biomass in neighbouring areas) that we describe

below also need to be accounted for in terms of short-term management.

Second, looking at the scenario outputs, as we would expect, the scenario of High

Fisheries Catch (H.FC.) (Fig.6.3d) resulted in the lowest modelled cod survey data in

areas 4 and 6 (thus, addressing in detail only area 4). We notice a sudden decline in

early 1990s (as a result from the high scenario catch level), but then the modelled values

were characterised by some fluctuating trend, that was higher than the observed data.

This does not mean that if cod could continue to be fished at the highest recorded level

the stock would still be ok but more likely when the cod survey (and spatial, Fig.6.3a)

values are low and catch is high (Fig.6.3b), another species might increase and a year

later that would cause the cod to increase. For example, in this area, cod is influenced by

the dynamics of species group P (Fig.6.1b), which were predicted to be relatively stable
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with an increasing trend in the near future, partly explaining the modelled cod results

here. Under the scenario of Medium Fisheries Catch (M.FC.), the modelled survey

data seemed to be genuinely stable throughout time that was higher than the scenario

of H.FC. However, we notice that these two scenarios seem to converge in most recent

years, highlighting the similarity in species response to contrasting levels of fisheries

catch, thus still having the need to identify a potential “optimum” level of fisheries

catch. The scenario of Low Fisheries Catch (L.FC.) resulted in the highest modelled

cod survey data, highlighting the importance of fisheries catch on this species dynamics

and identifying a potential “optimum” level of fisheries exploitation comparing to the

medium and high levels from above.

(a) Cod spatial data, area 4 (b) Cod catch, area 4

106



Chapter 6. A Dynamic Bayesian Network Model to Predict Trends of Ecosystem
Change in Response to Fisheries Catch, Temperature and Productivity Scenarios

(c) Cod survey data and Historical output,

area 4

(d) Cod survey data and modelled scenario

cod, area 4

Figure 6.3: Recorded spatial cod data is shown in (a). The observed cod catch (live

weight in tonnes) with the three fixed year levels of fisheries catch scenarios for the

time window 1983-2015 is shown in (b). Recorded survey cod data (solid line) with the

generated output by the Historical model (dotted line) for the time window 1989-2020

for area 4 (c). Recorded survey cod (solid line) with the modelled cod is shown in (d)

under fisheries catch scenarios of high (black dashed line), medium (grey dashed line)

and low (black dotted line) levels for the time window 1989-2020.

Plaice

Results from the Historical model (Fig.6.4c) projected relatively high trend of increase

in the near future, which is suggested to be due to shifting distribution of plaice from

southern to more northern areas (Engelhard et al. (2011)). We notice that the Historical

model did not manage to predict the scale of the two recent peaks in the survey data,

which could reflect a combination of year to year variation of recruitment into the area

and variability in the survey data. Even, the genuine declining trend in the recorded

plaice catch (Fig.6.4b) could further support the modelled increase, the future trend of

the plaice is better explained by climate and spatial values that need to be taken into

consideration when designing management measures that are more “adaptive” in future

years (Engelhard et al. (2011)).

Now, let us look at the outputs from the fisheries scenarios: for the modelled plaice

survey data in area 3, the scenario of L.FC. did result in the highest projected trend

of plaice (Fig.6.4d). Interestingly, the two contrasting levels of scenarios of H.FC. (over
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8000 tonnes) and M.FC. (just over 4000 tonnes) projected similar trends of plaice values

in area 3. Assuming medium to high level of fisheries exploitation (and according to the

model structure, Fig.6.4a), the projected plaice might be relatively stable with higher

values than the recorded survey data when the dynamics of P species are relatively

low (e.g. the influence of herring predation on plaice recruitment has been discussed

before: Daan et al. (1985)) and plaice spatial values are high. These results highlight

the variability in terms of “optimum” levels of fisheries exploitation (due to species

interactions) and consequently species-specific response to ecosystem change.

(a) Area 3 (b) Plaice catch, area 3
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(c) Plaice survey data and Historical out-

put, area 3

(d) Plaice survey data and modelled plaice,

area 3

Figure 6.4: The model structure for area 3 that models the plaice dynamics is shown

in (a). The dotted edges are defined by the expert. The observed plaice catch (live

weight in tonnes) with the three fixed year levels of fisheries catch scenarios for the time

window 1983-2015 is shown in (b). Recorded survey plaice data (solid line) with the

generated output by the Historical model (dotted line) for the time window 1989-2020

is shown in (c). Note, the y-axis was cut off only for visual purposes. Recorded survey

(solid line) with the modelled plaice data under fisheries catch scenarios of high (black

dashed line), medium (grey dashed line) and low (black dotted line) levels for the time

window 1989-2020 is shown in (d).

Whiting

The Historical model (Fig.6.5b) managed to reflect on the declining trend of whiting

throughout time and predicted some rising trends in the near future which were then

followed by some decline. There is some obscurity regarding the status of whiting stock,

which has caused further implications in terms of management but it has been discussed

that whiting does not exhibit strong responses to climate change (Kerby et al. (2013)).

Thus, controlling for the level of fisheries exploitation and considering trophic interac-

tions and spatial values as we show below are of high significance in terms of short-term

management.

We found the opposite of what we were expecting from the fisheries catch scenarios for

whiting in area 3: a scenario of L.FC. produced whiting predictions, that were charac-

terised with the lowest trend throughout time (Fig.6.5c). This suggests that potential

trade-offs between some competitive species such as whiting and higher trophic level

109



Chapter 6. A Dynamic Bayesian Network Model to Predict Trends of Ecosystem
Change in Response to Fisheries Catch, Temperature and Productivity Scenarios

species (e.g. cod) are expected which have been discussed before (Mackinson & Daskalov

(2007)). The surrounding predictions of the whiting spatial node were also characterised

by a declining trend, which in combination with the medium to high catch from M.FC.

and H.FC. and relatively low values of the P species group (the network from Fig.6.4a

is the same but we would replace plaice with whiting) might allow for another species to

increase (e.g. larger predator), which in turn would cause the projected whiting values

here. We note that the predicted trends from the M.FC. and H.FC. scenarios were rela-

tively similar which might be due to similarity in the level of fisheries catch but also due

to the fact that trophic interactions are potentially more important for controlling the

whiting dynamics compared to fisheries, as discussed in Trifonova et al. (2015) for this

area. Interestingly, the hidden variable (HV ) captured some of the expected “correct”

characteristics: the scenario of L.FC. projected a strongly increasing trend of the HV,

that was much higher than the HV from the Historical model. The HV is linked to

the LP species group (which includes cod), so it is capturing changes in the variance of

their survey data, potentially due to species associations and interactions (LP is influ-

enced by SP and P sp.) and consequent trade-offs between species, that were not easily

detected by the model predictions alone. Our results of modelling whiting in response

to different fisheries levels and consequent rising trophic interactions and sensitivities

that were captured by the HV, suggest that for effective management, reorganization

of the fishing strategies in the mixed-fisheries context will be required to ensure that

the right species are targeted and harvested sustainably. Thus, still having the need

to identify a potential “optimum” level of fisheries catch to account for the effect of

trade-offs between species.
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(a) Whiting catch, area 3 (b) Whiting survey data and Historical out-

put, area 3

(c) Whiting survey data and modelled whit-

ing, area 3

Figure 6.5: The observed whiting catch (live weight in tonnes) with the three fixed

year levels of fisheries catch scenarios for the time window 1983-2015 is shown in (a).

Recorded survey whiting data (solid line) with the generated output by the Historical

model (dotted line) for the time window 1989-2020 is shown in (b). Recorded survey

(solid line) with the modelled whiting data under fisheries catch scenarios of high (black

dashed line), medium (grey dashed line) and low (black dotted line) levels for the time

window 1989-2020 is shown in (c).

Sole

Our results from the Historical model captured the strong fluctuating trend of the sole

survey data (Fig.6.6c), which is most likely due to the strong influence from temperature

and environmental variability on this species (Engelhard et al. (2011)), and projected

some stability in near future years. In terms of management implications, the influence

from fisheries catch and climate change needs to be taken into consideration and simi-

larly to other species, reorganization of the fishing strategies will be required to ensure
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that this species is targeted sustainably in the correct spatial areas, following changes

in distribution as explained below.

