Brunel
University
London

Enhanced Root Extraction and
Document Classification Algorithm

for Arabic Text

by

Amal Alsaad

A thesis submitted for the degree of
Doctor of Philosophy
Department of Electronic and Computer Engineering
College of Engineering, Design and Physical Sciences

Brunel University London

February 2016

Abstract

Many text extraction and classification systems have been developed for English and other
international languages; most of the languages are based on Roman letters. However, Arabic
language is one of the difficult languages which have special rules and morphology. Not
many systems have been developed for Arabic text categorization. Arabic language is one of
the Semitic languages with morphology that is more complicated than English. Due to its
complex morphology, there is a need for pre-processing routines to extract the roots of the

words then classify them according to the group of acts or meaning.

In this thesis, a system has been developed and tested for text classification. The system
is based on two stages, the first is to extract the roots from text and the second is to classify
the text according to predefined categories. The linguistic root extraction stage is composed
of two main phases. The first phase is to handle removal of affixes including prefixes,
suffixes and infixes. Prefixes and suffixes are removed depending on the length of the word,
while checking its morphological pattern after each deduction to remove infixes. In the
second phase, the root extraction algorithm is formulated to handle weak, defined,
eliminated-long-vowel and two-letter geminated words, as there is a substantial great amount
of irregular Arabic words in texts. Once the roots are extracted, they are checked against a
predefined list of 3800 triliteral and 900 quad literal roots. Series of experiments has been
conducted to improve and test the performance of the proposed algorithm. The obtained
results revealed that the developed algorithm has better accuracy than the existing stemming
algorithm. The second stage is the document classification stage. In this stage two non-
parametric classifiers are tested, namely Artificial Neural Networks (ANN) and Support
Vector Machine (SVM). The system is trained on 6 categories: culture, economy,
international, local, religion and sports. The system is trained on 80% of the available data.
From each category, the 10 top frequent terms are selected as features. Testing the
classification algorithms has been done on the remaining 20% of the documents. The results
of ANN and SVM are compared to the standard method used for text classification, the terms
frequency-based method. Results show that ANN and SVM have better accuracy (80-90%)
compared to the standard method (60-70%). The proposed method proves the ability to
categorize the Arabic text documents into the appropriate categories with a high precision

rate.

Table of Contents

N 01 - Uod SRS i
ACKNOWIEAGEMENTSei ittt e te e be s aeese e besaeesbeeteeaesbeesaestesaeenee e vi
D= Tod - T LA o] o PSSRSO vii
(@8 T o (= A 11 oo [0 o o o USSR 1
11 IMIOTIVALIONS ...ttt ettt s et ne et e ebeeneeseeeseenbeeneeneeneeaneeneennes 2
1.2 Contribution to KNOWIEAQE.cveiiiieie et ene s 5
1.3 AIMS ANA ODJECLIVES ...ttt bbb e 7
1.4 TRESIS STFUCLUIE ..o.veuiiieeieieieies ettt bbbt r e s bbbt e ens 8
15 T o) o] [ToF: 14T] 1P 9
Chapter 2 LITErature REVIEW........cviiiiiie ettt te st s te e te e e beste et e sbeeteesbesneeneenre e 10
2.1 Arabic Stemming and ROOt EXTraCtiONcccceiiiierieiiiieisise e 10
2.2 Documents ClasSifICALIONccierieirieiiiie st 25
2.3 R TU 10 Y PP RPR 33
Chapter 3 Arabic Language CharaCteristiCscuuiirireieieieisese e 35
3.1 General CharaCleriStiCSciiiiuerieieieieise sttt sttt e nens 35
3.2 ArabiC MOIPROIOGYeeiiiiiiiiiieite ittt 41
3.2.1 Definition of Morphology........cccccviiiii i e 41
3.2.2 Conditions Of DEFIVALION.........cccvviiiiie et sre e saesneas 41
3.2.3 Origins Of MOFPhOIOGY.......cciiiiieiece et 42
3.24 The Use and Purpose of MOrphology ... 45

3.3 Words Derivation MEthOGS...........coieieiriiiceiese e 46
3.3.1 Minimal Derivation (Liasd/ GLEEYT)c.ocoeeeeeeeeeeeeeeeeesee e, 46
332 Supreme Derivation (_ssSl/ GLEZEYT) ..o 47
3.3.3 Grand Derivation (_sSY/ GLESYT)c.vicveeeeeeeeeieeeeeeeseeese e 49
334 The Giant Derivation (UG GEESY)oovoeeeeeeeeeeeeeeeeeeeeee e 50

3.4 RO0OtS and Derivation Patterns..........cccviveriiiiiie ettt see e eeesee e 51
34.1 RV g oI = A (] 13U PPSTPRSR 51
3.4.2 NOUN PALTEINS ...ttt ettt ettt eb e nb e et e e e 54

3.5 SUMIMAIY it b ettt b bt bRt bt bt nb e b et b e b b ae b nne e 56
Chapter 4 ROOS EXIFACTION.cc.eiiiiiiie ittt sttt e te e saeereenbesneeneenee e 57
o R |V =14 aTo o 0] (oo | ST PP P RS UR PO 58
4.1.1 T A =TSSP 58
4.1.2 R T= o0 0o I T 1 ST PRTSSSR 60
4.1.3 B L I £ = ST PSTPRS 61

4.2 IMPIEMENTALION ... ettt e e e s r e naesbesre e e e nre e 62
4.3 ReSUIES aNd DISCUSSIONuiiueeiiiieeiiesieetiee ettt ee et e e saeeseeste e e e seeseeeeesaeeneeneesneas 68

S 11 {111 0 1T o PSR 71

Chapter 5 Documents ClasSifiCationccceiiiiiiiiieic e 72

TN A e L0 (=] =T (o] o ST RP 72
5.1.1 V1= T (o] (oo | SR 72
512 IMPIEMENTALION.o 73
5.1.3 EXPeriments and RESUILSccuiiieiiiiiie e 74
514 Main Feature SEIECTION.........coeii e 76

5.2 Terms Frequency-based ClasSifiCationcccocvcieiiiiciiii i e 81
5.2.1 V1= T (o] (oo | SRS S 81
522 IMPIEMENTALION. ... 81
523 RESUITS ..ttt r et r e 83

5.3 Artificial Neural Networks ClassifiCation...........ccccerviiveieniiiiieieciee e 85
53.1 INEFOTUCTION. ...t ettt sttt st b e 85
5.3.2 MELNOTOIOGY ...ttt ettt 86
5.3.3 LT o] EoT 0T 0 L o OSSPSR 90
5.34 RESUILS ..ttt sttt ettt et et teereenrenre et nre e 91

5.4 Support Vector Maching ClassifiCationc.cccccvviiiiiciiinieii e 92
541 MELNOTOIOGY ...ttt 92
5.4.2 LT o] EoT LT 0T L o] PO USSR 94
5.4.3 RESUILS ..ttt et s et R et et et e re s e e renre e nre e 94

5.5 OVverall RESUILS DISCUSSIONccuiierieierieiieiisiesiesie ettt st ne et s e e 95

5.6 SUMIMAIY ..ttt bbbt b e bt he e et e Rt enb e b e b s bt e s e e b nbeennenne e 98

Chapter 6 Conclusions and FULUIE WOTKccouiiiiiiiieiecece e 99

T R 0o 0 [o] [0 o] OSSPSR 99
6.1.1 The Root Extraction AIGOrithm ... 100
6.1.2 Feature Selection and ClassifiCationccooereieiniiiieie e 101

G T SV (1] €=V o] o SR 102

el (=] € 101 OSSO 103
Appendix A: Java Implementation COUEScooiiiiiiiieiie s 109
Appendix B: Matlab Implementation COUEScooveiiiiie e 113
Appendix C: ANN CIassification RESUITScccviiririiriiiiiei s 114

(O R I =V [0 - - o - T PR 114

C.2 TeStiNg DatabaSsecviiiiiiiiiieiieeiee e 118

Appendix D: SVM ClassifiCation RESUILScccoiiiieiiiiee e 121
D.1 Training DAADASEcceiuiiiiiiieiieiet sttt bbb 121

D.2 TeSHNG DALADASEc.eitiieiieiieieee et 124

| would like dedicate my thesis to my beloved parents
Munirah Alabdulrahman and Salman Alsaad

Acknowledgements

First, | would like to express my deep and sincere gratitude to my supervisor Dr. Maysam
Abbod, whom | am greatly indebted to for the continuous advice and guidance during this
research. | appreciate his patience, support, and encouragement, in which this research
would not be completed without. I am very grateful for him for giving me the opportunity to
do and achieve this PhD. Dr Maysam Abbod is an outstanding supervisor and | have been
very fortunate to be a PhD student under his supervision. Also, thanks to my second
supervisor Dr Tatiana Kalgenova for her great advice and encouragement which gave me the

key to overcome the obstacles in which | faced during the journey of my PhD.

Many thanks to my dear parents and my beloved siblings, Amani, Abdullah and Imtinan
for their love and support, for having faith in me, and being there for me at all times. A big
thank you to my dear friend Hasna Algahtani, for helping me gain a strong faith and
confidence in myself, for her continuous and immense support, and for brightening my days
and standing by me all the way. Last but not least, many thanks to my precious friends, Sara
Althowaini and Amal Bensasi for their great support and encouragement, for cheering me up
and putting a smile on my face when | most needed, and for being there for me in the good

and the hard times through this rough journey.

Statement of Originality

Declaration

I certify that the effort in this thesis has not previously been submitted for a degree nor has it been
submitted as part of requirements for a degree. | also certify that the work in this thesis has been
written by me. Any help that | have received in my research work and the preparation of the thesis

itself has been duly acknowledged and referenced.

Signature of Student

Auoltbods.

