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Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a
novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This
methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal
operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition.
Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal
the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and

field trials, comparing well with the methods reviewed in the literature.

1. Introduction

Despite the current global economic situation the wind
turbine industry is still growing worldwide [1]. However, the
wind turbine industry experiences premature turbine com-
ponent failures, which leads to increase in the operation and
maintenance (O&M) costs and loss of productivity due to
turbine downtime [2, 3]. The O&M costs constitute a sizeable
share of the total annual costs of a wind turbine. For a new
turbine, O&M costs may easily make up 20%-25% of the
total levelised cost per kWh produced over the lifetime of
the turbine [4]. Unpredictable failure of certain wind turbine
components, such as turbine blades, tower, gearbox, genera-
tor, braking system, and yaw system, can lead to substantially
higher maintenance costs and reduced availability of wind
turbines. As a result, O&M costs are attracting greater atten-
tion, as there is a need for the industry to reduce the turbine
downtime, increase reliability, and decrease the cost of the
energy (COE).

Wind turbine gearboxes tend to fail more prematurely
than those in any other applications. Gearboxes do not always
achieve their desired 20-year design life, failing prematurely
from 2 to 11 years. Although it is well documented in literature

that the failure rate of mechanical components is lower in
comparison with the electrical subsystems, mechanical fail-
ures still create unplanned maintenance, long turbine down-
times due to gearbox replacement, and rebuild which
increases the warranty reserves. Based on the data compiled
in the Wind Stats Newsletter which covers from 2003 to
2009, gearboxes are the subsystem that causes the highest
downtimes (Figure 1) [5, 6]. Wind industry is experiencing
higher gearbox failure rates than other due to underestima-
tion of true operating loads, unexpected overloads due to
unusual operating conditions, defective design of gearbox
components, and poor maintenance, all of which have clear
effects on gearbox reliability. From the O&M point of view,
the main concerns are the following: high replacement costs
after failure, high costs of the removal and reinstallation
works because a crane is needed, and high revenue losses due
to the long downtime [7]. All the previous factors trigger an
increase in the cost of the energy as previously stated. In order
to decrease this cost, turbine uptime has to be increased, a
goal which can be reached by improving gearboxes reliability
[8-13]. For this reason, the Vestas V90 gearbox is the main
targeted subsystem of this paper.
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FIGURE 1: Wind Stats: 2003-2009 aggregated downtime per turbine
subsystem.

Vibration-based monitoring of all drive train components
is the most developed and widely applied condition mon-
itoring technique by far [14-17]. A survey carried out by
the UK Supergen Wind Energy Technologies Consortium
[18] shows that 14 out of 20 commercially available wind
turbine condition monitoring system (CMS) provide gearbox
vibration monitoring. Another survey carried out by Durham
University [19] shows that 27 out of 36 widely available CMS
are based on drivetrain vibration analysis. Oil-based analysis
CMS are also used for gearbox monitoring purposes. This
technology is in an early development stage as regards sensor
technology and the validation of its capabilities for fault
detection [20]. Acoustic Emission is becoming a typical
drivetrain CM practice. A recent study on wind turbine CM
shows a design of a new continuous condition monitoring
system with automated warnings based on a combination of
vibration and AE analysis [21, 22]. AE can detect faults earlier
than vibration [23, 24] but implementation is more compli-
cated due to equipment noise which reduces the quality of the
output signals [25]. SCADA systems are also used for con-
dition monitoring of wind turbines although they are not a
standalone solution. They store 10 minute-average data which
is valuable to help other CMS achieve better fault detection
performances [7].

The technique applied in this paper is vibration analysis
using accelerometers mounted in specific locations on the
machine. The reason vibration analysis is used instead of one
of the aforementioned methods is the advantages this tech-
nique offers. In comparison to oil analysis, vibration analysis
can detect failures inside and outside the gearbox and can
be used for online monitoring without incurring high costs
[16]. Additionally, small defects generate intense vibration
signatures which are detectable by the accelerometer. How-
ever they do not necessarily cause changes in the chemical
composition [26].

