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Abstract For nearly two decades, much research has been carried out on properties
of physical systems described by Hamiltonians that are not Hermitian in the con-
ventional sense, but are symmetric under space-time reflection; that is, they exhibit
PT symmetry. Such Hamiltonians can be used to model the behavior of closed
quantum systems, but they can also be replicated in open systems for which gain
and loss are carefully balanced, and this has been implemented in laboratory exper-
iments for a wide range of systems. Motivated by these ongoing research activities,
we investigate here a particular theoretical aspect of the subject by unraveling the
geometric structures of Hilbert spaces endowed with the parity and time-reversal op-
erations, and analyze the characteristics of PT -symmetric Hamiltonians. A canon-
ical relation between a PT -symmetric operator and a Hermitian operator is estab-
lished in a geometric setting. The quadratic form corresponding to the parity opera-
tor, in particular, gives rise to a natural partition of the Hilbert space into two halves
corresponding to states having positive and negative PT norm. Positive definite-
ness of the norm can be restored by introducing a conjugation operator C ; this leads
to a positive-definite inner product in terms of C PT conjugation.
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1 Introduction

The observation that non-Hermitian Hamiltonians possessing a physical symme-
try associated with a discrete space-time reflection, known as PT invariance,
can possess entirely real eigenvalues [1] has generated considerable research out-
puts for nearly two decades. It is by now well documented that a PT -symmetric
Hamiltonian possesses real eigenvalues if the symmetry is unbroken in the sense
that eigenstates of H are also eigenstates of PT [2]. A PT -symmetric Hamil-
tonian can describe dynamical and probabilistic aspects of closed quantum systems
if one augments the Hilbert space with a suitable inner product [3, 4]. A PT -
symmetric Hamiltonian can be replicated in an open system by balancing gain and
loss [5, 6, 7]. Open systems can have phase transitions associated with the breaking
of PT symmetry, leading to a range of counterintuitive phenomena that have been
observed in laboratory experiments for many different kinds of physical systems
[8, 9, 10, 11, 12, 13, 14, 15].

For a quantum system having continuous degrees of freedom parity reflection
P has the classical analog x→ −x and p→ −p. Time reversal T generates the
transformations p→ −p and i→ −i. In the case of an open system modeled on
a finite-dimensional Hilbert space P can be interpreted as the interchange of the
left and the right sides of the system and T amounts to interchanging the gain and
loss channels. Hence, if the mirror image of the gain channel is a loss channel, then
PT symmetry can be realized if the strengths of gain and loss are matched exactly.
For a closed system characterized by a finite-dimensional matrix Hamiltonian the
interpretation of P is not immediately apparent. Nevertheless, one can augment the
Hilbert space with a structure that in a general sense embodies properties of parity
reflection. It is then of interest to investigate the mathematical properties of Hilbert
spaces endowed with such a structure.

This paper addresses this question by clarifying mathematical, and in particu-
lar the geometric aspects of the underlying real Hilbert space endowed with the
parity structure. Apart from its intrinsic mathematical appeal, the geometric formal-
ism has led, even in standard Hermitian quantum theory, to discoveries that no other
mathematical approach has reproduced (for example, higher-order corrections to the
Heisenberg uncertainty relation [16, 17]), or discoveries that come naturally with
the geometric formalism (for example, the identification of the measure of entan-
glement for pure states [18]). In this spirit we develop here a geometric framework
that is sufficiently general to admit both standard quantum theory with a Hermitian
Hamiltonian as well as extensions of the standard theory. In Secs. 2 and 3 we discuss
the underlying mathematical structures and the role of the observables in conven-
tional Hermitian quantum mechanics. In Secs. 4 and 5 we compare these results
in with the corresponding structures in PT -symmetric quantum theory. It is well
known that the requirement of PT invariance alone on the Hamiltonian leads to
a state space with an indefinite metric. The crucial observation that we make here
is that the parity operator plays the role of an indefinite metric, while the complex
structure J of standard quantum mechanics is unaltered in PT -symmetric quan-
tum theory. This is an attractive complex-analytic feature of PT -symmetric theory.
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Proposition 1 states that the PT norm of a state is expressible as a difference of
the standard Dirac norm of the positive- and negative-parity parts of the state.

Section 6 analyses the properties of PT -symmetric Hamiltonian operators.
Proposition 2 shows that any such Hamiltonian is a product of the parity structure
and a Hermitian quadratic form. This leads to a new way to understand the reality of
the spectrum of such Hamiltonians; Proposition 3 shows that the energy eigenval-
ues are necessarily real if the corresponding eigenvectors have nonvanishing PT
norm. In our geometric scheme Proposition 4 shows that the eigenvalues of such
Hamiltonians are either real or occur as complex conjugate pairs [19]. A sufficient
condition for the reality of the eigenvalues is then established in Proposition 5.