The scenario of L.FC. for area 6 produced the trend of highest magnitude throughout

time (Fig.6.6d), although the trend was characterised with some fluctuation throughout

time. That could be an indication of the relatively low catch levels in combination with

the effect from environmental conditions on the recruitment and survival of sole (Perry

et al. (2005)). The scenario of H.FC. did result in the lowest modelled trend throughout

time, although there was some similarity with the predictions modelled by the scenario

of M.FC., which could be due to the more or less similarity in the catch levels between

those two scenarios. However, we can see that the effect from fisheries catch on this

species is potentially strong as it has been suggested by other studies (Engelhard et al.

(2011)). Interestingly, it has been found for this species to be characterised by a dis-

tributional shift from northern to southern areas (opposite to the distributional shift of

plaice), thus resulting in a potential increase of this species in areas such as area 6. This

could further explain the similarity in the modelled predictions between the scenarios

of M.FC.and H.FC., thus the distributional shift is potentially masking the full effect

from fisheries catch.

(a) Area 6 (b) Sole catch, area 6
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(c) Sole survey data and Historical output, area

6

(d) Sole survey data and modelled sole, area 6

Figure 6.6: The network structure for area 6 that models the sole dynamics is shown in

(a). The dotted edges are defined by the expert. The observed sole catch (live weight in

tonnes) with the three fixed year levels of fisheries catch scenarios for the time window

1983-2015 is shown in (b). Recorded survey sole data (solid line) with the generated

output by the Historical model (dotted line) for the time window 1989-2020 for area 6

is shown in (c). Recorded survey (solid line) with the modelled sole data under fisheries

catch scenarios of high (black dashed line), medium (grey dashed line) and low (black

dotted line) levels for the time window 1989-2020 is shown in (d). Note, the y-axis in

(c) and (d) was cut off only for visualisation purposes.

Haddock

Our Historical model projected relatively low trend of haddock data in the future

(Fig.6.7c) which could be explained by the fact that studies have reported that haddock

tends to move further north due to changes in climate (Mackinson & Daskalov (2007)),

suggesting that keeping the catch to a potential “optimum” level is not the only key

factor to the recovery of larger predators in this area. These results should be taken

into consideration in terms of management as strategies should be re-directed towards

other species in this area.

Interestingly, the opposite of what we were originally expecting was found for the had-

dock survey data from the different fisheries catch scenarios. The scenarios of H.FC.

and L.FC. produced the highest and lowest trend of haddock survey data respectively

(Fig.6.7d). We notice the strong individual year effects for this species dynamics, for
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example in early 2000, that were evident throughout all catch scenarios. However, if we

look at how the other ecosystem components are predicted to change in this area, we

can see clearer results on the modelled future trends from the catch scenarios, which

could potentially explain the unusual haddock predictions we found here.

For example, the SP and LP species group data was predicted to be of the highest

magnitude once the catch was kept to a minimum from the scenario of L.FC. (poten-

tially due to decline in the catches of plaice and cod and subsequent increase in the

biomass of these species). Interestingly, the scenario of M.FC. projected a clear in-

creasing trend for only the hidden variable (HV ), suggesting that the HV is potentially

capturing changes in the variance of species biomass following species associations and

interactions with catch (the HV is influenced by catch, SP, LP and haddock, Fig.6.7a).

In addition, the spatial relationship between neighbouring areas could also explain the

modelled haddock data: the surrounding spatial haddock values were characterised by

a strong declining trend throughout time that was also projected to continue in the near

future.

(a) Area 6 (b) Haddock catch, area 6
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(c) Haddock survey data and Historical output,

area 6

(d) Haddock survey data and modelled haddock,

area 6

Figure 6.7: The network structure for area 6 that models the haddock dynamics is

shown in (a). The dotted edges are defined by the expert. The observed haddock catch

(live weight in tonnes) with the three fixed year levels of fisheries catch scenarios for

the time window 1983-2015 is shown in (b). Recorded survey haddock data (solid line)

with the generated output by the Historical model (dotted line) for the time window

1989-2020 for area 6 is shown in (c). Recorded survey (solid line) with the modelled

haddock data under fisheries catch scenarios of high (black dashed line), medium (grey

dashed line) and low (black dotted line) levels for the time window 1989-2020 is shown

in (d).

6.4.2 Temperature and Net PP Scenarios

We are now looking at the potential influence of temperature on the future projections

of productivity and consequently how the productivity will influence the future trends

of different zooplankton species. We have chosen to present results only for areas 1, 3

and 6 due to the contrasting nature of the physical and bio-chemical characteristics of

these areas.

For area 3 (and area 1), the scenario of T.I. resulted in an increasing trend of

Net PP throughout time (Fig.6.8a) that was also higher than the Historical model.

However, the T.I. scenario projected some Net PP decline in recent future years that

was characterised by a converging trend with the projections of the Historical model,

possibly indicating a drop in productivity, as it has been suggested by other studies

(Blanchard et al. (2012)). Conversely, for area 6, the scenario of T.I. projected a trend
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of lower Net PP values (Fig.6.8b) than the Historical model, potentially due to larger

temperatures changes in southern areas. Similarly, there was a drop in productivity

projected from 2017 onwards, that could be related to the overall future productivity

conditions expected in the North Sea.

(a) Net PP, Area 3 (b) Net PP, Area 6

Figure 6.8: Modelled Net PP for areas 3 (a) and 6 (b), generated by the Historical

model (solid line) and scenario of T.I. (black dashed line) for the time window: 1989-

2020. Negative scale is due to standardisation. The vertical solid line indicates the year

of divergence (1990), when we initiate the scenario conditions.

In area 1, it was difficult to interpret the future trend for C.finmarchicus, its predic-

tions were slightly lower following a scenario of T.I., whilst no significant change in the

species trend was found from either of the Net PP scenarios, highlighting the importance

of temperature. In area 3 (and area 6), results for this zooplankton species were clearer:

a scenario of T.I. projected a lower trend throughout time for this species, comparing

to the Historical model (Fig.6.9a). The opposite was found for C.helgolandicus: in all

areas, the scenario of T.I. produced a trend of higher magnitude in time for this species

(Fig.6.9b). In areas 3 and 6, it was also the scenario of Net.D. that let to higher values

of both zooplankton species, as a consequence of temperature influence on productivity.

We notice some future drop in the projected values of the C.finmarchicus species. In

all three areas, similar dynamics were modelled for the small copepods, as were for the

C.finmarchicus, a decline in the copepods’ values was projected under a scenario of T.I.

Here, we further confirm how different zooplankton species would potentially respond to

change in temperature, highlighting that potential trade-offs will also emerge between

lower trophic level species that might potentially cause further complications to species
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higher up the food chain.

(a) C.finmarchicus, area 3 (b) C.helgolandicus, area 6

Figure 6.9: Modelled data by the Historical model (solid line) for C.finmarchicus for

area 3 (a) and C.helgolandicus for area 6 (b) under scenarios of T.I. (black dashed line)

and Net.D. (grey dotted line) for the time window: 1989-2020. Negative scale is due to

standardisation. The vertical solid line indicates the year of divergence (1990), when

we initiate the scenario conditions.

We were able to detect a knock-on effect on the future dynamics of the P species

group survey data, following changes in temperature and productivity: in area 6, there

was a clear increase in the future trend of the P species group following scenarios of

T.I. and Net.D. (potentially beneficial to C.helgolandicus from above), outlining the

temperature importance on species dynamics in some areas. In area 3 (and area 1), it

was difficult to interpret the effect from temperature but the scenario of Net PP decline

would consequently result to an increase in the trends of the herring and P species

group survey data (Fig.6.10a,b). Here, the influence of productivity is likely to mask

the effects from fisheries, as according to Fig.6.4a, the catch has a direct influence on Net

PP, or cause a mixture of responses due to multiple causal mechanisms and stressors

on the ecosystem (Halpern et al. (2008)).

To summarise, we found the modelled future zooplankton trends to be species-specific

but there seems to be consistency in terms of their response to temperature change

across the different areas, whilst more variability was found relating to productivity

changes. In addition, we were able to confirm the potential influence from productivity

and to some extent temperature (depending on the area) changes to species, higher up

the food chain.
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(a) Herring, area 3 (b) P, area 3

Figure 6.10: Modelled data by the Historical model (solid line) for herring (a) and P

species group (b) for area 3 under scenarios from Net PP increase (black dashed line)

and decline (grey dotted line) for the time window: 1989-2020. The vertical solid line

indicates the year of divergence (1990), when we initiate the scenario conditions.