The majority of existing commercially available vibration-
based CMS use time domain, frequency domain, or time-
frequency analysis methods. Vibrations in the time domain
have been widely studied. Statistical and parameter-based
methods have shown to be useful indictors of the system
condition [27]. Minimum and maximum value, peak to peak
value, root mean square (RMS), kurtosis, skewness, crest
factor are all examples of time domain features. Comparisons
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between the pristine status and the current have been carried
out using trend analysis [28]. Features reflect component
deterioration only when working under changeless oper-
ating conditions. Time synchronous averaging (TSA) and
planet separation methods resample the vibration data syn-
chronously with the shaft rotation for the sake of extracting
periodic waveform from noisy data [29]. Amplitude demodu-
lation has proven to be appropriate for detecting defects that
produce impacting [9]. Most of the commercially available
vibration-based CMS focus on the frequency domain analysis
based on Fast Fourier Transform (FFT) [30-32], order anal-
ysis, cepstrum analysis [33], envelope analysis, and so forth,
which demonstrated to be effective at detecting gear faults.
FFT is suitable for analysing steady-state or quasi-steady
vibrations with slowly varying frequencies [34, 35]. Therefore
FFT is not appropriate for wind turbine monitoring due to
their stochastic operation behavior (variable aerodynamic
loads and extreme environmental conditions which make
the running speed change continuously). Vibrations coming
from the wind turbine’s gear or bearing are considered as
nonstationary and nonlinear. To deal with nonstationary and
nonlinear signals, time-frequency methods such as the Short-
Time Fourier Transform (STFT) [36], Wigner-Ville distribu-
tion (WVD) [37], or wavelet transform (WT) are required
[38, 39]. Wavelet analysis is probably the most popular
technique. Continuous wavelet transform, discrete wavelet
transform, and harmonic wavelet transform have been val-
idated as methods for wind turbine condition monitoring
[40-43]. Wavelet transform methods have the drawback that
the basic functions of the decompositions are fixed and do
not necessarily match the varying nature of the signals [44].
Signal decomposition methods have been applied to the
practical gear and rolling bearing fault diagnosis. Empirical
Mode Decomposition (EMD) has been presented as a more
advanced condition monitoring technique to ensure the high
availability of wind turbines [45]. The main downsides of
EMD include the use of cubic spline to interpolate the local
extrema of the signal which experiences end effect, mode
mixing, overshoot, and undershoot problems [46, 47]. Local
Mean Decomposition (LMD) is an improved version of EMD
which also suffers from mode mixing, distorted components,
and time consuming decomposition. LMD can be more
effective than EMD in capturing local features of the nonlin-
ear and nonstationary signals [48]. The Intrinsic Time-scale
Decomposition (ITD) method overcomes the limitations of
EMD listed earlier, as well as those previously mentioned,
and is associated with more classical approaches such as
Fourier and wavelets [49]. ITD decompose the nonstationary
signal into a sum of proper rotation components (PRs) which
are not real monocomponents. This causes erroneous instan-
taneous characteristics.

The existing work has some limitations. Most of the exist-
ing methods applied for fault detection in rotating machinery
are signal processing based and they consist of finding the
faulty peak in the frequency spectrum. Fault detection is
carried out by comparison of the pristine and faulty frequency
spectrum which is sensitive to noise methodology [30].
The task of identifying faulty peaks has to be done oftline
which falls into higher costs of labour and computational
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complexity. In addition, offline analysis of the data gathered
does not provide any benefit as faults are identified after they
occurred. As is well known, practical vibrations are non-
linear and nonstationary due to the complexity of rotating
machinery systems [48]. Fast Fourier Transform (FFT) did
not show good result when it was applied to that type of
complex vibrations. Nonadaptive time-frequency methods
do not provide with a meaningful interpretation either [50-
52]. Consequently, a novel methodology for automated fault
diagnosis in rotating machinery is needed to avoid loss of
time in planning and carrying out unnecessary operation
and maintenance (O&M) tasks, reduce machinery downtime,
increase reliability, and reduce the cost of energy (COE).

The algorithms and methodology presented in this paper
highlight some of the limitations of vibration analysis when
it is applied for fault diagnosis. The approach uses a com-
bination of time and time-frequency adaptive techniques
to develop an automated solution for condition monitoring
of wind turbines which contributes to the state of the art.
Automation is a must in industrial applications such as wind
turbine monitoring to reduce the manual inspection of data.
These algorithms are based on unsupervised learning that
uses statistical process control (SPC) charts for defining the
healthy status of the machinery. Signals considered as faulty
are processed using the intrinsic characteristic-scale decom-
position (ICD) method. ICD is a relatively novel adaptive
method which has been first proposed by Li et al. [53]. With
ICD, any nonlinear and nonstationary signal can be decom-
posed into a collection of product components (PCs). The
envelope spectrum of these PCs can identify the faulty
frequencies in a gearbox. This proposed methodology is
explained in this paper.

2. Novel Software Concept for Fault
Detection in Wind Turbines

The application of vibration analysis is well developed in the
field of rotating machinery. In spite of the fact that industrial
machinery is monitored using vibration analysis, the industry
still experiences premature failures. Failure in machinery
implies an increase of the downtime and subsequently an
increase of the cost of the energy (COE). The current systems
used to have full remote control of the individual wind tur-
bines or even an entire wind farm health are SCADA (Super-
visory Control And Data Acquisition) which offer full remote
control and supervision of individual wind turbines. SCADA
systems give an overview of all the relevant features to moni-
tor any health changes of wind turbines such as temperature,
pitch angle, electrical parameters, and rotor speed. These data
gathering systems provide real time and historical informa-
tion. The real time and historical data are compared to assess
whether or not there is a failure arising or happening.

A new methodology which combines operating and
vibration data for condition monitoring of wind turbines in
rotating machinery is showcased in this paper. The aim is to
propose a novel solution that helps the wind industry improve
the reliability and availability of wind turbines. The objectives

to reach with the development and implementation of this
novel methodology are as follows:

(i) Establishment of a baseline representative of the
healthy status of the wind turbine.

(ii) Setting of operational limits of the machine being
studied.

(iii) Identification of deviations (outliers) from the base-
line which could be indicative of machinery failure or
malfunctions which are being developed within it.

(iv) Application of a time-frequency domain technique
for discarding any false alarm and identifying the
source of defect if any.

(v) Database creation for condition monitoring manage-
ment purposes.

The algorithm developed to reach the aforementioned objec-
tives can be split into the following four modules: baseline
generation, forcing frequencies calculation, intrinsic-scale
decomposition (ICD), and data base.