In Sec. 7 we introduce an additional structure C that has the interpretation
of charge conjugation. This symmetry allows us to construct an alternative inner
product on the vector space spanned by the eigenfunctions of the PT -symmetric
Hamiltonian by means of C PT conjugation, thus eliminating states having nega-
tive norms. As a consequence, a consistent probabilistic interpretation for a closed
system can be assigned to quantum theories described by PT -symmetric Hamil-
tonians.

2 Geometry of Hermitian quantum mechanics

Before discussing PT -symmetric quantum theory, it is helpful first to formulate
standard quantum mechanics from a perspective that is useful in clarifying the sim-
ilarities and differences of the two formalisms. In standard quantum theory Her-
mitian operators play a dual role, namely, as physical observables and as genera-
tors of dynamics. To explain the relation between these two roles, we show how to
build quantum mechanics, not in terms of the complex Hilbert space with respect
to which it is usually formulated, but rather in terms of a more primitive underlying
even-dimensional real Hilbert space H. By introducing certain structures on H we
arrive at standard quantum theory. Then by considering a related alternative set of
structures on H we arrive at PT -symmetric quantum theory, and the relationship
of the two theories becomes clear.

Using index notation [Geroch [20], Gibbons and Pohle [21], Wald [22], Brody
and Hughston [16, 17]], we let the real vector ξ a denote a typical element of H.
The real Hilbert space H is equipped with a positive-definite quadratic form gab
satisfying gab = gba, and the squared norm of the vector ξ a is given by gabξ aξ b. If
ξ a and ηa are elements ofH we define their inner product by gabξ aηb.

To recover the apparatus of standard quantum mechanics we require that H also
be endowed with a compatible complex structure, by which we mean a real tensor
Ja

b whose square is equal to the negative of the identity Ja
cJc

b =−δ a
b. The complex

structure is compatible with the symmetric quadratic form if gab satisfies

gabJa
cJb

d = gcd (1)
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and gab is said to be J-invariant. The J-invariance condition implies that the tensor

Ωab = gacJc
b (2)

is antisymmetric and nondegenerate, and thus defines a symplectic structure on
H. To verify the antisymmetry of Ωab we insert (1) into (2): Ωba = gbcJc

a =
gdeJd

bJe
cJc

a =−gdeJd
bδ e

a =−Ωab.
To verify the nondegeneracy of Ωab we note that Ω ab = gacgcdΩcd acts as the re-

quired inverse. Indeed, we have Ω acΩbc = gaegc f gehJh
f gbdJd

c = gbdJd
cJa

f gc f = δ a
b.

In the last step we have used the J-invariance of gab, which satisfies Ja
cJb

dgcd = gab.
The symplectic structure is also compatible with Ja

b in the sense that ΩabJa
cJb

d =
Ωcd . (This follows because ΩabJa

cJb
d = gaeJe

bJa
cJb

d = −gaeδ e
dJa

c = −Ωdc = Ωcd .)
We then say that Ωab is J-invariant.

We can now elucidate the structure of standard quantum mechanics. We endow
the real Hilbert space H with a Hermitian inner product. If ξ a and ηa are two real
Hilbert space vectors, then their Hermitian inner product, which we write as 〈η |ξ 〉
in the usual Dirac notation, is the complex expression

〈η |ξ 〉= 1
2 η

a(gab− iΩab)ξ b. (3)

Because the symplectic form Ωab is antisymmetric, the Hermitian norm agrees with
the real Hilbertian norm, apart from a factor of two: 〈ξ |ξ 〉= 1

2 gabξ aξ b.
Next, we complexify the Hilbert spaceH and denote the resultHC. The elements

of HC are the complex vectors ξ a + iηb, where ξ a, ηb ∈ H. With the aid of the
complex structure, a real Hilbert space vector ξ a can be decomposed into complex
J-positive and J-negative parts:

ξ
a = ξ

a
+ +ξ

a
−, (4)

where

ξ
a
+ = 1

2 (ξ a− iJa
bξ

b) and ξ
a
− = 1

2 (ξ a + iJa
bξ

b). (5)

For the case of relativistic fields, where ξ a is a square-integrable solution of the
Klein-Gordon equation defined on a background space-time, this decomposition
corresponds to splitting the fields into positive- and negative-frequency parts.

Note that ξ a
+ and ξ a

− are complex eigenstates of the Ja
b operator: Ja

bξ b
+ = +iξ a

+
and Ja

bξ b
− =−iξ a

−. The Hermitian (J-invariance) condition (1) implies that two vec-
tors of the same type (for example, a pair of J-positive vectors) are orthogonal with
respect to the metric gab. Thus, we have gabξ a

+ηb
+ = 0 for any pair ξ a

+, ηa
+ of J-

positive vectors, and gabξ a
−ηb
− = 0 for any pair ξ a

−, ηa
− of J-negative vectors.

