Abstract

The purpose of this study is to examine the interplay between value chain integration dimensions and value chain performance along the malt barley value chain in Ethiopia. The analyses were based on survey data sets obtained from 320 farmers and 100 traders and qualitative interview responses captured from 62 key informants selected from among members of the chain. The structural equation modelling (SEM) technique was employed to seek answer for the question of how value chain integration dimensions are related to performance. The results of the analyses showed the existence of positive relationships between coordination of activities and performance, and between joint decision-making and performance at farmers-cooperatives interface; and between commitment towards long-term relationships and performance at farmers-traders interface. The study has made important empirical contributions in areas of value chain integration and performance and their interplays within the context of the studied malt barley value chain. The key findings of the study make important policy implications for agribusiness value chains in the developing countries. The study would open a venue for robust investigation based on wider data base from various agribusiness chains in Ethiopia or even beyond, for better validation of the findings.

Keywords: Value chain integration, value chain performance, malt barley value chain, Ethiopia

1. Introduction and objectives

Value chain is a set of three or more members, either organizations or individuals or both, that take part in the forward and reverse flows of materials, services, finances and information from their sources to destinations to create values in the form of products and or services for customers (Bagchi et al., 2005). In the view of same authors, value chain integration (VCI) deals with the management of these flows to provide superior values to end users (Bagchi et al., 2005). In simple terms, VCI is defined as a set of relationships among suppliers, processors, distributors, retailers and consumers that facilitate the conversion of raw materials to products or services of more value (Darroch and Mushayanyama, 2006; Wever et al., 2009). VCI is a means to create a match between demand and supply of products and or services at every stage along the value chain (Barratt, 2004). In this study, VCI is defined with the help of four latent concepts termed as “VCI dimensions” throughout the paper. These are: (1) collaboration among value chain members in terms of resources, capabilities and risks sharing, (2) commitment towards long-term relationships, (3) coordination of activities along the value chain, and (4) joint decision-making on key issues like product specification and prices and process improvements. Since past studies focused on a single aspect of VCI (Lotfi et al., 2013), this study is relevant for its completeness.

Many past studies generally claimed that VCI improves value chain performance (VCP) outcomes (Vickery et al., 2003; Arshinder and Deshmukh, 2008; Zhao et al., 2008; Kim, 2009; Wever et al., 2009) commonly measured in terms product quality, responsiveness, flexibility and efficiency (Wu et al., 2014). However, the results of these studies are inconsistent (Wiengarten et al., 2010). Moreover, there is a dearth of literature to empirically verify the association between...
VCI dimensions and VCP (Vickery et al., 2003; Vereecke and Muylle, 2005; Sezen, 2008; Vanpoucke, 2009), especially empirical data from developing countries are scanty (Chin et al., 2014). In the view of Lotfi et al. (2013) past studies dealt with dyadic interactions between a single value chain member and its chain partners; while chain-level studies were not only few but also descriptive. On the other hand, Bagchi et al. (2005) noted variations in the types of associations between VCI dimensions and VCP whereby commitment showed negative association with VCP while collaboration is positively associated. Moreover, the types of relationships exhibited between VCI dimension and VCP under one context may not be equally valid in another context (Hausman, 2001) and VCI may not always guarantee higher VCP (Vanpoucke, 2009). Therefore, the purpose of this study is to shade light on this research gaps with the help of empirical data obtained from the malt barley value chain (MBVC) in Ethiopia.

More specifically, the study aims to: (1) conceptualize the multidimensional constructs of VCI and VCP, (2) measure the current levels of MBVC integration and performance, (3) investigate the relationship between VCI dimensions and VCP at chain-level, and (4) provide some policy implications to address VCI and VCP related challenges in the MBVC in particular and in the agribusiness value chains of developing countries in general.

The MBVC is a suitable source of empirical data for this study given the big paradox of chain’s failure to meet more than 40 percent of the demands for malt demands from local breweries though the country produces the largest volume of barley in the African continent. The chain is characterized by limited participation of weak cooperatives, neglected upstream members with marginal powers, involvement of too opportunistic traders, and dominance of single malt factory both as a buyer of malt barley and seller of malt. The malt factory expresses bitter complaints about the supply of inferior quality malt barley from local sources. The country spends huge amount of foreign currency on imported malt. This study, therefore, seeks an answer as to how VCI dimensions influence VCP outcomes in the context of the MBVC.

The remaining parts of the paper are structured as follows. In the next section, we provide theoretical underpinning of the conceptual framework on the bases of which research hypotheses are proposed. Subsequently, the research methodology is explained, followed by results and discussions. Finally, conclusions are drawn and practical implications are indicated.