Amal Alsaad

February 2016, London

Figure 1.1.
Figure 1.2.
Figure 1.3.
Figure 2.1.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure A.1.
Figure A.2.
Figure A.3.
Figure A.4.
Figure A.5.
Figure A.6.
Figure A.7.
Figure A.8.
Figure A.9.
Figure B.1.
Figure B.2.
Figure C.1.
Figure C.2.
Figure C.3.
Figure C.4.
Figure C.5.

List of Figures

Top Ten Languages in the Internet 2015 — in mMillions Of USErS.c.cccvveveiviicviececc e 3
Percentages of Users Growth in the INtErNet ... 3
Tri-literal Root Types Popularity in Arabic TeXtccccceviiiiiieieciece e 5
Steps of Arabic Light Stemming AIgOrithms ... 11
Flowchart Representation 0f Phase L.ccccoviiieiiiiiic et 60
Instantiation of the removeStopWords() FUNCHION. ... 63
Code Implementation t0 REMOVEcccoviiiiiiieiceee s 64
Implementation of the Pattern MatChing ProCess.ccccoviirinineneieiessese e 65
Implementation of the checkTriR0OtS() FUNCHION.ccooviiiiiiieccee e 66
Code Implementation for Handling Hamzated WOrdS.ccocooiiiiiiiiniiinnecee 66
Code Implementation to Handle GemiNatedcccooveriiiienenerereeee e 67
Proposed Algorithm vs Khoja’s Testing RESUILS.........cccceiiieiiiiieiiiiieeseee e 70
Implementation of the calculateldf() FUNCEION.cooveiiiiiinii e 74
Implementation of the calculate tfidf() TUNCEION..........ccoiviiiiii e 74
Implementation of the Terms Frequency-based Classifier.cccocvvviiiviiiiiiecieie 82
Flowchart Representation 0f the TEIMS.......c.covviiiiiiieiic i 83
Biological Neuron MOGELccooviiiiieiicce et 86
AN AFGTICIAL NEUION......oiieieee ettt sne e 87
An Artificial Neural NetwOrk StrUCTUFE.ooveveieieieiecee e 87
Instantiation of the removeStopWords() FUNCLION.cccccveveieiic i 109
Code Implementation t0 REMOVEcoviiiiiiicece ettt sre s sae s 109
Implementation of the Pattern Matching Process.cccoovveiiieeve s 109
Implementation of the checkTriR0OtS() FUNCLION...........ccooviiiiiieic e 110
Code Implementation for Handling Hamzated WOrdS.c.ccooeveieinininincsccee 110
Code Implementation to Handle GemINatedccceoveiiiriniieneeeeeee e 110
Implementation of the calculateldf() FUNCLION.ccoiiiiiiii s 111
Implementation of the calculate tfidf() TUNCEION.cooviiiiiii s 111
Implementation of the Terms Frequency-based CIlassifier. ..., 112
Instantiation of the ANN classification COde.ccocvviiiieieiiiic e 113
Instantiation of the SVM classification Code.cccoovviviieiiiieiic e 113
ANN Classification Results of the ‘Culture’ccceviiiiiieeiiie e 114
ANN Classification Results of the ‘Economy’cccccoviviiiininiininieieece e 115
ANN Classification Results of the ‘International’.............ccoeoirieeiiriieniieieseee e 115
ANN Classification Results of the ‘Local’coeiiiveiiiiiiie e 116
ANN Classification Results of the ‘Religion’...........ccoceiiriiiiiiiiinnee e 116

file:///H:/Downloads/THESIS-Corrections-3.docx%23_Toc465458754

Figure C.6. ANN Classification Results of the ‘SPorts”c.cccviviiiiiiiieii i 117

Figure C.7. ANN Classification Results of the ‘Culture’ccoceieiieii i 118
Figure C.8. ANN Classification Results of the “EcOnOmY’ccccovvviriininiininenerescse e 118
Figure C.9. ANN Classification Results of the ‘International’cccceeevieiieiiiiieesiesieese e e e 119
Figure C.10. ANN Classification Results of the ‘Local’ccccovviiiiiiiieii i 119
Figure C.11. ANN Classification Results of the ‘Religion’...........cccvvvriirinireniieieecicese e 120
Figure C.12. ANN Classification Results of the “Sports’cccoeiiiiiiiriiiinineeeeeee e 120
Figure D.1. SVM Classification Results of the ‘Culture’ccceoviiiiiniininineneeeeee e 121
Figure D.2. SVM Classification Results of the ‘ECOnomy’..........cccovoviiirininininiiecsese e 121
Figure D.3. SVM Classification Results of the ‘International’..............ccocvireieiiiiiiisinee 122
Figure D.4. SVM Classification Results of the ‘Local”.........cccooeiiiiiiiiiiiiiiiceeeee e 122
Figure D.5. SVM Classification Results of the ‘Religion’ccccovviiiiiriiniiininiiecccsese e 123
Figure D.6. SVM Classification Results of the “Sports”..........cccerveiiiniiniiniiineeeecse e 123
Figure D.7 SVM Classification Results of the ‘Culture’ccooviviiiiininiiineeeceesee e 124
Figure D.8. SVM Classification Results of the “ECONOMY’cccvviiiiiniiniiinieneeieesese e 124
Figure D.9. SVM Classification Results of the ‘International”............ccccoeevveviinieiieeieseenese e s 125
Figure D.10. SVM Classification Results of the ‘Local’.........ccccovvvieieiieiiiecie e 125
Figure D.11. SVM Classification Results of the ‘Religion”cccoevviiiriiniiieneieieiceeese e 126

Figure D.12. SVM Classification Results of the “SPOrts”...........ccovieiiriiiiiiiieee e 126

List of Tables

Table 2.1. Outputs of Light Stemming vs Root-based Stemming.cccccvvvveveieiieie i 12
Table 2.2. Letters Encoding for the Word (L s<illa).covivcvceceeeceeeeeee s 15
Table 2.3. Example of Encoding for Lemmas and Patterns.ccoovviiiineneieieicsesesesese e 15
Table 2.4. Results of Proposed vs Khoja's MEthod............cccooiiiiiiiiiieceeee e 16
Table 2.5. Percentages of Irregular Words in ArabiC...........cooeiiiiiiiiiieceeeeese e 17
Table 2.6. Al-Ameed's Prefix and SUFFIX LISES.cooviieiiieiieie e 18
Table 2.7. Al-FAmeed's INFiX PAterN LiStS........cccuiieiiiiieie et 19
Table 2.8. Performance of the Algorithm in All Categories.ccviiiiirineieeee e 20
Table 2.9. Possible Analysis for the Word AymAN — Oladl . oo 23
Table 2.10. List of Prefixes and SUTFIXES.viviieiiiiiee e 24
Table 2.11. Recall, precision and F1 for SVM bi-class discrimination............cccoceevevieviveiennsinenenennn, 27
Table 2.12. Mean Values of Recall, Precision and FL.oooooeieiiioieeeeeeee et e e nre e 27
Table 2.13. Performance of SVM, TR anNd TULMooooiiiie ettt e e e 28
Table 2.14. Performance of Neural Networks, TF-IDF and M-SV M........coccoiioiiee e 29
Table 2.15. Results of Associative Classifier for the Arabic text data Set.ccooevviiiviiiivnienenenen 32
Table 2.16. Results of Associative Classifier with Large Number of Classification Rules................... 32
Table 3.1, ArabiC DIACTIICS ...viueiuiiiiieiieiieieie ettt b et et benne e ens 37
Table 3.2. Meanings 0f the WOrd ()covciieiieiieisee et 37
Table 3.3. Lexical Categories Of the WOrId (CHE) ..vivivieieieeeeeeese s 38
Table 3.4. Variations and Meanings of the Word (&), ... 40
Table 3.5. Morphological Variations of the Word (<3). ... 41
Table 3.6. Verb’s Basic Pattern FOIMIS.cccuiiiiiiiiii ittt st e s 52
Table 3.7. Basic Pattern FOrms of the Verh ().ccceeueeeeniniiiirireiesesissssesises s 52
Table 3.8. Patterns of the Verb (<) Considering the Person, Number and Gender...........c.ccccvevvenen. 53
Table 3.9. Noun Patterns Examples with Different Letters Order.coccovvvvveveveiiveneseeiese e, 54
Table 3.10. Plural Noun Patterns EXamples. ..o 55
Table 4.1. Arabic Patterns and ROOTS.c.coiiiiieieiieie ettt e sre e e sre e eaenne e 59
Table 4.2. Proposed Algorithm vs Khoja's Testing ReSUIES.cccoiriiiiinineecce e 70
Table 5.1. Terms extracted Via ROOT-STEMMINGcoviiriiriiiiieiinse e 75
Table 5.2. Terms extracted via light StEMMING ..o 76
Table 5.3. Number of Documents for aCh Categoryccoueieiieiiiiee e 77
Table 5.4. Features Selected for the 'Culture-48E" Category.covrvrveeeiririeeerisieeres e 78
Table 5.5. Features Selected for the 'ECONOMY-43LaBl CALEGOTY. ...c.cvvviviriiiirireriresisessisseieieeieiee 78
Table 5.6. Features Selected for the 'International-dxlle’ Category.cooeeririrreiinseeressee e 79

Table 5.7. Features Selected for the 'Local-lias’ CAtegory.ccovoirieieiririeeerisieeres e 79

Table 5.8. Features Selected for the 'Religion-2uin’ Category.oivviveriririeieieisisieeresee e 80

Table 5.9. Features Selected for the 'Sports-4usls)’ CAtEgOrY......cccvviiiiiiriiiriirrrr e 80
Table 5.10. Terms Frequency-based Classification RESUILS.cccocvvviieiiieeie v 84
Table 5.11. ANN CIlassification RESUILS.ccuiiiiiiiiiiieieeess s 91
Table 5.12. SVM Classification RESUILS.ccvriiiiiiiiiieieiess s 95
Table 5.13. Overall Results of each Classification Method............cccooovieiiiinie v 95

Table 5.14. Example of Confusion MatrixX Tablecccovoiiieiiiiiee e 97

AC

AFP

AMI

ANN

CCA

FS

IDF

LDC

MSA
M-SVM

SVM

TF
TF-IDF

TR

TULM

List of Abbreviations

Associative Classification
Agence France Press

Average Mutual Information
Artificial Neural Networks
Corpus of Contemporary Arabic
Feature Selection

Inverse Document Frequency
Information Retrieval

Linguistic Data Consortium

Modem Standard Arabic

Multi-Category Support Vecto
Machine

Support Vector Machine

Term Frequency

Term Frequency-Inverse
Document Frequency

Trigger Classification

Topic Unigram Language Model

Chapter 1

Introduction

During the past few years, the construction of digitalized content is rapidly
increasing, raising the demand of information retrieval, text classification and
automatic data tagging applications. There are few researches in this field for Arabic

data due to the complex nature of Arabic language and the lack of standard corpora.