6.5 Summary

In this work, we explored the trends of ecosystem change in response to anthropogenic

and environmental scenarios by modifying a dynamic data-driven functional network

model, accounting for spatial heterogeneity and unmeasured spatial effects. It is im-

portant to note that we did not attempt to indicate levels of plausibility between these

scenarios but rather explore the predictive results of species response to fisheries and

environmental change. Our results highlighted that reducing fisheries catch will not

necessarily lead to recovery of all commercially important fish species because fish con-

sume one another, thus the total catch of one species will consequently affect that of

others through knock-on effects in the food web. Overall, we found some spatial vari-

ability in terms of species response to different fisheries catch and productivity scenarios,

highlighting the influence from factors such as trophic associations, spatial connectivity

between areas and species interactions with their environment, that could potentially

contribute towards the better understanding of ecological stability and resilience in a

changing environment. However, at the same time, we found some universal species

trends to changes in catch and temperature, that could provide some strategic advice

on potential response of the system to such pressures.

In the scenarios modelled here, some trade-offs between species emerged in terms of
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how they would respond to different levels of fisheries catch. Specifically, the potential

recovery that we found for cod in recent future years could explain the modelled re-

sults for whiting because cod feeds on juvenile whiting (Mackinson & Daskalov (2007)).

Similar results were found by Lynam & Mackinson (2015) and Lewy & Vinther (2004),

suggesting a more dominant role of the cod in the food web after recovering from ex-

ploitation.

Although, we analyse the different scenarios in respect to the species of interest in the

relevant area, we do acknowledge that one area’s dynamics likely affect another by in-

troducing the spatial nodes into the model structure. In this way, we also increase the

confidence in the robustness of the approach and contribute to increased knowledge

of model behaviour. One main issue encountered is the uncertainty in future trends,

which is obviously inherent to any model linking external factors to species interactions.

These linkages are of major importance for mixed-fisheries management (Ulrich et al.

(2011)). However, the fact that we were able to recover genuine trends of species dy-

namics throughout space and time from the previous chapter and that we were able to

identify similarity in our results here with other modelled species predictions (Lynam

& Mackinson (2015); Lewy & Vinther (2004) and Vinther et al. (2004)) contributes to

strengthening the confidence that our approach can provide some strategic advice on

modelling species response to change.

Finally, in the modelled scenarios here, we found that some species appear more robust

to changes in fisheries exploitation, compared to others, however changes in temperature

and productivity might be more important in terms of the species long-term sustain-

ability. Increase in temperature leads to an increase in lower trophic level species and

consequently their predators, which we found true for some areas, whilst in others, the

effect of temperature on fish was less evident due to interactions with productivity,

which could be acting more strongly than the effect of fishing (Blanchard et al. (2010)).

Such results confirm that species response to any future changes in temperature will be

determined by their spatial habitat because temperature variations consequently lead

to spatial variability in productivity, potentially causing further forcing on higher level

trophic species and mixture of responses at spatial scales.

Our results allow dynamic assessment of choices, which should be able to provide strate-
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gic advice on potential system response to pressure. In terms of management objectives

and expectations, we support the idea that for a given area, reorganisation of the fishing

fleet and management strategies will be required to ensure that the right species are

targeted and harvested sustainably (Simpson et al. (2011)).

In the next chapter, we will look at the issue of generalising between different marine

geographic regions (North Sea and Gulf of St Lawrence) in order to confirm key func-

tional interactions. We are interested in examining the concept of functional equivalence

across different datasets to determine level of similarity in the way ecosystems organise

themselves functionally and respond to pressures.
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Chapter 7

Models for Generalisation across

Different Marine Ecosystems

7.1 Introduction

In this chapter, we generalise dynamic interactions between trophic groups of species

from different marine ecosystems to confirm key functional relationships. Examining

the nature of functional relationships that are ubiquitous over systems is important in

order to understand the controlling mechanisms and study impacts of forces such as

fishing and climate change. Different species may have similar functional roles within

a system depending on the region. If we can model the type of interaction rather than

the species itself, we can integrate processes into predictive models and study ecolog-

ical controls and patterns in marine ecosystems that is essential for ecosystem-based

approaches to fisheries management. Thus, being able to provide a general framework

to model ecosystem dynamics is of growing importance for the protection of natural

biodiversity and human resources. We predict species biomass by accounting for spa-

tial autocorrelation and unmeasured effects to generalize the relative influence of forces

such as fishing and temperature change on species dynamics. Although, different ma-

rine ecosystems might experience varying levels of fisheries catch and climate change,

we believe that we can find similarity in the genuine species response to natural and

anthropogenic pressures. We are specifically interested in modelling species functional
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networks and trophic dynamics with a focus on the concept of functional equivalence

across different marine ecosystems, thus allowing more robust models to be built and

predictions to be made about future biomass.

In this chapter, we learn dynamic Bayesian networks for 7 geographically different sub-

regions within the Gulf of St. Lawrence with varying trophic structure and evaluate

these Bayesian models on 7 different areas within the North Sea. In addition, we in-

corporate hidden variables in the models to examine unmeasured effects in order to

outline the importance of different mechanisms on the dynamics of exploited ecosys-

tems in different regions. In particular, a focus is made on the development of models

that identify functionally equivalent trophic interactions (as opposed to species like we

did in Chapter 1) in different fish communities with the aim of predicting the influence

from different pressures (as opposed to functional collapse like we did in Chapter 4), fur-

ther highlighting key mechanisms and interactions that are significant to the population

dynamics.

7.2 Description of Biomass Data to Model Generalisation

across Two Geographic Regions

The analyses are based on the same dataset from Chapter 5 for the Gulf of St Lawrence

and North Sea, that is why we only briefly mention some of the key points of the dataset.

We analysed data from the northern Gulf of St. Lawrence (48.00◦N, 61.50◦W, Fig.7.1)

groundfish and shrimp summer survey (1990-2010). K-means (Hartigan & Wong (1979))

was applied to limit the number of variables and cluster the number of sampling stations

(originally over 200 sampling stations per year) on the mean latitude and longitude, re-

sulting in 20 spatial clusters (or sub-regions). However, from these 20 clusters, seven

were chosen based on their predictability (the 7 clusters that were most easily pre-

dictable from Chapter 5: clusters 1, 2, 4, 11, 13, 17 and 18, Fig.7.1) so that we use

equivalent number of spatial areas from both regions.

For the North Sea, we only consider data collected within ICES (International Council

for Exploration of the Seas) areas 1 to 7 (Fig.5.2 from Chapter 5, sub-section 5.2.2

North Sea) due to limited quality and consistency of the data on the remaining spatial
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areas.

For both regions, fish species were aggregated into the relevant trophic group by sum-

ming up the biomass (P - pelagics, SP - small piscivorous fish and LP - large piscivorous

and top predators) (FishBase was used as a guidance point). The nature of individual

species summed into the trophic guilds varied between the spatial areas but this was not

of importance since they were always aggregated into the correct trophic group. This

was performed for each of the areas and for each year in the time window: 1990-2010,

ending up with three variables for each spatial area (and region) across the time win-

dow. The data was standardised (sample mean removed from each observation, which

is then divided by the standard deviation) prior to conduction of the experiments.

Figure 7.1: Locations of the spatial clusters for the Gulf of St Lawrence

7.3 Methods

7.3.1 Generalisation between Different Geographic Regions to Predict

Species Biomass

We learn dynamic Bayesian networks (DBNs) for 7 geographically different sub-regions

within the Gulf of St. Lawrence (each with its own network structure) and evaluate

these Bayesian models on 7 different areas within the North Sea .

The experiments involved prediction of aggregated species biomass for pelagics (P),
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small piscivorous (SP) and large piscivorous (LP) fish species. For detailed description

of modelling time series and predicting species biomass using DBNs look at Chapter 4,

sub-section 4.3.2 Hidden Variable Models to Predict Regime Shifts and Species Biomass.

Fig.7.2 represents an example DBN for cluster 2 of the Gulf with a hidden variable and

the three observed variables. The model structure for each one of the clusters of the Gulf

is defined by the data-learning optimization technique that was applied and explained in

Chapter 5, sub-section 5.3.1 Introducing a Technique to Learn the Structure of Bayesian

Network Models, but only links with a threshold of ≥ 0.3 were kept.

Figure 7.2: The dynamic Bayesian network structure for cluster 2 from the Gulf of St

Lawrence that was used to model the dynamics for the areas within the North Sea.