Figure 2 depicts the flow chart novel methodology for
condition monitoring of wind turbines gearboxes proposed
in this paper. The algorithm is recognized as two lines which
work in parallel, coming together in a single endpoint. The
proposed method starts gathering vibration data and takes
10-minute averages of the speed of the low speed shaft (LSS)
and power output continuously. Then, vibrational data passes
through a signal conditioning stage and the rotor speed is
used for calculating the forcing frequencies of the machine
being studied. It is important to know the speed of the LSS as
some wind turbines and other pieces of rotating machinery
work at different speeds. Thus, the method selected for storing
the data gathered is based on bins which are related to the
speed of the LSS at the time the measurement is taken. The
number of bins is selected by the operator whereas the bin
width is established according to the maximum speed of the
machine and the number of bins previously mentioned.

Research in the laboratory was carried out to select the
feature that depicts better and more reliable changes in the
operational status of gearboxes. Counts parameter, root mean
square (RMS), peak value, and crest factor were studied. Peak
value showed an increase with the onset of defect in gearboxes
but sometimes that feature was badly affected by single noise
spikes. For that reason, peak value and crest factor were
considered not reliable indicators of defect. Counts parameter
was not considered reliable either as it has a strong depen-
dence on the threshold value selected for its calculation. RMS
levels increased with the increase of defect within the gearbox
studied and results were not affected by single noise spikes
as much as the peak value. Therefore, RMS was selected as
the feature to be binned. Depending on the application, dif-
ferent features might contain more relevant information for
processing with monitoring systems [54]. Then the method
depicted in Figure 2 is able to generate a baseline represen-
tative of the normal operation conditions of a wind turbine
gearbox and use that baseline to assess the current health of
the gearbox. At this stage, deviations from the baseline may or
may not be an indication of defect. Accordingly, a novel time-
frequency domain technique is applied to the data which
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FIGURE 2: Flow chart of a novel condition monitoring algorithm for gearbox fault detection.

is causing deviations, that is, to the outliers. The technique,
which is called intrinsic characteristic-scale decomposition
(Figure 4), demodulates the signals until the faulty frequency
is easy to identify. The output of the ICD is compared with
the forcing frequencies previously calculated to conclude
whether or not there is a defect. If there is a match between
the ICD and the frequencies calculated, the source of defect
is identified and the information is recorded in a database to
evaluate the risk and the actions which need to be taken. On
the other hand, if there is no match, the outlier is considered
as a false alarm and the monitoring process continues.

The main parts within the algorithm described in Fig-
ure 2, the baseline generation and the demodulation tech-
nique (ICD), are explained extensively in this section.

2.1. Identification of Deviations from Normal Operation Condi-
tions Based on a Baseline. The baseline is a statistical process
control that can be used when a large number of similar files

are being produced, such as data coming from the wind
turbine. Wind turbine monitoring is subject to variability. The
variability present when a process is running well is called
short term or inherent variability and is usually measured by
the standard deviation. The vibration signatures files gener-
ated will have a target value. When defects appear, this value
increases or decreases depending on the feature selected for
the baseline generation. This method falls within the machine
learning field of research. It is classified as an unsupervised
parametric learning method [55] because the source of defect
is unknown and it is based on the statistical representation of
vibration features. It acts as a unary classification; that is, it
establishes discrimination criteria by learning from a training
set in order to identify whether the data belongs to pristine
condition of the method or to a novel class.

The purpose of generating a baseline with the wind tur-
bine data is to produce an alarm when the process values have
moved away from the target. A second purpose is to generate
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a signal when item to item variability has increased. In either
case appropriate action must be taken by a machine operator
or an engineer. Statistics can only give the signal; the on
action relies on other skills. Setting the alarm limits based
on statistics enables all alarm levels on a complex machine,
such as wind turbine with many transducers, to be calculated
in seconds instead of taking many hours to view the data
and set the levels manually. Thus, the monitoring process
can be carried out more economically. Automation of the
alarm setting process can greatly improve the efficiency of the
monitoring process. Figure 3 shows a more detailed flow chart

of the baseline generation method. After having binned the
features extracted in the suitable bin according to the rotor
speed, the method needs to establish when the data available
is enough to determine the normal operation limits of the
wind turbine gearbox. Obviously, the more data the better to
establish reliable alarm limits. However, it entails spending
more time learning from the machine which is not the best
practice when early fault detection is a goal. Therefore, a
compromise between reliability and time efficiency is needed.
A convergence criterion to ensure that the normal operation
limits are calculated using the minimum number of files is
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presented in this paper. In this way, the wind turbine gearbox
health can start to be assessed as soon as possible. Due to
different variability of the data in different bins, the number
of files required will vary for each bin. Therefore, convergence
is studied separately in every single bin.