Text classification, which is also known as text categorization or topic
identification, is the assignment of discovering if a piece of text belongs to any of a
predefined set of classes [1]. Another definition states that the goal of text
classification is to learn classification methods which can be implemented to classify
documents automatically [2]. Text classification requires the use of text pre-
processing methods to represent the text before processing text classification. Such
methods include text stemming methods, such as removal of insignificant characters,

affixes and stop words.

However, most work focuses on improving Arabic stemming algorithms, or
topic identification and classification methods and experiments. No work has been
conducted to include an efficient stemming method within the classification

algorithm, which would lead to more efficient outcome.

In this thesis, an advanced stemming algorithm for Arabic text is developed. In
addition, a new approach to identify significant keywords for Arabic corpora is
presented. As well, different text classification methods are implemented using the
extracted keywords as the main features for classification. At last, the results of the
classifications methods are evaluated and compared to each other in terms of

accuracy and efficiency.

1.1 Motivations

The rapid increase of digitalized textual data has raised the demand for text mining
and national language processing tools and methodologies, to represent these data in
an as efficient way as possible. This requires feature extraction and different
implementations of text processing algorithms for representing the data as required.
Text mining methods and algorithms are used in many different information retrieval
systems such as search engines, clustering, classification, and other text mining

systems.

Arabic language is the 5™ amongst the most used languages around the world,
and according to Internet World Stats (www. internetworldstats.com), it is the 4™
most used language with more than 168 millions of online users as of November
2015, as seen in Figure 1.1. In addition, Arabic is on the top of the list as the fastest
growing language on the web, with a growth rate of 6,592.5% between 2000 and

2015, as shown in Figure 1.2.

This indicates that the construction of Arabic data is growing rapidly, rising the
need for standard data mining and natural language processing tools to represent and
analyze this data in the most efficient way. Yet because of its complex morphological
structure there were no available standard Arabic text mining and morphological
analysis tools until recently [3]. However, many studies have been conducted to get

efficient stemming results in Arabic Information Retrieval systems [4].

1000
900
800 -
700 -
600 -
500 -
400 -
300 -
200 ~
100 -

BN S T TN S S

S S S N Q o > Q>) >

F&F & & & FE & &S
O M & F RMINCS

Figure 1.1. Top Ten Languages in the Internet 2015 — in millions of users.

7000.00%

6000.00%

5000.00%

4000.00%
3000.00%

2000.00%

1000.00% -

0.00% -
s & @ & O
& e T T

Figure 1.2. Percentages of Users Growth in the Internet
by Language between 2000 — 2015.

In Arabic, both orthography and morphology lead to a great amount of lexical
variations where one given word can occur among a large number of dissimilar
forms [5]. This would enlarge the indexing structure volume and reduce the
performance of the system. Another difficulty in Arabic morphological analysis
arises because of the different letter forms of the tri-literal verbs. Verbs, which have
tri-literal roots, are categorized to sound and unsound verbs [6]. Sound (=) verbs
are those which do not include a vowel nor a long vowel in their root. Sound verbs
are divided into three different types, consonant verbs, double-lettered (geminated)

verbs and hamzated verbs. Consonant verbs are those that do not have a hamza in

their roots nor any duplicate letters like the verb (<), and they represent 58% of tri-
literal root types popularity in Arabic language as can be seen in Figure 1.3 below.
Double-lettered (geminated) verbs are those that end with two identical letters in
there root such as (%), representing about 8% of Arabic root types popularity. The
third type of sound verbs includes verbs that have a hamza in their root like the verb
(351). As shown in Figure 1.3, the hamzated letter could be in the beginning (hamzated
faa), in the middle (hamzated ain) or at the end (hamzated lam), and these represent

about 7% of Arabic root types popularity.

Unsound verbs are divided into three types, quasi-sound verbs, hollow verbs and
defective verbs. Quasi-sound verbs are those where the first root letter is a weak
letter such as (*3). Hollow verbs, are verbs whose second root letter is a weak letter,
for example the verb (J&). The middle weak letter of these roots can be a waw, yaa or
alif, and the mid-waw and mid-yaa types of verbs represent around 12% of Arabic
root types popularity as can be seen in Figure 1.3. Defective verbs are verbs whose
third root letter is a weak letter such as the verb (2). In some cases, weak verbs are
written with a long vowel that is different from the one of their root following
specific Arabic linguistic rules. In other cases, long vowels in verbs are deleted
depending on the tense of the verb, becoming eliminated-long-vowel verbs. These
cases represent about 30% of the Arabic text [7]. Yet the majority of Arabic
stemmers lack the capability of handling these cases. In Figure 1.3, the popularity

percentage in Arabic text of different verb cases is presented [5].

= Consonant
® Doubled

= Mid-waw

2%
2%

3% .
= Mid-yaa

B Hamzated-lam

® Hamzated-faa
Hamzated-ain
Other

Figure 1.3. Tri-literal Root Types Popularity in Arabic Text

1.2 Contribution to Knowledge

In this thesis, it is contributed to the field by introducing an advanced root extraction
algorithm for Arabic text, as well as developing and testing a classification system
for Arabic text which employs an advanced root based stemming method. The root
extraction algorithm is derived following two main steps. The first is to process the
text to remove affixes from the text, including prefixes, suffixes and infixes. At the
same time as removing affixes from the text, the word is checked against its
morphological pattern depending on its length after each deduction. If a
morphological pattern is matched, the root will be extracted. Otherwise, the process
continues to the second step of the root extraction, that is where the algorithm is
extended to handle different types of words. These include weak, hamzated,
eliminated-long-vowel and two-letter geminated words. After the roots are extracted,
they are verified by checking them against a list of predefined roots, containing 3800
trilateral and 900 literal roots. The performance of the algorithm is then tested by
performing a number of experiments. The results which are achieved shows that the
introduced algorithm is more accurate than the root extraction algorithms that are

developed until now.

The second contribution is the document classification where the root extraction

algorithm is employed in the stemming stage of the classification. In this part, two

main non-parametric classifiers are tested. These classifiers are Artificial Neural
Networks (ANN) and Support Vector Machine (SVM). The system is trained on six
different categories: culture, economy, international, local, religion and sports. The
system is trained on 80% of the collected database. From each category the top ten
frequent terms are selected as features. Testing the classification methods has been
done on the remaining 20% of the documents. The results of ANN and SVM are
compared to the standard method used for text classification, the terms frequency-
based method. The results obtained indicate that ANN and SVM have better
accuracy (80-90%) compared to the standard method (60-70%). The proposed
method proves the ability to categorize the Arabic text documents into the
appropriate categories with a high precision rate while selecting the top features of
each category and employing the root extraction algorithm in the text preprocessing

stage.

1.3 Aims and Objectives

In this work, the main aim is to introduce a root algorithm that handles the cases as

shown in Figure 1.3, as well as affixes removal via implementing morphological

analysis techniques and specific linguistic rules. It is also intended to deliver a new

approach to identify significant keywords for Arabic corpora, and implement and

evaluate different text classification methods. The aim of this project will be

achieved by the following objectives:

Literature review of previous work related to Semitic Languages Data Mining,
Arabic Text Root Extraction and Text Classification algorithms.

Derive an efficient algorithm for the Arabic Text Root Extraction system via a
linguistic approach handling weak, hamzated, eliminated-long-vowel and two-
letter geminated words.

Design and building of the Root Extraction System, as well as conducting a series
of simulation experiments to test the accuracy of root extraction and overall
performance of the system.

Derivation and implementation of the Feature Selection algorithm, where features
of text are selected to be employed for classification.

Conduct further research on Arabic Text Classification methods, and implement
efficient and suitable classification algorithms comprising the Root Extraction
system. These include Terms Frequency-based method, Artificial Neural
Networks (ANN), and Support Vector Machine (SVM).

Selecting and collecting of Arabic data sets and corpuses to evaluate and to test
and evaluate the classification algorithms.

Design and building of each classification algorithm.

Design and carry out a series of simulation experiments to test the accuracy and

efficiency of the classification systems.

1.4 Thesis Structure

The thesis is divided in 6 chapters which are as follows:

e Introduction: This chapter talks about the research briefly, the objectives of the
research, the place which the research is designed for, the addition to knowledge
and the research outline.

e Literature Review: This chapter illustrates some previous studies in the research
field including Arabic language morphology.

e Arabic Language Characteristics: In this chapter, the language complexity is
explained including its orthography and morphology which made it challenging
to find the words roots using standard text mining algorithms. The challenges are
elaborated and the challenges are demonstrated with associated examples for
clarification.

e Roots Extraction: Roots extraction methods are reviewed in this chapter and
tested. A new methodology is designed and developed that is more accurate than
the existing methods. The results show the improvements of the proposed
methodology.

e Document Classification Methods: This chapter shows three text classification
methods, namely, terms frequency-based method, support vector machine, and
neural networks. The results for all the methods are presented and compared
eventually.

e Conclusion and Future Work: This is the final chapter which illustrates the stages
of the research in brief and presents some ideas that may improve the system in

the future.

1.5 List of Publications

Parts of the work detailed in this thesis have been presented in national and

international scholarly publications, as follows:

1.