Each dynamic model structure from the Gulf was evaluated on each area from the

North Sea, thus resulting in 7 model variants for each area from the North Sea or

49 models altogether. From now on, we will refer to each of those model variants by

non-spatial DBNs. In addition, to incorporate potential spatial autocorrelation in our

models, we enforce a parent node that represents the average biomass of the combined

trophic groups from the spatial neighbourhood (the three or four nearest neighbours)

of the current area (model referred as spatial DBN). This adds up to another 49 model

variants with a spatial node altogether for the North Sea. Fig.7.3 shows the model

structure for cluster 13 from the Gulf with a spatial node added. We wanted to compare

if the inclusion of spatial nodes results in improvement of predictive accuracy. Non-

parametric bootstrap was applied 250 times for each model variant to identify statistical

confidence in the predictions. Model performance was compared by the sum of squared

error (SSE).
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Figure 7.3: The spatial DBN structure for cluster 13 from the Gulf of St Lawrence that

was used to model the dynamics for the areas within the North Sea.

7.3.2 Modelling Hidden Variables to Identify Controlling Mechanisms

and Drivers of Change in the North Sea

The hidden variable was parameterised using the EM algorithm and then validated

against the observed variable it might represent (either fisheries exploitation, tempera-

ture or zooplankton in the North Sea, which are all key drivers of change in this region).

The distribution of the hidden variable was compared to the observed variable it might

represent using the Mann-Whitney U test. The null hypothesis, that is being tested

by Mann-Whitney U, is that the distributions of two groups (here, hidden variable and

temperature for example) are identical. Note, if the p value is small (p≤.05), we reject

the null hypothesis and conclude that the two distributions are distinct, however if the

p value is large (p≥.05), the data do not give us any reason to reject the null hypoth-

esis which does not necessarily mean that the two distributions are identical but there

is no compelling evidence that they differ significantly (Cheung & Klotz (1997)). All

statistical tests were reported at 5% significance level.

7.4 Results

7.4.1 Generating Biomass Predictions for the North Sea using Dy-

namic Models from the Gulf of St Lawrence

Results for the North Sea showed varying predictive accuracy with the different spatial

clusters from the Gulf of St Lawrence, highlighting some sub-regions that consistently
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perform better than others.

Some clusters from the Gulf were highlighted in terms of generating most accurate

overall biomass predictions per area. For example, clusters 11 and 17 from the Gulf

produced the most accurate predictions for majority of the areas. The structure for these

clusters is shown in Fig.7.4. These results confirm the significance of interactions such

as P− >LP, highlighting the importance of species group P for the trophic dynamics

of larger predators from the species group LP. In addition, the successful performance

of these structures in modelling the species dynamics for more than one area within the

North Sea, highlights the similarity between such areas in terms of ecological structure

and importance of some trophic groups compared to others.

(a) Cluster 11 (b) Cluster 17

Figure 7.4: The non-spatial DBN structures for clusters 11 (a) and 17 (b) from the Gulf

of St Lawrence that were used to model the dynamics of species in the areas of North

Sea.

It was interesting to find out that even after the addition of the spatial node in the

model structure for the Gulf, some clusters were outlined again in terms of their overall

predictive performance within North Sea areas. In all areas, except for one- area 4,

the same clusters (after the addition of a spatial node) and their relevant structures

from the Gulf modelled the species dynamics in the North Sea with the highest accu-

racy. This strengthens the confidence in our methods in terms of detecting functionally

equivalent species interactions, even the varying level from natural and anthropogenic

sources on different marine ecosystems. Our results highlight the similarity of the un-

derlying trophic dynamics and the relevant importance of different species groups and

interactions for the underlying local ecological networks. The only exception from this-
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area 4, we suggest to be due to the less influential spatial effect on this area’s dynamics

and potentially higher influence from local mechanisms such as recruitment, prey avail-

ability and migration.

In addition, we further confirm the importance of including spatial autocorrelation when

building predictive ecological models. We found that in a majority of the areas the pre-

dictive performance was improved once the spatial node was included in the model

structure (Table 7.1). There were some exceptions to that, for example in areas 2, 4

and 6, however the negative influence from adding the spatial node was insignificant as

it only slightly lowered the accuracy of the predictive results.

Table 7.1: Sum of Squared Error (SSE) of the overall trophic group species predictions

for the North Sea, generated by the non-spatial and spatial DBNs from the Gulf of St

Lawrence (GSL). The cluster from the GSL that produced the most accurate overall

biomass predictions is shown in brackets.

We now present the biomass predictions for the individual species groups to explore

the models’ predictive accuracy and spatial consistency. We can see from Table 7.2 that

some clusters from the Gulf were highlighted in terms of producing the most accurate

predictions for P, SP and LP in the North Sea. For example, the P species group

was most accurately predicted by cluster 1, followed by clusters 11 and 4 from the

Gulf. Genuinely, predictions for the P species group were most accurate followed by

predictions for the LP species group, suggesting some of the common dynamics such

species undergo in different ecosystems. Specifically, large predators have undergone

periods of decline due to high commercial value and their consequent exploitation.

Similarly to P species, cluster 1 modelled the most accurate SP predictions, followed

by cluster 13. Finally, for the LP species group, cluster 17 from the Gulf modelled this
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species group dynamics with accuracy for majority of the North Sea areas. In cluster

1, the dynamic model structure consists of trophic interactions P− >SP and P− >LP,

whilst for cluster 17 the structure was characterised by the relationships: P− >LP and

SP− >LP, outlining the significance of these interactions for the overall structure and

functionality in different marine ecosystems.

Table 7.2: Sum of Squared Error (SSE) of P, SP and LP predictions for the North Sea,

generated by the non-spatial DBN from the Gulf of St Lawrence (GSL). The cluster

from the GSL that produced the most accurate biomass predictions is shown in brackets.

Now, let us look at the individual species predictions after the addition of a spatial

node to the model structure. Overall, the majority of the individual species predictions

improved once the spatial node was included in the model. There were only very few

cases that the opposite was seen but similarly to the overall spatial comparison, the

negative influence was not severely drastic. Thus, we further confirm the importance of

spatial autocorrelation and the fact that one area’s dynamics likely influence another in

terms of building ecological approaches for modelling trophic dynamics.

What was more interesting to see was that, the spatial structure for some of the clusters

in the Gulf was also the structure (before adding the spatial node) to accurately predict

the species dynamics in the same areas within the North Sea (Look at the * symbol in

Table 7.3). That was the case for majority of the species groups SP and LP, whist for

the P species group, the accurate performance for only one cluster remained unchanged

after adding the spatial node. These results suggest the similarity of the underlying

dynamics for medium to larger sized predators following natural and anthropogenic

sources but also the significance of smaller pelagic species for the ecological functionality

and stability. In addition, it was interesting to see that in the areas, for which the Gulf

structure performed well in modelling the North Sea dynamics, were also the areas,
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in which there was a slight negative influence from adding the spatial node. This

suggests that in such areas the functional relationships between species and ecological

mechanisms are much more influential comparing to spatial interactions.

Table 7.3: Sum of Squared Error (SSE) of P, SP and LP predictions for the North Sea,

generated by the spatial DBN from the Gulf of St Lawrence (GSL). The cluster from

the GSL that produced the most accurate biomass predictions is shown in brackets.

The * symbol indicates the clusters from the non-spatial DBN that also generated the

most accurate predictions for the relevant species group within the North Sea.

Now, we move onto the generated predictions of the species groups and specifically

their characteristics throughout time. For example, Fig.7.5 shows the predictions for

P, SP and LP for area 3 in the North Sea generated by the non-spatial DBN from

cluster 11 in the Gulf. We can see that the model is genuinely capturing some of the

temporal variations, specifically for P and SP. SP (Fig.7.5b) was characterised with

some increase in early 2000, that was captured by the model. The network structure

that was used to generate these predictions is shown in Fig.7.4a and we can see that

the SP species group is influenced by the dynamics of species group P.
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(a) P, Area 3 (b) SP, Area 3

(c) LP, Area 3

Figure 7.5: Generated biomass predictions for species groups P (a), SP (b) and LP

(c) for area 3 in the North Sea by the non-spatial DBN model from cluster 11 in the

Gulf. Predictions are shown by the solid line and standardised observed biomass by the

dotted line.

