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Abstract

Many lifetime distribution models have successfully served as population models for

risk analysis and reliability mechanisms. The Kumaraswamy distribution is one of

these distributions which is particularly useful to many natural phenomena whose

outcomes have lower and upper bounds or bounded outcomes in the biomedical and

epidemiological research. This paper studies point estimation and interval estima-

tion for the Kumaraswamy distribution. The inverse estimators for the parameters of

the Kumaraswamy distribution are derived. Numerical comparisons with MLE and

biased-corrected methods clearly indicate the proposed inverse estimators are promis-

ing. Confidence intervals for the parameters and reliability characteristics of interest

are constructed using pivotal or generalized pivotal quantities. Then the results are

extended to the stress-strength model involving two Kumaraswamy populations with

different parameter values. Construction of confidence intervals for the stress-strength

reliability is derived. Extensive simulations are used to demonstrate the performance

of confidence intervals constructed using generalized pivotal quantities.
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1 Introduction

The cumulative distribution function of the Kumaraswamy distribution Kum(α, β) is

given by

F (x) = 1− (1− xα)β, 0 < x < 1,

where α > 0, β > 0 are unknown shape parameters.

Due to its beta-type and better than beta distribution by its explicit expression of quantile

function, the Kumaraswamy distribution has received considerable attention in the literature

and has also been used for other purposes (Sundar and Subbiah, 1989; Koutsoyiannis and

Xanthopoulos, 1989; Fletcher and Ponnambalam, 1996; Seifi et al., 2000; Ponnambalam

et al., 2001; Ganji et al., 2006; Courard-Hauri, 2007 and Sanchez et al., 2007). Jones

(2009) provided the basic properties of the Kumaraswamy distribution and discussed some

similarities and differences between the beta and Kumaraswamy distributions. Mitnik (2013)

studied some new properties of the Kumaraswamy distribution. Lemonte (2011) derived

modified maximum likelihood estimators that are bias-free to second order. Furthermore,

Garg (2009) discussed generalized order statistics for the Kumaraswamy distribution. Nadar

et al. (2013) considered statistical analysis procedures for the Kumaraswamy distribution

based on record values.

Classical maximum likelihood estimate (MLE) is typically used in existing inference for

the Kumaraswamy distribution. MLE is a popular method but not always the best one. In

practice, most of the sample sizes of real data are not big enough, so that MLE-based large

sample asymptotic intervals may be invalid for small sample (DiCiccio and Efron, 1996).

For example, visual analogue scales (VAS), frequently used for the assessment of intensity

of pain, are bounded within the interval 0-100 mm. But relatively small sample size is a

moderately limiting factor on VAS based study (McCoy et al., 2005).

In this paper we propose exact inference of the Kumaraswamy distribution for the param-

eters from a univariate sample and for stress-strength reliability model from two independent

samples. The inference includes exact confidence interval or generalized confidence interval.

First, given a random sample, X1, X2, ..., Xn, from the Kumaraswamy distribution, we aim

at an exact inference of parameters α and β. Second, we consider an exact inference of

stress-strength model when both the stress and strength variables follow the Kumaraswamy

distributions. The classical stress-strength reliability model involves two independent ran-

dom variables X and Y , where X represents the strength variable of a unit and Y represents

the stress variable to which the unit is subjected. The stress-strength reliability of the unit is
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defined as R = P (Y < X). This model was introduced by Birnbaum (1956) and developed

by Birnbaum and McCarty (1958). Since then, this model has been investigated under dif-

ferent distributions (Aminzadeh, 1997; Surles and Padgett, 2001; Kundu and Gupta, 2005,

2006; Baklizi, 2008; Krishnamoorthy and Lin, 2010; Lio and Tsai, 2012; Nadar et al., 2014).

The stress-strength model has also been widely used in many other fields such as receiver

operating characteristic curve analysis (Reiser, 2000) and clinical trial applications (Hauck

et al., 2000). Kotz et al. (2003) provided some excellent information on the topic.

Because the Kumaraswamy distribution is the proportional hazard distribution family, we

applied the procedures proposed by Wang et al. (2010) to this distribution. The point and

interval estimation are detailed studied. We further study the biased-corrected estimation

and BCα bootstrap confidence intervals. Moreover, we extend the procedure to the stress-

strength model. The paper is organized as follows. Section 2 gives the parameter estimation

of α and β, including point estimators and interval estimation of these parameters and

other distribution quantities such as quantiles. In addition, Section 2 carries out numerical

comparisons of the proposed method with MLE-based method and bootstrap-based method.

