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Abstract. The square root velocity framework is a method in shape analy-
sis to define a distance between curves and functional data. Identifying two

curves, if the differ by a reparametrisation leads to the quotient space of un-

parametrised curves. In this paper we study analytical and topological aspects
of this construction for the class of absolutely continuous curves. We show that

the square root velocity transform is a homeomorphism and that the action

of the reparametrisation semigroup is continuous. We also show that given
two C1-curves, there exist optimal reparametrisations realising the minimal

distance between the unparametrised curves represented by them.

1. Introduction

In this paper we want to analyse a variational problem, that arises in the context
of shape analysis. By shape we mean parametrised curves of a given regularity class,
with two curves identified if they differ by a translation or a reparametrisation.
Denote by B(I,Rd) the shape space, i.e., the set of all shapes, I being an interval.

The goal of shape analysis is to compare, classify and identify shapes, describe
the variability of a class of shapes and to quantify the information contained within
the shape. The basis for these operations is provided by a distance function on
shape space. There are many distance functions to choose from. A distance arising
as the geodesic distance of a Riemannian metric provides additional properties to
the shape space: the structure of a smooth manifold, the exponential map and
minimal geodesics realising the distance can all be exploited in applications [23].

Riemannian metrics on the space of curves and on the shape space of un-
parametrised curves have been studied in [19, 20, 22, 35] as well as many later
papers; an overview can be found in [4].

A Riemannian distance that is particularly well-suited for applications, is the
the one used in the square root velocity framework [24]. We assign each curve c its

square root velocity function (SRVF) q = c′√
|c′|

with the convention that q(t) = 0,

if c′(t) = 0. The distance between two curves is then

(1) dist(b, c) = ‖p− q‖L2 =

∥∥∥∥∥ b′√
|b′|
− c′√

|c′|

∥∥∥∥∥
L2

,

where p = b′√
|b′|

is the SRVF of b. The natural space to define dist is AC0(I,Rd),

the space of absolutely continuous curves with c(0) = 0. We will discuss in Sect. 2
how this distance relates to a Riemannian metric.
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Equation (1) defines a distance on the space of parametrised curves and on shape
space we consider the corresponding quotient distance,

(2) dist([b], [c]) = inf
β,γ∈Γ

dist(b ◦ β, c ◦ γ) ;

here Γ is the semigroup of weakly increasing, surjective, absolutely continuous
maps β, γ : I → I and we identify shape space with the quotient B(I,Rd) =
AC0(I,Rd)/Γ.1

The square root velocity framework for curves traces its origin to [24]. It has
been applied to analyse the shape of plant leaves [16] and arteries [33], to segment
handwritten text [13], to globally align RNA sequences [15], to perform statistical
analysis of manual image segmentations [14] and to study the shape of the corpus
callosum in schizophrenic patients [12]. The framework has been generalised to
manifold-valued data and it has been used to analyse migration patterns of birds [26]
and audio-visual speech recognition [27].

For scalar-valued data, i.e. d = 1, the square root velocity framework is closely
related to the Fisher–Rao metric on the space of probability densities [1, 31]. The
framework has been used to align chromatograms [32], analyse proteomics data [9,
29] and SONAR signals [30].

In all these applications the distance (1) on the quotient space B(I,Rd) plays an
important role. For some algorithms, e.g. the computation of the Karcher mean of
a set of shapes, one requires not only the numerical value of the distance, but also
the reparametrisations β, γ realising it [16],

dist([b], [c]) = dist(b ◦ β, c ◦ γ) .

The optimal reparametrisations β, γ then describe an alignment between the curves
b, c in the sense that the point β(t) on b corresponds to the point γ(t) on c. The
question, whether these optimal reparametrisations exist, is not trivial. The best
result until now is that optimal reparametrisations exist, if one of the curves is
piecewise linear [17].

We will show the following theorem regarding the (non-)existence of optimal
reparametrisations.

Theorem 1.1. Let d ≥ 1.

(1) If b, c ∈ C1(I,Rd), then there exist β, γ ∈ Γ realising the infimum in (2).
(2) If d ≥ 2, there exists a pair of Lipschitz curves for which the infimum in (2)

is not realised by any pair of reparametrisations.

The first part of the theorem is Prop. 6.2 and the second part is Cor. 6.6. Before
we arrive at these results, we will discuss in Sect. 3 the continuity of the square

root velocity transform R(c) = c′

|c′| on spaces of curves of finite regularity and in

Sect. 4 and Sec. 5 properties of the Γ-action and the topology of the orbits.

1.2. Notation. For the purposes of this paper we set I = [0, 1].
We call a C1-curve c regular, if c′(t) 6= 0 holds for all t ∈ I. Similarly, an

absolutely continuous curve c is regular, if c′ 6= 0 holds a.e.. Note that this means
that a curve can be regular as an absolutely continuous curve and non-regular as a
C1-curve. It will be clear from the context, which notion of regularity is used.

2. Riemannian geometry of the square root velocity framework

In this section we want to discuss how the distance (1) is connected to a Rie-
mannian metric on the space of smooth, regular curves.

1Since Γ is a semigroup, but not a group, this is not entirely correct. In fact B(I,Rd) consists

of closures of Γ-orbits. See Sect. 5.4 for details.
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2.1. Smooth curves. For now assume d ≥ 2 and denote by

Imm(I,Rd) = {c ∈ C∞(I,Rd) : c′(t) 6= 0∀t ∈ I}

the space of immersions. On this space we define

(3) Gc(h, k) =

∫
I

〈Dsh
⊥, Dsk

⊥〉+
1

4
〈Dsh,Dsc〉〈Dsk,Dsc〉ds .

Here h, k ∈ Tc Imm(I,Rd) are elements of the tangent space; Imm(I,Rd) is an open
subset of C∞(I,Rd) and thus h, k ∈ C∞(I,Rd); geometrically they are vector fields
along the curve. We denote by Dsh = 1

|c′|h
′ and ds = |c′|dθ differentiation and

integration with respect to arc length, Dsc = c′

|c′| is the unit length tangent vector

along c and Dsh
⊥ = Dsh−〈Dsh,Dsc〉Dsc is the projection of Dsh to the subspace

{Dsc}⊥ orthogonal to the curve. Differentiation and integration with respect to
arc length are used to make G invariant with respect to reparametrisations.

Thus defined, G is a Riemannian metric on the space Imm0(I,Rd) of curves
starting at the origin, c(0) = 0; this space can be identified with the quotient of
Imm(I,Rd) by the group of translations.

The metric G belongs to the family of Sobolev type metrics. Since it involves
first order derivatives of the tangent vectors, it is a first order metric. A general
Sobolev type metric of order n is one of the form

Gnc (h, k) =

∫
I

a0〈h, k〉+ a1〈Dsh,Dsk〉+ · · ·+ 〈Dn
s h,D

n
s k〉ds ,

with constants aj . For closed curves first order metrics have been studied in [3, 22,
28, 34] and higher order metrics in [7, 8, 18, 19].