Let us look at another example- cluster 1 from the Gulf modelling the species dy-

namics for area 5 in the North Sea. The P species group was characterised by a rela-

tively stable trend throughout time with the exception of some year effects, which were

captured by the model (Fig.7.6a). SP was characterised by a declining trend in the

beginning of the time series but it started to increase in some recent future years, both

of which were projected with high accuracy by our dynamic model (Fig.7.6b). Similarly

to P, it was difficult to characterise LP with a trend, however our model managed to

reflect on the strong fluctuation throughout time (Fig.7.6c)

130



Chapter 7. Models for Generalisation across Different Marine Ecosystems

(a) P, Area 5 (b) SP, Area 5

(c) LP, Area 5

Figure 7.6: Generated biomass predictions for species groups P (a), SP (b) and LP

(c) for area 5 in the North Sea by the non-spatial DBN model from cluster 1 in the

Gulf. Predictions are shown by the solid line and standardised observed biomass by the

dotted line.

Finally, let us look at the predictions by the non-spatial dynamic model for cluster

11 from the Gulf evaluated on area 7 in the North Sea. Here, our model reflected on the

temporal variations for the P species group (Fig.7.7a) and captured the declining trend

of the LP species group (Fig.7.7c). Predictions for the SP species group (Fig.7.7b)

were probably least accurate. It was difficult to detect a temporal trend for this species

group, there were some distinct individual year effects for example in late 1990s and

early 2000, but our model managed to capture only some of these fluctuations.

131



Chapter 7. Models for Generalisation across Different Marine Ecosystems

(a) P, Area 7 (b) SP, Area 7

(c) LP, Area 7

Figure 7.7: Generated biomass predictions for species groups P (a), SP (b) and LP

(c) for area 7 in the North Sea by the non-spatial DBN model from cluster 11 in the

Gulf. Predictions are shown by the solid line and standardised observed biomass by the

dotted line.

To summarise, we managed to show the success of our dynamic model in terms of

capturing species variations throughout time, which to recall was trained on data from

the Gulf of St Lawrence and evaluated on data from the North Sea. Predictions were

not always perfect, which we suggest to be due to couple of things. First, there could be

some effect from external factors such as temperature and climate or effect from other

mechanisms such as prey availability or habitat degradation, that we did not account for

in the model, which could have had some negative influence on the produced predictions

here. Another thing, which is probably most likely, is that such ecological data is very

noisy and complex characterised with strong variability throughout time and a more

complex structure would be needed to perfectly capture the species dynamics, as we

showed in Chapter 5 for the North Sea.

However, here the goal was not to find the “perfect” structure that models the trophic
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dynamics but to generalise functional interactions between different marine ecosystems

in order to find out what are the key relationships between species groups, which we

showed by modelling species dynamics from different datasets. Also, we managed to

generalise the influence from natural and anthropogenic forces in terms of capturing

genuine temporal trends such as the decline in medium to larger-sized species that are

of high commercial importance and have suffered severe declines throughout time and

in different spatial ecosystems.

7.4.2 Identified Driving Factors for the Ecosystem Dynamics in the

North Sea

To recall, we include a hidden variable in our models to see if the hidden variable re-

flects any changes in the species variance or potentially captures the dynamics of other

mechanisms such as temperature or fisheries catch that might be influencing the species

groups. Then, the hidden variable was validated against the observed variable it might

represent. To recall, we are comparing the distribution of the expected value of the hid-

den variable versus the distribution of the observed variable it might represent. The null

hypothesis, that is being tested by Mann-Whitney U, is that the distributions of two

groups (here, hidden variable and fisheries catch or temperature) are identical. Note,

if the p value is small (p≤.05), we reject the null hypothesis and conclude that the

two distributions are distinct, however if the p value is large (p≥.05), the data do not

give us any reason to reject the null hypothesis which does not necessarily mean that

the two distributions are identical but there is no compelling evidence that they differ

significantly (Cheung & Klotz (1997)).

For majority of the areas, we found the hidden variable to be modelling either fisheries

catch or zooplankton however for some areas, the hidden variable was modelling temper-

ature, suggesting the importance of the relevant species group and/or external stressor

for the structure and functionality of the local dynamics. Here, we are going to present

the expected value for some of the hidden variables (versus the observed variables they

might represent) from the clusters in the Gulf that managed to most accurately predict

the species dynamics within the North Sea (from Table 7.1).
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First, we show what the expected value of the hidden variable from the non-spatial

DBN model is potentially modelling for each area for the North Sea (Table 7.4). It was

interesting to see that in only area 5, the hidden variable was modelling temperature.

As expected, in areas 1 (Fig.7.8a) and 2, the hidden variable was modelling the fish-

eries catch, as we know from earlier work (Chapter 5) these are key areas of fisheries

exploitation characterised with complex and diverse dynamics. Specifically, the hidden

variable in Fig.7.8a managed to reflect on the declining trend of the catch in early 2000.

Also, it was interesting to see that in areas 3 and 4, the hidden variable was modelling

the trend of zooplankton in the North Sea, as we have previously shown for these areas

(from Chapter 5), the trophic dynamics and species associations are of bigger influence

comparing to fisheries exploitation. In fig.7.8b, we can see that the learned hidden vari-

able for area 4 is projecting a decline that coincided with the decline in zooplankton in

late 1990s to early 2000, also capturing some of the individual year effects, for example

from years 2002 and 2004.

Table 7.4: Summary of the expected value of the hidden variable generated by the non-

spatial DBN model from the Gulf of St Lawrence (GSL) for areas 1 to 7 in the North

Sea. The table shows what the hidden variable is expected to model and the relevant

summary statistics from the Mann-Whitney U test.
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(a) Hidden variable, Area 1

(b) Hidden variable, Area 4

Figure 7.8: The expected value of the hidden variables (solid line) for areas 1 (a) and

4 (b), generated by the non-spatial DBN model from cluster 17 in the Gulf, with the

standardised observed data (dotted line) for fisheries catch and zooplankton in the North

Sea. The solid lines indicate upper and lower 95% confidence intervals.

Now, let us look at the expected values of the hidden variables produced by the

spatial DBN models from the Gulf. As expected, we can see that the hidden variables

from the spatial models are modelling the same observed variables for the different

areas in the North Sea, as did the hidden variables from the non-spatial models, with

the exception of two areas- 4 and 7 (Table 7.5). The fact that the same observed

variables were modelled is due to the potential importance of these mechanisms on the

underlying ecological structure and stability, even after adding the influence from species

spatial relations. As for area 4, after the addition of the spatial node in the model, the

hidden variable modelled the fisheries catch, rather than zooplanknton, which could
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be due to the increased influence from neighbouring species and the importance of

fisheries catch on the overall trophic dynamics. We can see that the hidden variable

reflected on the declining trend of the catch, specifically in late 2000s (Fig.7.9a). The

opposite was found for area 7- originally the hidden variable from the non-spatial model

projected similarity with the trend of the fisheries catch but after the addition of the

spatial node, the hidden variable from the spatial dynamic model projected similarity

with the zooplankton. This suggests that accounting for spatial autocorrelation adds

more accuracy to the importance of certain species groups in terms of modelling trophic

dynamics and structure. From Fig.7.9b, we can see that the hidden variable managed

to capture the zooplankton temporal variations, specifically some of the decline in late

1990s and late 2000s.

Table 7.5: Summary of the expected value of the hidden variable generated by the

spatial DBN model from the Gulf of St Lawrence (GSL) for areas 1 to 7 in the North

Sea. The table shows what the hidden variable is expected to model and the relevant

summary statistics from the Mann-Whitney U test.

136



Chapter 7. Models for Generalisation across Different Marine Ecosystems

(a) Hidden variable, Area 4

(b) Hidden variable, Area 7

Figure 7.9: The expected value of the hidden variables (solid line) for areas 4 (a)

and 7 (b), generated by the spatial DBN model from cluster 11 in the Gulf, with the

standardised observed data (dotted line) for fisheries catch and zooplankton in the North

Sea. The solid lines indicate upper and lower 95% confidence intervals.

To summarise, we managed to show that the hidden variables from our models cap-

tured the temporal variations and variance of different observed variables and external

stressors, which allowed us to confirm key mechanisms in terms of defining ecological

structure and stability across spatial scales. Although, the studied marine ecosystems

exhibit different level of exploitation and climate variability, we managed to show what

are the key factors defining trophic dynamics and species groups acting in an ecosystem.

Highlighted mainly was the importance of fisheries exploitation, followed by zooplankton

and finally temperature.
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7.5 Summary

The use of dynamic Bayesian models in this work is unique because it exploits functional

equivalence between different datasets in conjunction with hidden variables to predict

biomass and trophic dynamics. The recognition of a hidden variable is important in

fish community change studies of this nature because it allows causes of change which

are not purely found within the constrained model structure.