For a real vector ξ a it follows from (4) that ξ a
− = ξ a

+. We can also split a complex
vector into J-positive and J-negative parts. However, in splitting a complex vector
ζ a = ζ a

+ +ζ a
− there is no a priori relationship between the components ζ a

+ and ζ a
−.

Thus, if ζ a is not real, then ζ a
− 6= ζ a

+. The complex conjugate of a J-positive vector
is nevertheless a J-negative vector, and vice versa. To be precise, we have ζ a

+ = ζ̄ a
−.



Geometric Aspects of Space-Time Reflection Symmetry in Quantum Mechanics 5

Introducing J-positive and J-negative vectors allows us to express the Dirac inner
product (3) in a simplified form, namely, 〈η |ξ 〉= ηa

−gabξ b
+. The equivalence of (3)

and the simplified form is verified by using (1) and the antisymmetry of Ωab:

η
a
−gabξ

b
+ = 1

4 (ηa + iJa
cη

c)gab(ξ b− iJb
dξ

d)

= 1
4

(
gab + Jc

aJd
bgcd

)
η

a
ξ

b− 1
4 i(gacJc

b− Jc
agbc)η

a
ξ

b

= 1
2 η

a(gab− iΩab)ξ b.

3 Quantum-mechanical observables

We now explain how the observables of standard quantum mechanics are repre-
sented in terms of the geometry of the real Hilbert space H. A quantum observ-
able corresponds to a real symmetric J-invariant quadratic form on H; that is, a
real tensor Fab satisfying Fab = Fba and FabJa

cJb
d = Fcd . The observable corre-

sponding to the identity is gab, and for the expectation of F in the state ξ a we
write 〈ξ |F |ξ 〉/〈ξ |ξ 〉 = Fabξ aξ b/gabξ aξ b. In general, for the states ξ a and ηa, we
have 〈η |F |ξ 〉 = ηa

−Fabξ b
+. The operator associated with the observable Fab is ob-

tained by raising one of the indices with the inverse of the metric: Fa
b = gacFcb.

From the J-invariance of Fab, when the operator Fa
b acts on a J-positive vec-

tor, the result is another J-positive vector. Alternative ways to write 〈η |F |ξ 〉 are
ηa
−gacFc

bξ b
+ = Fa

cηc
−gabξ b

+, which expresses the self-adjointness of Fa
b with respect

to the given inner product.
What are the symmetries of the Hilbert space H? Rotations of H around the

origin are given by orthogonal transformations, that is, the matrix operations ξ a→
Ma

bξ b such that gabMa
cMb

d = gcd . Such transformations preserve the norm gabξ aξ b

of the state ξ a. The unitary group consists of orthogonal matrices that also leave the
symplectic structure invariant: ΩabMa

cMb
d = Ωcd .

In the case of an infinitesimal orthogonal transformation Ma
b = δ a

b + ε f a
b, with

ε2 ∼ 0, it is easy to verify that f a
b must satisfy gac f c

b + gbc f c
a = 0, from which we

deduce that f a
b has the form f a

b = gac fcb, where fab is antisymmetric. For Ma
b to be

a unitary operator it is necessary and sufficient that fab be J-invariant. We thus see
that any infinitesimal unitary transformation has the form

Ma
b = δ

a
b + εJa

cFc
b, (6)

where Fa
b is the operator associated with a standard quantum observable Fab. Indeed,

fab is antisymmetric and J-invariant if and only if it can be expressed as

fab = FacJc
b, (7)

where Fab is symmetric and J-invariant. If Fa
b is proportional to the identity ga

b
then (6) corresponds to an infinitesimal phase transformation. Conversely, if Fa

b is
trace-free, then (6) gives an infinitesimal special unitary transformation.
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Thus, we see how the operator Fa
b is associated with both the observable Fab

as well as the infinitesimal unitary transformation ξ a → ξ a + εJa
bFb

cξ c. The com-
plete trajectory of the unitary transformation associated with the operator Fa

b can be
obtained by exponentiating the infinitesimal transformation and writing

ξ
a(t) = exp

(
tJb

cFc
dξ

d
∂b

)
ξ

a
∣∣∣
ξ a=ξ a(0)

,

where ∂b = ∂/∂ξ b. The differential operator appearing in the exponent can be writ-
ten as Jb

cFc
dξ d∂b = 1

2

(
Ω ab∂bF

)
∂a, where F(ξ ) = Fabξ aξ b. Thus, the quadratic

form Fabξ aξ b appears as the generator of a Hamiltonian vector field Xa(ξ ) =
∂ξ a/∂ t onH given by ∂ξ a/∂ t = 1