The process starts calculating the moving average (MA) of
the data stored in the bin being studied. MA is a trustworthy
parameter which indicates when the addition of more data
will not have any effect on the calculation of the alarm limits.
The moving average error (EMA) between consecutive files
is calculated and it establishes the termination conditions.
Considering the coordinates of the last EMA value calculated
(x,, y,) and another one calculated earlier (x,_,,.;1> Vioms1)>
where m indicates the number of EMA points included
between the last two, the slope of the straight-line connecting
both can be figured. The slope is not calculated using the
last two measurements as that would be more a short term
convergence indicator rather than a medium or long term
convergence indicator. Slope can be calculated using
Yn = Vn-ms1 > . (1)

X, — X

y=atan<

n—m+1

The stopping criterion is satisfied when y = 0° which means
that the straight-line between two measurements properly
spaced in time is nearly horizontal. In that case, it can be
ensured that the variability of the EMA when new data is
added to that specific bin is that low that the normal operation
limits can be established reliably. Limits allow determining

whether or not the process is under control. The purpose is to
provide a representative vibration level across a range of rotor
speeds, for improving the reliability of wind turbine gear-
boxes and thereby help define appropriate vibration limits. If
the limits are too far from the target value, small deviations
from the target value may go undetected, but if the limits
are too close to the target value there will be a large number
of false alarms (meaning there will be a signal for action
when the process mean is on target and no action is neces-
sary). The baseline is generated using the mean (u) of the
values required according to the stopping criterion previously
explained and their standard deviation (o). Two kinds of
limits are established: warning limits and action limits. Before
constructing the control chart, the probability level («) value
for the warning and alarm limits has to be selected. According
to the literature related to statistical process control (SPC)
charts [56, 57], it has been convenient to set the warning limits
so that, if the mean is on target, 95% of sample means lie
within them. Limits are calculated as the mean plus/minus p
times the standard deviation of the data stored in a specific
bin. The action limits are set so that 99.8% of samples lie
within them when the mean is on target. Given the value of
a, the number of standard deviations (p) used for the calcu-
lation of the upper control limits (UCL) and lower control
limits (LCL) is extracted from the ¢ distribution table, using
an input value equal to 1 — «/2. Therefore, for the warning
limits, p is 1.96 which means that only 5% of the values should
be outside the limits if the features under study are in the
same condition as when the signature was calculated. For
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the action limits, p is 3.09. The warning and action limits are
defined as follows:

Warning Limits = y + 1.960,

)
Alarm Limits = y + 3.090.

The standard deviation will be an estimation of the true value
and 95% and 99.8% are figures which have been selected
according to the literature. For these reasons and for simplic-
ity the limits are often set at

Warning Limits = u + 20,

(3)

Alarm Limits = p + 30.

In this specific case, the target value is not known and it will
depend on the gearbox which is being monitored. When this
happens, the data clustered within each bin is taken and the
sample mean is used as a target value. One should clarify that
this is accomplish just when the process is running satisfac-
tory.

Finally, the new data gathered is plotted in front of the
limits previously determined to evaluate the health of the
gearbox. New RMS values falling out of the limits are a clear
indication of a process out of target. Nevertheless, it does not
necessarily mean that is due to a malfunction or defect within
the turbine. The classification process to distinguish between
faults and false alarms is carried out by the module described
in the following section. Three areas can be distinguished
in the baseline plot: Zone A is define as the area where the
turbine operates free of fault; Zone B is the area between the
warning and alarm limits and where minor faults will appear;
and Zone C is the area above the alarm limit and where acute
fault to danger will be localized.

On the other hand, if the termination criterion is not
satisfied in a bin, more data is required and the whole process
needs to continue.

2.2. Gearbox Fault Diagnosis for Wind Turbines Based on ICD
Frequency Spectrum. The time series of abnormal events are
subjected to a time-frequency signal processing technique
which is suitable for nonlinear and nonstationary vibrations
such as faulty gearbox signals. In a defective gear or rolling
element the resonance frequency is excited and it is modu-
lated by the transient impulse with defective frequency. The
intrinsic characteristic-scale decomposition method (ICD)
decomposes the nonstationary signal into a series of product
components (PCs) so it is possible to diagnose gearbox and
rolling elements defects. This method is needed in order to
demodulate the feature and extract the fault frequency by
carrying out envelope spectrum analysis of the first few PCs.
Therefore, the output of this module will be the frequency
spectrum of the first enveloped PCs which can identify the
faulty frequencies in gearbox and rolling elements success-
fully. This method has been effectively applied by Li et al.
[53] for faulty frequencies identification. The results demon-
strate that ICD can get accurate monocomponents when the
method is applied to broken tooth detection in gears or inner
race defects detection in bearings.

7
TABLE 1: Specifications of the test’s rig gearbox.

Ratio 15:1
Pinion teeth 18
Gear teeth 27
Forcing frequencies Orders
Input frequency (f;,) 1x
Output frequency (f,,,) 0.67x
Gear mesh frequency (GMF) 18x

Once the spectrum of the enveloped PCs is obtained, the
remaining peaks in the FFT are compared with the forcing
frequencies of the gearbox. If any of the frequency calculated
correlates to any peak in the envelope spectrum coming
from the ICD method, the false alarm hypothesis would be
discarded and the source of defect would be identified. On
the contrary, if there is a lack of correlation between the the-
oretical values and the envelope spectrum, the outlier being
analysed is considered as a false alarm.

3. Laboratory Trials on a Test Rig

Experiments were conducted at laboratory scale to validate
the methodology above explained. In this section, the layout
and results obtained after applying the algorithm described
in Figure 2 are presented.

3.1. Laboratory Experiments Set-Up. To verify the effective-
ness of the proposed methodology, a couple of case studies
were conducted at laboratory scale at the Machinery Fault
Simulator from Spectraquest Inc. The aim was to recreate the
stochastic behaviour of wind turbines by gathering data at
different speeds so the results of this experiment can be useful
for showcasing the applicability of the method to field trials
in a wind turbine gearbox.