2. Conceptual framework and research hypotheses

A conceptual framework for this study was adapted from past study to postulate possible associations between VCI dimensions and VCP which were test using empirical data obtained from the malt barley value chain (MBVC) in Ethiopia. The framework is primarily based on the resource based view (RBV) which creates a conducive environment to pool resources and capabilities through VCI for superior VCP outcomes (Chin et al., 2014). In the view of Barratt (2004), VCI can only be materialized when members collaborate through resources, capabilities and risks sharing. Similarly, Kim (2009) stressed on the concepts of RBV as key enablers of VCI. According to RBV, resources refer to both tangible and intangible assets, whereas, capabilities refer to members’ ability to utilize these resources to achieve higher performance outcomes. No matter how diverse and huge the resources owned by a single member are, it is still not feasible for this member to own every kinds of resources and capabilities in-house. Therefore, VCI is strategic tool with which members may can acquire inimitable complementarities of resources, capabilities and risks that lead to superior VCP.
As indicated earlier, VCI is conceptualized in terms of four key dimensions. These are: collaboration (Lotfi et al., 2013; Wu et al., 2014), commitment (Cechin et al., 2013), coordination (Van Donk et al., 2008), and joint decisions making (Malhotra et al., 2005) to capture its broader and important aspects. As indicated earlier, the other core construct in this study is VCP. In the view of Chan et al. (2003), VCP can be measured using both qualitative and quantitative indicators. In the view of Lotfi et al. (2013), measurement indicators like added values, efficiency, and customers’ satisfaction can be used to measure VCP. The study by Simatupang and Sridharan (2001) suggests the use of process efficiency, customer satisfaction and financial indicators. In their study on the relationship between VCP and members’ linkages, Won Lee et al. (2007) measured performance using efficiency and effectiveness as indicators. Though various performance measurement indicators were proposed, they are all highly interrelated (Vickery et al., 2003).

In most cases, financial indicators are used to measure VCP though they are not inclusive of all aspects of performance and also exposed for misinterpretations (Wu et al., 2014). In immature value chains like the MBVC, data on financial indicators are either unavailable or inaccessible even if available. In line with past studies and data availability, four key indicators were identified to measure MBVC performance. These are: quality, responsiveness, flexibility and efficiency (Vickery et al., 2003; Gellynck et al., 2008; Zhao et al., 2008; Wu et al., 2014). These indicators are broadly acceptable as complete and inclusive (Vereecke and Muylle, 2005). In line with the study by Schloetzer (2012), MBVC members’ perceptions on these indicators were used in this study.

Quality: It refers to a fitness of products and services to the needs of customers (Lotfi et al., 2013). In the view of Cao and Zhang (2010), quality refers to the extent to which value chain members offer reliable products that can create greater value for customers. In this paper, quality refers to the moisture content, mix level with other barley varieties, and neatness of the malt barley grains. According to the quality standard set by the malt factory, malt barley grains with low moisture level, admixture free, neat and white are ranked high on the quality scale. These measures of quality are equivalent to “attractiveness” in the view of Molnar (2010) which explains how appealing the appearance of product is to the eyes of customers.

Responsiveness: it is the measure of capability of value chain member to provide the right product or appropriate service or both within the shortest possible time after receiving orders from the customers (Molnar, 2010). According to her study, lead-time and customers complaints are key indicators of responsiveness.

Flexibility: it refers to value chain members’ capacity and capability to support changes in products and services specification to meet the changing needs of customers (Cao and Zhang, 2010). In the view of Sezen (2008), product flexibility, delivery flexibility, mix flexibility and volume flexibility are important aspects of flexibility.

Efficiency: it refers to the wise use of available resources to generate the maximum possible return while achieving cost competitiveness (Cao and Zhang, 2010). It is a comparison between costs incurred and benefits gained in connection with value adding undertakings. It deals with process optimization to produce outputs of higher value using inputs of less value.
Based on the literature, the conceptual framework presented under Figure 1 was developed to guide hypotheses formulation, research design, and data analysis and discussion. In the framework, the main constructs are presented in bold and the conceptual indicators are placed in smaller boxes.

Figure 1: Hypothetical conceptual framework, adapted from Vickery et al. (2003)

2.1 Collaboration

Collaboration among value chain members is identified as VCI dimension and is understood as a win-win philosophy whereby resources, capabilities, and risks are shared among value chain members to achieve higher VCP (Vereecke and Muylle, 2005). In the views of Vieira et al. (2009) and Arshinder and Deshmukh (2008), collaboration is a trustful, loyal and mutual interactions between value chain members and joint efforts towards improved VCP. Collaboration materializes only when value chain members cooperate (Cao and Zhang, 2010).

Collaboration is conceptualized to express the extent to which resources (Cao and Zhang, 2010; Wiengarten et al., 2010) and capabilities (Vieira et al., 2009) are shared along the value chain for the purpose of complementarity. In the view of Stank et al. (2001), collaboration is a low-cost dimension of VCI that reduces operational wastes and redundancies to improve product and service quality. Whereas, Wiengarten et al. (2010) reported inconsistencies among findings of past studies that relate collaboration and value chain performance. In their study, Vereecke and Muylle (2005) call for additional empirical underpinning to substantiate the positive interplay between collaboration and performance. Based on the above premises, the following hypothesis was proposed.

Hypothesis 1: Collaboration between value chain members positively relates to value chain performance.

2.2 Commitment

Commitment is defined as an enduring desire to maintain long-term relationship between value chain members (Hausman, 2001). Value chain members are committed to long-term relationship when they believe in its importance to enable them achieve higher performance (Morgan and
Hunt, 1994; Darroch and Mushayanyama, 2006; Zhao et al., 2008). In the view of Brown et al. (1996), commitment can be classified as normative and instrumental. Normative commitment is a mutual and ongoing relationship over an extended time period based on high trust level between value chain members. Whereas, instrumental commitment refers to value chain members’ readiness to bear influences imposed by other value chain members, its ultimate goal being either receipt of rewards or avoidance of punishments. In the view of Wu et al. (2004), commitment is a multifaceted construct of three key aspects: affective, continuance and normative commitments. The affective aspect refers to value chain members’ sense of belongingness and attachment to the value chain; the continuance aspect refers to the perceived high costs if value chain members exit from the value chain; and the normative aspect explains both implicit and explicit obligations on value chain members to stay within their value chain.