2 Ω ab∂bF(ξ ). The trajectory of the one-parameter
family of unitary transformations associated with the observable Fab is generated by
the Hamiltonian vector field 1

2 Ω ab∂bF(ξ ). If H(ξ ) = Habξ aξ b denotes the quadratic
function on H associated with the Hamiltonian of a standard quantum system, then
the Schrödinger equation is

∂ξ a

∂ t
= 1

2 Ω
ab

∂bH. (8)

We conclude that standard quantum mechanics can be described in terms of the
geometry of a real vector spaceH equipped with a complex structure Ja

b, a positive
definite quadratic form gab, and a compatible symplectic structure Ωab. Observables
are J-invariant quadratic forms on H, and dynamical trajectories are the symplec-
tic vector field on H generated by such forms. All these structures are intrinsic to
standard quantum theory.

4 Space-time reflection symmetry

In standard quantum theory, we fix the complex tensor Ja
b on the space H of real

state vectors; the remaining structures, namely, the positive-definite quadratic form
gab and the symplectic structure Ωab, are then chosen so as to satisfy the compatibil-
ity conditions. The compatibility conditions are useful for relativistic fields, that is,
when we insist that the creation and annihilation operators satisfy canonical com-
mutation relations [23]. For the quantum theory of a PT -symmetric Hamiltonian
we introduce another quadratic form called parity πab that for certain purposes re-
places the metric gab of the standard theory. The parity operator, whose properties
are defined below, can only be introduced if the complex dimension of the space
of J-positive vectors is even. Hence, the dimensionality of the underlying space of
real state vectors associated with PT -symmetric quantum theory is a multiple of
four rather than two. This is the sense in which PT symmetry extends (complex)
quantum mechanics further into the complex domain [3].

Let us define the properties of the parity operator πa
b. In a general sense, this

operator represents space reflection and satisfies the conditions of a standard ob-
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servable in quantum theory discussed in Sec. 3. Therefore, πab = gacπc
b is required

to be real and symmetric and to satisfy the J-invariance condition πabJa
cJb

d = πcd .
This condition is equivalent to the commutation relation πa

cJc
b = Ja

cπc
b. In addition,

the parity operator is required to be trace-free,

π
a
a = 0, (9)

and to satisfy the orthogonality condition

gabπ
a
cπ

c
b = gcd . (10)

Thus, πa
b is unitary on the space of J-positive vectors associated withH.

One may relax the trace-free condition (9) to define a generalization of the parity
operator [24] on a complex Hilbert space of any dimension. For the physical intu-
ition behind this, recall the case of a coupled pair of waveguides; here, P swaps
the two waveguides. If there are three coupled waveguides, then a P reflection
leaves the middle waveguide intact; there is a degenerate component. If such de-
generacies are allowed, the parity operator can be defined in arbitrary dimension.
Here, we focus on the nondegenerate case. Conditions (9) and (10) then prevent us
from defining a parity structure unless the dimension of the underlying real Hilbert
spaceH is a multiple of four. In particular, from the defining conditions of the parity
operator half of its eigenvalues are +1 and the other half are −1, and the parity
operator is unique up to unitary transformations. The eigenvalues are ±1 because
πab is symmetric and the orthogonality condition (10) can be written as

π
a
cπ

c
b = δ

a
b. (11)

Since a successive application of space reflection is the identity, if we diagonalize
πa

b, the diagonal entries are±1, and the trace-free condition (9) implies that the two
signs occur in equal numbers. Suppose that P and P ′ are distinct parity operators.
They have the same spectrum, so there exists a unitary transformation from one to
the other. Hence, πa

b is unique up to unitary equivalence.
In PT -symmetric quantum theory we keep the real Hilbert space H and its

complex structure Ja
b and introduce a new inner-product onH in terms of the parity

operator. The PT inner product 〈η‖ξ 〉 between the elements ξ a and ηa inH is

〈η‖ξ 〉= 1
2 η

a(πab− iωab)ξ b, (12)

where ωab is defined by ωab = Ωacπc
b. Equivalently, from (2) we can write ωab =

πacJc
b. Since πab is an observable in standard quantum mechanics, ωab is antisym-

metric and defines a new symplectic structure onH that is compatible with the com-
plex structure Ja

b. One can easily verify the J-invariance condition ωabJa
cJb

d = ωcd
associated with the symplectic structure.