Section 3 discusses interval estimation for stress-strength model, including some numerical

analyses. Section 4 illustrates the application by the analysis of a proportion of total capacity

data. Some closing comments are briefed in Section 5.

2 Estimation of the Kumaraswamy distribution

In order to derive the parameter estimation of the Kumaraswamy distribution, the fol-

lowing results are needed. Lemma 1 can be found in Wang et al. (2010).

Lemma 1 Supposed that Z(1), Z(2), ..., Z(n) are the order statistics from the exponential dis-

tribution with mean λ−1 and sample size n. Let Si = Z(1) + ... + Z(i) + (n − i)Z(i), Qi =

(Si/Si+1)
i, i = 1, 2, ..., n− 1, Qn = Sn defined to be 1. Then

(1) Q1, Q2, ..., Qn are independent;

(2) Q1, Q2, ..., Qn−1 have the uniform distribution U(0, 1);

(3) Qn follows the gamma distribution with the probability density function

f(z) =
λn

Γ(n)
zn−1e−λz, z > 0.

Lemma 2 Let

g(x) =
log(1− bx)

log(1− ax)
, x > 0,

where 0 < a < b < 1 are constant. Then g(x) is an increasing function.
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Proof. We shall first prove that

h(x) =
x log x

(1− x) log(1− x)

is a decreasing function in (0, 1).

By the mean value theorem, we have, for any x ∈ (0, 1), log(1 − x) − log(1 − 0) =

−x/(1 − ξ1), and log(1) − log x = (1 − x)/ξ2, where ξ1 ∈ (0, x), and ξ2 ∈ (x, 1). Therefore,

we have

h′(x) =
(log x+ 1− x) log(1− x) + x log x

[(1− x) log(1− x)]2

=
1

[(1− x) log(1− x)]2
x(1− x)(ξ1 − ξ2)

ξ2(1− ξ1)
< 0.

Thus, h(x) is an decreasing function.

Notice that g′(x) = g(x)[h(ax) − h(bx)]/x, and h(x) is an decreasing function, hence

g′(x) > 0. Therefore, g(x) is an increasing function.

2.1 Point estimation

Let X1, X2, ..., Xn be a random sample from the Kumaraswamy distribution Kum(α, β)

and X(1), X(2), ..., X(n) are the corresponding order statistics. Then {F (X(i))}ni=1 are the

order statistics from the uniform distribution U(0, 1) with size n. Accordingly,

Zi = − log(1− F (X(i))) = −β log(1−Xα
(i)), i = 1, 2, ..., n

are the order statistics from the standard exponential distribution Exp(1) with size n.

Let

Si =
i∑

j=1

log(1−Xα
(j)) + (n− i) log(1−Xα

(i)), i = 1, 2, ..., n.

Then we have from Lemma 1 that S1/S2, (S2/S3)
2, ..., (Sn−1/Sn)

n−1 are independent and

have the uniform distribution U(0, 1). Therefore, we have

W (α) =
n−1∑
i=1

[
−2 log

(
Si

Si+1

)i
]
= 2

n−1∑
i=1

log
Sn

Si

∼ χ2(2n− 2).

Because W (α)/(2n− 4) converges to 1 with probability one, we can obtain a corresponding

point estimator α̂ of α from W (α) = 2(n− 2) or the following equation:

n−1∑
i=1

log
Sn

Si

= n− 2. (1)
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Notice that
Sn

Si

= 1 +

∑n
j=i+1 Vi,j − (n− i)∑i
j=1 Vi,j + (n− i)

,

and that Vi,j is an increasing function of α when i < j and decreasing function of α when

i > j, we have from Lemma 2 that W (α) is an increasing function of α, where

Vi,j = log(1−Xα
(j))/ log(1−Xα

(i)).

Moreover, it is clear that W (α) can take any positive value. Thus the equation (1) has a

unique solution.

Similarly, since −2βSn ∼ χ2(2n), we obtain estimator β̂ of β from the following equation:

β̂ = − n− 1∑n
i=1 log(1−X α̂

(i))
. (2)

The estimators given by (1) and (2) are a type of inverse estimators (IE) of parameters

(Wang et al., 2010). We shall study the finite sample properties of the proposed estimators

in Section 2.3. They turn out to be very good and outperform MLEs.