Past studies asserted that commitment towards long-term relationships positively relates to VCP (Brown et al., 1996). In the view of Hausman (2001), less committed value chain members make less effort and resource contributions to ensure higher performance. Similarly, Clarke (2006) suggests that commitment to long-term relationships is a chief strategic tool to improve VCP. Based on these premises, the following relationship was proposed.

Hypothesis 2: Commitment towards long-term relationships positively relates to value chain performance.

2.3 Coordination

As noted by Arshinder and Deshmukh (2008), coordination of activities along the value chain requires to clearly define all activities and to properly align them with value chain goals. It is the act of managing interdependences of the procurement, production and distribution activities along the value chain to improve VCP (Vickery et al., 2003; Arshinder and Deshmukh, 2008). In the view of Darroch and Mushayanyama (2006), coordination of activities along the value chain lowers transaction costs and raises VCP. Furthermore, coordination of activities along the value chain improves members’ responsiveness as it shortens lead times and increases members’ flexibility through capacity building. Based on these premises, the following hypothesis was forwarded.

Hypothesis 3: Coordination of activities along the value chain positively relates to value chain performance.

2.4 Joint decision-making

Joint decision-making refers to the level of participation of value chain members in the decision-making processes of chain partners or the level of sharing decision support information or both (Malhotra et al., 2005; Wiengarten et al., 2010). In the view of Wiengarten et al. (2010), joint decision-making positively relates to operational performance in chain settings, but only if substantiated with free flow of broad and quality information along the value chain. Though some authors conceptualize joint decision-making as part of collaboration, members of the malt MBVC consider it as an essential dimension of VCI that should be separately treated. Based on the above premises, the following hypothesis was forwarded.
Hypothesis 4: Joint decision-making on critical issues like product specifications and prices positively relates to value chain performance.

3. Research methodology

3.1 The study contexts and data sources

In order to test the validity of proposed associations between conceptual constructs, survey data and interview responses were collected from sample respondents and key informants drawn from MBVC members in Ethiopia. The MBVC one of the most comprehensive agribusiness value chain in Ethiopia in which several members participate at various stages. The key members of the chain are small-scale farmers, traders, cooperatives, the malt factory, and breweries performing various value adding activities to produce malt barley and ultimately convert it to beer. According to the malt factory, half a million small-scale farmers produce an aggregate of 2.1 million metric tons of barley which makes Ethiopia the first in the African continent in terms of production volume of which 20 percent (i.e. 420 thousand metric tons) is suitable for malting. Hence, malt barley makes significant contributions to the national economy (Legesse et al., 2007). Both survey data and interview responses needed for this study were obtained from selected small-scale farmers, traders, cooperatives staff, and malt factory managers.

Small-scale farmers, one of our data sources, are price takers. Due to their subsistence nature and risk averse behavior, these farmers produce malt barley along with other crops for diversification purpose. Since malt barley is also suitable for food and feeds, farmers consume nearly 60 percent of malt barley in-house and sell only about 20 percent to meet cash needs after some portion is reserved for seeds (Legesse et al., 2005). These farmers would sell malt barley mostly to traders and rarely to cooperatives at very low prices. Few farmers make direct sales to the malt factory either individually or in groups though the minimum procurement lot of 5 tons per transaction that was set by the malt factory discourages the farmers to go for direct sales.

Even though hundreds of traders participate in malt-barley collection, only about thirty large ones supply nearly 90 percent of malt factory’s needs. The large traders collect malt barley from farmers, small traders, and commission agents. Most traders, both large and small, have very good experience that help them to easily identify good quality malt barley from bad ones. If the malt factor pays premium prices, traders can supply best quality malt barley to the factory. Unfortunately, traders opt to mix high quality malt barley with low quality to claim better prices since premium prices the factory pays for best quality is not as such attractive.

Cooperatives, another data sources of this study, rarely participate in malt barley collections though the malt factory always encourages them to engage on this business. Except one cooperative union in Lemu-bilibilo and another one in Kofele districts, cooperatives in the study area are not engaged in the collection of malt barley for the malt factory due to structural rigidity, capital limitation, unfair competition from traders, farmers’ reluctance to sell to them, and their engagement in the supply of agricultural inputs.

The other data source for this study is the malt factory. It is the single dominant buyer of malt barley from farmers, traders and cooperatives (a monopsony) and the single dominant local seller of malt to local breweries (monopoly). The factory can produce 36 thousand metric tons of malt per annum out of 50 thousand tons of malt barley if operates at full capacity. Presently, the factory’s capacity utilization rate hovers around 80 percent mainly due to shortage of supply of
malt barley with the required quality standards. Its dominance both in the malt barley market as a buyer and malt market as a seller makes it a single price maker in the MBVC.