As in standard quantum mechanics, the PT inner product (12) can be written in
terms of the J-positive and J-negative parts of the vectors ξ a and ηa. SplittingH into
J-positive and J-negative parts depends on the complex structure Ja

b, and not on the
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associated quadratic forms. A short calculation then shows that 〈η‖ξ 〉= ηa
−πabξ b

+.
Indeed, starting from this equation we have ηa

−πabξ b
+ = 1

4 (ηa + iJa
cηc)πab(ξ b −

iJb
dξ d) by virtue of (5). Then, using of the J-invariance of πab and the antisymmetry

of ωab, we are immediately led back to the inner product (12).
Because of (11), if we adapt the usual convention of writing πab = gacgbdπcd ,

then πab is the inverse of πab because πabπbc = δ c
a . Analogously, the tensor ωab =

gacgbdωcd satisfies ωab = πacπbdωcd and ωab is the inverse of ωab, so ωabωbc = δ c
a .

Note also that ωab is P-invariant because π c
a π d

b ωcd = ωab.
To summarize these results, in the case of the Hermitian theory we have the com-

patible structures (Ja
b,gab,Ωab) onH, whereas the PT -symmetric quantum theory

comes equipped with the compatible structures (Ja
b,πab,ωab). The key difference

between the two theories is that, while gab is positive definite, πab is indefinite with
the split signature (+, · · · ,+,−, · · · ,−). The PT norm (pseudo-norm) of a state
ξ a, which is defined by

〈ξ‖ξ 〉= 1
2 πabξ

a
ξ

b, (13)

can be either positive or negative, and in some cases may also vanish.
We interpret the PT norm as follows. Given any real element ξ a in H we

can split this into its positive and negative parity parts by writing ξ a = ξ a
⊕+ ξ a

	,
where ξ a

⊕ = 1
2 (ξ a + πa

bξ b) and ξ a
	 = 1

2 (ξ a−πa
bξ b). These vectors are eigenstates

of the parity operator πab, satisfying πa
bξ b
⊕ = ξ a

⊕ and πa
bξ b
	 =−ξ a

	. In terms of the
projection operators Π a

⊕b = 1
2 (δ a

b +πa
b) and Π a

	b = 1
2 (δ a

b−πa
b) onto positive- and

negative-parity eigenstates, we have

π
a
b = Π

a
⊕b−Π

a
	b, (14)

where Π a
⊕bξ b = ξ a

⊕ and Π a
	bξ b = ξ a

	. Furthermore, because πa
b and Ja

b com-
mute, the positive-parity component of the J-positive part of a real vector ξ a agrees
with the J-positive part of the positive-parity part of ξ a, and similarly for other such
combinations. We can now establish the following result for the PT norm.

Proposition 1 The squared PT norm of a state ξ a ∈ H is the difference
between the squared Hermitian norm of the positive-parity part ξ a

⊕ of the
state and that of the negative-parity part ξ a

	 of the state:

〈ξ‖ξ 〉= 〈ξ⊕|ξ⊕〉−〈ξ	|ξ	〉. (15)

Thus, if a state is “more probably” of positive parity, its PT -norm is positive.
Conversely, for a state of “more probably” negative parity, its PT norm is negative.
The identity (15) follows immediately if we insert (14) into (13).

Finally, we note that if ξ a and ηa are positive- and negative-parity states, then
their standard quantum transition amplitude vanishes: 〈ξ⊕|η	〉 = 0. This follows
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from (3) if we insert ηa
	 for ηa and ξ a

⊕ for ξ a and use the identities gabΠ a
⊕cΠ b

	d = 0
and ΩabΠ a

⊕cΠ b
	d = 0. The second of these two relations follows from the former

because the J-tensor commutes with the parity projection operators.

5 Observables and symmetries

What are the transformations ofH that preserve the PT norm πabξ aξ b? The trans-
formation ξ a→Ma

bξ b preserves the PT norm for all ξ a ∈H if and only if

πabMa
cMb

dξ
c
ξ

d = πabξ
a
ξ

b (16)

for all ξ a. In the case of the infinitesimal transformation Ma
b = δ a

b +ε f a
c, (16) holds

to first order in ε if and only if

πab f a
cξ

b
ξ

c = 0 (17)

for all ξ a, from which we deduce that f a
b must have the form

f a
b = π

ac fcb, (18)

where fbc is antisymmetric. As in Sec. 4, πab denotes the inverse of πab and satisfies
πabπbc = δ a

c. Note that πab is defined unambiguously without reference to gab.
To verify (18) we argue that if (17) holds for all ξ a, then πab f b

c is antisymmetric.
Writing πab f b

c = fac, we obtain (18) by applying the inverse of πab to each side.
Thus, the infinitesimal pseudo-orthogonal transformations that preserve the PT
norm are given by Ma

b = δ a
b + επac fcb, where fab is antisymmetric.