The test rig, utilized for the purpose of dataset collection,
is shown in Figure 5(a). It consists of a 0.75 kW variable fre-
quency drive (VFD) which controls the motor shown in Fig-
ure 5(a). In the first experiment, the motor is connected over
the universal joint shaft to the single stage gearbox with spiral
bevel gears. One of the two gears is shown in Figure 5(b).
Figure 6 depicts a diagram of the gearbox. The specifications
of the gearbox are shown in Table 1. Vibrations generated by
this subsystem are measured in the radial direction, using a
CTC AC150-1 accelerometer mounted vertically on the case.
Itis an industrial type IEPE accelerometer whose sensitivity is
100 mV/g and its frequency range goes from 1 Hz until 10 kHz.
Input shaft speed is measured with a noncontacting proximity
probe.

Two gearboxes were tested. The first gearbox was free
of faults whereas the second one was in faulty conditions.
Figure 5(b) shows the faulty gear from the second gearbox
which is missing a tooth. Tests were performed in both
gearboxes at variable speeds between 25 Hz and 45 Hz using
a 5 Hz step.

For the second experiment, the motor is connected to a
91.4 cm shaft supported by one Rexnord ERI12K ball bearing
which is mounted on a stand as shown in Figure 7. Damage
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FIGURE 5: Layout of the test rig: (a) sensor attachment and (b) the faulty gear with a broken tooth.
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FIGURE 6: Diagram of the test rig’s gearbox.

is introduced by replacing a healthy bearing by a predamaged
specimen. The damage cases include ball spalling, inner race,
and outer race. Li et al. [53] applied the ICD method to a
bearing with inner race defect. In order to make a contribu-
tion to the current knowledge a bearing with an outer race
defect was utilized for the experiments. In this way, the ICD
method can be validated for another type of roller bearing
fault. The forcing frequency (BPFO) can be calculated intro-
ducing the parameters defined in Table 2 into the following
equation:

BPFO=<%)<1—%COS((X)>. (4)
p

The value of the abovementioned forcing frequency ex-
pressed in orders is 3.044x, where x is the rotating frequency
at the gearbox input.

3.2. Results Analysis. The results from the laboratory exper-
iments performed in a test rig gearbox are presented in
Figure 8. First of all, healthy data was gathered to establish
the normal operation condition limits. The system decides
autonomously when the data gathered is enough for estab-
lishing these limits based on the convergence criteria previ-
ously described.

Convergence plots for each bin are shown in Figure 8.
These plots reveal the effect of adding a new measurement to
the current data. The convergence criteria marks with a light
blue dotted line when the learning process is finished in each

TABLE 2: Specifications of the test’s rig bearings.

MB ERI12K bearing Rexnord

Outer diameter D (mm) 47
Inner diameter d (mm) 19
Pitch diameter d b (mm) 33.5
Ball diameter dj; (mm) 7.9
Outer ring width B (mm) 15.8
Number of ball N, 8
Contact angle « (*) 0

(91.4¢m)

Bearing 4 Dearing
stand

FIGURE 7: Experimental set-up with a faulty bearing.

bin, which does not generally happen simultaneously in all
the bins. The number of files needed to determine the baseline
limits reliably is depicted in Table 3. Following on, warning
and alarm limits are calculated and plotted as dark and light
blue lines, respectively (Figure 9).

A new set of 50 measurements was gathered for each bin
when the gearbox was working in pristine conditions. This
new set of data validates the capabilities of the normal oper-
ation limits calculated. The RMS values extracted from the
vibration signals are plotted as dark blue points in Figure 9.
Since the data was acquired in healthy conditions, features
should fall within the limits, revealing that the gearbox
status has not changed. The effectiveness of the baseline is
evaluated by calculating the percentage of data that is within
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TABLE 3: Number of files for the baseline generation and effective- 45r
ness probed with an additional set of data. . Faulty data
o 4+ i '
Bin1 Bin 2 Bin 3 Bin 4 Bin 5 é I
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the limits. There are 2 outliers out of 50 in bins 3 and 5 whereas
there is just one in bin 4. The algorithm assesses the gearbox
as healthy for bins 1 and 2 in all cases. The outliers are located
between the alarm and the warning limits. Therefore, the
quality of the current results has to be assessed according to
the 95% probability factor defined in the previous section of
this paper. It can be concluded that the results are promising
as the percentage of data lying within the limits is higher than
95%.

The healthy gearbox was replaced by the one with a
broken tooth and new sets of 50 measurements were taken for
each bin. The extracted RMS values are plotted as light blue

Rotating speed (Hz)

FIGURE 9: Baseline of the test rig operating at variable speed using
the RMS value of the acceleration.

points in Figure 9. As can be seen, the new values are
deviated from the targeted mean. The deviation in bin 1 is
not big and it can even be seen that one of the points falls
between the upper alarm and warning limits. However, for
higher speeds all the points are outliers. In addition, positive
correlation between the deviation from the targeted mean
and the rotation speed has been noted. In conclusion, the
baseline algorithm is experimentally demonstrated to be able
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FIGURE 10: Envelope spectra of the obtained components from ICD (gearbox): (a) PCL(¢), (b) PC2, (c) PC3(t), and (d) PC4(#).

to distinguish between the healthy and the faulty condition of
a gearbox successfully.

To verify the effectiveness of the ICD method revealing
the source of defect, the algorithm is applied to one of the
outliers falling in bin 2. That file was gathered when the
variable frequency drive was running at 30 Hz in faulty con-
ditions (Figure 5(b)). Given that the broken tooth was in the
pinion, which is mounted on the output shaft, the frequency
of interest is the rotational frequency of the output shaft
(fout = 20.1 Hz).