What distinguishes the metric G defined in (3) among other possible choices is
the existence of the square root velocity transform,

R : Imm0(I,Rd)→ C∞(I,Rd \ {0}) , c 7→ 1√
|c′|

c′ .

We equip C∞(I,Rd\{0}) with the L2-inner product, viewed as constant (and hence
flat) Riemannian metric. The transform R has some important properties.

Theorem 2.2. The following holds:

(1) R is a diffeomorphism between Imm0(I,Rd) and C∞(I,Rd \ {0});
(2) R is an isometry between (Imm0(I,Rd), G) and (C∞(I,Rd \ {0}), L2).

A proof can be found in [3]. This means that at least locally the geodesic distance
between two curves b, c ∈ Imm0(I,Rd) is given by

dist(b, c) = ‖R(b)−R(c)‖L2 =

∥∥∥∥∥ b′√
|b′|
− c′√

|c′|

∥∥∥∥∥
L2

,

which is exactly the distance (1). The global behaviour of the distance depends on
the dimension d of the ambient space.

Assume d ≥ 3. The space C∞(I,Rd \ {0}) is not convex and since geodesics
are straight lines, it is also not geodesically convex. Nevertheless we are able to
smoothly perturb any path that passes through the origin in such a way that
the perturbed path avoids the origin and hence the geodesic distance on all of
Imm0(I,Rd) is given by (1).
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b

c

Figure 1. The path between b and c, that realises the geodesic
distance in C∞(I,R2 \ {0}).

2.3. Plane curves. The perturbation argument does not work for plane curves,
i.e., for d = 2. We can see in Fig. 1 two curves, for which ‖R(b)−R(c)‖L2 does not
represent the geodesic distance. What we can do however is to extend geodesics
across the origin in C∞(I,Rd \ {0}) and obtain C∞(I,Rd) as the geodesic com-
pletion, i.e., a geodesically complete manifold containing C∞(I,Rd \ {0}) as an
isometric, totally geodesic submanifold. This allows us to interpret (1) as the geo-
desic distance on the geodesic completion.

We have to be careful with this interpretation. It is easy to extend geodesics in
the space of SRVFs, that is on the image side of R. We can also extend R−1, given
by

R−1(q)(t) =

∫ t

0

q|q|dτ ,

from C∞(I,Rd \ {0}) to C∞(I,Rd) and we have R−1(C∞(I,Rd)) = C∞0 (I,Rd)
with C∞0 (I,Rd) = {c ∈ C∞ : c(0) = 0}. However the extended map is not a
diffeomorphism any more: if a function q passes through the origin, then DR−1(q)
is not surjective. Thus the geodesic completion of Imm0(I,Rd) is C∞0 (I,Rd) as a
set, but with the differential structure, that is induced by R−1.

2.4. Scalar functions. We can perform the same construction when d = 1. For
functions c : I → R, the interval I often parametrises time and c itself represents
functional, i.e. time-dependent, data. Because of the importance of functional data
in applications we want to describe the above construction in this particular case.

After removing the origin, R becomes disconnected and thus the space of regular
curves becomes

Imm0(I,R) = {c ∈ C∞0 (I,R) : c′ > 0 or c′ < 0}
the set of strictly increasing and decreasing functions. For the Riemannian metric
we have Dsh

⊥ = 0 and so

Gc(h, k) =
1

4

∫
I

h′k′ |c′|−1 dθ .

The square root velocity transform is simply

R(c) =
√
|c′| .

Each connected component of Imm0(I,R) is convex and thus the geodesic distance
on each one is given by

dist(b, c) =
∥∥∥√|b′| −√|c′|∥∥∥

L2
.
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The space of SRVFs is C∞(I,R \ {0}), which is disconnected as well and we can
consider C∞(I,R) as its geodesic completion. Note that this choice is not unique:
we could also take two copies of C∞(I,R)—one for positive and one for negative
SRVFs—as the geodesic completion. However we choose to glue the two connected
components together. For the curves itself this means that the set C∞0 (I,R) is the
geodesic completion of Imm0(I,R) and (1) is the geodesic distance on C∞0 (I,R).
As for plane curves we make no statement about the differentiable structure of the
geodesic completion.

2.5. Metric completion. The metric completion of C∞(I,Rd) with respect to
the L2-distance is L2(I,Rd). To see what class of curves this corresponds to, we
look at the formula for R−1,

R−1(q)(t) =

∫ t

0

q|q|dτ ,

and we see that if q ∈ L2, then R−1(q) is an absolutely continuous curve. In fact
we can extend R to a bijective map

R : AC0(I,Rd)→ L2(I,Rd) ,

where AC0(I,Rd) is the set of absolutely continuous curves c : I → Rd with c(0) =
0. We will show in Sect. 3 that this map is a homeomorphism, but not differentiable.

Since for d ≥ 3 the distance (1) is the geodesic distance on Imm0(I,Rd), it
follows that (AC0(I,Rd),dist) is the metric completion of the Riemannian manifold
(Imm0(I,Rd), G) with G given by (3). Similarly, for d = 1, 2 the space AC0(I,Rd)
is the metric completion of the geodesic completion of (Imm0(I,Rd), G).

2.6. Higher order metrics. It is instructive to compare the behaviour of G,
which is a first order metric, to higher order Sobolev metrics as well as to the
L2-metric. We will talk about closed curves here, since most references only treat
closed curves. For the L2-metric the picture is simple: the geodesic distance on
Imm(S1,Rd), induced by the reparametrisation invariant L2-metric is identically
zero [2, 21] and hence there is no completion worth speaking of.

For Sobolev type metrics of order n ≥ 2 the completion of the space of smooth,
regular curves is In(S1,Rd) = {c ∈ Hn : c(t) 6= 0} the space of regular curves of
Sobolev order n. Two differences jump out: for the first-order metric the completion
leaves the class of L2-based Sobolev spaces and the completion contains non-regular
curves, e.g. the constant curve. A more detailed comparison of different Sobolev
metrics can be found in [4, 5].

3. Extending the square root velocity transform

We want to extend the square root velocity transform to spaces larger than the
space of smooth, regular curves.

3.1. Lipschitz curves. First we note that the pointwise map x 7→ x√
|x|

is con-

tinuous on Rd and Hölder continuous with exponent 1
2 . For completeness sake we

provide a proof.

Lemma 3.2. The map V : Rd → Rd defined by V (x) = x√
|x|

and V (0) = 0 is

continuous and Hölder continuous with exponent 1
2 .
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Proof. Hölder continuity around 0 is clear from |V (x)| = |x|1/2. Now let x1, x2 ∈
Rd \ {0} and write xi = rivi with ri > 0 and |vi| = 1. Assume r1 ≤ r2. Then

|V (x1)− V (x2)| = |
√
r1v1 −

√
r2v2| ≤

√
r1 |v1 − v2|+ |

√
r1 −

√
r2|

≤
√

2
√
r1 |v1 − v2|1/2 + |r1 − r2|1/2

≤
√

2 |r1v1 − r1v2|1/2 + |r1 − r2|1/2

≤
(√

2 + 1
)
|r1v1 − r2v2|1/2 .