We require that the transformation preserve the PT symplectic structure ωab.
Because of the compatibility condition this is equivalent to requiring that complex
structure is preserved. We have ωabMa

cMb
d = ωcd + ε

(
ωadπae fec +ωcbπbe fed

)
to

first order in ε . Thus, in order for ωab to be preserved we require that ωadπae fec +
ωcbπbe fed = 0. However, since ωab = πacJc

b, this condition implies that fab is J-
invariant. Because fab is antisymmetric and J-invariant, it can be written in the form
fab = FacJc

b, where Fab is a J-invariant symmetric quadratic form onH.
We conclude that the general infinitesimal pseudo-unitary transformation pre-

serving πab and ωab has the form Ma
b = δ a

b + εωacFcb, where Fab is a standard
quantum observable; it is symmetric and J-invariant. It is interesting to recall equa-
tion (7) and to note that the same J-invariant quadratic forms on H appear both in
standard quantum theory and in PT -symmetric quantum theory.

Arguments analogous to those in Sec. 3 show that the trajectory of the pseudo-
unitary transformation associated with the operator Fa

b = πacFcb has the form

ξ
a(t) = exp

(
tωbcFcdξ

d
∂b

)
ξ

a
∣∣∣
ξ a=ξ a(0)

,
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where ∂b = ∂/∂ξ b. Thus, if F(ξ ) = Fabξ aξ b is the quadratic function on H asso-
ciated with an observable Fab, then the dynamical equation for the corresponding
one-parameter family of pseudo-unitary transformations on H preserves the PT
inner product, and it can be expressed in Hamiltonian form: ∂ξ a/∂ t = 1

2 ωab∂bF .
This contrasts with (8) for standard quantum mechanics.

6 PT -symmetric Hamiltonian operators

We now introduce the notion of observables invariant under PT symmetry and
consider the properties of PT -symmetric Hamiltonian operators. Unlike Hermitic-
ity in conventional quantum mechanics, we demand here that the Hamiltonian be
invariant under space-time reflection. In ordinary quantum mechanics we require
the Hamiltonian operator Ha

b to be real, Ha
b = H̄a

b, and J-invariant, Ja
bHb

cJc
d = Ha

d .
A Hamiltonian that satisfies these conditions is Hermitian. Here, we keep the J-
invariance, but replace the reality condition with another condition that has the phys-
ical interpretation of invariance under space-time reflection.

We have introduced the real vector spaceH and the complex structure Ja
b and we

have showed that this structure can be augmented in two ways, either by introduc-
ing the positive-definite symmetric quadratic form gab and associated symplectic
structure Ωab, or by introducing the split-signature indefinite form πab and associ-
ated symplectic structure ωab. Here, we consider either the structure (Ja

b,gab,Ωab)
or the structure (Ja

b,πab,ωab) (or both). We call the former the g-structure onH and
the latter the π-structure on H. First, we consider those aspects of the PT sym-
metry that arise when we only have the π-structure onH. We make no direct use of
the parity operator πa

b = gacπcb for now (because this involves gab) and we consider
only the consequence of introducing a π-structure onH.

Suppose thatH is endowed with a π-structure, and let Ha
b be a complex operator

on HC. Thus, Ha
b = Xa

b + iY a
b, where Xa

b and Y a
b are real. We assume that Ha

b is
J-invariant. Then Ha

b is invariant under space-time reflection (is PT -symmetric)
with respect to the given π-structure, if

πbcH̄c
dπ

ad = Ha
b. (19)

This relation suggests that if we take complex conjugate of the Hamiltonian fol-
lowed by a parity transformation, then we recover the original Hamiltonian.

Next, we introduce the notion of a Hermitian form. A tensor Kab on HC is a
Hermitian form if it is J-invariant and satisfies K̄ab = Kba. Thus, Kab is a Hermitian
form if Kab = Xab + iYab, where Xab and Yab are real and J-invariant, and Xab is
symmetric and Yab is antisymmetric. Examples of Hermitian forms are gab− iΩab
and πab− iωab. The following proposition emerges from these definitions.
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Proposition 2 A Hamiltonian operator Ha
b is PT -symmetric with respect

to the π-structure (Ja
b,πab,ωab) if and only if there exists a Hermitian form

Kab such that Ha
b = πacKbc.

To verify Proposition 2 we note that πbcH̄c
dπad = πbcπceK̄deπad = δ e

b Kedπad =
Ha

b. Thus, PT invariance of a Hamiltonian is an unconventional Hermiticity con-
dition. One can characterize PT invariance without reference to any elements of
the g-structure onH.

We now turn to the spectrum of the operator Ha
b, still keeping in the context of

the π-structure. Because Ha
b is complex, we must admit the possibility of complex

eigenvectors, that is, elements of HC. We define the PT norm as follows: if φ a is
an element of HC, then its PT norm is πabφ aφ̄ b, which is the sum of the PT
norms of the real and imaginary parts of φ a.

Proposition 3 If the PT norm of an eigenvector of a PT -symmetric
Hamiltonian is nonvanishing, then the corresponding eigenvalue is real.