Amal Alsaad, The Research Student Poster Conference 2012, held on the 14th
March 2012.

Amal Alsaad, and Maysam Abbod. Brunel University’s School of Engineering
and Design Research Conference, ResConl2, 18-20 June 2012, Brunel

University.

Amal Alsaad, Maysam Abbod and Tatiana Kalgenova. “Arabic Textual Data
Mining via Machine Learning & Linguistic Constraints”. Brunel University’s

School of Engineering and Design Research Conference, ResCon13.

Amal Alsaad, Maysam Abbod and Tatian Kalgenova. “Enhanced Root
Extraction Algorithm for Arabic Text” Brunel University Research Student

Conference, Showcasing the best in postgraduate research, 11-12 March 2014.

Amal Alsaad, and Maysam Abbod. “Arabic Text Root Extraction via
Morphological Analysis and Linguistic Constraints”. The 16th UKSim-AMSS
International Conference on Modelling and Simulations, 26-28 March 2014.

Cambridge University, Emmanuel College.

Amal Alsaad, and Maysam Abbod. “Enhanced Topic Identification Algorithm
for Arabic Corpora”. The 17th UKSim-AMSS International Conference on
Modelling and Simulations, 25-27 March 2015. Cambridge University,

Emmanuel College.

Chapter 2

Literature Review

In this chapter, a discussion of previous work which has been conducted to develop

Avrabic topic identification and documents classification methods is presented.

2.1 Arabic Stemming and Root Extraction

Arabic morphology and root extraction is a significant aspect of Arabic information
retrieval and data mining. Many scholars and researchers have long noted the
complexity of written Arabic language, as compared to English and many other
European languages which have traditionally been used in testing. Heavy inflection
distinguishes meanings of words, as do patterns of prefixes, suffixes and even
infixes. As a result, morphological analysis is an extremely important pre-processing
step in the preparation of any Arabic text for analysis. In recent years, an increasing
number of studies have been conducted to examine and evaluate methodologies for

Arabic stemming, Arabic morphological analysis and Arabic text root extraction [8]
[9] [10].
The main two approaches consist of light stemmers, and root-based stemmers

[9]. Light stemmers are employed mainly in information retrieval, where the main

concept is to eliminate prefixes and suffixes from a word, generating a stem. In that

10

way, the ideal forms of representative indexing for words is derived [11]. In Figure
2.1, is an example of the general steps of Arabic light stemming algorithms [3]. The
reason why light stemmers are not concerned with root extraction is that words
variants do not always have the same meaning even if they were generated from the
same root [5] [12]. Thus, light stemmers intend to improve reduction of

feature/keyword whilst maintaining the exact meaning of the word.

1. Normalize word

= Remove diacritics

= Replace | ¢ ¢} with !

= Replace 3 with »

» Replace s with ¢
2. Stem prefixes

n Remove preﬁxes: 9¢ A PR Y (g Jh 3 J\} ¢
3. Stem suffixes

» Remove suffixes: ¢ cecdcpegse) cla

Figure 2.1. Steps of Arabic Light Stemming Algorithms

The second approach is root-based stemming, where roots of the words are
extracted by defining morphological analysis techniques. As the roots are extracted,
the words are then grouped accordingly [9]. The fundamental two steps in root-based
stemmers are to firstly remove prefixes and suffixes, and to secondly extract the roots
by analyzing the words depending on their morphological components. That is
usually achieved by identifying rule-based techniques, patterns table lookup, or by a
combination of both. Root based stemmers take into account that Arabic complex
morphology leads to a great amount of lexical variation, and as mentioned
previously, this would enlarge the indexing structure volume and reduce the
performance of the system. Therefore, root-based stemming is ideal for minimizing
the index volume while enhancing the system performance, bearing in mind that the
meanings words which are formed of the same root are similar. As well, tri-literal
roots represent the vast majority of Arabic language roots, comprising the basis of
80-85% of all Arabic words. Another cause why root-based stemmers are used is that
words entered as user query in information retrieval systems does not exactly match

those included in the relevant documents [13]. In Table 2.1 shows a simple example

11

of words of the same root processed by both a light stemmer and a root-based

stemmer [14].

Word Meaning Light stemming Meaning Roo_t-based Meaning
output stemming output
1< the library / A library / i to Write
the bookcase bookcase
sl the writer s writer s to write
sl the book Qs book s to write

Table 2.1. Outputs of Light Stemming vs Root-based Stemming.

In 2010, M. K. Saad and W. Ashour carried out a study evaluating the different
stemming algorithms available to date for use with Arabic language text [3].
Regarding to light stemming, the researchers emphasised that this approach is usually
used to ensure that the original meaning of the words is retained, despite having the
same root and similar meanings in many cases. One example of standard Arabic light

stemming tools is implemented in Apache Lucene in Java.

With regards to root-based stemmers, the researchers noted the tri-literal root-
based stemmer proposed by Al-Shalabi et al. in 2003 [15]. Al-Shalabi, Kanaan, and
Muaidi have developed a root extraction algorithm for tri-literal roots, which does not
make use of any dictionary. The algorithm counts on giving weights to a word letters,
for each letter, the weight is multiplied by the position of it. Consonant letters were
weighted of zero, where different weight values were assigned to the letters in the
word sa’altumuniha - & s<ils, as affixes are formed by a mixture of these letters.
Specific computations are then performed over these weights to extract the correct
root. Another similar stemming algorithm for Arabic tri-literal words is Al-serhan
stemmer [16]. It employs Back Propagation Neural Network to extract roots from five
letters Arabic words. Four types of input were generated encoded with binary digits,
one relates to the original letters, while the other three classify the letters group of the
word sa altumuniha - \«s<lls depending on their occurrence frequency as an affix

letter.

12

Saad and Ashour have also evaluated Khoja’s root-based stemmer, which is one
of the earliest and most well-known techniques developed for Arabic text stemming
that was introduced in 1999 [17]. Referring to a study by Sawalhi and Atwell, Khoja
stemmer was found to achieve the best performance in terms of accuracy for tri-
literal roots, with an accuracy measure of 75% [18]. However, in the field of natural
language processing, accuracy is significantly important, and 75% still falls below

the target.

Also, Saad and Ashour identified a number of weaknesses in Khoja’s stemming
algorithm [3]. Khoja’s stemmer eliminates the longest suffix and the longest suffix
and prefix, and then matches the rest of the word against a list of verbal and noun
patterns to extract the root. Another step is performed to check the correctness of the
root by checking it against a list of roots. If the extracted root is found, it is then
preserved as the root of the word. The stemmer utilizes a number of linguistic data
files, including lists of all diacritic characters, punctuation characters, definite article,
and stop words. The stemmer also handles some cases of Arabic tri-literal words that
are weak, hamzated, geminated or eliminated-long-vowel. But the algorithm has a
number of weaknesses. Firstly, the word munaddamat - <l which means
(organizations) is stemmed to the root dama-aa - Ll which means (he became
thirsty) instead of the correct root nadama - ~ki. Another issue is that when the word
is deducted to a tri-literal word, the weak letter is deleted in the first place, and then
the last letter is doubled, or another weak letter or an alif is added to the word. That
leads to extracting a root that is of another word, which is not related to the word. For
example, the extracted root of the word riwayat - <Ul s is rayaya - 2, Where the
correct root is rawaya - .. As well, the extracted root for the word akhar - AT is
kharara - L, where the correct root is akhara - Jal. The use of a dictionary, for
instance, entails maintenance to ensure that as new words are discovered they
continue to be handled correctly. While rigid adherence to the processing order of

affixes can similarly result in errors, for example the words tastaghrik - &% and

13

rukbataih - S, were found not to be stemmed to their roots gharaka - &_¢ and

rakaba - S, respectively.

Lastly, the researchers offer new on-line tools for scholars and evaluators,
integrating stemming and light-stemming algorithms and a stop-words list into the

popular Machine Learning and Data Mining tools WEKA and RapidMiner.

Another study on Arabic stemming and root extraction was performed by E. M.
Saad, M. H. Awadalla and A. Aljami in 2010 [19]. The study focussed on the
challenge of text representation, extracting features that are most representative of
the text, and mainly on Arabic verb pattern extraction. Proponents of the value of
patterns in accuracy of feature extraction, the researchers proposed an enhanced
approach to extraction of both the stem and the lemma, using pattern matching. Their
approach implemented an encoding scheme distinguishing original from non-original
letters which was generated for each pattern and then matched against input text to
extract the root, pattern and lemma of a word. Yet the corpus used for their study was

not specified.

The first step in the proposed process is to divide the words into two groups —
one consisting of letters that are likely affixes and the other consisting of letters that
are likely an original part of the stem. Each letter in the affixes group is then assigned
a unique code, whilst the original letters were all assigned the code “0000”. The
researchers also retained and assigned to the shaddah (<-) a unique code, in contrast
to many approaches, which opt to repeat the letter before the shaddah, noting that in
some patterns it serves as one of the distinguishing letters. A sample of the encoding
table used is shown in Table 2.2. A pattern code table is then generated from all
possible combinations of the letter codes, in which the letters “<”, “¢” and “J” are
the stem characters. This results in each pattern having 1260 possible combinations.
Examples given are “J28”, which is encoded as “000100001001”, and “Jde&” which
is encoded as “0001101000001001”, wherein the “1010” represents the added “V’.

14

Letter Code Prorll_jr‘tg;tion
o 0001 Seen
i 0010 Hamza
J 0011 Lam
& 0100 Ta’a
a 0101 Meem
B 0110 Waw
8 0111 Noon
s 1000 Ya’a
» 1001 Ha’a
| 1010 Alef
As 1011 Shaddah
others 0000 -

Table 2.2. Letters Encoding for the Word (W saill),

Arabic morphological rules are then applied to accomplish further reduction of
the codes for each pattern. For example, some patterns such as Jizs ¢zsaa and) seg,
do not exist in some verb forms and therefore can be eliminated from the code table.
Samples of input and output encoding for lemmas and patterns are shown in Table

2.3.