3.2 Sampling and data collection

In line with past studies, both qualitative and quantitative data were collected through field surveys and qualitative interviews with selected farmers, traders, cooperatives staff members, and malt factory managers. Farmers, traders and cooperative were selected from Lemu-bibililo and Tiyyo districts of Arsi zone and from Kofele and Shashemene districts of West Arsi zone. These districts were purposively selected for their wider coverage of malt barley production and market surplus based on the information obtained from the malt factory. From each selected district, random sample of 80 farmers were systematically drawn whereby the i^{th} farmers in the intervals were selected for inclusion in the samples, the starting point being randomly selected from the first interval. The lists of farmers, which are our sampling frames, were obtained from district offices of agriculture. A total of 100 traders, 25 from each selected districts, were included in the survey. Farmers’ and traders’ surveys were conducted during June to August, 2013.

Prior to data collection, structured questionnaires and interview guides were prepared. The English version of farmers questionnaire was translated into Afan Oromo, the language spoken in the study area, and then re-translated to English to verify the correctness of the translation and to improve clarity. Since traders speak different languages, we hired experienced and multilingual enumerators that can translate the English version questionnaire to languages of traders while conducting the surveys (Vanpoucke, 2009). The survey questionnaires and interview guides were pilot tested with few farmers and traders in months of April and May, 2013 to ensure contents validity. The structure, readability, clarity and completeness of the questionnaire and guide were also reviewed by senior researchers in Agro-food Marketing and Chain Management Division of the Department of Agricultural Economics at Ghent University, Belgium to further improve the validity and clarity for these instruments based on feedbacks from the pilot tests and comments from the experts.

Intensive literature review was done to identify suitable indicators for VCI dimensions and VCP constructs and formulated into various statements to develop the survey questionnaires and interview guides. Survey respondents (i.e. farmers, traders, cooperatives staff, and malt factory managers) were asked to rate the extent of their agreements or disagreement on the statements under VCI dimensions and VCP construct on five-point scales, 1 = “strongly disagree” and 5 = “strongly agree”.

In addition to the field surveys, 62 qualitative interviews were conducted of which 27 were with farmers, 13 were with traders, 17 were with cooperatives staff, and 5 were with malt factory managers. Farmers and traders were interviewed to triangulate the survey data sets. Surveys were not conducted with cooperatives staff and the malt factory managers due to small sample size. For all qualitative interviews, MBVC members with good know-how on the operation of the value chain were purposively selected (Vanpoucke, 2009).

In total, 320 farmers and 100 traders completed the survey questionnaires. Whenever sampled farmers had refused to fill the survey questionnaire for whatsoever reasons, the next farmers in the list were asked to fill the questionnaire. The detailed profiles of respondent farmers and traders were presented in Table 1.
In the study area, farmers produce malt barley along with other competing agricultural crops on an average landholding of 1.86 hectares. On top of that, the average productivity of malt barley is 2 tons per hectare which is lower compared to food barley (2.7 tons) and wheat (2.5 tons) in the study area. The malt barley productivity in the study area is far lower than it is for Europe (7 to 8 tons per hectare) due to poor supply of inputs, limited access to mechanized services, poor linkages along the chain and lack of incentives for farmers.

3.3 Data Analysis

After data sorting, within-scale factory analyses (Lin et al., 2005; Sezen, 2008) and Cronbach’s alpha reliability estimate test (Lin et al., 2005; Zhao et al., 2008; Yu et al., 2013) were performed. The factory loadings within-scale were computed to check the validity of all observable items to measure the intended multivariate latent variables, while Cronbach’s alpha reliability estimates, also called scales of reliability, were used to measure the internal consistency of items under a given construct, that is, the measure of relatedness of items to manifest a single construct they intend to measure. The summary of factor loadings and alpha reliability estimates for each construct are presented in Table 2. The within-scale factor loadings for all measurement items are greater than 0.70 except for PRF1 at farmers-traders interface and for PRF3 at farmers-cooperatives interface loading 0.645 and 0.690 respectively (Table 2). In past studies, factor loadings higher than 0.50 are assumed to demonstrate sufficient validity (Lin et al., 2005; Yu et al., 2013). Therefore, few observable items loading lower than 0.50 were dropped from further analyses (Table 2). Except for coordination of activities at the traders-malt factory interface,
Cronbach’s alpha reliability scores are higher than 0.70 to reveal strong consistencies among observable items under each multivariate latent variable (Lin et al., 2005; Zhao et al., 2008).