Similar to Lemonte (2011), the proposed estimators (α̂, β̂) can be bias-corrected based

on bootstrap method. Let (α̂∗
i , β̂

∗
i ) be the inverse estimators of (α, β) based on the ith

parametric bootstrap sample (i = 1, 2, ..., B). Then the bias-corrected estimators of (α, β)

are given by

ᾱ = 2α̂− α̂∗
(·), β̄ = 2β̂ − β̂∗

(·),

where α̂∗
(·) =

1
B

∑B
i=1 α̂

∗
i , β̂

∗
(·) =

1
B

∑B
i=1 β̂

∗
i .

2.2 Interval estimation

First, we discuss interval estimation of the parameter α. Notice that the pivotal quantity,

W (α), is a function of α only and does not depend on β, an exact confidence interval for α

is thus given by the following theorem.

Theorem 1 Suppose that X(1), X(2), ..., X(n) are the order statistics from the Kumaraswamy

distribution Kum(α, β) with sample size n. Then, for any 0 < γ < 1,[
W−1{χ2

1−γ/2(2n− 2)}, W−1{χ2
γ/2(2n− 2)}

]
is an 1− γ confidence interval for the parameter α, where χ2

γ(v) is the upper γ percentile of

the χ2 distribution with v degrees of freedom and, for t > 0, W−1(t) is the solution in α of

the equation W (α) = t.
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We now derive generalized confidence intervals for the parameter β and some important

quantities of the Kumaraswamy distribution, such as its mean, quantiles and reliability

function.

Let g(W,X) is the unique solution of W (α) = W , where X = (X(1), X(2), ..., X(n)).

Because V = −2βSn ∼ χ2(2n), we have that β = −V/(2Sn). Based on the substitution

method given by Weerahandi (2004), we substitute g(W,X) for α in the expression for β

and obtain the following generalized pivotal quantity for the parameter β:

Y1 = − V

2
∑n

i=1 log(1− x
g(W,x)
(i) )

(3)

=
β
∑n

i=1 log(1−X
g(W,X)
(i) )∑n

i=1 log(1− x
g(W,x)
(i) )

, (4)

where x = (x(1), x(2), ..., x(n)) is the observed value of X. It is clear from (3) that the

distribution of Y1 is free of any unknown parameters. It is also clear from (4) that Y1 reduces

to β when X = x. Thus Y1 is a generalized pivotal quantity. Let Y1,γ is the upper γ

percentile of Y1, then [Y1,1−γ/2, Y1,γ/2] is an 1− γ generalized confidence interval for β. The

values Y1,1−γ/2 and Y1,γ/2 can be obtained by using the following steps.

Step 1: For a given data set (n,x), generate W ∼ χ2(2n− 2) and V ∼ χ2(2n), indepen-

dently. Using these values, compute g(W,x) from the equation W (α) = W .

Step 2: Compute value of Y1 using (3).

Step 3: Repeat the steps 1-2 m(≥ 10000) times. Then Y1,γ can be estimated by the

100(1− γ)th percentile of these m generated Y1.

Notice that the mean, pth quantile (0 < p < 1) and reliability function of the Ku-

maraswamy distribution are given by µ = βB(1 + 1/α, β), xp = [1 − (1 − p)1/β]1/α and

R(x0) = (1− xα
0 )

β respectively, where B(·, ·) is the beta function. Similar to the derivation

of Y1 for the parameter β, we obtain the following generalized pivotal quantities Y2, Y3 and

Y4 for µ, xp and R(x0) respectively:

Y2 = Y1 ·B
(
1 +

1

g(W,x)
, Y1

)
, (5)

Y3 = [1− (1− p)1/Y1 ]1/g(W,x), (6)

Y4 = (1− x
g(W,x)
0 )Y1 . (7)

Let Y2,γ, Y3,γ, Y4,γ denote the upper γ percentiles of Y2, Y3, Y4, respectively. Then Y2,γ, Y3,γ , Y4,γ

are the 1− γ lower confidence limits for µ, xp and R(x0), respectively. Just as in the case of

Y1, the percentiles of Y2, Y3, Y4 can be obtained by Monte Carlo simulations.
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Remark: Notice that X
g(W,x)
(i) = (Xα

(i))
g(W,x)/α and that Xα

(1), X
α
(2), ..., X

α
(n) are the order

statistics from the Kum(1, β) with sample size n, thus g(W,x)/α does not depend on α. It

is observed from (3) that the generalized confidence interval of β does not depend on the

parameter α. Similarly, notice that Y α
3 does not depend on α, thus the coverage probability

of the generalized confidence interval for xp does not depend on α, but its interval length

depends on α.