�

From Lem. 3.2 it immediately follows that we can extend the square root velocity
transform to Lipschitz curves.

Corollary 3.3. The map R : W 1,∞(I,Rd) → L∞(I,Rd) defined by R(c) = V ◦ c′
is continuous and Hölder continuous with exponent 1

2 .

Proof. Take the supremum in

|R(c1)(t)−R(c2)(t)| = |V (c′1(t))− V (c′2(t))| ≤ C |c′1(t)− c′2(t)|1/2 ,
with C being the Hölder constant of V . �

Similarly it can be shown that for all k ≥ 1 the maps

R : Ck(I,Rd)→ Ck−1(I,Rd)
are continuous and Hölder continuous with exponent 1

2 .

3.4. Absolutely continuous curves. We are mostly interested in the class of ab-
solutely continuous curves, since these form the metric completion of the Riemann-
ian manifold of smooth, regular curves. Equip the space AC(I,Rd) of absolutely
continuous curves with the norm ‖c‖AC = |c(0)|+ ‖c′‖L1 ; this makes (AC, ‖ · ‖AC)
and (AC0, ‖ · ‖AC), the subspace of curves with c(0) = 0, into Banach spaces.

We can extend the square root velocity transform to

R : AC0(I,Rd)→ L2(I,Rd), R(c)(t) = V (c′(t))

This is well-defined, since

‖R(c)‖2L2 =

∫
I

1

|c′|
|c′|2 dt =

∫
I

|c′|dt = ‖c‖AC .

Note that R is not an isometry, but it preserves the norm in the sense that
‖R(c)‖2L2 = ‖c‖AC . The transform is bijective and the inverse is

R−1(q)(t) =

∫ t

0

q|q|dτ .

Continuity of R on AC0 is not as easy to show as for Lipschitz curves and it is not
known, whether R is Hölder continuous on AC0.

Lemma 3.5. The map R is a homeomorphism between AC0(I,Rd) and L2(I,Rd).

Proof. The continuity of R−1 is simple. Let qn → q in L2 and set cn = R−1(qn).
Then

‖cn − c‖AC = ‖c′n − c′‖L1 =

∫
I

∣∣qn|qn| − q|q|∣∣dt
≤
∫
I

∣∣qn|qn| − qn|q|∣∣+
∣∣qn|q| − q|q|∣∣dt

≤
∫
I

|qn| · |qn − q|+ |qn − q| · |q|dt ,
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and using Cauchy–Schwartz we obtain the convergence cn → c in AC0.
Next we show that R is continuous. Let cn → c in AC0. Then c′n → c′ in L1

and by [10, Satz VI.5.4] we also have convergence c′n → c′ locally in measure. We
will use that a sequence converges against a limit, if every subsequence has a subse-
quence converging against the same limit. Assume a subsequence has been chosen.
Then by [10, Satz VI.4.14] this subsequence of (c′n)n∈N has a subsequence (cnk

)k∈N,
converging c′nk

→ c′ almost everywhere. The map V (x) = x√
|x|

is continuous on

Rd and so with the notation qn = R(cn) we have qnk
→ q a.e. as well. Now by the

above calculation we also have ‖qnk
‖2L2 = ‖cnk

‖L1 → ‖c‖L1 = ‖q‖2L2 and by [10,
Korollar VI.5.5] convergence a.e. together with convergence of the norms implies
qnk
→ q in L2. Since this holds for every subsequence we also obtain qn → q in L2,

thus showing the continuity of R. �

3.6. Differentiability. The square root velocity transform can be extended to a
continuous map on absolutely continuous curves, but by doing so we loose differ-
entiability properties. In particular we have the following result.

Proposition 3.7. Let c ∈ AC0(I,Rd) and q ∈ L2(I,Rd) and assume that c′ = 0
and q = 0 on sets of positive measure. The map R : AC0(I,Rd) → L2(I,Rd) has
the following properties:

(1) R is not differentiable at c;
(2) DR−1(q) is not surjective;
(3) R−1 is not twice differentiable at q.

Proof. Take a curve c ∈ AC0(I,Rd), such that c′ = 0 on a set of positive measure
and let h ∈ AC0(I,Rd) be a function with supph ⊆ {c′ = 0}. Then c′ + εh = c′

whenever c′ 6= 0 and we have

1

ε
(R(c+ εh)−R(c)) =

1

ε

εh′√
|εh′|

= ε−1/2 h′√
|h′|

,

and we see that R is not differentiable at c.
For the second part we calculate the derivative DR−1,

DR−1(q).h(t) =

∫ t

0

h|q|+ q

|q|
〈q, h〉dτ .

Denote v = DR−1(q).h and we see that v′ vanishes wherever q vanishes. If q = 0
on a set of positive measure, then DR−1(q) cannot be surjective.

With q, h ∈ L2(I,Rd) and q = 0 on a set of positive measure, choose k ∈
L2(I,Rd) with {k 6= 0} ⊆ {q = 0}. Then we have

1

ε

(
DR−1(q + εk).h−DR−1(q).h

)
(t) =

1

ε

∫ t

0

h|εk|+ εk

|εk|
〈εk, h〉dτ

=
|ε|
ε

∫ t

0

h|k|+ k

|k|
〈k, h〉dτ ,

and we see that the limit ε → 0 does not exist, since it depends on the sign of ε.
Thus R−1 is not twice differentiable at q. �

Similar lack of differentiability properties hold for the square root velocity trans-
form on smooth, nonregular curves: the map R : C∞0 (I,Rd) → C∞(I,Rd) is not
differentiable at any curve, whose derivative vanishes at some point; the inverse is
not twice differentiable at q and DR−1(q) is not surjective, if q passes through the
origin.
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3.8. Geodesic distance. We define a distance on AC0(I,Rd) via

dist(b, c) = ‖R(b)−R(c)‖L2 .

This is an extension of the geodesic distance on Imm0(I,Rd) as discussed in Sect. 2.
Because of Lem. 3.5, the topologies induced by ‖ · ‖AC and dist on AC0 coincide.
By construction R is an isometry between the metric spaces (AC0(I,Rd),dist) and
(L2(I,Rd), ‖ · ‖L2). In particular (AC0(I,Rd),dist) is a complete metric space.

4. Semigroup of reparametrisations

We are dealing with the space AC0(I,Rd) of absolutely continuous curves start-
ing at the origin and thus the natural group of reparametrisations is

Γ = {γ : I → I : γ abs. cont., γ(0) = 0, γ(1) = 1, γ′ > 0 a.e.} ,

the group of absolutely continuous homeomorphisms. It will be necessary to also
consider the semigroup

Γ = {γ : I → I : γ abs. cont., γ(0) = 0, γ(1) = 1, γ′ ≥ 0 a.e.} ,

consisting of weakly, increasing absolutely continuous functions. Both Γ and Γ are
subsets of AC0(I,R) and we endow them with the induced topology. With this
topology Γ coincides with the closure of Γ in AC0(I,R). The semigroup Γ acts on
AC0(I,Rd) from the right via (c, γ) 7→ c ◦ γ and the action is by isometries, as can
be seen from

‖c ◦ γ‖AC =

∫
I

|c′ ◦ γ|γ′ dt =

∫
I

|c′|dt = ‖c‖AC .