Table 2: Summary of factor loading and the Cronbach’s α estimates

<table>
<thead>
<tr>
<th>Code</th>
<th>Construct and item</th>
<th>F-interfaces</th>
<th>T-interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F-C</td>
<td>F-T</td>
</tr>
<tr>
<td>CLB</td>
<td>Collaboration</td>
<td>0.792</td>
<td>0.791</td>
</tr>
<tr>
<td>CLB1</td>
<td>We and our partners form joint teams to work on common projects</td>
<td>drop</td>
<td>0.737</td>
</tr>
<tr>
<td>CLB2</td>
<td>We and our partners combine resources on common projects</td>
<td>drop</td>
<td>drop</td>
</tr>
<tr>
<td>CLB3</td>
<td>We unreservedly share our knowledge with our partners</td>
<td>0.810</td>
<td>0.792</td>
</tr>
<tr>
<td>CLB4</td>
<td>Our partners unreservedly share their knowledge with us</td>
<td>0.868</td>
<td>0.812</td>
</tr>
<tr>
<td>CLB5</td>
<td>We and our partners expend joint efforts to improve our relations</td>
<td>0.844</td>
<td>0.833</td>
</tr>
<tr>
<td>CLB6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMT</td>
<td>Commitment</td>
<td>0.817</td>
<td>0.810</td>
</tr>
<tr>
<td>CMT1</td>
<td>Our relations with our partners are based on mutual benefits</td>
<td>drop</td>
<td>drop</td>
</tr>
<tr>
<td>CMT2</td>
<td>Our relations with our partners continue for a long future</td>
<td>0.843</td>
<td>0.819</td>
</tr>
<tr>
<td>CMT3</td>
<td>We like to maintain our association with our partners</td>
<td>0.843</td>
<td>0.831</td>
</tr>
<tr>
<td>CMT4</td>
<td>We are ready to invest in the relationship with our partners</td>
<td>0.732</td>
<td>0.774</td>
</tr>
<tr>
<td>CMT5</td>
<td>We have stable relations with our partners</td>
<td>0.792</td>
<td>0.769</td>
</tr>
<tr>
<td>CRD</td>
<td>Coordination</td>
<td>0.778</td>
<td>0.791</td>
</tr>
<tr>
<td>CRD1</td>
<td>We and our partners jointly manage our activities</td>
<td>0.772</td>
<td>0.827</td>
</tr>
<tr>
<td>CRD2</td>
<td>We work closely with our partners for effective executions of activities</td>
<td>0.771</td>
<td>0.777</td>
</tr>
<tr>
<td>CRD3</td>
<td>We and our partners always share activity schedule</td>
<td>0.800</td>
<td>0.793</td>
</tr>
<tr>
<td>CRD4</td>
<td>We have clear guidelines for interactions with our partners</td>
<td>drop</td>
<td>drop</td>
</tr>
<tr>
<td>CRD5</td>
<td>Our partners strictly follow our interaction guidelines</td>
<td>0.759</td>
<td>0.726</td>
</tr>
<tr>
<td>JDM</td>
<td>Joint decision-making</td>
<td>0.812</td>
<td>0.807</td>
</tr>
<tr>
<td>JDM1</td>
<td>We and our partners jointly decide on product type</td>
<td>0.837</td>
<td>0.831</td>
</tr>
<tr>
<td>JDM2</td>
<td>We and our partners jointly decide on process improvements</td>
<td>0.880</td>
<td>0.897</td>
</tr>
<tr>
<td>JDM3</td>
<td>We and our partners jointly set product prices</td>
<td>0.841</td>
<td>0.826</td>
</tr>
<tr>
<td>PRF</td>
<td>Value chain performance</td>
<td>0.743</td>
<td>0.834</td>
</tr>
<tr>
<td>PRF1</td>
<td>We improved product quality by working closely with our partners</td>
<td>0.821</td>
<td>0.821</td>
</tr>
<tr>
<td>PRF2</td>
<td>We improved our responsiveness to customers by working closely with our partners</td>
<td>0.727</td>
<td>0.727</td>
</tr>
<tr>
<td>PRF3</td>
<td>We enhanced our flexibility by working closely with our partners</td>
<td>0.691</td>
<td>0.691</td>
</tr>
<tr>
<td>PRF4</td>
<td>We improved our efficiency by working closely with our partners</td>
<td>0.785</td>
<td>0.785</td>
</tr>
</tbody>
</table>

Note: *F-C* = farmers-cooperatives interface; **F-T** = farmers-traders interface; T-F = traders-farmers interface; and T-AMF = traders-Assela malt factory interface

Source: Survey data and past studies
In this study, Structural Equation Modelling (SEM) technique was used for data analyses. This technique was chosen for its strength and suitability for the conceptual model developed for this study. As indicated by Tomarken and Waller (2005), SEM technique has the ability to specify latent variable models by providing separate estimates for the associations between latent variables and their manifest indicators (measurement models) and show the relationship among exogenous and endogenous latent variables (structural model); it always provides higher R^2 values compared to other techniques; and it provides more information on the relative strength of observed variables to explain the latent variables as factor analysis is nested in it.

As noted by Nachtigall et al. (2003), model suitability can easily be checked by model-fit-statistics under SEM technique. Acceptable fit statistics somehow indicate whether or not (1) observable measurement items fairly manifest the intended latent constructs - measurement models; and (2) the data sets support the proposed associations between exogenous and endogenous variables - structural model (Figure 2). Though the SEM technique provides outputs for both measurement and structural models, outputs of the former were not reported since these outputs are similar to factor loadings reported under Table 2. Therefore, we presented only the model-fit-statistics and the path-coefficients of the structural models of the SEM technique.

Similar to the works of Wang et al. (2015), Won Lee et al. (2007), and Lin et al. (2005), four SEM diagrams were formulated at four interfaces (Table 3) along the MBVC based on farmers’ and traders’ data sets. In all cases, the models treat collaboration, commitment, coordination and joint-decision as latent-dependent (exogenous) variables and VCP as latent-dependent (endogenous) variable. All measurement items with factor loadings of 0.50 or more were used to construct SEM diagrams and to run further analysis while other variables that loaded lower than the threshold were dropped (Table 3).