The confidence intervals of the parameters β, µ, xp and R(x0) can be derived by the

bootstrap procedure — BCa method below.

Let θ be the parameter of interest and θ̂∗1, ..., θ̂
∗
B are the MLEs of θ based on parametric

bootstrap samples. The bias correction value z0 is given by

z0 = Φ−1

(
#(θ̂∗i < θ̂)

B

)
,

where Φ(·) is the cdf of the standard normal distribution. The value a, which measures

skewness of the data, is given by

a =

∑n
i=1(θ̂(·) − θ̂(i))

3

6
(∑n

i=1(θ̂(·) − θ̂(i))2
)3/2 ,

where θ̂(i) is the MLE of the sample without the ith observation, θ̂(·) is the mean of the θ̂(i)

values. Hence an 100(1− γ)% BCa bootstrap confidence interval is given by [θ̂∗(Bγ1)
, θ̂∗(Bγ2)

],

where

γ1 = Φ

(
z0 +

z0 + Φ−1(γ/2)

1− a[z0 + Φ−1(γ/2)]

)
and

γ2 = Φ

(
z0 +

z0 + Φ−1(1− γ/2)

1− a[z0 + Φ−1(1− γ/2)]

)
.

Because the coverage probabilities of these generalized confidence intervals and bootstrap

confidence intervals may depend on nuisance parameters, a simulation is conducted to study

the performance of coverage probabilities of these confidence intervals. These simulation

results are reported in Section 2.3.

2.3 Simulation study

In order to assess the finite sample properties of the proposed procedures, a simulation

study is conducted to compare the performance of the proposed point estimators with MLEs

and study the coverage probabilities of the proposed generalized confidence intervals.
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Notice that X α̂
(j) = (Xα

(j))
α̂/α and that Xα

(1), X
α
(2), ..., X

α
(n) are the order statistics from the

Kumaraswamy distribution Kum(1, β) with sample size n, thus we have from (1) and (2)

that the relative biases and relative MSEs of the estimators α̂ and β̂ do not depend on the

parameter α. Therefore, without loss of generality, we take α = 1 in our simulation study

and consider different values of β. For different choices of sample sizes, we generated random

samples from the Kumaraswamy distribution Kum(1, β).

We report the average relative biases and average relative mean square errors (MSEs)

in point estimation of α and β over 10,000 replications for the same cases. The results are

presented in Tables 1–3.

Table 1: The relative biases and relative MSEs of the estimators α̂ and β̂ in Kum(1, 0.5)

Relative bias Relative MSE

α β α β

n IE MLE IE MLE IE MLE IE MLE

10 0.0650 0.4495 0.0185 0.3135 0.6182 1.2131 0.3062 0.7427

15 0.0418 0.2705 0.0082 0.1794 0.2966 0.4712 0.1413 0.2429

20 0.0234 0.1851 0.0017 0.1224 0.1887 0.2650 0.0919 0.1366

30 0.0191 0.1224 0.0027 0.0793 0.1124 0.1410 0.0531 0.0691

50 0.0095 0.0691 0.0010 0.0452 0.0613 0.0689 0.0306 0.0357

80 0.0074 0.0440 0.0007 0.0278 0.0363 0.0385 0.0183 0.0201

100 0.0065 0.0355 0.0005 0.0221 0.0289 0.0299 0.0147 0.0158

Note: The relative bias and relative MSE of the estimation θ̂ for θ are defined as bias(θ̂)/θ and MSE(θ̂)/θ2 respectively.