Here we used a general form of the change of variables formula; see e.g. [11, (20.5)].

Open Question. Is Γ a topological group? The continuity of the multiplication
follows from Prop. 4.2, but the continuity of the inversion map γ 7→ γ−1 is not
clear.

We will be concerned with the orbits in AC0 of the Γ- and Γ-actions, since these
orbits will correspond to unparametrised curves. In this section we prepare for the
study of the orbit space by showing that the Γ-action on AC0 is continuous and by
identifying the closure of Γ-orbits. Before we prove these results, we need a lemma
about the continuity of the inversion on Γ.

Lemma 4.1. If γn ∈ Γ, δn ∈ Γ and γn− δn → 0 in AC0, then γn ◦ δ−1
n → Id in Γ.

Proof. We have to show that γ′n ◦ (δ−1
n )′ → 1 in L1. First we note that

γ′n ◦ (δ−1
n )′ − 1 =

(
γ′n ◦ δ−1

n −
1

(δ−1
n )′

)
(δ−1
n )′ =

(
γ′n ◦ δ−1

n − δ′n ◦ δ−1
n

)
(δ−1
n )′

Now we insert this into the integral

‖γ′n ◦ (δ−1
n )′ − 1‖L1 =

∫
I

∣∣γ′n ◦ δ−1
n − δ′n ◦ δ−1

n

∣∣ (δ−1
n )′ dt =

∫
I

|γ′n − δ′n| dt .

We can use the change of variables, because δ−1
n ∈ Γ and from here the statement

of the lemma follows. �

Now we can proceed with the main proposition.

Proposition 4.2. The action of Γ on AC0(I,Rd) is continuous.
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Proof. The proof will proceed in three steps. First we consider the action of Γ on
a fixed, piecewise linear curve around Id ∈ Γ, then the action on a general curve
and finally the joint continuity of the map (c, γ) 7→ c ◦ γ.

Step 1: piecewise linear curves, continuity at Id ∈ Γ.

Let c ∈ AC0(I,Rd) be a piecewise linear curve, i.e., c′ =
∑N
j=1 aj1Ij with Ij =

[tj−1, tj ] and 0 = t0 < t1 < · · · < tN = 1. Take a sequence γn → Id in Γ. We need
to show that c ◦ γn → c in AC0.

Assume that n is large enough, such that γn(Ij) ⊆ Ij−1 ∪ Ij ∪ Ij+1, in other
words, γn([tj−1, tj ]) ⊆ [tj−2, tj+1]. Define the three sets

A−j,n = γn(Ij) ∩ Ij−1, Aj,n = γn(Ij) ∩ Ij , A+
j,n = γn(Ij) ∩ Ij+1 ,

which form a decomposition of each interval Ij = A−j,n ∪Aj,n ∪A
+
j,n. Then

‖c− c ◦ γn‖AC =

∫
I

|c′ − (c′ ◦ γn)γ′n| dt

≤
N∑
j=1

∫
A−j,n

|aj − aj−1γ
′
n|dt+

∫
Aj,n

|aj | · |1− γ′n|dt+

∫
A+

j,n

|aj − aj+1γ
′
n|dt .

As γn → Id uniformly, it follows that λ(A−j,n) → 0 and λ(A+
j,n) → 0, where λ

denotes the Lebesgue measure, and hence the first and third integrals converge to
0. For the second integrals we have∫

Aj,n

|aj | · |1− γ′n|dt ≤ ‖c′‖∞‖ Id−γn‖ ,

and we see that c ◦ γn → c in AC0.
Step 2: fixed arbitrary curve, continuity at Id ∈ Γ.

Let c ∈ AC0(I,Rd) and take a sequence γn → Id in Γ. Let ε > 0 be given.
Piecewise linear curves are dense in AC0 and so we can choose a piecewise linear
v, with ‖c− v‖AC < ε

3 . Then

‖c− c ◦ γn‖AC ≤ ‖c− v‖AC + ‖v − v ◦ γn‖AC + ‖v ◦ γn − c ◦ γn‖AC

≤ 2ε

3
+ ‖v − v ◦ γn‖AC .

Using that Γ acts by isometries and the convergence for step functions shown in
Step 1, we conclude that c ◦ γn → c in AC0.

Step 3: joint continuity.
Now we take sequences cn → c in AC0 and γn → γ in Γ and we want to show that
cn ◦ γn → c ◦ γ in AC0. Since Γ is dense in Γ we can find another sequence δn ∈ Γ
with δn − γn → 0 in AC0. Now we estimate

‖cn ◦ γn − c ◦ γ‖AC ≤
≤ ‖cn ◦ γn − c ◦ γn‖AC + ‖c ◦ γn − c ◦ δn‖AC + ‖c ◦ δn − c ◦ γ‖AC
≤ ‖cn − c‖AC + ‖c ◦ γn ◦ δ−1

n − c‖AC + ‖c− c ◦ γ ◦ δ−1
n ‖AC .

By Lem. 4.1 we have γn ◦δ−1
n → Id and γ ◦δ−1

n → Id in Γ and hence c◦γn ◦δ−1
n → c

and c ◦ γ ◦ δ−1
n → c in AC0. This concludes the proof. �

Using the continuity of the action we can show that Γ-orbits of regular curves
are closed.

Proposition 4.3. Let c ∈ AC0(I,Rd) be a curve with c′ 6= 0 a.e.. Then the orbit
c ◦ Γ is closed in AC0(I,Rd).
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Proof. By choosing a constant speed parametrisation we can assume that |c′| ≡ λc
is constant. Let cn = c ◦ γn with γn ∈ Γ be a sequence in c ◦ Γ and cn → c̃ in AC0.
Write c̃ = b ◦ γ with b a constant speed curve, |b′| ≡ λb and γ ∈ Γ. The identity
|c′n| = |c′ ◦ γn| · γ′n = λcγ

′
n and |c′| = λbγ

′ together with the convergence |c′n| → |c′|
in L1, imply λcγ

′
n → λbγ

′ in L1. Since
∫
I
λcγ
′
n = λc, it follows that λc = λb and

hence γn → γ in Γ.
It remains to show that c = b. As Γ is dense in Γ, we can choose a sequence

δn ∈ Γ, such that δn − γn → 0 in AC0. In particular this implies δn → γ in Γ. The
calculation∫

I

∣∣(c′n ◦ δ−1
n

)
(δ−1
n )′ −

(
c̃′ ◦ δ−1

n

)
(δ−1
n )′

∣∣ dt =

∫
I

|c′n − c̃′| dt→ 0

shows that cn◦δ−1
n −c̃◦δ−1

n → 0 in AC0. Now cn◦δ−1
n = c◦γn◦δ−1

n → c in AC0, since
γn ◦ δ−1

n → Id by Lem. 4.1 and using the same lemma also c̃ ◦ δ−1
n = b ◦γ ◦ δ−1

n → b.
This implies b = c and the proof is complete. �

The above result has an important corollary: the closure of the Γ-orbit of a curve
is equal to the Γ-orbit of a regular reparametrisation of it; consequently, if a curve
is already regular, then the closure of its Γ-orbit equals its Γ-orbit.