The SEM model diagram at farmers-cooperatives interface was presented as a sample (Figure 2) though four SEM model diagrams were formulated for the entire analyses. The summated median values for the set of observable items were used to explain multivariate exogenous and endogenous latent variables to run the models since summated mean values can only show the locations of estimates that do not exist among the five-point measurement scale (Molnar, 2010). Four separate SEM models were run, two for each data set to assess the relationship between four exogenous latent variables and an endogenous latent variable.
Figure 2: SEM model at farmers-cooperatives interface using SPSS-AMOS 22

Notes: e1-e19: are codes for error variables; CLB3S, CLB4S and CLB5S are codes for observed items under collaboration (CLB) while CLB1S, CLB2S were dropped for loading low; CMT2S-CMT5S are codes for observed items under commitment (CMT); CRD1S-CRD5S are codes for observed items under coordination (CRD) while CRD4S was dropped for loading low; JDM1S-JDM3S are codes for observed items under joint decision-making (JDM); and PFR1S-PFR4S are codes for observed items under performance (Table 2).

The models were run on SPSS-AMOS version 22 statistical software. The works of Yu et al. (2013) and Wang et al. (2015) were followed in which case the goodness-of-fit statistics of the models were assessed by (1) chi-square (χ^2), (2) normalized chi-square (χ^2/df), (3) comparative fit index (CFI), (4) root mean squared errors of approximation (RMSEA), and (5) incremental fit index (IFI). An acceptable chi-square (χ^2) value relative to a given degrees of freedom indicates the existence of similar observed and implied variance-covariance matrices to imply that the theoretical model significantly replicates the samples variance-covariance relationships in the matrix (Schumacker and Lomax, 2004). The comparative fit index (CFI) measures the improvements of non-centrality obtained by switching from one model to another. The root mean squared errors of approximation (RMSEA) also called discrepancy per degree of freedom, on the other hand, provides an indication of a discrepancy between observed and implied variance-covariance matrices (Hailu et al., 2005). These goodness-of-fit statistics were computed at two interfaces each and presented in Table 4 for farmers and Table 5 for traders along with applicable threshold values.
Table 3: MBVC integration interfaces

<table>
<thead>
<tr>
<th>INTERFACE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-C</td>
<td>Farmers’ perceptions about cooperatives’ contributions towards chain performance</td>
</tr>
<tr>
<td>F-T</td>
<td>Farmers’ perceptions about traders’ contributions towards chain performance</td>
</tr>
<tr>
<td>T-F</td>
<td>Traders’ perception about farmers’ contributions towards chain performance</td>
</tr>
<tr>
<td>T-AMF</td>
<td>Traders’ perceptions about Assela malt factory’s (AMF’s) contributions towards chain performance</td>
</tr>
</tbody>
</table>

Table 4: Model fit statistics (farmers’ survey, n = 320)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>F-C Interface</th>
<th>F-T Interface</th>
<th>Threshold values</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>359.24</td>
<td>333.86</td>
<td><=2793.8</td>
</tr>
<tr>
<td>df</td>
<td>124</td>
<td>124</td>
<td><=300</td>
</tr>
<tr>
<td>χ^2/df</td>
<td>2.897</td>
<td>2.692</td>
<td><=5.00</td>
</tr>
<tr>
<td>CFI</td>
<td>0.915</td>
<td>0.926</td>
<td>>=0.90</td>
</tr>
<tr>
<td>RMSEA</td>
<td>0.077</td>
<td>0.073</td>
<td><=0.08</td>
</tr>
<tr>
<td>IFI</td>
<td>0.916</td>
<td>0.927</td>
<td>>=0.90</td>
</tr>
</tbody>
</table>

Note: p < 0.001; *F-C = farmers – traders interfaces; **F-T = farmers-traders interface; †Threshold values adopted from Yu et al. (2013)

Table 5: Model fit statistics (traders’ survey, n = 100)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>T-F Interface</th>
<th>T-AMF Interface</th>
<th>Threshold values</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>141.67</td>
<td>134.19</td>
<td><=2793.8</td>
</tr>
<tr>
<td>df</td>
<td>79</td>
<td>78</td>
<td><=300</td>
</tr>
<tr>
<td>χ^2/df</td>
<td>1.793</td>
<td>1.720</td>
<td><=5.00</td>
</tr>
<tr>
<td>CFI</td>
<td>0.929</td>
<td>0.914</td>
<td>>=0.90</td>
</tr>
<tr>
<td>RMSEA</td>
<td>0.090</td>
<td>0.085</td>
<td><=0.08</td>
</tr>
<tr>
<td>IFI</td>
<td>0.931</td>
<td>0.917</td>
<td>>=0.90</td>
</tr>
</tbody>
</table>

Bold values are slightly higher than the threshold values by Yu et al. (2013)

Note: p < 0.001; *T-F = traders-farmers interface; **T-AMF = traders-Assela Malt Factory interface

4. Results and discussions

Following the steps SEM technique involves, the research hypotheses in this study can be tested once our survey data sets’ goodness-of-fit to the SEM models are assured (Tables 4 and 5). The study findings were discussed in line with the proposed research hypotheses. Along with our conceptual framework presented in Figure 1, positive relationships between VCI dimensions and VCP were proposed at four interfaces (Table 3).