Input Output code Pattern Lemma
0001-0000-0000 1-1-1 J=d J=d
0001-0000-0000-0100 1-1-1-0 Cilad J=d

Table 2.3. Example of Encoding for Lemmas and Patterns.
The researchers then applied their algorithm which we summarise in the following steps:
Step 1: generation of codes table
Eliminate incorrect case records
Step 2: normalization

Read a word
Eliminate diacritics, except shaddah

Change all hamzah forms to (/)

15

Change maddah to hamzated alef (i)

Change alef magsora to alef (')
Step 3: encoding and matching

Encode input word as in encoding table
Match input word against the code table to extract codes of equal
value (root, pattern, and lemma)

If there is more than one code match, then go to post processing
Step 4: post processing

Manual check for the highest percentage of occurring patterns using

conjugation reference work

In analysing their results, the researchers ran the same data through a Khoja
stemmer for comparison. They found that the proposed method achieved an overall
rate of accuracy of 92%, which increased to 96% after adding in the post-processing
step. A comparison of the two methodologies’ results by type is shown in the table
below. The researchers’ proposed methodology using encoding and pattern matching

appears to have achieved a higher rate of accuracy than the Khoja stemmer.

Khoja’s Method
#Tested | Proposed
Type Not
Words Method Accuracy
Stemmed
Al (Salem) 1019 99% 256 70%
=8l (Nakes) 478 89% 41 50%
<l (Ajwaf) 962 98% 72 61%
Jée (Methal) 647 97% 71 69%
Ol) saga
) 368 98% 153 48%
(Hamza-Ain)
P saga
404 99% 126 58%
(Hamza-Lam)
) saga
610 96% 63 73%
(Hamza-Faa)
Total 4488 96% 782 61%

Table 2.4. Results of Proposed vs Khoja's Method.

16

Likewise, Al-Nashashibi, Neagu and Yaghi have developed an improved root
extraction technique for Arabic words, while recognising the prevalence of irregular
words in Arabic texts [10]. They determined that irregular forms such as weak, two-
letter geminated, hamzated and eliminated-long-vowel words accounted for about

30% of Arabic texts. Table 2.5 summarises their analysis.

Form Percentage
weak 13%
two-letter geminated 7%
hamzated 11%
eliminated-long- 204
vowel
Total 33%

* of weak words: 12%

Table 2.5. Percentages of Irregular
Words in Arabic.

Taking into account that many of the stemmers developed since Khoja’s
stemmer did not further address these areas, in 2010 the researchers proposed an
approach to root extraction which met this need by focussing on improvements in the
variety of irregular linguistic cases handled [10]. Their approach used a rule-based
light stemmer based on the model developed by Al-Ameed [20]. The stemmer
included a pattern-based infix remover and then was enhanced with an algorithm to
address weak, eliminated-long-vowel, hamzated and geminated words. Accuracy of
the roots extracted was checked against a pre-defined list of 5,405 tri-literal and

quad-literal roots.

For their study, the researchers used a corpus consisting of a collection of 380
texts taken from online Arabic sources (newspapers, magazines, academic and other)
published between 23/7/2008 and 1/2/2009, covering nine different categories. These
are: politics, economics, social, sports, music, education and health, arts, culture and
literature, and religious texts. The distribution of the collection was approximately

fifty texts per category. As a pre-processing step, English letters, punctuation,

17

nunations, assimilation marks, short vowels, kasheeda, function words and numerals

were removed from the experimental data set. For their function words list, the

researchers developed a list of 2,549 words including prepositions, pronouns,

conjunctions, interjections and verbs such as kana wa akhawatuha - &3 53l s 0\S and

similar verbs such as asbaha - @J, amsa - =l and ma zala - J\J%. The plural and

dual forms of the function words were included in the list as well. The Al-Ameed

root extraction process used for this study consists of two parts: a rule-based light

stemmer and a pattern-based infix remover. The light stemmer removed affixes using

four pre-defined lists of prefixes and two pre-defined lists of suffixes, as shown in

Table 2.6 [10].

Prefix
Listl {At,nwymkbfl}
{ ALl sy, sA, st, sn, KA, fA, bA, ly, It, In, ft,
Prefix fy, fn, wt, wy, wm, wA, wb, bm, km, mt, fl, An,
List2 mn, IA, wl, wn, wk, fb, fm, Im, yt, yn, tt, tn,
Proposed tm, nt, nn, At }
Prefix lists
Prefi { wAl, bAl, fAl, KAI, wll, wsy, wst, wsn, wsA,
I_riitl?,x wIA, wly, wit, win, fsy, mst, Ast, Alm, AAl,
sAl, fAn, AA, yst, nst, tst }
Prefix
o | TWoAD)
Prefix
List | LAt wy, h kY, p}
Proposed
Prefix lists Prefix { An, yn, wn, At, hm, hn, hA, km, kn, nA, wA,
List2 tm, ny, tn, th, yh, A", yA, tA, tk, yp, np, nh, ty,

Aw, nk, hmA, kmA, thm, tkm, wt }

Table 2.6. Al-Ameed's Prefix and Suffix Lists.

After that, infixes were removed based upon pattern-matching tri-literal and

quad-literal words to pre-defined lists, as shown in Table 2.7.

18

Triliteral { fEI, fAEI, fAEwI, fEA'I, fEAI, fEWI, fEVYI,
Infix fwEl, fwAEl, fwAEyl, fyEl, fyAEI, fEYEYI,
Patterns fEYEAI, fwyEl, ftEl, ftEAI, fAEyl, fEWEI }

Quadliteral | ¢\ = AWy1, fEAIN, FEIAL fEIWI, fEII,

Infix
Patterns ny” }

Table 2.7. Al-Ameed's Infix Pattern Lists.

After removing the infixes, the resultant roots were matched against the
predefined list of tril-iteral and quadliteral roots. In cases where a match was not
found, the researchers’ “correction algorithm” was applied. The correction algorithm
contains 5,737 corrections words in 71 predefined lists, based on linguistic works by
Ar-Rhazi [21], and Bayyomee, Kolfat and Al-Shafe’e [22]. These rules target in
particular irregular words. For example, in weak words, the long vowel was replaced
according to Arabic grammar rules. For two-letter geminated words, eliminating the
extra letter where found and doubling the appropriate stem letter. However, it is not
given how the algorithm handles the cases of neither eliminated-long-vowel words,

nor words containing hamza.

As indicated above, the accuracy of the output was determined by matching each
root against predefined lists of tri- and quad-literal roots, and then counting the
number of successful matches. As well, it does not appear that the researchers did
any manual checking of those matches, to ensure that they were indeed correct. As a
measure of comparison, the same data was run through the Al-Ameed process only,
without the researchers’ correction algorithm. The full results by category are shown
in Table 2.8, wherein the authors use “RB-A” to refer to the test using the Al-Ameed
method alone and “RB-A-corr” to refer to the test using the Al-Ameed method plus

their correction algorithm.

19

Category RB-A (%) RB-A-corr (%)
Politics 58.89 73.3
Economics 58.16 71.39
Religious Texts 62.99 75.01
Social 60.56 74.79
Music 58.7 73.78
Educational 60.67 74.81
Sports 56.91 70.37
Arts 61.41 74.27
Average 59.79 73.47

Table 2.8. Performance of the Algorithm in All Categories.

The researchers found that on average the correction algorithm improved the
accuracy of the results by about 14%, with a relative improvement of about 23%.
They identified also some limitations in the rule lists for future improvement. For
example, adding rules for extracting two-letter geminated roots and more infix
patterns. For fuller context, the researchers proposed applying the correction

algorithm to various other stemmers in future tests.

Last but not least, in 2007 researchers Darwish and Oard developed two
different tools which aimed at improving Arabic morphology techniques used in
Information Retrieval (IR) [23]. The first tool they developed, dubbed Sebawai, is a
shallow morphological analyser which generates stems and probability measures.
The second tool, dubbed Al-Stem, is a light stemmer which utilises the probability
statistics generated by Sebawai to develop the set of prefixes and suffixes to be
removed. By combining the roots and stems generated by Sebawai with the stems
generated by Al-Stem, the researchers intended to improve upon what they had
identified as weaknesses in prior-developed methodologies based upon finite state
transducers. That is where uncertainties were being introduced into indexes, and the

datasets that could be analysed were limited.

The authors’ Sebawai analyser was based on the commercial Arabic
morphological analyser ALPNET, which was developed by Beesley and Buckwalter.

In their work, rules are programmed into a finite state transducer using a set of 4,500

20

roots [24] [25] [26]. However, Sebawai trains on a list of word-root pairs to derive
templates to produce stems from roots, construct a list of prefixes and suffixes, and
estimate the occurrence probabilities of templates, stems and roots. The word-root
pair list to be used with a tool such as Sebawai could be one that is already available
in a pre-existing analyser, generated manually, or automatically constructed through
the parsing of a dictionary. For their study, the researchers used the pre-existing list
provided by ALPNET, which in turn generated this list from two other lists. One list
which is extracted from a corpus of Arabic text taken from a 14™ century religious
work entitled Zad al-Me’ad (3=l 313), and contained more than 9,606 words. The
other list was extracted from the Linguistic Data Consortium (LDC) Arabic corpus of

newswire stories and containing 562,684 words.

Words from the first list which were not successfully analysed by ALPNET
were excluded. The total number of words which were successfully analysed was
9,606 words. While words from the LDC corpus which were not successfully
analysed, a total of 292,216, were separated from those which were successfully
analysed (270,468), and two lists were then retained: “LDC-Pass” and “LDC fail”. It

was found that ALPNET tended to fail on words which are of the following types:

a- Named entities and Arabized words, which are words that are adopted
from other languages. An example of these includes the word
dymwgratiyah - 4kl & s« (Democracy).

b- Misspelled words.

c- Words with roots not in the root list: An example of that is the word
JjawaD - 1) s> (seldom used word that means pompous).

d- Words with templates not programmed into the finite state transducer.
ALPNET uses a separate list of allowed templates for each root.
These lists are not comprehensive. An example of that is the word
musaylamah - 4«lwws (miniature of mslmh — 4<lus, a person who is safe

or peaceful).