Corollary 4.4. Let c ∈ AC0(I,Rd).

(1) If c = b ◦ γ with b′ 6= 0 a.e., then c ◦ Γ = b ◦ Γ.
(2) If c′ 6= 0 a.e., then c ◦ Γ = c ◦ Γ.

Proof. Clearly c ◦ Γ ⊂ b ◦ Γ and since b ◦ Γ is closed we have c ◦ Γ ⊆ b ◦ Γ. If
b ◦ β ∈ b ◦ Γ, choose sequences βn, γn ∈ Γ with βn → β, γn → γ. Then c ◦ γ−1

n ◦
βn = b ◦ (γ ◦ γ−1

n ) ◦ βn → b ◦ β using Lem. 4.1. This proves (1) and (2) follows
immediately. �

Remark 4.5. We can define an action of Γ on L2(I,Rd) via

q ∗ γ = (q ◦ γ) ·
√
γ′ .

This is a linear, isometric action and it makes the square root velocity transform
equivariant,

R(c ◦ γ) = R(c) ∗ γ .
We can then formulate Prop. 4.3 and Cor. 4.4 directly on L2(I,Rd), the space of
square root velocity functions: if q ∈ L2 and q 6= 0 a.e., then q ∗ Γ is closed and
q ∗ Γ = q ∗ Γ. In this formulation the statement has been proven in [17, Thm. 3]
without using the continuity of R or the continuity of the Γ-action.

5. Shape space of unparametrised curves

5.1. Equivalence up to parametrisation. We are interested in identifying cur-
ves up to reparametrisations. Since we are working with a semigroup of reparamet-
risations, we have to be careful, when talking about orbits of the Γ-action. To ease
our life we can make use of the fact that Γ contains Γ as a dense subgroup. Before
we define what it means for two curves to be equivalent up to reparametrisations,
first a helpful lemma.

Lemma 5.2. Let b, c ∈ AC0(I,Rd). Then

b ◦ Γ ∩ c ◦ Γ = ∅ or b ◦ Γ = c ◦ Γ .

Two of these sets coincide, b ◦ Γ = c ◦ Γ, if and only if b and c have the same
constant speed parametrisation.
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Note that if b, c are regular curves, then we can rephrase the lemma in terms of
Γ-orbits,

b ◦ Γ ∩ c ◦ Γ = ∅ or b ◦ Γ = c ◦ Γ ,

and b◦Γ = c◦Γ if and only if b and c have the same constant speed parametrisation.

Proof. Using Cor. 4.4 it is enough to prove the lemma for regular curves b, c, in
which case b ◦ Γ = b ◦ Γ and the same for γ. Assume that b ◦ Γ and c ◦ Γ have a
nonempty intersection, i.e., b ◦ β = c ◦ γ for some β, γ ∈ Γ. By choosing constant
speed reparametrisations we can assume that, |b′| ≡ λ and |c′| ≡ µ. By taking the
norm of derivative we obtain λβ′ = µγ′ and since

∫
I
λβ′ = λ, it follows that λ = µ

and β = γ. Next we approximate β by a sequence βn ∈ Γ, i.e., βn → β in Γ. We
have the identity

b ◦ β ◦ β−1
n = c ◦ β ◦ β−1

n ,

and by taking the limit we obtain b = c. Thus two orbits either coincide or they
are disjoint. �

In the next proposition we define and characterise equivalence classes of un-
parametrised curves.

Proposition 5.3. The following are equivalent ways to define an equivalence rela-
tion on AC0(I,Rd).

(1) b ∼ c⇔ ∃a ∈ AC0, ∃β, γ ∈ Γ : b = a ◦ β and c = a ◦ γ .
(2) b ∼ c⇔ b ◦ Γ = c ◦ Γ.
(3) Denote by A ⊂ AC0 the set of constant speed curves. Then

AC0 = {0} ∪
⋃
c∈A

c ◦ Γ

is a partition of AC0 into disjoint sets.

The equivalence classes are given by [c] = c ◦ Γ.

Property (1) states that two curves are equivalent if they are reparametrisations
of a common curve. This curve can be taken to have constant speed, leading to the
alternative characterisation

(1’) b ∼ c⇔ ∃a ∈ A, ∃β, γ ∈ Γ : b = a ◦ β and c = a ◦ γ .
Because of Lem. 5.2, property (2) is also equivalent to

(2’) b ∼ c⇔ b ◦ Γ ∩ c ◦ Γ 6= ∅.
(2”) b ∼ c⇔ b ∈ c ◦ Γ.

The equivalence follows from the implications (2”)⇒(2’)⇒(2)⇒(2”). Property (2)
is used in [17] as the definition.

Proof of Prop. 5.3. We will denote by ∼1, ∼2, ∼3 the equivalence relations of (1),
(2) and (3) respectively. It is clear that ∼1 is symmetric and reflexive. Transitivity
will follow from identifying the equivalence classes.

(1) Fix c ∈ AC0 and assume that b ∼1 c. Then b = a ◦ β and c = a ◦ γ for some
β, γ ∈ Γ. Choose γn ∈ Γ with γn → γ. Then c ◦ γ−1

n ◦ β = a ◦ (γ ◦ γ−1
n ) ◦ β → b by

Lem. 4.1 and hence b ∈ c ◦ Γ.
Conversely, if b ∈ c ◦ Γ, then b ∈ c̃◦Γ, where c̃ is a constant speed parametrisation

of c, i.e. c = c̃◦γ̃. Thus b = c̃◦β̃ for some β̃ ∈ Γ and hence b ∼1 c. Thus [c]1 = c ◦ Γ.
(2) Again, fix c ∈ AC0. If b ∼2 c, then clearly b ∈ c ◦ Γ. Conversely, if b ∈ c ◦ Γ,

then b ◦ Γ ∩ c ◦ Γ 6= ∅ and thus b ◦ Γ = c ◦ Γ by Lem. 5.2. By definition this means
b ∼2 c and hence [c]2 = c ◦ Γ.

(3) Lemma 5.2 shows that the sets c ◦ Γ, where c ∈ A, together with {0} form a
partition of AC0. Take b ∈ AC0 and write it as b = c ◦ γ with c ∈ AC the unique
constant speed parametrisation. Then [b]3 = c ◦ Γ = b ◦ Γ by Cor. 4.4. �
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5.4. Quotient space. Using the equivalence relation defined in Prop. 5.3 we in-
troduce the quotient space of unparametrised curves

B(I,Rd) := AC0(I,Rd)/∼ ,

together with the canonical projection

π : AC0(I,Rd)→ B(I,Rd), c 7→ [c] .