Table 2: The relative biases and relative MSEs of the estimators α̂ and β̂ in Kum(1, 1)

Relative bias Relative MSE

α β α β

n IE MLE IE MLE IE MLE IE MLE

10 0.0114 0.2941 0.0478 0.4318 0.2680 0.4843 0.5952 1.9073

15 0.0096 0.1834 0.0224 0.2335 0.1546 0.2327 0.2101 0.4078

20 0.0028 0.1277 0.0102 0.1564 0.1042 0.1412 0.1249 0.2045

30 0.0052 0.0858 0.0081 0.0995 0.0648 0.0801 0.0684 0.0950

50 0.0019 0.0488 0.0038 0.0561 0.0367 0.0415 0.0386 0.0470

80 0.0025 0.0314 0.0026 0.0344 0.0221 0.0239 0.0227 0.0257

100 0.0025 0.0255 0.0021 0.0274 0.0177 0.0188 0.0181 0.0200

Table 3: The relative biases and relative MSEs of the estimators α̂ and β̂ in Kum(1, 2)

Relative bias Relative MSE

α β α β

n IE MLE IE MLE IE MLE IE MLE

10 -0.0065 0.2288 0.1066 0.6532 0.1707 0.2935 1.7255 8.5038

15 -0.0021 0.1441 0.0487 0.3221 0.1035 0.1506 0.3839 0.8625

20 -0.0047 0.1010 0.0258 0.2098 0.0711 0.0941 0.1906 0.3487

30 -0.0002 0.0682 0.0174 0.1303 0.0449 0.0547 0.0967 0.1444

50 -0.0010 0.0387 0.0088 0.0722 0.0258 0.0290 0.0528 0.0670

80 0.0005 0.0251 0.0057 0.0442 0.0156 0.0169 0.0303 0.0354

100 0.0008 0.0204 0.0048 0.0352 0.0125 0.0134 0.0241 0.0272
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Table 4: The relative biases and relative MSEs of the estimators (ᾱ, β̄) and CBC when n = 15

Relative bias Relative MSE

α β α β

(α, β) ᾱ CBC β̄ CBC ᾱ CBC β̄ CBC

(1, 0.5) -0.0063 -0.0489 -0.0064 -0.0611 0.2876 0.2688 0.1291 0.1028

(1, 1) -0.0024 -0.0222 -0.0115 -0.1162 0.1567 0.1538 0.1671 0.1073

(1, 2) -0.0017 -0.0148 -0.0270 -0.2670 0.1059 0.1052 0.2092 1.4468

(1, 3) -0.0016 -0.0130 -0.0505 -0.5132 0.0900 0.0894 0.3132 30.9501

Table 5: The coverage probabilities and average lengths (in parentheses) of the generalized confidence intervals and BCa

bootstrap confidence intervals

n = 10 n = 20

GCI BCa GCI BCa

(α, β) parameter 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

(0.5, 0.7) β 0.9038 0.9527 0.8896 0.9382 0.9017 0.9481 0.8991 0.9467

(1.2554) (1.5289) (1.3185) (1.6707) (0.7335) (0.8809) (0.7438) (0.9037)

x0.1 0.9028 0.9513 0.8588 0.9148 0.9003 0.9497 0.8814 0.9363

(0.1297) (0.1552) (0.1282) (0.1561) (0.0827) (0.0990) (0.0814) (0.0982)

µ 0.8975 0.9493 0.8863 0.9351 0.8968 0.9472 0.8939 0.9434

(0.3054) (0.3622) (0.3142) (0.3752) (0.2211) (0.2628) (0.2253) (0.2689)

R(0.2) 0.9009 0.9507 0.9127 0.9525 0.9006 0.9509 0.9116 0.9588

(0.3604) (0.4236) (0.4084) (0.4939) (0.2618) (0.3097) (0.2796) (0.3364)

(2, 0.7) β 0.9038 0.9527 0.8896 0.9382 0.9017 0.9481 0.8991 0.9467

(1.2553) (1.5289) (1.3185) (1.6707) (0.7335) (0.8809) (0.7438) (0.9037)

x0.1 0.9028 0.9513 0.8599 0.9159 0.9003 0.9497 0.8831 0.9370

(0.4374) (0.5076) (0.3876) (0.4513) (0.3218 0.3803) (0.3010) (0.3542)

µ 0.8985 0.9488 0.8664 0.9179 0.8991 0.9493 0.8844 0.9360

(0.2378) (0.2867) (0.2234) (0.2672) (0.1670) (0.2003) (0.1622) (0.1939)

R(0.2) 0.9024 0.9516 0.8668 0.9158 0.9006 0.9502 0.8912 0.9379

(0.1659) (0.2103) (0.1331) (0.1618) (0.1030) (0.1284) (0.0922) (0.1120)