Proof. For some possibly complex value of E the vector φ a, which may be com-
plex, satisfies the eigenvalue equation Ha

bφ b = Eφ a. Taking the complex conjugate,
we have H̄a

bφ̄ b = Ēφ̄ a. Transvecting each side of these equations with πca, we get
πcaHa

bφ b = Eπcaφ a and πcaH̄a
bφ̄ b = Ēπcaφ̄ a. Hence, from Proposition 1 we get

Kabφ
b = Eπabφ

b (20)

and K̄abφ̄ b = Ēπabφ̄ b, and because Kab is a Hermitian form we can replace this with

Kabφ̄
b = Ēπabφ̄

b. (21)

Contracting (20) and (21) with φ̄ a and φ a and subtracting, we get (E− Ē)πabφ aφ̄ b =
0, from which Proposition 3 follows. �

Thus, if a PT -symmetric Hamiltonian has any complex eigenvalues, then the
corresponding eigenstates have vanishing PT norm. We proceed to augment the
vector space H with the g-structure in addition to the π-structure. Introducing the
g-structure allows us to consider the parity operator πa

b. The condition (19) for the
invariance under space-time reflection can now be written in the form

π
a
cH̄c

dπ
d
b = Ha

b. (22)

Note that real part of the Hamiltonian has even parity and imaginary part has
odd parity. Therefore, writing Ha

b = Xa
b + iY a

b, where Xa
b and Y a

b are real, we get
πa

cXc
dπd

b = Xa
b and πa

cY
c
dπd

b =−Y a
b. Conversely, any such complex operator is in-
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variant under space-time reflection. We then have the following observation on the
reality of the energy eigenvalues.

Proposition 4 Let E be an eigenvalue of a PT -symmetric Hamiltonian op-
erator Ha

b with corresponding eigenstate φ a. Then, Ē is also an eigenvalue
of Ha

b, for which the associated eigenstate is πa
bφ̄ b. In particular, if φ a is a

simultaneous eigenstate of the PT operator, then E is real.

Proof. Consider the eigenvalue equation

Ha
bφ

b = Eφ
a, (23)

where E is an energy eigenvalue, which may or may not be real. Substituting (22) in
the right side of (23) gives πa

cH̄c
dπd

bφ b = Eφ a. Taking the complex conjugate, we
obtain πa

cHc
dπd

bφ̄ b = Ēφ̄ a. We then multiply on the left by the parity operator:

Ha
bπ

b
cφ̄

c = Ēπ
a
bφ̄

b. (24)

Thus, if φ a is an energy eigenstate with eigenvalue E, then the state defined by πa
bφ̄ b

is another energy eigenstate with eigenvalue Ē. If, in addition, the energy eigenstate
φ a is a simultaneous eigenstate of the PT operator, then πa

bφ̄ b = λφ a, where λ is
a pure phase. Substituting this into (24) and subtracting the result from (23) gives
Ē = E. This establishes Proposition 4. �

If an energy eigenstate φ a
i is not a simultaneous eigenstate of PT , we say that

PT symmetry is broken. In this case the nonreal eigenvalues Ei form complex
conjugate pairs. If the PT symmetry is unbroken so that {φ a

i } are eigenstates of
PT , the corresponding energy eigenvalues are real. Proposition 5 gives a sufficient
(but not necessary) condition for the orthogonality of the eigenstates.

Proposition 5 If the eigenstates {φ a
i } of a PT -symmetric Hamiltonian Ha

b
are also eigenstates of PT , then a sufficient condition for orthogonality of
the eigenstates with respect to PT inner-product is that the quadratic form
Hab = gacHc

b be symmetric.

Proof. Consider for i 6= j a pair of eigenvalue equations Ha
bφ b

i = Eiφ
a
i and

Ha
bφ b

j = E jφ
a
j . Transvect these equations with πacφ̄ c

j and πacφ̄ c
i and subtract:

φ̄
c
j πcaHa

bφ
b
i − φ̄

c
i πcaHa

bφ
b
j = πab

(
Eiφ

b
i φ̄

a
j −E jφ

b
j φ̄

a
i
)
. (25)

If the energy eigenstates are eigenstates of the PT operator so that πa
bφ̄ b

i =
φ a

i , then πabφ̄ b
i = gabφ b

i . Therefore, the left side of (25) becomes φ c
j gcaHa

bφ b
i −
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φ c
i gcaHa

bφ b
j = Hcb

(
φ c

j φ b
i −φ c

i φ b
j
)
, where Hcb = gcaHa

b. Hence, the condition Hcb =
Hbc ensures that the right side of (25) vanishes. This establishes Proposition 5. �

Note that the symmetric condition on the complex Hamiltonian Hab is sufficient
to ensure the orthogonality of the eigenstates, but it is not necessary.