21

e- Words with complex prefixes or suffixes: An example of that is the

word bilkhurafat - <4l Al (with the superstitions).

Nonetheless, words that were successfully analysed were rechecked by manual
verification and were found to be correct in all cases. As well, in cases where words
yielded more than one analysis, all combinations of the word plus all roots for each

of those combinations were found correct and were also utilised for the training.

During training, the Sebawai analyser aligned the characters in word pairs and
applied regular expressions in order to isolate the prefix, suffix and stem template.
As an example, the authors gave the pair kataba - «S and wakitabahum - a&USs,
from which would be ascertained the letter waw - ‘5’ (meaning and, written as wa in
the beginning of the word) as the prefix, and hum - ‘s’ as the suffix and CCAC as
the stem template, where “C” represents the letters pertaining to the root.
Simultaneously, the training module increased its number of observed occurrences of
the prefix, suffix and stem template by one. At the end of the training, probabilities
were calculated using equations (2.1-2.3), where S1 and S2 represent character

strings and T represents a template:

(No.of words with prefix S1)
(Total No.of training words)

P(S1 begins aword,S1 is a prefix) = (2.1)

(No.of words with suf fix S2)
(Total No.of training words)

P(S2 begins a word, S2 is a suf fix) = (2.2)

(No.of words with Template T)

P(T is a template) = (2.3)

(Total No.of training words)

Within the root detection process, the Sebawai analyser reads in an Arabic word
and generates all possible combinations of the prefix, suffix and template letters by
breaking the word into three parts. In such that: the first part always consists of
letters which constitute a valid entry in the list of prefixes, the last part always
constitutes a valid entry in the list of suffixes, and the middle part contains no less
than two letters. The first and last parts could also be null. As an example, the
authors provided an example of all possible analyses for the word Ayman - ol is

shown in Table 2.9.

22

Stem Prefix Template Suffix Root
Okl - AymAn # Jisé - CyCAC # Oel - Amn
ol — ymAN - A Jwi - CCAC # Oad— ymn
ke —mAn sl — Ay J=i— CCC # ok —mAn
al— Aym # Jsé — CCC o - An ~l—Aym
Le—ymA I—A J=i— CCC o-n L —ymA

Table 2.9. Possible Analysis for the Word AymAn — ¢l |

If the stem is found to fit one of the templates, then a root is generated. The root
is then checked against a list of approximately 10,000 roots generated from an

Arabic dictionary. The probability for the root is calculated as in equation (2.4) :
P(root) = P(S1begins aword,S1is a prefix) *

P(S2 ends aword,S2 is a suffix) * P(T is a template) (2.4)

While the word analysed is of two letters only, initial testing showed that the
Sebawai analyser failed on all 2-letter stems, thus adjustments were made to
compensate. Two-letter stems were ‘corrected’ by doubling the last letter and by
adding weak letters before or after. Similarly, for stems with a weak middle letter,
new stems were generated by substituting the middle letter with other weak letters.
Additional probabilities were calculated for these three cases. The root probability
formula was also adjusted to account for these additional probabilities through

equation (2.5) as:

P(root) = P(S1 begins a word, S1 is a prefix) * P(S2 ends a word, S2 is a
suffix) * P(T is a template) * P(letter substitution or letter addition) (2.5)

Another improvement made was the application of “smoothing”, or discounting
erroneously-produced suffixes and prefixes resulting from misalignment during the
word-root pairing process. To achieve that, the researchers employed the Witten-Bell
discounting technique [23]. In addition, a list of particles was developed using the

Arabic grammar book An-Nahw Ash-Shamil [27]. Also, a stem check against these

23

particles was applied. The complete list of the particles is incorporated in the
distribution of Sebawai by K. Darwish in 2002 [28]. Finally, a normalization strategy
was employed to account for variations in spelling as well as to improve analysis
performance. The strategy included the normalization of the letters yaa - ¢ and the

letter alif - | variants, as well as stripping all diacritics.

In order to evaluate and measure the accuracy and performance level of the
Sebawai analyser, the researchers compared the results of Sebawai to those of
ALPNET, considering matches as correct and non-matches as false. A further,
manual check of the failures was then performed to confirm if the words were in fact
incorrect, or simply not identified by ALPNET. For the first list, which was
constructed with the aid of Zad al-Me’ad, Sebawai analyser analysed all words
where the initial results showed that 8,206 roots out of 9,606 were found correctly
(86.4%). Following manual evaluation, however, the actual number of correct roots
was estimated to be 8,800 (92.7%). For the second (LDC) list, the analyser analysed
128,169 words out of 292,216 (43.9%) where 58,000 roots, (21%) only, were

estimated to be correct.

After the prefixes and suffixes are generated by the Sebawai analyser along with
their corresponding probabilities, they are used to build the researchers’ second tool
contribution, the Al-Stem stemmer. Affixes with a probability above 0.5 were
accepted as candidates, and then the candidate list was manually confirmed. The

contents of the final affixes lists are shown in Table 2.10.

Prefixes Suffixes

A el (g e el Wy Ky ch\ Ja cd\j

. “ e 5o . | -
e s\} c‘_,,ﬁ Qe ‘g} “53 6dj 6d\ ‘?5 ‘é X c?j a ‘o ‘(:A ‘(55 ‘e “ e Ll ees 0y ¢l e
L

Jecs o 6B cda oy b E N

Table 2.10. List of Prefixes and Suffixes.

At last, each of Sebawai morphological analyser and Al-Stem stemmer were
evaluated in an experiment using the LDC2001T55 corpus collection, containing

383,872 articles from the Agence France Press (AFP) Arabic newswire of around 50

24

different topics, with a collection averaging 118 documents per topic. Each
document in this corpus contains a title field, a description field and a narrative field.
For the experiment, two queries were formed for each topic: one against the title and
description fields (td), and one against just the title field (t). Tests were then
performed for each length of query using index terms which consisted of words (w),
lightly-stemmed words (lw), stems and roots. Two methods were used in obtaining
the stems: either the top stem found by the Sebawai analyser or the top stem found
by both the Sebawai analyser and ALPNET, if generated. Similar methods were used
for obtaining the roots: either the top root found by the Sebawai analyser or the top

root found by both the Sebawai analyser and ALPNET, if generated.

2.2 Documents Classification

One valuable contribution in the field of Text Classification came from a study by
Abbas and Smaili’s in 2005 [29]. The study focuses on comparing topic
identification methods. Abbas and Smaili examined the effectiveness of the Term
Frequency-Inverse Term Frequency (TF.IDF) approach versus the Support Vector
Machines (SVM) approach in identifying topics within a corpus comprised of 5120
articles (2,855,069 words) taken from Akhbar Al Khaleej - ziall Lal daily

newspaper, covering the topics of sport, local news, international news and economy.

For their experiments, the researchers defined “topic” as “a subset of the
language associated to particular events”, and a document would be considered
relevant whenever its content is connected to the associated event. To begin, the
researchers tokenize the corpus by splitting each word found into prefix, stem and
suffix, and then remove the suffix. Non-content words were removed from the results
as well. The frequency which each word appeared was calculated, as well as its
“documents frequency”, which is the number of documents in which the word
appeared at least once. The results were then reduced to distinct words, and finally to
those which appeared more than two times. The final vocabulary used consisted of

42,877 words. Next, an internal representation of each document was constructed by

25

transforming it into compact vector form, whereby the dimension of the vector
corresponded to the number of distinct tokens found, and each entry in the vector

represented the weight of each token.

In the TF.IDF approach, each document d is represented as a vector D = (ds,
dy,...,d,). Each element in the vector represents the weight of a given word w; in the
document. That is calculated as d; = TF(w,d) * IDF(w). That is Term Frequency
TF(w,d)), which is the number of times a word w occurs in a given document d,
multiplied with the inverse document frequency (IDF(w)). IDF(w) is calculated as
log(N/DF(w)), where N represents the total number of documents and DF(w)
represents the number of documents in which a word w occurs at least once.

Equation (2.6) was used to calculate the similarity between documents (Sim(Dj,Di)):

v
Zlkzll djrdik

14 |4
12 o = ey

In the SVM approach, two vectors are used, and the relationship is defined by

equation (2.7) as:
fO) =X wi* x;+b (2.7)

where w is the vector orthogonal to the hyperplane and b is the distance from the
hyperplane to its origin. For their experiment, the researchers used only linear

kernels and the tool SVM"9",

The researchers evaluated their results based on recall, precision and the

measure F; = 2*Recall*Precision/Recall+Precision, as shown in Table 2.11.

26

International Local Economy Sport
Topic
Rec | Prec F1 Rec | Prec F1 Rec | Prec F1 Rec | Prec F1
International - - - 99.22 | 100 |99.61| 100 |99.22|99.61 | 100 100 100
Local 99.22 | 100 |99.61 - - - 89.06 | 92.68 | 90.83 | 97.66 | 99.21 | 98.43
Economy 100 |99.22 | 99.61 | 89.06 | 92.68 | 90.83 - - - 97.66 | 100 |98.81
Sport 100 | 100 | 100 |97.66|99.21|98.43 | 97.66 | 100 | 98.81 - - -

Table 2.11. Recall, precision and F1 for SVM bi-class discrimination

Traditional advantages of the SVM method are seen as the ability to handle a
large number of features and to work with real and large-scale data, and Abbas and
Smaili found this to be the case in their experiments as well. As seen in Table 2.12
SVM showed an advanced ability to discriminate topics, and outperformed TF.IDF

with an overall F1 score of 97.88% versus 90.95%.