(0.7, 2) β 0.9045 0.9527 0.8856 0.9357 0.8997 0.9489 0.8957 0.9439

(5.9294) (7.5926) (6.4576) (8.7720) (2.7925) (3.3929) (2.8693) (3.5472)

x0.1 0.9012 0.9503 0.8696 0.9250 0.9006 0.9502 0.8858 0.9386

(0.0622) (0.0746) (0.0608) (0.0735) (0.0408) (0.0487) (0.0401) (0.0481)

µ 0.8985 0.9487 0.8694 0.9183 0.8955 0.9461 0.8843 0.9349

(0.2281) (0.2753) (0.2146) (0.2564) (0.1606) (0.1927) (0.1566) (0.1870)

R(0.2) 0.8983 0.9498 0.9262 0.9647 0.8971 0.9485 0.9169 0.9604

(0.3810) (0.4465) (0.4410) (0.5313) (0.2776) (0.3278) (0.2994) (0.3593)

(3, 2) β 0.9045 0.9527 0.8856 0.9357 0.8997 0.9489 0.8957 0.9439

(5.9294) (7.5926) (6.4576) (8.7719) (2.7925) (3.3929) (2.8693) (3.5472)

x0.1 0.9012 0.9503 0.8693 0.9246 0.9006 0.9502 0.8867 0.9400

(0.3151) (0.3744) (0.2838) (0.3344) (0.2224) (0.2652) (0.2122) (0.2517)

µ 0.8994 0.9492 0.8572 0.9127 0.8981 0.9485 0.8815 0.9339

(0.2006) (0.2425) (0.1842) (0.2195) (0.1407) (0.1689) (0.1351) (0.1610)

R(0.2) 0.9016 0.9508 0.8781 0.9253 0.9007 0.9498 0.8936 0.9428

(0.1205) (0.1565) (0.0994) (0.1228) (0.0693) (0.0880) (0.0639) (0.0790)

It is quite clear from the Tables 1–3 that as sample size n increases the average relative

biases and average relative MSEs decrease as expected. It is also observed from the Tables 1–

3 that as the parameter β increases the average relative biases and average relative MSEs of
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α̂ decrease, but reverse for β̂. In all, the simulation results show that the proposed estimators

outperform the MLEs for all cases in terms of bias and MSE. But the difference becomes

small with large sample size n.

Now let us compare the bias-corrected estimators considered in Section 2.1 with that

of Lemonte (2011). Lemonte (2011) considered three bias correction estimators: the bias-

corrected estimators (BCE) based on Cox and Snell (1968), preventive bias-corrected esti-

mators (PBC) based on Firth (1993) and constant bias-corrected estimators (CBC) based

on bootstrap method. He had concluded that the BCE and PBC estimators cannot be rec-

ommended when 1 ≤ β ≤ 3. Hence we compare (ᾱ, β̄) with the CBC proposed by Lemonte

(2011). The simulation results are given in Table 4 with 10,000 Monte Carlo replications

and B = 500. Both the bias-corrected estimators for α are comparable, but the Lemonte’s

bias-corrected estimator for β suffers stability, even fails in the range of β ∈ (1, 3).

Because the confidence interval for α is exact, we only report the coverage probabili-

ties and average lengths of the generalized confidence intervals (GCI) and BCa bootstrap

confidence intervals at 0.9 and 0.95 confidence levels for β, x0.1, µ and R(0.2) in Table 5.

These were computed over 10,000 replications for each different case using m = 10, 000 and

B = 10, 000.

The simulation results show that the simulated probabilities of the GCIs for 0.9 and

those for 0.95 are quite close to 0.9 and 0.95 respectively. However, BCa bootstrap confidence

intervals at 0.9 and 0.95 confidence levels at least for x0.1 and µ do not perform well for n = 10

and not always improve under n = 20. Moreover, the interval lengths of the BCa bootstrap

confidence intervals are larger than ones of the proposed GCIs. Therefore, according to these

simulation results, we would recommend the proposed GCIs for practical application with

small and moderate sample sizes.