The goodness-of-fit statistics generated from SEM models based on farmers’ and traders’ data sets are within acceptable ranges, except RMSEA values computed at traders’ interfaces. The RMSEA values at traders-farmers and traders-malt factory interfaces were 0.090 and 0.085 respectively (Table 5) which are slightly higher than the threshold value of 0.08 (Yu et al., 2013). In order to improve models’ goodness-of-fit, a double headed covariance arrow was drawn.
between two error variables, e16 and e17, in the SEM diagram (Figure 2) as hinted by the
modification indices generated by SPSS-AMOS statistical software package (Janssens et al.,
2008; Wang et al., 2015). The modification has reduced the chi-square value from 378.01 to
359.24 and RMSEA value from 0.080 to 0.077. Even though RMSEA values of 0.05 or less
demonstrate the best model fit, still values between 0.05 and 0.10 are acceptable (Han, 2009).
Therefore, the generated model-fit-statistics show that our survey data sets fit the models quite
well, except the higher RMSEA value from traders’ data set is slightly high probably due to the
small sample size.

Table 6: Summary of structural model at cooperatives-farmers-traders interfaces (farmers’
survey, n=320)

<table>
<thead>
<tr>
<th>Hypothesis: Path</th>
<th>F-C Interface</th>
<th>F-T Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path coefficient</td>
<td>t-value</td>
</tr>
<tr>
<td>H1: Collaboration \rightarrow performance</td>
<td>-0.22</td>
<td>0.948</td>
</tr>
<tr>
<td>H2: Commitment \rightarrow performance</td>
<td>0.18</td>
<td>1.039</td>
</tr>
<tr>
<td>H3: Coordination \rightarrow performance</td>
<td>0.56</td>
<td>1.994*</td>
</tr>
<tr>
<td>H4: Joint decision-making \rightarrow performance</td>
<td>0.36</td>
<td>2.427*</td>
</tr>
</tbody>
</table>

* p<0.05; ** p<0.01; † F-C = farmers-cooperatives; ‡ F-T = farmers-traders

Table 7: Summary of the structural model at farmers-traders-malt factory interface
(traders’ survey, n=100)

<table>
<thead>
<tr>
<th>Hypothesis: Path</th>
<th>T-F Interface</th>
<th>T-AMF Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path coefficient</td>
<td>t-value</td>
</tr>
<tr>
<td>H1: Collaboration \rightarrow performance</td>
<td>-0.78</td>
<td>1.724</td>
</tr>
<tr>
<td>H2: Commitment \rightarrow performance</td>
<td>0.45</td>
<td>0.808</td>
</tr>
<tr>
<td>H3: Coordination \rightarrow performance</td>
<td>0.47</td>
<td>0.530</td>
</tr>
<tr>
<td>H4: Joint decision-making \rightarrow performance</td>
<td>-0.59</td>
<td>0.660</td>
</tr>
</tbody>
</table>

* p<0.05; ** p<0.01; † T-F = traders-farmers; ‡ T-AMF = traders-Assela malt factory

According to results of the structural models from farmers’ data set, coordination (H3) and joint
decision-making (H4) are the only exogenous variables that demonstrate significant correlation
with performance at farmers-cooperatives with standardized path weights of 0.56 and 0.36
respectively. Similarly, commitment (H2) has a significant positive relationship with
performance at farmers-traders interface with standardized path weights of 0.62 (Table 6). The t-
values for coordination (H3) and joint decision-making (H4) at farmers-cooperatives interface are
significant at p<0.05, and t-value for commitment (H2) at farmers-cooperatives interface is
significant at p<0.01.

The t-values for other proposed associations between variables at farmers’ interfaces are less than
the minimum threshold of 1.96 which implies insufficient empirical supports (Janssens et al.,
2008). According to the standardized path weights from farmers’ data set, coordination of
activities (H3), and joint decision-making (H4) at farmers-cooperatives interface significantly
correlate with VCP.
Interviewed cooperative staff also noted the existence of positive relationship between coordination of various malt barley farming related activities and performance at farmers-cooperatives interface. Moreover, they expressed that joint decision-making on the type, quantity, quality, terms of shipment of agricultural inputs improves performance at farmers-cooperatives interface. Therefore, active participation of farmers in the decision-making processes of cooperatives positively relates to performances. Consistent with the finding of this study, Van Donk et al. (2008) noted a positive relationship between joint decision-making on inventory types and batch sizes and performance as it allows an extra flexibility to value chain members.

The fact that farmers’ data set provided significant backing to the proposed positive relationships between coordination and performance statistically (H3), joint decision-making and performance (H4) at farmers-cooperatives interface and between commitment and performance (H2) at farmers-traders interface goes hand-in-hand with the findings of past studies. For instance, Simatupang et al. (2002) noted a positive relationship between coordination and performance as coordination improves both flexibility and responsiveness. Similarly Stank et al. (2001) noted a positive correlation between coordination and performance as coordination reduces costs associated with duplication of activities and hence improves efficiency.