When the gear is operating with a localized fault, the
vibration gathered can be classified as a multicomponent sig-
nal, amplitude-modulated (AM) and frequency-modulated
(FM). It is not easy to find out which gear is faulty by simply
performing the FFT. Therefore, further analysis in the time-
frequency domain is required. The ICD algorithm is utilized
to analyse the vibration signal coming from a gear in broken
tooth fault condition. Firstly, the ICD method is applied to
decompose the vibration signal in products. The decomposi-
tion process gives four PCs. Secondly, the PCs are enveloped
and the frequency spectrum is performed to find the fault
frequency. Results shown in Figure 10 are obtained after con-
ducting the envelope spectrum analysis of the four PCs. As
seen from Figures 10(a), 10(b), and 10(c) corresponding to
the envelope spectrum of PCI1(#), PC2(t), and PC3(t), there
are obvious spectrum lines of the faulty frequency (f,,, =
20.1 Hz) and the gear mesh frequency (GMF = 540 Hz) and
sidebands around it spaced a distance equal to the faulty fre-
quency (499.8 Hz, 519.9 Hz, 560.1, and 580.2 Hz). The ampli-
tude of the fault peak is lower than the amplitude of the peak
related to the rotating speed. It can be confusing as someone
could think that the defective gear is the one at the input of
the gearbox when it is the opposite. As shown in Figure 10,
the spectrum of the enveloped signal is cleaner with each new

iteration of the method but it stills keeping the frequency of
interest ( f,,). Figure 10(d) shows the spectrum of the last PC
derived from the ICD method. This is the clearest PC spec-
trum since the number of peaks has been sufficiently reduced
and there is a peak which is bigger than the rest. This peak,
located at 20.1 Hz, brings to light the source of defect which
is a broken tooth at the pinion. In the light of the results, the
ICD method simplifies the defect identification process and
consequently easing the automation of this type of processes.

Bearings are another important source of failure within
gearboxes. Vibrations coming from bearings are AM-FM
multicomponent signals which do not show the source of
defect clearly. The features of the fault are modulated and
its extraction is complicated. Therefore, the ICD method is
applied to showcase its fault detection capabilities in other
gearbox components. In this case, the aim is to detect an
outer race defect in a roller ball bearing. As demodulation is
needed, the signal is decomposed and the fault type identifi-
cation is carried out by applying envelope spectra. Figure 11(a)
shows the frequency spectrum of an outer race defect signal
before any demodulation is applied. The rotation speed was
20 Hz at the acquisition moment. As can be seen, the govern-
ing frequency is the running speed set up in the VED (f; =
20 Hz). The faulty feature can be identified in the spectra in
spite of the fact that its amplitude is much lower (BPFO =
60.89 Hz). In addition, a clearest indication of the source
of defect is needed due to the fact that the BPFO could be
confused with the third harmonic of the rotating speed. ICD
is applied to this fault signal and the decomposed products
are shown in Figures 11(b) and 11(c). After two iterations, the
BPFO becomes noticeable being the peak with the highest
amplitude of the frequency spectrum (Figure 11(b)). The ICD
has demonstrated to be effective identifying outer race defects
in bearings.
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PC2(t).

4. Field Trials on a Vestas V90-3MW
Wind Turbine

Experiments were conducted in a Vestas V90-3MW wind
turbine to validate the methodology above explained on field.
In this section, the set-up in the wind turbine gearbox and
results obtained after applying the algorithm described in Fig-
ure 2 are presented. The aim of the experiments is to assess the
health of the gearbox and if there is any sign of defect, identify
the source.

4.1. Experimental Set-Up and Gearbox Analysis. The wind
turbine selected for accomplishing the field trials was a Vestas
V90-3MW which consist of a drive train (generator, main
shaft, and gearbox), control system, three blades, yaw system,
and the tower. Hereafter the wind turbine monitoring set-
up is described. It consists of a set of three accelerometers,
a data acquisition system (DAQ), referred to as CMS which
was located in the inside of the nacelle and a data server (CMS
server) located in the inside of the nacelle as well. The rota-
tional speed signature (rpm) and power output (kW), which
are recorded as an average of the last ten minutes, are supplied
by the wind turbine operator.

The CMS utilizes vibration analysis for monitoring the
gearbox of the wind turbine, which consists of two planetary
gear stages and one helical gear stage, as shown in Figure 12.
It is located in the middle of the wind turbine drive. Wind
turbine gearboxes are used to increase the rotor speed to a
speed suitable for the generation of electricity and operate
under varying load conditions. Therefore, there is a low
speed shaft (connected to the blades) and high speed shaft
(connected to the generator) which are related through the
gearbox (ratio 104.5582). Detailed information of this gear-
box is provided in Table 4. The first stage is planetary, in which

TABLE 4: Vestas V90-3MW gear teeth information.

Number of gear teeth
Gear stage . o
Ring gear/gear Planet Sun/pinion
Planetary stage I 87 33 18
Planetary stage II 99 40 18
Helical stage III 91 33

TABLE 5: Rotational frequencies for each stage.