In the following we will use the following representation of B(I,Rd),

B(I,Rd) =
{
c ◦ Γ : c ∈ AC0(I,Rd), c′ 6= 0 a.e.

}
∪ {0} .

Informally B(I,Rd) is the quotient space AC0/Γ, however since Γ is not a group,
we only consider orbits of curves with non-zero derivative a.e., together with the
constant curve; we identify the constant curve with the orbit 0 ◦ Γ. Unless stated
otherwise, statements about elements c ◦ Γ ∈ B(I,Rd) assume implicitly either
c′ 6= 0 a.e. or c ≡ 0.

5.5. Induced distance. The distance

dist(b, c) = ‖R(b)−R(c)‖L2

on AC0, defined in Sect. 3.8, is invariant under the Γ-action, as can be seen from

dist(c1 ◦ γ, c2 ◦ γ) = ‖R(c1 ◦ γ)−R(c2 ◦ γ)‖L2

= ‖(R(c1)−R(c2)) ∗ γ‖L2

= ‖R(c1)−R(c2)‖L2 = dist(c1, c2) ;

here γ ∈ Γ and for notational convenience we used the isometric Γ-action on L2,
introduced in Rem. 4.5.

On B(I,Rd) we consider the induced quotient distance

dist(b ◦ Γ, c ◦ Γ) = inf
β,γ∈Γ

dist(b ◦ β, c ◦ γ) = inf
γ∈Γ

dist(b, c ◦ γ) .

Note that for the second equality to hold, we need that Γ is dense in Γ and that
Γ acts continuously with respect to dist. This allows us to choose a minimising
sequence (βn, γn) in Γ instead of Γ and use the invariance of dist to write

dist(b ◦ βn, c ◦ γn) = dist(b, c ◦ γn ◦ β−1
n ) .

The topology induced by dist on B(I,Rd) is the quotient topology and the metric
is complete. This may be unsurprising, but the proof is nontrivial. It follows closely
the proof given in [7, Lem. 6.5], but under slightly weaker assumptions.

Lemma 5.6. The topology induced by dist on B(I,Rd) coincides with the quotient
topology and (B(I,Rd),dist) is a complete metric space.

Proof. It is clear that dist is symmetric and satisfies the triangle inequality. If
dist(b ◦ Γ, c ◦ Γ) = 0, then there exists a sequence γn ∈ Γ with dist(b, c ◦ γn) → 0,
which means b ∈ c ◦ Γ or equivalently b ◦ Γ ∩ c ◦ Γ 6= ∅. This by Lem. 5.2 implies
b ◦ Γ = c ◦ Γ. Thus dist is indeed a distance.

Let O ⊆ B(I,Rd) be open with respect to dist and take c ∈ π−1(O). Write
c = c̃ ◦ γ with c̃ of constant speed. Then π(c) = π(c̃) and there exists an ε > 0,
such that B(c̃ ◦ Γ, ε) ⊆ O. We claim that Bε(c) ⊆ π−1(O). Let b ∈ AC0 be such

that dist(b, c) < ε and write b = b̃ ◦ β with b̃ of constant speed. Then

dist(b̃ ◦ Γ, c̃ ◦ Γ) ≤ dist(b̃ ◦ β, c̃ ◦ γ) = dist(b, c) < ε ,

meaning b̃ ◦ Γ ∈ O and b ∈ π−1(O). Thus π−1(O) is open in AC0 and O is open in
the quotient topology.
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Now let O ⊆ B(I,Rd) be open in the quotient topology, c ◦ Γ ∈ U and ε such
that B(c, ε) ⊆ π−1(U). If dist(b ◦ Γ, c ◦ Γ) < ε for some b, then dist(b ◦ β, c) < ε for
some β ∈ Γ and hence b ◦ β ∈ B(c, ε), implying b ◦ Γ ∈ U . Thus B(c ◦ Γ, ε) ⊆ U
and the topology induced by dist coincides with the quotient topology.

Now we want to show completeness of B(I,Rd). Let (cn ◦ Γ)n∈N a Cauchy
sequence. We can choose a subsequence, such that dist(cn◦Γ, cn+1◦Γ) < 2−n holds
for all n ∈ N. Next we choose representatives of the orbits with dist(cn, cn+1) <
dist(cn ◦ Γ, cn+1 ◦ Γ) + 2−n. Then

dist(cn, cn+k) ≤
n+k−1∑
i=n

dist(ci, ci+1)

≤
n+k−1∑
i=n

dist(ci ◦ Γ, ci+1 ◦ Γ) + 2−i ≤ 22−n(1− 2−k) ,

showing that (cn)n∈N is a Cauchy sequence in AC0(I,Rd). Let c be the limit. Then
lim cn ◦ Γ = limπ(cn) = c ◦ Γ and thus B(I,Rd) is complete. �

6. Existence of optimal reparametrisations

In this section we want to answer the question, whether the infimum in

dist(b ◦ Γ, c ◦ Γ) = inf
β,γ∈Γ

dist(b ◦ β, c ◦ γ)

is attained. Before stating the main result, we want to cite a theorem about upper
semi continuity of functionals, that will be used in the proof.

Theorem 6.1 (Thm. 1.6 in [25]). Let I be a compact interval and assume that
F : I × Rd × Rd → R is a continuous function and F (t, x, ·) is concave for all t, x.
Then, if un, u ∈ W 1,∞(I,Rd) and un → u in L1(I), un ⇀ u weakly in L1(I) and
‖u′n‖L∞ ≤ C for some C ∈ R, it follows that

E(u) ≥ lim sup
n→∞

E(un) ,

where

E(u) =

∫
I

F (t, u(t), u′(t)) dt .

This is a version of [25, Thm. 1.6], rewritten for concave, instead of convex
functions and where the boundedness assumption was moved from F to the sequence
un.

Here is the main result.

Proposition 6.2. Given b, c ∈ C1(I,Rd) with b, c 6= 0 a.e., there exist β, γ ∈ Γ,
such that

dist(b ◦ β, c ◦ γ) = dist(b ◦ Γ, c ◦ Γ) ,

i.e., the infimum in the definition of dist(b ◦ Γ, c ◦ Γ) is attained.

Proof. Set p = R(b) and q = R(c). We note that since b, c are C1, their transforms
p, q are continuous; this will be important later on. We can write the distance
dist(b ◦ β, c ◦ γ)2 in the following form,

(4)

dist(b ◦ β, c ◦ γ)2 =

∫
I

∣∣∣p ◦ β√β′ − q ◦ γ√γ′∣∣∣2 dt

=

∫
I

|p ◦ β|2 β′ − 2〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ + |q ◦ γ|2 γ′ dt

= ‖p‖2L2 + ‖q‖2L2 − 2

∫
I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt .
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Thus, finding the infimum of dist(b◦β, c◦γ)2 is equivalent to finding the supremum
of
∫
I
〈p ◦ β, q ◦ γ〉

√
β′
√
γ′ dt.