At farmers-traders interface, commitment towards long-term relationships has significant positive correlation with performance. In the view of interviewed farmers, most malt barley traders are egocentric who always try to maximize own interests at the expense of other value chain members with no commitment towards long-term relationships. Small-scale farmers and other interviewed chain members categorize egotism of traders as critical performance menace. In our opinion, the positive correlation between commitment and performance at farmers-traders interface is resulted from farmers’ desire to work with committed traders. In line with this finding, Clarke (2006) noted a positive relationship between value chain members’ commitment towards long-term relationships and performance as commitment reduces the time and costs associated with recurrent disputes, posturing and renegotiations. In the view of Morgan and Hunt (1994), commitment towards long-term relationships improves performance particularly when complemented with trust and effective information flow along the value chain.

On the other hand, many researchers noted the existence of positive relationship between collaboration between value chain members and performance (Vereecke and Muylle, 2005; Cao and Zhang, 2010), farmers’ data set failed to support this hypothesis. Such a contradiction may be due the fact that MBVC members are unconscious of the strategic importance of VCI to improve VCP. In the view of interviewed farmers, it was learnt that traders are egotist towards collaboration with farmers which has lowered performance. The malt factory considers traders as opportunists and always reluctant to engage them in any of its MBVC improvement programs. On the other hand, interviewed traders expressed their resentment about an exclusive strategy of the malt factory.

Contrary to our expectation, the path coefficients based on traders’ data set are not statistically significant to support our proposed hypotheses at traders’ interfaces (Table 7). Therefore, it is opined that traders’ localized-thinking, non-inclusiveness, and egotism must have contributed to lack of empirical support. In the view of interviewed malt factory managers, traders are self-seeking and mischievous who always try to serve their greedy profit motives. They, for instance, soak the malt barley in water to deceive the factory on weight and mix superior qualities/varieties malt barley with inferior one to cheat on price. In the view of Cao and Zhang (2010), egotistic
actions of value chain members always diminishes VCP. It is harmony, not isolation, of value
chain members that would lead to superior VCP (Gellynck et al., 2008; Vanpoucke, 2009).
Moreover, the small sample size of traders could have influenced the statistical significance of
the coefficients.

The malt factory managers express worries about the poor quality of malt barley supplied through
traders which constitutes over 90 percent of the factory’s malt barley purchases. Similarly, Yu et
al. (2013) noted no significant correlation between VCI dimensions and VCP when value chain
members are dissatisfied by low service level of chain partners. The study by Wiengarten et al.
(2010) on collaborative value chain practices also reported no significant relationship between
joint decision-making and VCP with poor information flow along the value chain. The traders’
data set offered no support for the proposed relationships between variables, partly because of
lack of awareness of members regarding these relationships.

Likewise, interviewed farmers strengthened managers’ views by saying that traders adjust the
measurement scale in order to read as low as 85 percent of the actual weight of supplied malt
barley which is even difficult to control since the act is done mischievously. On the other hand,
the traders regard farmers’ and the factory’s accusations as character assassination which always
threatens their long-term participation in the chain.

It is, however, interesting to point out that farmers’ data set has moderately supported our
hypotheses than traders’ data set which failed to support even a single hypothesis. The varying
recognition levels given to farmers and traders by the malt factory are suspected to cause
perception differences. The malt factory has been providing several direct and indirect supports
to farmers to improve their productivity and establish direct linkages or bridge through
cooperatives, though this effort remained unsuccessful. Moreover, MBVC members have not yet
started to consider VCI dimensions as part of their strategic means to revive the performance of
the chain. Generally speaking, the findings of this study highlight the assertion that VCI
dimensions do not always lead to higher VCP, rather, it depends on the context of the value
chain.

5. Conclusion and practical implications

This study provides better insights on the relationship between VCI dimensions and VCP based
on the data sets from the MBVC in Ethiopia. The fact that very few of the hypothesized
relationships received significant empirical support at the studied interfaces must be due to the
particularity of the contexts in a country where the MBVC operates which makes the findings
more interesting. The study hinted that the MBVC members, particularly farmers and traders,
have not yet started the use of VCI dimensions as part of their strategic tools to revive VCP. In
our views, the low level of maturity of the MBVC and lack of awareness of its members about
the strategic importance of VCI dimensions to improve performance are the key as well as unique
findings.

Among the hypothesized relationships, only coordination and joint decision-making at farmers-
cooperators interface and commitment at farmers-traders interface received significant empirical
support to be positively related to VCP which show the entry points for interventions. The lack of
empirical supports for the hypothesized relationships, mostly at traders’ interface, is mainly due
to traders’ feelings of exclusion from any VCI activities in addition to the effect of small sample
size. The strategy that excludes traders cannot be successful as about 95 percent of malt barley is collected and supplied to the malt factory by these traders. The other MBVC members and relevant policymakers should look for policies and strategies that lead to better inclusiveness of traders so as to make them understand the importance of VCI for better performance. Otherwise, cooperatives organizations should be supported to replace traders to collect and supply malt barley to the malt factory.

Though enforcing VCI dimensions can be too expensive, MBVC members had better include them in their strategic plans to revive performance. The huge agro-processors in the chain should create awareness among the upstream small-scale farmers and traders concerning the importance of VCI dimensions to improve VCP. Moreover, value chain members and policymakers should establish salient “rules of the game” at every stage of the value chain to promote value chain-thinking and VCI practices to revive performance. Though the use of data sets collected from a single agribusiness value chain in a developing country is an important empirical contribution by itself, more research should be done for better generalizability of the key findings to other agribusiness value chains in Ethiopia and even beyond.

6. References