Frequency (orders)

Gear stage

Planet carrier/gear ~ Planet  Sun/pinion
Planetary stage I Ix 1.59x 5.8x
Planetary stage II 5.8x 8.5x 37.9x
Helical stage III 37.9x 104.5x

the planetary carrier (fixed by the ring gear) is the input,
Table 4. The first stage is planetary, in which the planetary
carrier (fixed by the ring gear) is the input and the sun gear
is the output terminal. The second stage is equal to the first
stage. The transmission ratio will not be the same as the
number of teeth is different. The third stage consists of a gear
which is connected to the output of the previous stage and a
pinion. The pinion is at the output of the gearbox and deter-
mines the speed of the high speed shaft (HSS). The forcing
frequencies to take into account when analysing gearbox data
in the frequency domain are the rotational frequencies of the
gears and the gear mesh frequency. These values are depicted
in Tables 5 and 6, respectively.

For the application of vibration analysis to the wind
turbine gearbox, three 3-axis piezoelectric accelerometers
(Metra KS943 100 mV/g) with integrated built-in preampli-
fiers (IEPE standard) were used. Furthermore there is a need
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TABLE 6: Forcing frequencies for each stage.

Gear mesh frequency (GMF) Frequency (orders)

GMEF stage I 104.91x
GMEF stage II 681.98x
GMEF stage III 344776x
Planetary Planetary Helical
stage I stage I1 stage I1I
HSS

Woutput

FIGURE 12: Sketch of the Vestas V90-3MW gearbox configuration.

for converters for each acceleration channel and a power sup-
ply of 24 V. Because the frequency range used is below 1kHz,
the sensors could be magnetically attached to the gearbox sur-
face. Special magnets, which are available as accessories for
this type of sensors, were used. The IEPE converters provide
the data acquisition card with the voltage output of the 3-axis
of each sensor which is proportional to the vibration mea-
sured by the transducers. The accelerometers were attached
to the gearbox as shown in Figure 13: VIBI, first planetary
stage; VIB2, second planetary stage, and VIB3, helical stage.
Figure 13(b) shows the position of the sensor with respect to
the global axis of the machine.

4.2. Results Analysis. The results from the field trials per-
formed in a Vestas V90-3MW wind turbine between May
and October 2015 are presented in Figure 14. A preliminary
study based on the power curve for the Vestas V90 and the
changes experienced by the features (RMS) extracted over
time is presented. Then the baseline and ICD algorithms are
applied to the field trials data for the health assessment of the
monitored turbine.

The power curve for the Vestas V90-3MW, which shows
the wind turbine’s power output versus the rotor speed, is

Shock and Vibration

shown in Figure 14. This is a performance indicator which can
be used as first preventive maintenance indication that some-
thing is wrong. When a failure in the turbine occurs, power
deviates from the normal power curve. In Figure 14, May
and October power curves are superposed and no deviations
are noticed. Therefore, this indicator designates no presence
of malfunction at first sight.

Figure 15 depicts the clustering of the data features using a
binning process based on the rotor speed, measured at the low
speed shaft (16 rpm maximum). Figure 15 shows the number
of files stored in each bin. Considering rotor speed as the
binning parameter, the number of files increases from bin
18 to bin 30 which means that the rotor speed varied mostly
between 10 rpm and 16 rpm during the months the system was
installed in the wind turbine. The shape of the distribution
makes sense bearing in mind that turbines operate at high
speed for power generation purposes.

To get a better idea of how the data looks like and
have a second performance indicator before the algorithm
is applied, the RMS of the vibrations collected within the
months of May and October are plotted in Figure 16. It gives a
good overview of how the RMS changes versus time per bin.
The RMS does not show large variations with time. However
there are a couple of peaks which are of interest. These peaks
are located in the first two bins and in the last one. The peaks
recorded at low rotor speeds occurred at mid-August whereas
the one captured at higher speeds happened at the beginning
of September and its RMS value is around 8 m/s>. Further
research revealed that those files which have higher RMS
values were corrupted.

Following on, the baseline generation process and the
health assessment based on its limits is presented. During the
six months the field trials were taking place, the operator did
not carry out any maintenance actions so it is assumed that
the machinery is in a healthy status and the data collected is
very valuable for the generation of a baseline. This baseline
will mark the limits of normal operation conditions for this
particular turbine. The baseline will be a useful tool for wind
turbine operators so the maintenance actions are only carried
out when deviations from the target value are noticed and
verified as defect initiation, worsening or malfunction of the
gearbox.

The convergence criterion is applied to all the bins. The
results are depicted just for bin 30 though. Figure 17 shows
how the EMA gets lower with every RMS value added to
bin 30. The EMA in this bin starts dropping very fast from
the beginning and converge after some measurement due to
the fact that the EMA is close to 0%. The stopping criterion
stipulates the minimum number of files as 34 (dotted line in
Figure 17).