Step 1: Constructing a weakly convergent subsequence.
Take a maximising sequence βn, γn ∈ Γ. Before we can extract a weakly convergent
subsequence we have to modify it slightly.

Considering the pair (βn, γn) as an element of AC(I,R2), we write (βn, γn) =
(f, g) ◦ ϕ with (f, g) a constant speed curve and ϕ ∈ Γ. We have the freedom to
choose the norm in which we measure speed and we choose (f, g) to have constant
speed with respect to the 1-norm on R2, i.e., |f ′(t)|+ |g′(t)| = f ′(t) + g′(t) ≡ C is
a.e. constant; because of

∫
I
f ′ dt = 1, the constant has to equal C = 2. Since

dist(c ◦ βn, c ◦ γn) = dist(c ◦ f ◦ ϕ, c ◦ g ◦ ϕ) = dist(c ◦ f, c ◦ g) ,

we can replace βn, γn by f, g and thus assume that the minimising sequence satisfies
0 ≤ β′n, γ′n ≤ 2 a.e..

The sequences (βn)n∈N, (γn)n∈N have uniformly bounded derivatives and are
therefore uniformly Lipschitz. Using the theorem of Arzelà–Ascoli we can pass to
uniformly convergent subsequences βn → β and γn → γ and the limits β, γ are
again Lipschitz with 0 ≤ β′, γ′ ≤ 2; in particular β, γ ∈ Γ.

The sequences (β′n)n∈N, (γ′n)n∈N are bounded in L∞(I,R), and L∞ being the
dual of L1, we can use the theorem of Banach–Alaoglu to pass to weak-∗ convergent

subsequences β′n
w∗−−→ σ and γ′n

w∗−−→ %. Let f be a smooth function with f(0) =
f(1) = 0. Then∫

I

σf = lim
n→∞

∫
I

β′nf = − lim
n→∞

∫
I

βnf
′ = −

∫
I

βf ′ =

∫
I

β′f .

This holds for all smooth functions, that vanish at the endpoints and hence we have

σ = β′ and by the same argument also % = γ′. Thus β′n
w∗−−→ β′ and γ′n

w∗−−→ γ′ in
L∞(I,R).

Step 2: Constructing the maximum.
Define the function F : R2 × R2 → R by

F (x1, x2, ξ1, ξ2) =
√
ξ1ξ2 max (〈p(x1), q(x2)〉, 0) .

For x1, x2 fixed, F (x1, x2, ·, ·) is concave. By the construction in Step 1 the sequence
(βn)n∈N converges uniformly, βn → β, and thus also in L1. The derivatives are

bounded in L∞ and converge, β′n
w∗−−→ β′, weak-∗ in L∞ and thus also weakly in L1.

The same holds for (γn)n∈N. This allows us to apply Thm. 6.1 to conclude that∫
I

max (〈p ◦ β, q ◦ γ〉, 0)
√
β′γ′ dt ≥ lim sup

n→∞

∫
I

max (〈p ◦ βn, q ◦ γn〉, 0)
√
β′nγ

′
n dt

≥ lim sup
n→∞

∫
I

〈p ◦ βn, q ◦ γn〉
√
β′nγ

′
n dt .

Finally we apply Lem. 6.3 with the pair β, γ to obtain a second pair β̃, γ̃. Introduce
the set A = {t : 〈p ◦ β(t), q ◦ γ(t)〉 ≥ 0}. The new pair satisfies∫

I

〈p ◦ β̃, q ◦ γ̃〉
√
β̃′γ̃′ dt =

∫
A

〈p ◦ β, q ◦ γ〉
√
β′γ′ dt

=

∫
I

max (〈p ◦ β, q ◦ γ〉, 0)
√
β′γ′ dt

≥ lim sup
n→∞

∫
I

〈p ◦ βn, q ◦ γn〉
√
β′nγ

′
n dt .

Thus we see that (β̃, γ̃) realises the supremum of
∫
I
〈p◦β, q◦γ〉

√
β′
√
γ′ dt and hence

the distance dist(b ◦ Γ, c ◦ Γ). �



OPTIMAL REPARAMETRISATIONS 15

Informally the lemma states, that we can change a given pair of reparametri-
sations and by doing so eliminate the negative contributions in the integral

∫
I
〈p ◦

β, q ◦ γ〉
√
β′
√
γ′ dt. In the proof of Prop. 6.2 we used the calculus of variations to

maximise the positive contributions and this lemma tells us, that we can remove
the negative ones by hand.

Lemma 6.3. Let p, q ∈ C(I,Rd) and β, γ ∈ Γ. Then there exist β̃, γ̃ ∈ Γ, such
that ∫

I

〈p ◦ β̃, q ◦ γ̃〉
√
β̃′
√
γ̃′ dt =

∫
A

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt ,

where A = {t : 〈p ◦ β(t), q ◦ γ(t)〉 ≥ 0}.

Proof. Since p, q are continuous, the set B = {t : 〈p ◦ β(t), q ◦ γ(t)〉 < 0} is open
and thus can be written as an at most countable union, B =

⋃
n In of open intervals,

In = [t−n , t
+
n ]. We define the new parametrisations β̃, γ̃ as follows: we set β̃|A = β|A,

γ̃|A = γ|A; to define them on B we split each interval into In = I−n ∪ I+
n with

I−n = [t−n ,
1
2 (t−n + t+n )] and I+

n = [ 1
2 (t−n + t+n ), t+n ] and set

β̃′ =

{
2β′(2t− t−n ) t ∈ I−n
0 t ∈ I+

n

γ̃′ =

{
0 t ∈ I−n
2γ′(2t− t+n ) t ∈ I+

n

.

When integrating β̃′ we choose β̃(t−n ) = β(t−n ) as the constant of integration and this

choice leads to β̃(t+n ) = β(t+n ). Thus β̃ is again absolutely continuous. Furthermore

we have the property

√
β̃′
√
γ̃′ = 0 on In and hence also on B. Together we obtain∫

I

〈p◦ β̃, q ◦ γ̃〉
√
β̃′
√
γ̃′ dt =

∫
A

〈p◦ β̃, q ◦ γ̃〉
√
β̃′
√
γ̃′ dt =

∫
A

〈p◦β, q ◦γ〉
√
β′
√
γ′ dt ,

as required. �

6.4. Counterexample. We do not know, if Prop. 6.2 is sharp, but some additional
assumption on the regularity of the curves is necessary. We will construct a pair of
Lipschitz curves in the plane, for which no optimal reparametrisations exist.

Let B be an ε-Cantor set and A = I \ B, i.e. A is open and dense, while B is
closed and nowhere dense and λ(A) = λ(B) = 1

2λ(I) with λ denoting the Lebesgue
measure; see [6, Ex. I.1.7.6] for the construction of B.