Recall Precision F1 measure
TF.IDF 90.82 91.18 90.95
SVM 97.26 98.52 97.88

Table 2.12. Mean Values of Recall, Precision and F1.

Another important study on Arabic text classification that been carried out to
evaluate different topic identification methods was done by Abbas, Smaili and
Berkani in 2011 [30]. Abbas et al. evaluated six topic categorisation methods over a
large corpus of Arabic data. The methods evaluated were the Support Vector
Machines (SVM), Triggers-based Classifier (TR), Topic Unigram Language Model
(TULM), Neural Networks, Term Frequency/Inverse Document Frequency and
Multi-Category SVM (M-SVM). Their findings were that the SVM was clearly the
superior method for their corpus. The study used an in-house corpus derived from a
selection of articles from an online Arabic newspaper, consisting of 9,000 documents

pertaining to six categories and totalling 9,813,366 words.

For their experiments, the text was pre-processed to remove punctuation, digits

and stop words, and a light stemmer was also used. Smaller, category-specific

27

vocabularies of about 300 words were built for testing the TR method, and a larger
general vocabulary was built for use by the other five methods by concatenating the
individual vocabularies. The researchers used the term frequency (TF) method in
constructing the vocabularies, and the similarity function in equation (2.8) for the

TF-IDF test:

\4
Z|k=|1 djrdik

|4 |4
NERCIR RIS

For the Neural Networks method, the researchers opted to use a separate
network per category for training and a multi-layer perception for categorization. For
the TR method, Average Mutual Information (AMI) values were calculated for each
of the words in the vocabularies to determine the most important triggers. The

researchers chose 250 triggers to use for each topic.

For the M-SVM method, the researchers used 1,400 documents for training and
reserved 10% of the corpus for test, and the size of the vocabulary used was 8,000
words. Measures used in the evaluation of their results were recall, precision and F1.
As seen in as seen in Table 2.13 and Table 2.14, the results of the study clearly

showed SVM to be the superior method on all three measures:

Method SVM TR TULM

Topic Re Pr F1 Re Pr F1 Re Pr F1
Culture 97.33 | 9551 | 96.41 | 82.66 | 80.55 | 81.60 | 70.55 | 895 | 78.90
Religion 96.93 | 99.32 | 96.11 | 96.33 | 83.56 | 89.50 | 94 | 86.33 | 90.00
Economy 96.26 | 96.57 | 96.42 | 83.50 | 84.05 | 83.77 | 82.66 | 82.33 | 8250
Local 96.13 | 9655 | 96.34 | 86.25 | 8253 | 84.35 | 7833 | 80 | 79.15

International 98.26 | 96.88 | 97.56 | 93.33 | 90.66 | 91.97 | 94.50 | 85.66 | 89.86

Sports 99.20 | 99.59 | 99.40 96 97.33 | 96.66 | 93.66 | 98.33 | 95.94

average 97.35 | 97.40 | 97.37 | 89.67 | 86.44 | 88.02 | 85.61 | 87.02 | 86.31

Table 2.13. Performance of SVM, TR and TULM

28

Method Neural Networks TF-IDF M-SVM
Topic Re Pr F1 Re Pr FI | Re | Pr | F1
Culture 75 | 86.66 | 80.40 | 71.33 | 88.43 | 7896 | 75 | 78 |76.47
Religion 92 | 87.33 | 89.60 | 93.33 | 86.95 | 90.03 | 95 | 96 | 9550
Economy 81.33 | 85.33 | 83.30 | 83.33 | 80.64 | 8196 | 835 | 75 |79.02
Local 7525 | 9050 | 8220 | 80 | 7692 | 7843 | 74 | 64 |68.64
International | 92.55 | 83.33 | 87.70 | 93.33 | 84.33 | 88.60 | 86.75| 83 |84.83
Sports 9450 | 90.66 | 9254 | 94 100 | 9691 | 90 | 89.5 |89.75
average 85.10 | 87.30 | 86.20 | 85.88 | 86.21 | 86.04 | 84.04 | 80.91 | 82.44

Table 2.14. Performance of Neural Networks, TF-IDF and M-SVM

The researchers found it noteworthy that the M-SVM method appears to have
achieved the lowest level of performance, given its strong theoretical background.
However, they noted also that M-SVM is also generally used over a larger
vocabulary. The researchers also noticed greater variability over certain topics, such
as “Local”, particularly in terms of recall; for other topics, such as “Economy”, there
seemed to be significantly more convergence of the performance indicators. They
attribute the success of the TR method to the smaller size of its vocabularies, noting

also an increase in performance as the number of triggers increases per topic.

Another method applied for text classification with various algorithms is
Associative Classification (AC), and it was presented as a new approach for
classification in the last decade of research on the subject. One of the latest studies on
associative classification was published in 2012 by Ghareb, Hamdan and Abu Bakar
[4]. In their study, the researchers compared the single rule prediction and multiple
rule prediction methods of Associative Classification. Their findings showed superior

accuracy from the multiple rule prediction method.

The researchers used corpora which consisted of 5640 documents derived from
articles from a selection of Arabic online news sources and from two established
online corpora: Dr. Mourad Abbas’ corpus of 2004 news articles from Al-Khalegj -
= and Al-Watan - ok, and Dr. Latifa Al-Sulaiti’s Corpus of Contemporary

29

Arabic (CCA). Significantly, the researchers believed this to be the largest Arabic-
language corpora used in such experiments to date. The corpora consist of seven
different categories; culture, economy, politics, sports, education, health and

information technology.

The process of constructing the associative classifier starts with a text pre-
processing phase, in which non-Arabic letters, digits, punctuation marks and stop
words are removed. As well, a stemming process was also applied at this phase.
However, no lists or details on the stemming process were specified. Next, the data
undergoes a feature selection (FS) process, in which the researchers used the TF-IDF
method to assign weight values and distinguish the more important features. From
this point, class association rules were generated using an Apriori algorithm similar
to that used by Antoine and Zaiane in their 2002 study [31]. In determining the
importance of the class association rules, the researchers used measures for
“minimum support” and “minimum confidence”. The support threshold determines
the minimum frequency of occurrence within the data. Each candidate term set,
beginning with 1-term sets, then 2-term sets, and so on through the m-term set, was
generated from terms in the previous set which passes the minimum support

threshold.
The Support of the class association rules was calculated as the percentage using
equation (2.9):

Support(T;j=C;)

Support(Tj = Ci) = m

(2.9)

where T; corresponds to a set of frequent terms [t1 & t2 &...& tm] which represents
the “rule terms”, C; signifies the Category of this rule which is the “rule head”,
sup(T; = C;) is the number of documents in the data set that match terms of R, and N

is the total number of documents in the class data set.

30

The accuracy of the class association rules, or “rule confidence”, was calculated
by the probability as in equation (2.10):

(Dtot(R)+1) (2 10)

Rule_accuracy = Dooc ()TN
tot c

where Dy(R) is the number of documents in the training set containing the rule body,

and N. is the number of classes.

Once the rules are generated, they are pruned and ordered. The pruning process
involves removing those rules which did not meet the minimum confidence level,
and also removing those rules which were “redundant”: rules which matched another
rule body, or subset of another rule body, and had less confidence than the matched
rule. The remaining rules were then ordered according to confidence and support,
whereby confidence was ranked highest, followed by support and finally the number

of terms in the rule body.

Finally, the class association rules are applied for prediction. The two methods
that were applied and evaluated in this study are single rule (“ordered decision list”)
prediction and multiple rule (“majority voting”) prediction. In the ordered decision
list method, a document is assigned to the class associated with the first rule that it
matches. In the majority voting method, all rules that a document matches are
retained, and the document is assigned to the class that is associated with the

majority of those rules.

The results of the researchers’ experiments were evaluated as in equation (2.11):

TrueC
Total

Accuracy = (2.11)

where TrueC represents the number of correctly-classified documents and Total
represents the total number of documents in the test. Their results are shown Table

2.15.

31

Minimum Support = 10% Accuracy Testing Time (m)
. Training Majority Ordered Majority Ordered
CLlU IS NOSUARTES Time (m) Voting Decision List Voting Decision List
50% 95 3.26 0.771 0.787 1.39 1.22
70% 82 3.19 0.803 0.792 1.27 1.38
80% 50 3.17 0.846 0.812 1.32 1.35

Table 2.15. Results of Associative Classifier for the Arabic text data set.

From the results, we can see that at the lowest confidence level, the ordered
decision list method was seen to outperform majority voting in terms of both testing
time and accuracy. However, as the confidence level increased, the majority voting
method proved superior on both measures. A similar pattern is seen in a second
experiment, where the minimum support level was decreased to 5%. At minimum
support level = 5%, however, ordered decision list outperformed majority voting at
the lowest confidence level (50%) only in terms of accuracy; in terms of testing time,
it only outperformed majority voting at the 80% confidence level. Table 2.16 shows

the results of their second experiment.

Minimum Support = 10% Accuracy Testing Time (m)

. Training Majority Ordered Majority Ordered
Sl e ENSHUANTLES Time (m) Voting Decision List Voting Decision List
50% 633 3.54 0.719 0.750 1.40 1.43
70% 359 3.50 0.801 0.733 1.22 1.38
80% 345 4.00 0.797 0.749 1.35 1.32

Table 2.16. Results of Associative Classifier with Large Number of Classification Rules.

Another finding of this study was that, in the case of both methods, accuracy

increased when rule confidence increased but also when there were fewer rules in the
rule set. The researchers noticed that when the minimum support level was decreased

to 5% in the second experiment, the number of rules in the result set increased by a

32

factor of about 6. However, the accuracy of the results decreased for both methods,

at all three confidence levels.

2.3 Summary

In this chapter, we reviewed various significant studies and experiments which have
been conducted to develop and improve Arabic Information Retrieval and Data
Mining approaches. We focused on the work done to develop and improve Arabic
stemming and root extraction algorithms, and feature selection and document

classification methods, which is the most relevant to our work.