Figure 18 depicts the baseline obtained after calculating
the minimum number of data necessary to establish the alarm
and warning limits reliably in each bin. This baseline is unique
for this turbine and is suitable for monitoring at low or high
rotor speeds, covering the wind turbine through all its oper-
ational range. The number of files utilized for calculating the
limits varies depending on the result obtained after evaluating
the convergence criteria (see values in Table 7). The results
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FIGURE 13: Sensors attachment on the gearbox: (a) set-up and (b) global (red) and local (blue) axis.
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FIGURE 14: Scatter plot with power output as function of the rotor
speed.
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FIGURE 15: Distribution of the wind turbine data gathered using 30
bins.
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FIGURE 17: Convergence in bin 30.

point out that convergence was not reached in all the bins.
According to the results, the fact of not reaching the conver-
gence criterion in some bins is associated directly with the
number of data clustered in them. As commented previously
in the paper, the number of events recorded at low speed is
very low. The method does not converge in the low speed
bins, where there is not convergence of the method. It can be
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FIGURE 18: Baseline and targeted mean for a Vestas V90-3MW wind
turbine.

noticed that the number of data clustered in them is less than
70 files. It does not mean that provisional values cannot be
given to the limits. It means that more data is required in
order to average the current value more and set the limits in
a more confident way. At high rotor speeds the baseline has
been properly defined, reaching the convergence in all the
bins apart from bin 22 (which only contains 69 files). Most
of the bins converged in June although some of them did it
earlier (May) and others a bit later (July). Therefore, it can
be concluded that a period of three months was necessary to
define the baseline complying with the convergence criteria.
Figure 18 depicts the warning and action limits which
define zones A, B, and C along with the targeted mean of the
RMS values of the acceleration signals stored in each bin.
After defining the baseline, the machine goes into the
monitoring stage. The data gathered after satisfying the con-
vergence criterion is plotted along with the limits in Figure 19
to evaluate their deviation from the targeted mean. In this fig-
ure the limits still have the same values but there are two sets
of data presented in different colours. The blue colour points
out that convergence was not reached in those bins. On the
other hand the green colour indicates the convergence within
those bins and the points represent the data gathered after
the baseline was defined. The results depicted in Figure 19
are very promising, specially bearing in mind that this data is
totally independent of the data previously used for the limits
establishment. The new data consist of more than 2000 RMS
values which mostly fall within the limits. There are some out-
liers though. The percentage of outliers between the warning
and alarm limits has been estimated: 0% in bin 20, 2% in bin
21, 1.6% in bin 26, and 2.5% in bin 30. Since it was chosen to
add 2 times the standard deviation to the mean as a warning
strategy a 5% of the data within each bin can fall outside the
limits. The percentages are good as they are lower than a 5%.
There are points above the alarm limits as well. For instance,
that happens in bins 19, 29, and 30. The percentage of outliers

15

RMS acceleration (m/s®)

Bin number

* Data gathered from May 2015 until October 2015
* Data gathered since the baseline definition until October 2015

FIGURE 19: Monitoring using a 3-month established baseline.

in those bins is 0.4%, 0.3%, and 0.12%. Since it was chosen to
add 3 times the standard deviation to the mean as a warning
strategy a 0.2% of the data within each bin can fall outside
the limits. The resulting percentage is good for bin 30 as it is
lower than 0.2%. For the other two bins the percentages are
acceptable as they are slightly bigger than 0.2%. Therefore the
results shown in Figures 18 and 19 are a good tool for describ-
ing the acceptable levels of vibration of the wind turbine
gearbox regarding the rotor speed of the wind turbine.

Outliers need to be further studied to find out the root
cause of the deviations. One outlier per bin was analysed
using the ICD method and the forcing frequencies were
calculated according to the gearbox information provided in
Table 6. The demodulation of the signal was carried out in
six iterations which are shown in Figure 20. After PCI(t) was
obtained, the envelope spectrum of the signal shows the gear
mesh frequency at the 3rd stage. This is the only peak that
matches with the forcing frequencies theoretically calculated.
In the following stages of the demodulation, the peak disap-
pears which means that it was not a fault feature modulated by
other frequencies. PC2(t), PC3(t), PC4(t), PC5(t), and PC6(t)
do not show explicit spectra lines of the fault frequencies of
the gears. Therefore, the ICD does not show indication of gear
defects within the gearbox.

5. Conclusions

This paper presents a novel approach for health condition
monitoring and fault diagnosis in wind turbine gearboxes.
The paper proposes baseline and ICD-based early fault
diagnosis methodologies which are tested on laboratory and
wind turbine vibration signals.

A baseline which represents the normal operation bound-
aries of the test rig and a Vestas V90-3MW have been
produced. It is important to state that the resultant baseline
from the laboratory trials has been validated and it has
been accomplished with two sets of independent data (one
healthy and another one from a gearbox with a broken tooth).
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Deviations from the targeted mean appear when the faulty set
of data is utilized. The application of the baseline algorithm
to the Vestas V90-3MW data establishes the range within the
machine is running safely. Some outliers were identified at
high running speeds, which is not very worrying as the outlier
rate is lower or close to the value established by the proba-
bility factor. The validation expounds this methodology as a
good practice for identifying those deviations which worries
manufactures and wind turbine operators nowadays.

The process carried out for classifying the outliers at the
laboratory demonstrates that the combination between the
ICD method and the envelope spectrum analysis is superbly
efficient for broken tooth and outer race fault diagnosis. The
ICD method is experimentally demonstrated to be able to
extract the early fault signature effectively. The algorithm was
used to process the wind turbine outliers as well. However,
the demodulated signal does not show any defect feature.
This result, along with the output coming from the power
curve indicator and the information provided by the operator
regarding the health of the machinery, exhibits the lack of
defect in the gears within the gearbox subsystem. Then, the
outliers found at high speeds are considered false alarms.

The application of the ICD method simplifies the defect
identification process due to the following two factors: the
number of peaks in the spectrum is lower and the source
of defect is shown as the peak with the biggest amplitude.
Therefore, the ICD method eases the automation of the defect
detection processes carried out by CMS which allows looking
for the source of defect in real time.
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