3 Estimation for the stress-strength model

Let both the stress and strength variables X and Y be independent and follow the

Kumaraswamy distributions with the parameters (α1, β1) and (α2, β2) respectively. Then

the reliability of the stress-strength model is given by

R = P (X < Y ) =

∫ 1

0

fX(x)P (Y > X|X = x)dx

=

∫ 1

0

α1β1x
α1−1(1− xα1)β1−1(1− xα2)β2dx
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=

∫ 1

0

β1(1− t)β1−1(1− tα2/α1)β2dt.

In particular, when α1 = α2, we have

R =
β1

β1 + β2

.

3.1 Interval estimation of R

LetXi,1, Xi,2, ..., Xi,ni
be a random sample from the Kumaraswamy distribution Kum(αi, βi),

and Xi = (Xi,(1), Xi,(2), ..., Xi,(ni)) are the corresponding order statistics (i = 1, 2). Moreover,

let

Si,j =

j∑
k=1

log(1−Xα
i,(k)) + (ni − j) log(1−Xα

i,(j)), j = 1, 2, ..., ni,

Wi(αi) = 2

ni−1∑
j=1

log
Si,ni

Si,j

, i = 1, 2.

Similar to the discussion in Section 2, we have the following results:

(1) W1(α1),W2(α2), S1,n1 , S2,n2 are independent;

(2) Wi(αi) ∼ χ2(2ni − 2),−2βiSi,ni
∼ χ2(2ni), i = 1, 2.

Since it is easy to obtain MLE for R, the main purpose of this section is to obtain the

generalized confidence interval for R.

We first consider interval estimation for R when α1 = α2=̂α. In this case, the reliability

of the stress-strength model is R = β1/(β1 + β2), and we have that

W3(α) = W1(α) +W2(α) ∼ χ2(2n1 + 2n2 − 4).

Let g(W3,X1,X2) be the solution of the equation W3(α) = W3, where W3 ∼ χ2(2n1 +

2n2 − 4). Notice that Vi = −2βiSi,ni
∼ χ2(2ni), we have

βi = − Vi

2Si,ni

, i = 1, 2.

Similar to the derivation of Y1 in Section 2.2, the generalized pivotal quantity for R is

given by

Y5 =
V1/

∑n1

j=1 log(1− x
g(W3,x1,x2)
1,(j) )

V1/
∑n1

j=1 log(1− x
g(W3,x1,x2)
1,(j) ) + V2/

∑n2

j=1 log(1− x
g(W3,x1,x2)
2,(j) )

,

where xi = (xi,(1), xi,(2), ..., xi,(ni)) is the observed value of Xi.

Now we consider interval estimation for R when α1 ̸= α2. In this case, let gi(Wi,Xi)

is the solution of the equation Wi(α) = Wi, where Wi ∼ χ2(2ni − 2), i = 1, 2. Notice that

11



Vi = −2βiSi,ni
∼ χ2(2ni), using the substitution method, the generalized pivotal quantity

for R is given by

Y6 =

∫ 1

0

T1(1− t)T1−1(1− tg2(W2,x2)/g1(W1,x1))T2dt,

where

Ti = − Vi

2
∑ni

j=1 log(1− x
gi(Wi,xi)
i,(j) )

, i = 1, 2.

Let Y5,γ, Y6,γ denote the γ percentiles of Y5, Y6 respectively. Then [Y5,γ/2, Y5,1−γ/2] and

[Y6,γ/2, Y6,1−γ/2] are the 1−γ generalized confidence intervals for R when α1 = α2 or α1 ̸= α2

respectively. Just as in the case of Y1, the percentiles of Y5, Y6 can be obtained by Monte

Carlo simulations.

3.2 Simulation study

In this subsection, a simulation study is conducted to assess the coverage probabilities

and average lengths of the proposed generalized confidence intervals for R.

Similar to the discussion in Section 2.4, the distribution of the generalized pivotal quantity

Y5 for R does not depend on the parameter α1, α2 when α1 = α2. Hence, the generalized

confidence interval of R based on Y5 does not depend on the parameter α1, α2 when α1 = α2.

Without loss of generality, we take α1 = α2 = 1 in our simulation study and consider

different values of β1, β2 when α1 = α2. For given different values of (α1, α2, β1, β2) and

different choices of sample sizes, we generated random samples from the Kumaraswamy

distributions Kum(α1, β1) and Kum(α2, β2) respectively.