Our findings demonstrate that although the effects of external stressors differ across

ecosystems, general results on the trophic structure and functioning can be drawn. Our

results show that different ecosystems can organize themselves functionally in a similar

way and provide us with insights into why fished ecosystems collapse and why they

sometimes do not recover. By adding spatial nodes to the models to correct for spatial

autocorrelation, the predictive performance was preserved for some of the areas, con-

firming key functional interactions. Overall, the learned hidden variables were complex

and varied throughout the NS areas, possibly due to severe climate-ocean interactions

and fisheries exploitation. However, these hidden variables appeared to capture tem-

poral changes of the fisheries catch and zooplankton, outlining the importance of these

mechanisms on the trophic dynamics in different exploited systems.

Here, our Bayesian network models also facilitate the direct incorporation of data-driven

interactions into the structures and parameters. The modelling approach also differs

from other methods in how correlative structures, which are assumed to represent func-

tional relationships, discovered in one system can be imposed upon another system.

The components of the other system which best fit these structures can then be found

in other systems. What our approach assumes is that there are only a few ways for

similar ecosystems to organize themselves structurally (or functionally) even though

the ecosystem components may have different qualities, thus our results suggest that

ecosystems respond similarly to natural and anthropogenic forces. This can provide

real insights into why fished ecosystems collapse and why they sometimes do not re-

cover when a perturbation stops, consequently providing strategic advice to managers

and policy makers.

The next chapter discusses the methods and the findings of this thesis, highlighting
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contributions of the research, limitations and future works.

139



Chapter 8

Conclusions

This chapter discusses the conclusions reached, based on the research presented in this

thesis. Firstly, the research contributions are outlined, followed by an analysis of the

limitations. Finally, potential future work is explained, addressing both research limi-

tations and extending the applicability of the work.

8.1 Thesis Contributions

8.1.1 Functional Network Models with Hidden Variables

Literature analysis showed that marine populations are being threatened by both natu-

ral and anthropogenic sources and in order to understand issues between sustainability

and management, populations cannot be addressed in isolation but in relation to their

interactions and associations with external factors. In this research, we introduce and

fully define the concept of the functional network approach of modelling species dynam-

ics. Functional network models are dynamic models that take into consideration species

interactions (both direct and indirect) and their associations with climate and fisheries

exploitation. The functional network approach is flexible and explorative, allowing for

complex relationships to be recovered from collected field data, thus providing a metric

for assessing community structure and resilience in response to natural and anthro-

pogenic influences.

We exploited functional equivalence between different datasets in combination with
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dynamic models that used hidden variables to predict functional collapse and species

biomass. We explored the use of recognised statistical metrics in conjunction with hid-

den variables which proved useful (compared to those without) in terms of detecting

early-warning signals (significantly rising variance and hidden variable fluctuations) of

functional changes. The hidden variable managed to reflect some of the metrics’ char-

acteristics in terms of identifying regime shifts that are known to have occurred and it

also appeared to capture changes in the variance of different species biomass. Therefore,

the recognition of a hidden variable is important in fish population studies because it

represents something external to the fish community and trophic dynamics, that is not

purely constrained within the model structure.

We extended the concept of functional equivalence and showed that different ecosys-

tems can organize themselves functionally similar. By applying dynamic models that

essentially represent functional relationships between species we showed that trophic

interactions discovered in one system can be imposed upon another system. Thus, our

analysis suggested that even the varying levels of exploitation and climate variability

across marine ecosystems and their species with different qualities, there are only few

ways ecosystems can organise themselves functionally. This further implies that there

will be similar ways of collapsing and forcing from external factors.

8.1.2 Hidden Spatial Dynamic Bayesian Network Model

We developed a modelling approach that analyses multiple associations between groups

of species and their environment accounting for unmeasured effects and spatial auto-

correlation. Our proposed model was able to produce novel insights on ecosystem’s

dynamics and ecological interactions mainly because we account for the heterogeneous

nature of the driving factors within spatially differentiated areas and their changes over

time. Our findings demonstrate that accounting for additional sources of variation, by

combining structure learning from data and experts’ knowledge in the model architec-

ture, has the potential for gaining deeper insights into the structure and stability of

ecosystems. We were able to find highly confident but spatially and temporally dif-

ferentiated ecological networks that indicate spatial relationship of species and habitat
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with the particular mechanisms varying from facilitation through trophic interactions.

The model has further highlighted the importance of spatial heterogeneity in modelling

trophic dynamics, the value of accounting for latent effects in learning biomass changes

across space and time but also the need for further understanding species-specific effects

in their habitat following anthropogenic disturbances. Expert knowledge is important,

however allowing for data-driven interactions and associations when building predictive

models also should be performed, as we have done in this work, which allowed us to

identify patterns in the characteristics of different spatial areas and mechanisms in-

volved in shaping the functional ecological networks.

The model was further modified and we extended its use in combination with fish-

eries catch, temperature and productivity scenarios to predict the future biomass of

individual fish species and model their response to change in pressures. Our findings

demonstrated that reducing fisheries exploitation will potentially lead to trade-offs be-

tween species in terms of uniform population recovery. In addition, other factors such as

trophic interactions and the spatial relationship between neighbouring areas should be

taken into consideration when designing management strategies. Fisheries management

measures will contribute to improvements in the biodiversity of the fish community,

but food web interactions and productivity changes will mediate changes. Our results

allow dynamic assessment of choices, which should be able to provide strategic advice

on potential system response to pressure.

8.1.3 Application to Several Datasets

The hidden spatial dynamic Bayesian network was applied to the North Sea, as this

region has been a key centre of research in this work, due to its high biological pro-

ductivity and valuable fisheries resources. The successful performance of our model

highlighted the heterogeneous nature of the species dynamics, providing us with more

accurate insights on the structure of the underlying local ecological networks. Thus,

extending our knowledge into the complexity of North Sea dynamics and its ecological

resilience and stability. For most fish species, we were able to predict a trend of increase

or decline in response to change in fisheries catch. Therefore, we imply that for a given
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area, reorganisation of the fishing fleet and management strategies will be required to

ensure that the right species are targeted and harvested sustainably.

In addition, we analysed datasets from the regions of Georges Bank and East Scotian

Shelf. Our results were able to show the reliability of our modelling approach in terms of

detecting early-warning signals of functional change across different geographic regions.

Specifically, the hidden variable alone (without regime metrics) managed to reflect the

correct ecosystem dynamics, which was more evident in the East Scotian Shelf region,

where a larger regime shift has occurred. We also showed that our dynamic models can

be used to identify key functional species in the East Scotian Shelf, based on a regime

shift in Georges Bank.

Finally, a dataset from the Gulf of St Lawrence was also analysed. We were able to dis-

cover meaningful ecological networks that were more precisely spatially-specific rather

than temporally, which indicated spatial relationship of species and habitat. We were

able to learn functional network models for this region and evaluate these models on

different areas within the North Sea, being able to identify key functional interactions

to generalise influence from natural and anthropogenic forces.

8.2 Limitations

The hidden spatial dynamic Bayesian network model was found to be the most thorough

and comprehensive model choice to handle our ecological data. Although, we detect and

highlight here its limitations.

• Data Quality In this work, we focus on ecological temporal datasets and our

modelling approach is consequently adapted to the analysis of this type of data.

Ecological data is genuinely noisy (relating to the complexity of the data) due to

the multiple natural processes involved in generating such data and some sampling

variation for the survey data (according to experts), which could have explained

the sensitivity of the generated biomass predictions from our modelling approach.

• Small Samples Our functional network models are based on a relatively small

set of samples, which if not combined together may influence the reliability of our
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results.

• Structural Uncertainties The models described and compared in Chapter 5 use

different criteria for parameters and structure learning. The species dynamics and

relationships learned with one model may not be well supported in the training

phase, or in the inference, using another modelling architecture. This issue affects

the performance of any model, but also provides us with interesting insights on

the nature of the different hypothesis that models reveal for an ecosystem. We

note that perfect reconstruction of an ecosystem’s structure is unlikely due to the

noisy data and complex ecological process involved or issues related to selecting

the correct type of variables.

• Running Time While the majority of the steps, involved in the construction

of our model, managed to run in a reasonable amount of time, the step involv-

ing structure-learning (hill-climb) and the step involving the use of inference to

calculate the hidden variable (Expectation Maximisation algorithm) is actually

relatively long, which has resulted in the algorithm running overnight and some-

times up to two days.

8.3 Future Work

The following sections bring to the attention potential future work, based on the limi-

tations discussed above and the extension of the methods presented in this thesis.