7 Charge-conjugation symmetry

We have shown how to formulate quantum mechanics on a Hilbert space endowed
with the structure of space-time reflection symmetry. Owing to the property of the
parity structure πab, we noted that the resulting state space is equipped with an
indefinite metric having a split signature; half of the states have positive and half
have negative PT norm.

In standard quantum mechanics the norm is associated with the probabilistic in-
terpretation of the theory. Therefore, the physical interpretation of the inner product
defined in (12) is somewhat ambiguous. To remedy this ambiguity, Ref. [3] pointed
out the existence of a new symmetry associated with Hamiltonians that are PT
symmetric (see also [4]). By using this symmetry, which has an interpretation simi-
lar to that of charge conjugation, it is possible to introduce new inner product on the
vector space HC spanned by the eigenstates of PT -symmetric Hamiltonians such
that all the eigenstates have positive-definite norm. With the aid of this symmetry
the probabilistic aspects of quantum theory are restored. We refer to this symme-
try as charge conjugation in a broad sense, and introduce here briefly the properties
of the symmetry associated with the ‘charge’ operator Ca

b. We make the following
observation.

Proposition 6 Let Ha
b be a PT -symmetric Hamiltonian operator. If the

PT symmetry is not broken, the energy eigenvalues are real. Let {φ a
n } denote

a set of normalized eigenstates of Ha
b. Then, the PT inner product between

a pair of energy eigenstates is 〈φm‖φn〉= gabφ a
n φ b

m.

The PT inner product between a pair of states is given by πabφ a
n φ̄ b

m; then, the
above equation follows from Proposition 3, which states that in unbroken PT
symmetry φ a

n is an eigenstate of the PT operator. Thus, we have πabφ a
n φ̄ b

m =
gacπc

bφ a
n φ̄ b

m = gacφ a
n φ b

m. Because the PT norm of the energy eigenstates are real,
the real part of φ a

n is orthogonal to its imaginary part with respect to gab.
Next, we normalize energy eigenstates according to φ a

n → φ a
n /

(
gabφ a

n φ b
n
)1/2 and

assume, in what follows, that φ a
n is normalized. Then, according to the discussion of

Sec. 4, exactly half of the normalized energy eigenstates have PT norm +1, and
the remaining half have PT norm −1. We order the levels so that

gabφ
a
mφ

b
n = (−1)n

δnm. (26)
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With these conventions, we define the charge conjugation operator Ca
b. First, Ca

b
is PT -symmetric; thus, there exists a positive Hermitian form Lab satisfying L̄ab =
Lba such that Ca

b = πacLbc. Second, Ca
b commutes with the Hamiltonian Ha

b, so the
eigenstates {φ a

n } of Ha
b are simultaneous eigenstates of Ca

b. Third, the eigenvalues
of Ca

b are given by Ca
bφ b

n = (−1)nφ a
n , where φ a

n satisfies (26). Thus, Ca
b commutes

with the Hamiltonian Ha
b and its eigenvalues are precisely the PT norm of the

corresponding eigenstates. Hence, Ca
b is involutary, Ca

bCb
c = δ a

c, and trace-free, so
Ca

a = 0. In the infinite-dimensional context, C has a position-space representation
[3, 4] C = ∑n φn(x)φn(y), which is similar to the position-space representation for
the parity operator P = ∑n(−1)nφn(x)φn(−y). [Here, {φn(x)} are eigenfunctions
of the PT -symmetric Hamiltonian.]

Having defined the operator Ca
b, we introduce on the vector space HC the fol-

lowing inner product. If ξ a,ηa ∈HC, their inner product 〈ξ |η〉 is defined by

〈ξ |η〉= gacCc
bπ

b
dη

a
ξ̄

d . (27)

In particular, 〈φn|φm〉= gacCc
bπb

dφ a
mφ̄ d

n = gacCc
bφ a

mφ b
n =(−1)ngabφ a

mφ b
n = δnm. Thus,

(27) defines a positive-definite inner product between elements ofHC. Here, to sim-
plify notation, we make no distinction between the Dirac inner product defined in (3)
and the inner product (27) with respect to the C PT conjugation. This is because
(27) is a natural extension of (3); when the prescribed Hamiltonian is Hermitian,
(27) reduces to the conventional Dirac inner product (3). We emphasize that the
charge operator Ca

b introduced here is not the conventional charge-conjugation op-
erator (cf. Streater & Wightman [25]). In conventional Hermitian quantum theory,
the commutation relation between the charge operator C and the parity operator
P is C P = (−1)NPC , where N is the Fermion number. Hence, these operators
commute for Bosons and anticommute for Fermions. The operators C and P in
this paper are distinct square roots of the identity operator, and when Hamiltonian
is Hermitian, C becomes identical to P so that the C PT invariance condition
reduces to the Hermiticity requirement [3].
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