Table 6: The coverage probabilities and average lengths (in parentheses) of the generalized confidence interval for R

(n1 = 10, n2 = 10) (n1 = 10, n2 = 15) (n1 = 15, n2 = 10) (n1 = 15, n2 = 15)

(α1, α2, β1, β2) 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

(1, 1, 1, 1) 0.9033 0.9528 0.9011 0.9532 0.9011 0.9478 0.9003 0.9504

(0.3476) (0.4091) (0.3200) (0.3773) (0.3200) (0.3773) (0.2888) (0.3412)

(1, 1, 3, 2) 0.9014 0.9513 0.9010 0.9531 0.9010 0.9471 0.8992 0.9487

(0.3394) (0.4000) (0.3133) (0.3702) (0.3112) (0.3670) (0.2815) (0.3329)

(1, 1, 2, 1) 0.9018 0.9511 0.9026 0.9528 0.9005 0.9479 0.9008 0.9480

(0.3222) (0.3807) (0.2977) (0.3528) (0.2943) (0.3477) (0.2664) (0.3156)

(1, 1, 1.5, 0.5) 0.9021 0.9525 0.9069 0.9535 0.8995 0.9491 0.8991 0.9484

(0.2868) (0.3408) (0.2649) (0.3157) (0.2597) (0.3082) (0.2352) (0.2799)

(1, 1, 4, 1) 0.9040 0.9517 0.9087 0.9530 0.9003 0.9480 0.9006 0.9487

(0.2620) 0.3128) (0.2415) (0.2890) (0.2355) (0.2805) (0.2134) (0.2548)

(3, 2, 2, 1) 0.9185 0.9626 0.9168 0.9616 0.9150 0.9606 0.9154 0.9596

(0.3798) (0.4453) (0.3415) (0.4018) (0.3582) (0.4209) (0.3162) (0.3725)

(1.5, 2, 3, 1) 0.9192 0.9621 0.9147 0.9605 0.9121 0.9589 0.9157 0.9590

(0.3036) (0.3604) (0.2713) (0.3225) (0.2838) (0.3378) (0.2467) (0.2933)
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We report the coverage probabilities and average lengths of the generalized confidence

intervals at 0.9 and 0.95 confidence levels for R in Table 6. These were computed over 10,000

replications for each different case using m = 10, 000. The simulation results show that the

simulated probabilities for 0.9 and those for 0.95 are quite close to 0.9 and 0.95 respectively.

4 A proportion data analysis

We illustrate the exact inference of the Kumaraswamy distribution by the analysis of

the monthly water capacity data from the Shasta reservoir in California, USA, during the

month of February from 1991 to 2010 (http : //cdec.water.ca.gov/reservoirmap.html). The

20 values of proportions of year capacity are also available from the Table 1 in Nadar et

al. (2013). Nadar et al. (2013) showed that these observations follow the Kumaraswamy

distribution.

The proposed point estimators (α̂ = 5.7878, β̂ = 3.6913) of (α, β) is different from their

MLEs (α̂M = 6.3476, β̂M = 4.4894). According to the analysis in Section 2.1 and the

simulation results in Section 2.3, the proposed estimators are preferable in terms of biases

and MSEs.

After the point estimation, confidence intervals for the parameters can be constructed.

The 95% exact confidence interval and asymptotic confidence interval for α are (3.4778,

9.2419) and (3.6433, 9.0518), respectively, without much difference. But the 95% generalized

confidence interval and asymptotic confidence interval for β are quite different with (1.7161,

9.7315) and (0.9693, 8.0095) respectively.

5 Conclusion

In this study, we have systematically explored statistical inference procedures for the

Kumaraswamy distribution. The inverse estimators was derived. The simulation results in

Section 2.3 showed that the biases and MSEs of the proposed estimators are much smaller

than the MLEs. A disadvantage of the proposed IEs is that there is not formula for the

variances of the proposed IEs, but they can be estimated by the bootstrap method. The

pivotal quantity W (α) enables construction of confidence intervals for α. To construct

confidence intervals for the mean µ, quantilexp and the reliability R(x), the method of

generalized pivotal quantities was used. The simulation results in Section 2.3 validated the

satisfactory performance of the generalized pivotal method.
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We then developed the inference procedures for the stress-strength model. When the

parameters α1 and α2 are equal or unequal, confidence intervals were constructed based

on the generalized pivotal quantities Y5 and Y6 respectively. The good performance of the

generalized confidence intervals was validated in Section 3.2.
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