8.3.1 Application to Different Kind of Data

Our modelling framework was built to handle complex systems such as the North Sea,

so consequently we assume there is a degree of complexity when modelling fisheries

interactions. The assumptions are based on key processes within the environment, ac-

counting for influence from external factors such as fisheries catch. One aspect of the

underlying processes that could be further investigated includes fishermen behaviour or

effort information to estimate catch potentials for distinct fleets. Few adjustments in

the model could potentially allow it to handle technical interactions alongside biologi-
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cal information in order to provide routine advice for mixed-fisheries management and

quantify the socio-economic aspect when looking at future sustainability.

The model has the potential to be “transferred” across stakeholder groups in order

to increase knowledge communication and awareness. Typically, results from Bayesian

Networks are tested with experts and with stakeholders, to evaluate the reliability of

the model outputs and the level of accessibility to the model. Therefore, future work

will involve testing the model results with stakeholders and experts to improve verti-

cal portability (moving from scientists to managers to stakeholders), and thus bridge

the communication gap between fisheries scientists and managers. This will help to

facilitate results communication to local stakeholders as well as informing managers on

stakeholders fisheries use.

In addition, the model holds the ability to be “transferred” to different ecosystems and

used to predict species dynamics and biomass, with only slight re-adjustments of the

network structure. The methods provided in this thesis may be used to explore other

datasets without the need for many adjustments, apart from setting up the parameters

in the learning algorithms. Also, further datasets should be compared to the results

presented in this work to explore generalisation across marine ecosystems at a much

wider scale. Currently, the modelling framework is being extended to predict regime

shifts and model species dynamics within the region of the Baltic Sea. Similarly to the

North Sea, it is a diverse and complex region and the modelling approach developed

in this thesis will be used to examine species trends in response to natural and anthro-

pogenic scenarios.

Finally, the modelling framework presented in this thesis could be potentially applied

to other ecological datasets like plants, mammals or birds. Spatial heterogeneity is an

issue that relates to migrating mammals and birds but also there is a reasonable degree

of uncertainty in terms of their use of space and interactions with their environment.

Thus, applying our hidden spatial dynamic approach could be potentially beneficial

in terms of providing insights on other species dynamics that would be beneficial to

conservation and management.
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8.3.2 Extension of Modelling Techniques

With regards to structural uncertainty and data combination, additional work on ensem-

bles of classifiers could focus on the joined probability distribution and apply different

prior knowledge to smooth the parameters. Potential work could involve informative

priors based upon available expertise to create scenarios for an environmentally-oriented

management. This prior notion can be incorporated into the model by adding a species

dependent prior on the average biomass. Prior knowledge could be integrated sepa-

rately into each individual functional network. This would allow further understanding

of the nature of the combination between observed variables and may improve structural

performances. The thesis follows the application of local optimization technique such

as the hill-climb. Although, other structure learning algorithms could have been used,

investigating the impact of other searching techniques was not the aim of this work, in

general, some evolutionary algorithms may be efficient and provide good results.
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Additional Results

This appendix contains additional plots and results relating to Chapter 5 and Chapter

6.

A.1 Chapter 5 Additional Results

We show the groups of species: pelagics (P), small piscivorous (SP) and large pisciv-

orous (LP) and their biomass predictions in time for some of the areas on which the

hidden spatial dynamic Bayesian network model (HSDBN) performed most accurately

and compare these with some of the inferior competing models (we focus on models with

the least SSE difference: ≤5.0, between the overall biomass predictions). The imposed

HSDBN network structures for these areas are shown in Fig.A.4

HSDBN outperformed the other probabilistic models in predicting species biomass for

area 3 (Fig.A.1a,c,e) and was followed by the hidden dynamic Bayesian network model

(HDBN) (Fig.A.1b,d,f) with relatively similar accuracy.
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(a) P, HSDBN (b) P, HDBN

(c) SP, HSDBN (d) SP, HDBN

(e) LP, HSDBN (f) LP, HDBN

Figure A.1: Observed standardised biomass of P, SP and LP and their predictions

generated by HSDBN (a,c,e) and HDBN (b,d,f) for area 3. Note the negative scale is

due to standardisation. Diagonal represents perfect prediction.

Our results showed most accurate predictions by the HSDBN for area 6 (Fig.A.2a,c,e)

which was followed with similar performance by the spatial dynamic Bayesian network

model (SDBN) (Fig.A.2b,d,f).
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(a) P, HSDBN (b) P, SDBN

(c) SP, HSDBN (d) SP, SDBN

(e) LP, HSDBN (f) LP, SDBN

Figure A.2: Observed standardised biomass of P, SP and LP and their predictions

generated by HSDBN (a,c,e) and SDBN (b,d,f) for area 6. Note the negative scale is

due to standardisation. Diagonal represents perfect prediction.

The HSDBN produced most accurate predictions also for area 1, reflecting on the

declining trend specifically for SP and LP and generally strong individual year effects for

P (Fig.A.3b,c). The model was able to reproduce the decline in the SP and LP biomass,

when temperature was increasing and fisheries catch was declining in combination with
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strongly varied year effects of the surrounding spatial P biomass.

(a) P, Area 1 (b) SP, Area 1

(c) LP, Area 1

Figure A.3: Biomass predictions of P (a), SP (b) and LP (c) generated by the HS-

DBN for area 1. Solid line indicates predictions and dotted line indicates standardised

observed biomass. 95% confidence intervals report bootstrap predictions’ mean and

standard deviation. Note the negative scale is due to standardisation.

The HSDBN network structures used to generate species predictions and their dy-

namics for the species groups in the North Sea areas are shown below.
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(a) Area 1 (b) Area 2

(c) Area 3 (d) Area 4

(e) Area 5 (f) Area 6

(g) Area 7

Figure A.4: HSDBN network structure for areas 1 to 7 in the North Sea. HV stands

for hidden variable. Spatial nodes are abbreviated as P sp., SP sp. and LP sp. Edges

between nodes (or variables) represent dependence relationships, the edges shown by a

dotted line are defined by the expert.
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(a) P-SP (b) P-LP

(c) SP-LP

Figure A.5: Learned trophic interactions P -SP (a), P -LP (b) and SP -LP (c) for all 7

spatial areas (numbered in figure). The estimated mean confidence by the hill-climb,

for the time window: 1993-2014 (to recall, longer time series here), is shown above or

below the links. Note the links represent dependence, not causality. The time window

starts from 1993 due to the windowing required during the hill-climb.

The general HV for areas 1 (figure not shown) captured some of the species biomass
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characteristics and it successfully managed to reflect on a temporal decline (trend iden-

tified, p<.05 ) in the series, coinciding with decline in the SP biomass for area 1 (Z =

1.59, d.f.=26, p=0.11). For area 2 the HV was complex and much less explicit (absence

of statistical trend, figure not shown). The specific HV from these areas is capturing

the zooplankton dynamics with high similarity: area 1 (Z =0.17, d.f.=26, p=0.86,

Fig.A.6a) and area 2 (Z =-0.88, d.f.=26, p=0.38). The zooplankton is characterised by

a distinct decline until late 1990s which was captured by the specific HV from area 2

(trend identified, p<.05), whilst no statistical trend was identified for areas 1.

Results from the HSDBN approach for area 7 failed to identify any statistical

similarity or trend by the general HV however the specific HV (Fig.A.6b) performed

more accurately in terms of reflecting on the zooplankton biomass (Z =0.02, d.f.=26,

p=0.99). It captured the declining trend (p<0.05) in time with the lowest values found

around late 1990s.

Following the SDBN (failed to identify any statistical similarity or trend by the

general HV ), it was the ARHMM that produced most accurate biomass predictions for

areas 7 and the HV generated by this model was characterised by a temporal decline

(trend identified, p<.05), coinciding with decline in the P biomass for area 7 (Z =0.56,

d.f.=26, p=0.73).

For areas 3 and 4, HSDBN performed well in terms of the specific HV learning

the zooplankton dynamics (area 3: Z =1.40, d.f.=26, p=0.16 and area 4: Z =0.10,

d.f.=26, p=0.92) whilst the general HV was much less explicit and clear, failing to

identify statistical similarity with the observed trophic biomass.
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(a) Area 1 (b) Area 7

Figure A.6: The expected value of the specific HV (solid line) for areas 1 (a) and 7 (b)

generated by HSDBN with the observed standardised biomass for the zooplankton (dot-

ted line). The solid line indicates upper and lower 95% confidence intervals, obtained

from bootstrap predictions’ overall mean and standard deviation. Note the negative

scale is due to standardisation.