We choose a curve v1(t) ∈ R2 and vectors v2, v3 ∈ R2 as follows

v1 =

(
cos εt
sin εt

)
v2 =

(
− 1

2√
3

2

)
v3 =

(
− 1

2

−
√

3
2

)
,

with ε < 1
6 a small number. The three vectors v1(t), v2, v3 have the property that all

mixed scalar products are negative, 〈v1(t), v2〉 < 0, 〈v2, v3〉 < 0 and 〈v1(t), v3〉 < 0.
We define the two curves

p(t) = v1(t)1A(t) + v21B(t)

q(t) = v1(t)1A(t) + v31B(t) .

We have p, q ∈ L∞(I,R2) and thus their preimages b = R−1(p), c = R−1(q) are
well-defined Lipschitz curves, hence also absolutely continuous. We claim that the
infimum infβ,γ∈Γ dist(b ◦ β, c ◦ γ) is not attained. Because of

dist(b ◦ β, c ◦ γ)2 = ‖p‖2L2 + ‖q‖2L2 − 2

∫
I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt

it is enough to look at the supremum over
∫
I
〈p ◦ β, q ◦ γ〉

√
β′
√
γ′ dt and the next

proposition shows that this supremum is not attained.
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Proposition 6.5. With p, q constructed as above we have

(5) sup
β,γ∈Γ

∫
I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt = λ(A) ,

and the supremum is not attained.

Proof. Step 1: sup ≤ λ(A).
Because all mixed scalar products among v1(t), v2, v3 are negative, we have the
simple estimates∫

I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt ≤

∫
β−1(A)∩γ−1(A)

〈v1 ◦ β, v1 ◦ γ〉
√
β′
√
γ′ dt

=

∫
β−1(A)∩γ−1(A)

cos ε(γ(t)− β(t))
√
β′
√
γ′ dt

≤
∫
β−1(A)∩γ−1(A)

√
β′
√
γ′ dt .

We set M = β−1(A)∩ γ−1(A) and since M is an open set, we can write M =
⋃
j Ij

as a union of countably many disjoint open intervals Ij . Using the inequality of
Cauchy–Schwartz a couple of times we obtain∫
M

√
β′
√
γ′ dt =

∑
j

∫
Ij

√
β′
√
γ′ dt

≤
∑
j

√∫
Ij

β′ dt

√∫
Ij

γ′ dt =
∑
j

√
λ(β(Ij))

√
λ(γ(Ij))

≤
√∑

j

λ(β(Ij))

√∑
j

λ(γ(Ij)) =
√
λ(β(M))

√
λ(γ(M)) ≤ λ(A) .

In particular we see that the upper bound∫
I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt ≤ λ(A)

holds for all reparametrisations β, γ.
Step 2: λ(A) is not attained.

Let β, γ ∈ Γ be a pair of reparametrisations. As in the proof of Prop. 6.2 we
can replace the curve (β, γ) ∈ AC(I,R2) by its L1-constant speed parametrisation
allowing us to assume that β′ + γ′ = 2 holds a.e..

By following the estimates made in Step 1, we see that a necessary condition for
the equality

(6)

∫
M

〈v1 ◦ β, v1 ◦ γ〉
√
β′
√
γ′ dt = λ(A)

to hold is β′ = rγ′ on M for some r ∈ R. Together with β′ + γ′ = 2 this implies
that

√
β′
√
γ′ 6= 0 a.e. on M and thus cos ε(γ(t) − β(t)) = 1 a.e. on M . Hence

β|M = γ|M . Since β is a closed map we have β(M) ⊇ β(M) = A = I. Hence
β(M) = I and because β|M = γ|M , also γ(M) = I.

Assume M is not dense in I. Then M
c

contains an open interval O and because
β is weakly increasing and β(M) = I, β must be constant on O, in particular
β′|O = 0. The same holds for γ, γ′|O = 0, but this contradicts the assumption
β′ + γ′ = 2 a.e.; hence M = I.

By continuity, β|M = γ|M implies β = β|M = γ|M = γ and hence β′ = γ′ a.e..
Because of β′+ γ′ = 2 we actually have β′ = γ′ = 1 and thus β(t) = t and γ(t) = t.



OPTIMAL REPARAMETRISATIONS 17

The scalar products 〈vi, vj〉 were chosen to be negative for i 6= j, therefore the
equality ∫

I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt =

∫
M

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt

can only hold if
√
β′
√
γ′ = 0 on I \M . Together with β′ = γ′ = 1, this leads to a

contradiction. Hence the value λ(A) cannot be attained.
Step 3: sup ≥ λ(A).

We will construct a sequence of reparametrisations, such that the integral in (5)
will converge to λ(A).

Since B is measurable, there exists a sequence of open sets, On ⊇ B, such that
λ(On \ B) → 0. Decompose On =

⋃
k In,k into at most countably many open

intervals. Each interval In,k shall be divided into two subintervals of equal size,
In,k = I−n,k ∪ I

+
n,k. We define the reparametrisations βn, γn by setting βn(t) =

γn(t) = t for t ∈ Ocn. On On we define

β′n =

{
2 on I−n,k
0 on I+

n,k

γ′n =

{
0 on I−n,k
2 on I+

n,k

.

This has the effect that βn, γn are continuous and
√
β′n
√
γ′n = 0 on On.

Now we look at the integral. Since B ⊆ On, it follows that Ocn ⊆ A. Thus∫
I

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt =

∫
Oc

n

〈p ◦ β, q ◦ γ〉
√
β′
√
γ′ dt = λ(Ocn) .

Comparing to the desired value λ(A) we see that

λ(Ocn)− λ(A) = λ(A ∩Ocn)− λ(A) = λ(A ∩On) = λ(On ∩Bc) = λ(On \B)→ 0 ,

meaning that we can approximate λ(A) by a sequence of reparametrisations. Thus
sup ≥ λ(A), which concludes the proof. �

We summarise the counterexample in the following corollary.

Corollary 6.6. Let d ≥ 2. Then there exist two curves, b, c ∈ W 1,∞(I,Rd), such
that the infimum

inf
β,γ∈Γ

dist(b ◦ β, c ◦ γ)

is not attained.

We would like to contrast this result to [17, Thm. 4], which states that is one curve
is piecewise linear, then the other curve only has to be absolutely continuous for the
infimum to be attained. We do not know, if we can strengthen the counterexample
to make one curve C1 while the other one remains Lipschitz. The above construction
cannot be immediately generalised to scalar functions and thus the case d = 1
remains open.

Open Question. Does there exist a pair of scalar functions b, c ∈ AC0(I,R), such
that the infimum infβ,γ∈Γ dist(b ◦ β, c ◦ γ) is not attained?

Both, the proof of existence of optimal reparametrisations as well as the con-
struction of the counterexample relied heavily on the availability of an explicit
formula for the geodesic distance. Such a formula is not available for closed curves
and hence the case of periodic functions remains open.

Open Question. Can Prop. 6.2 and Cor. 6.6 be generalised to the metric com-
pletion of the geodesic distance on the space AC0(S1,Rd) of closed curves?
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