Results from the comparative evaluation of biomass predictions indicated that species

groups biomass is predicted with relatively similar accuracy for areas 3 and 4 by the

DBN. The general HV generated by the DBN for area 3 (Fig.A.7a) managed to capture

some of the temporal dynamics of the area (trend identified, p<.05) and specifically, the

HV identified similarity with the declining pattern in time of the P (Z =0.61, d.f.=26,

p=0.54) and LP biomass (Z =1.12, d.f.=26, p=0.26). For area 4, the general HV from

DBN, Fig.A.7b (absence of statistical trend) was characterised by initial temporal in-

crease until late 1990s which coincides with increase in the P biomass (Z =-0.69, d.f.=26,

p=0.49), followed by temporal decline in more recent years observed for both P and LP

biomass (Z =-0.73, d.f.=26, p=0.47).
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(a) Area 3 (b) Area 4

Figure A.7: The expected value of the general HV (solid line) for area 3 (a) and area

4 (b) generated by DBN with the observed standardised biomass for the P trophic

group (dotted line). The solid line indicates upper and lower 95% confidence intervals,

obtained from bootstrap predictions’ overall mean and standard deviation. Note the

negative scale is due to standardisation.

A.2 Chapter 6 Additional Results

Table A.1: Table that shows the influence of catch on different species groups and the

relevant species of interest from that group in each area.

Table A.2: Table that shows the spatial neighbourhood of each area.
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We show the modelled survey data for different fish species from the fisheries catch

scenarios explained in Chapter 6.

(a) Cod, area 6 (b) Cod catch, area 6

(c) Whiting, area 7 (d) Whiting catch, area 7
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(e) Saithe, area 7 (f) Saithe catch, area 7

(g) Herring, area 1 (h) Herring catch, area 1

Figure A.8: The modelled survey data, generated by the Historical model (solid line)

and scenarios of H.FC.(black dashed line), M.FC. (grey dotted line) and L.FC. (black

dotted line) for the time window: 1989-2020. The observed catch (tonnes live weight

is shown next to the modelled predictions.) Note, the y-axis in some of the figures was

cut off only for visual purposes.

(a) Plaice spatial node, area 3 (b) Whiting spatial node, area 3

Figure A.9: The spatial values for plaice (a) and whiting (b) in area 3.
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Figure A.10: The expected value of the hidden variable for area 3 generated by the His-

torical model for whiting (dashed line) and from the scenario of Low Fisheries Catch

(dotted line). The solid line indicates upper and lower 95% confidence intervals, ob-

tained from bootstrap predictions’ overall mean and standard deviation.
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Berthold, M. R., Borgelt, C., Höppner, F. & Klawonn, F. (2010), Guide to intelli-

gent data analysis: how to intelligently make sense of real data, Springer Science &

Business Media.

Binder, J., Koller, D., Russell, S. & Kanazawa, K. (1997), ‘Adaptive probabilistic net-

works with hidden variables’, Machine Learning 29(2-3), 213–244.

Bishop, C. (2006), Pattern Recognition and Machine Learning, Springer, New York.

Blanchard, J. L., Coll, M., Trenkel, V. M., Vergnon, R., Yemane, D., Jouffre, D.,

Link, J. S. & Shin, Y.-J. (2010), ‘Trend analysis of indicators: a comparison of recent

changes in the status of marine ecosystems around the world’, ICES Journal of Marine

Science: Journal du Conseil 67(4), 732–744.

Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., Holt, J.,

Dulvy, N. K. & Barange, M. (2012), ‘Potential consequences of climate change for

primary production and fish production in large marine ecosystems’, Philosophical

Transactions of the Royal Society of London B: Biological Sciences 367(1605), 2979–

2989.

Board, O. S. et al. (2006), Dynamic Changes in Marine Ecosystems:: Fishing, Food

Webs, and Future Options, National Academies Press.

Bouckaert, G. (1995), Improving performance measurement, San Francisco: Jossey-Bass

Publishers.

Carpenter, S. R., Brock, W. A., Cole, J. J. & Pace, M. L. (2014), ‘A new approach for

rapid detection of nearby thresholds in ecosystem time series’, Oikos 123(3), 290–297.

Chen, Q., Han, R., Ye, F. & Li, W. (2011), ‘Spatio-temporal ecological models’, Eco-

logical Informatics 6(1), 37–43.

Chen, S. H. & Pollino, C. A. (2012), ‘Good practice in bayesian network modelling’,

Environmental Modelling & Software 37, 134–145.

160



References

Cheung, Y. K. & Klotz, J. H. (1997), ‘The mann whitney wilcoxon distribution using

linked lists’, Statistica Sinica 7(3), 805–813.

Cooke, J. (1999), ‘Improvement of fishery-management advice through simulation test-

ing of harvest algorithms’, ICES Journal of Marine Science: Journal du Conseil

56(6), 797–810.

Cooper, G. F. & Herskovits, E. (1992), ‘A bayesian method for the induction of proba-

bilistic networks from data’, Machine learning 9(4), 309–347.

Cressie, N. & Wikle, C. K. (2015), Statistics for spatio-temporal data, John Wiley &

Sons.

Cury, P. M., Mullon, C., Garcia, S. M. & Shannon, L. J. (2005), ‘Viability theory for

an ecosystem approach to fisheries’, ICES Journal of Marine Science: Journal du

Conseil 62(3), 577–584.

Daan, N., Rijnsdorp, A. & Van Overbeeke, G. (1985), ‘Predation by north sea her-

ring clupea harengus on eggs of plaice pleuronectes platessa and cod gadus morhua’,

Transactions of the American Fisheries Society 114(4), 499–506.

Dakos, V., Van Nes, E. H., D’Odorico, P. & Scheffer, M. (2012), ‘Robustness of variance

and autocorrelation as indicators of critical slowing down’, Ecology 93(2), 264–271.

de Santa Olalla, F. M., Dominguez, A., Ortega, F., Artigao, A. & Fabeiro, C. (2007),

‘Bayesian networks in planning a large aquifer in eastern mancha, spain’, Environ-

mental Modelling & Software 22(8), 1089–1100.

Dean, T. & Kanazawa, K. (1989), ‘A model for reasoning about persistence and causa-

tion’, Computational intelligence 5(2), 142–150.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum likelihood from

incomplete data via the em algorithm’, Journal of the royal statistical society. Series

B (methodological) pp. 1–38.

Doubleday, W. (1981), Manual on groundfish surveys in the Northwest Atlantic, Tech-

nical report, NAFO.

161



References

Dunne, J. A., Williams, R. J. & Martinez, N. D. (2002), ‘Network structure and bio-

diversity loss in food webs: robustness increases with connectance’, Ecology letters

5(4), 558–567.

Duplisea, D. E. & Castonguay, M. (2006), ‘Comparison and utility of different size-

based metrics of fish communities for detecting fishery impacts’, Canadian Journal

of Fisheries and Aquatic Sciences 63(4), 810–820.

Eddy, S. R. (1996), ‘Hidden markov models’, Current opinion in structural biology

6(3), 361–365.

Efron, B. & Tibshirani, R. (1995), Cross-validation and the bootstrap: Estimating the

error rate of a prediction rule, Division of Biostatistics, Stanford University.

Engelen, G., White, R. & Uljee, I. (1997), ‘Integrating constrained cellular automata

models, gis and decision support tools for urban planning and policy making’, Deci-

sion support systems in urban planning pp. 125–155.

Engelhard, G. H., Pinnegar, J. K., Kell, L. T. & Rijnsdorp, A. D. (2011), ‘Nine decades

of north sea sole and plaice distribution’, ICES Journal of Marine Science: Journal

du Conseil 68(6), 1090–1104.

Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. (2014), ‘Climate change and fishing:

a century of shifting distribution in north sea cod’, Global change biology 20(8), 2473–

2483.

Faisal, A., Dondelinger, F., Husmeier, D. & Beale, C. M. (2010), ‘Inferring species in-

teraction networks from species abundance data: A comparative evaluation of various

statistical and machine learning methods’, Ecological Informatics 5(6), 451–464.

Fernandes, J. A., Cheung, W. W., Jennings, S., Butenschön, M., Mora, L., Frölicher,
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Gröger, J. P. & Fogarty, M. J. (2011), ‘Broad-scale climate influences on cod (gadus

morhua) recruitment on georges bank’, ICES Journal of Marine Science: Journal du

Conseil p. fsq196.
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