Looking at the work done on Arabic stemming and root extraction, a number of
downsides can be noticed. For example, there is no global testing database to be used
when experimenting with Arabic text. Also, many researches measure the accuracy
of the system without manual checking of the roots, which could not be related to the
original stemmed word [10] [32]. For example, Khoja’s stemmer, which is one of the
strongest stemmers, different cases of Arabic tri-literal words that are weak,
hamzated, geminated or eliminated-long-vowel. But the algorithm has a number of
weaknesses. Firstly, the word munaddamat - <:.kis (organizations) is stemmed to the
root dama-aa - Wb (he became thirsty) instead of the correct root nadama - Ak,
Another issue is that when the word is deducted to a tri-literal word, the weak letter
is deleted in the first place, and then the last letter is doubled, or another weak letter
or an alif is added to the word. That leads to extracting a root that is of another word,
which is not related to the word. For instance, the extracted root of the word riwayat
- &y, is rayaya - 20, Where the correct root is rawaya - ¢ so. As well, the extracted
root for the word akhar - &l is kharara - L, where the correct root is akhara - a1,
Nevertheless, the extracted root for a word is considered correct as long as it appears

it the roots lists, even if it was not related to the original word.

Having reviewed the most significant work on Arabic documents classification,

we noted that the classification algorithm is always applied after light stemming text

33

while identifying the roots as features, which would improve the classification

process, was not considered.

In this work, we introduce and implement an improved root extraction algorithm
for Arabic words, which is based on morphological analysis and linguistic
constraints. After that, we focus on implementing the most significant classification
methods while utilizing our root extractor in indexing and identifying documents

features within the classification process.

34

Chapter 3

Arabic Language Characteristics

Arabic language complexity including its orthography and morphology made it
challenging to find a standard Arabic text mining algorithms and tools. In the
following chapter, these challenges are elaborated on and explained further with

associated examples where possible.

3.1 General Characteristics

Orthography

Orthography in Arabic is less ambiguous and more phonetic with the use of
diacritics. For example, a word can be written using the same characters and be
pronounced differently. Diacritics in Arabic language contain short vowel marks,
known as harakat - << =, and other vowels and constant diacritics [33] [34]. They
are used mainly to provide a phonetic aid to show the correct pronunciation. Arabic
short vowel marks include but are not limited to, Fat-hah - 4s3 Kasrah - 3_.S
Dammah - 4exa, and Sukun - osSe. Other diacritics consist of Tanween - (ns

(Nunation), which represents a long vowel, and Shaddah - 324 (Gemination), which

35

represents a constant gemination mark. The definition of each of these diacritics is

shown below.

- Fat-hah < : The fat-ha - 4=3 which literally means opening, is a small
diagonal line positioned on top of a letter representing a short /a/. The mark is
referred to as fat’ha, because the pronunciation of any letter with it requires
opening the mouth. For example, the word <<iS here is a three letters word

pronounced as kataba (he wrote).

- Kasrah : : The kasrah - 3_~S, which literally means breaking, is as well a
small diagonal line, yet placed below a letter referring to a short /i/. For

example, the word o— is pronounced min (from).

- Dammah < : The dammah - ixx, is a short vowel mark that looks like a small
curl and is positioned above a letter to indicate a short /u/ or /o/ as in the
English world ‘to’. For example, the word —=S here is pronounced as kutub

(books), noting that it is written with the same letters as in the first example.

- Sukoon ¢ : The sukoon - o<, is a small diacritic looking like a small circle
positioned on top of a letter to indicate that the consonant it is placed on is not
followed by a vowel. For example, the word 4= is pronounced maktabah

(library).

- Tanween &, > and 3 : The tanween - ¢s5 , which is also known as nunation,
is used to show that the consonant is followed by an ‘n’, by doubling one of
the three short vowels (fat-hah, kasrah or dammah) at the end of the word, as
it can only be added to the last letter. The diacritics from left to right refer to
/an/, /in/, and /un/ or /un/. They are mostly used in classical or literary

Arabic to indicate non-pausal grammatical indefinite case endings.

- Shaddah & : The shaddah - 333 | is a diacritic that looks like a small Latin ‘w’
and is positioned on top of the letter to represent gemination. That is doubling
or adding an extra length to the letter it is placed above, which is considered

phonemic in the Arabic language. The shaddah is the only diacritic which is

36

usually used in ordinary spelling to avoid uncertainty. This can be seen given
the words madrasah - 4. ,x (school), and the word mudarrisah - 4w’

(female teacher).

- Hamzah), 1, 5, & and < The hamzah is a glottal stop which is not
considered a short vowel. It could appear as a letter by itself =’ or on top of
the letters waw - “5° or yaa - “ts’, or above or under an alif - ‘I , ’. In most
cases that depends on the short vowel (fat-hah, kasrah, dammah or sukoon)
attached to the previous letter of it. That can be seen in the words, o+ (head)
pronounced ra’s, J's= (question) pronounced su’aal, %« (hundred)

pronounced mi’ah, and <% (thing) pronounced shay .

The pronunciations of these diacritics are represented in Table 3.1 using the letter —.
However, in Modem Standard Arabic (MSA), diacritics marks are not usually
included in printed and electronic text, and the understanding and correct

pronunciation of the word is determined within its context by the reader.

Double Double Vowel / Nunation Short Vowels
Constant /
Gemination Kasrah Dammah | Fat’hah Kasrah Dammah | Fat’hah Sukun
& - & & - & & &
/bb/ /bin/ /bun/ /ban/ bi/ /bu/ /ba/ b/

Table 3.1. Arabic Diacritics
Word Meanings
One word could have several meanings depending on its position and context,

despite it having the same pronunciation. For example, as shown in Table 3.2, the

Arabic word galib - < could have three meanings or more as a noun.

Word Meaning Sentence

core Cilaal) Gl b

heart - side Gl lee (5 5ol
center, middle aldl Qb 85 Kl

Table 3.2. Meanings of the Word (<)

37

Variations of Lexical Category

One word can belong to more than one lexical category depending on its meaning
and context. Lexical categories include nouns, verbs, adjectives and more. In
Table 3.3 an example is given of the word ain - ¢x=, belonging to different lexical

categories depending on its meaning [3].

Word Meaning Word Category Sentence

Ain Proper-Noun Gl (e

wellspring Noun slall o

eye Noun YY) (e

delimitate/ . . -
. La Al w6

be delimitate Verb/Passive Verb sl s e

Table 3.3. Lexical Categories of the Word (¢x)

Dual Root

Some words can be formed from more than one root such as the word riyadh - o=l

which is derived from the roots radha - u=!), and - rayadha u=:, [13].

The Exchange Process

The exchange process al-ebdal - JvY!, depends on a phonetic rule instead of a
syntactic one. For example, the word giyam - 2. of the pattern fiaal - J=3, is derived
from the root gama - ~& However, from the consonants in the pattern, the extracted
root would be gima - a% where the letter ‘¢’ should be exchanged to ‘. The
exchange process mostly occurs with the vowel letters |, 5 and . The cases of
exchanged vowel letters are taken in account in the proposed root extraction
algorithm. That is explained in the second phase of the algorithm in section 4.1 of
chapter 4. Nevertheless, it can also arise with other letters as in the word alsirat -
Lludl, where the letter sin - o+ is changed to the letter sad - o= to be written as

alsirat -) _pall,

38

Deleted Letters of Words

In some cases, a letter in the pattern of the word is deleted affecting the process of
root extraction, like in the word ra’aa - i of the pattern fu’al - J=5. The present
tense of the word should follow the pattern yaf’al - J=& becoming yar'aa - < x .
Instead, the letter alif - | is deleted, and the word becomes yara - . for
morphological reasons, so the letter ain - ¢ of the pattern is deleted, becoming yafl -

Ju instead of yaf’al - J=4 [35].
Ambiguous Words

Some words in Arabic starts with the letter waw — ‘s or the letter baa — ‘<>’. These
words are ambiguous when it comes to Arabic data mining. That is because these
letters can be part of the original root like in the words wojood - 25~ and bohooth -
Sss while in other words they maybe a prefix like in the words bisu’aalihum -
sl ses and wa awamirhum - a5 This case is handled in the proposed root
extraction algorithm through the pattern checking and suffix/prefix removal phase,

which is explained in details in section 4.1 in the fourth chapter of the thesis.

Morphological Characteristics

Arabic language has a very complex morphology when compared to English [36]
[37]. Words in Arabic can be formed of a stem alongside affixes and clitics. The
stem is composed of a consonant root (==) and a pattern morpheme. The
affixes consists of inflectional markers which determines the gender, tense or/and
number, while clitics can be prepositions (> <s,a), conjunctions (—ihe isa),

determiners (<laass), possessive pronouns (4Sk les) and pronouns (les).

Morphemes in Arabic are mostly identified by three consonant letters which for
the root of the word, as well as several affixes which could be added to the root to
form a word. For instance, given the root kataba - —S, which is the root of the noun
kitabah - 4uS (writing), we could inflect various number of words related to the

concept of writing. That include the words kataba - <& (he wrote), kitab - <Uus

39

(book), kutuk - <& (books), yaktub - i< (he writes), katib - << (writer), maktabah -

4% (library) and more.

In addition, the translation of one Arabic word in English can sometimes be
composed of a number of words in English. For example, the Arabic word
wabitatheeriha - W i s means (and by her influence). Therefore, segmentation of

Arabic textual data is more difficult than it is in Latin languages.

Also, one root can be used to form several words that have different meanings
which are not exactly similar to each other. For instance, the root alama - sl can
form several words of different meanings when adding affixes as shown in Table 3.4.
Another example of morphological variation is of the word thahaba - <3 of the verb
(to go), where different affixes are added in different tenses depending on the gender
and number of subjects is shown in Table 3.5. The morphological structure of the
words and the addition of prefixes, infixes and suffixes, are considered in the root
extraction algorithm proposed in this thesis. This is explained in details in section 4.1

in the fourth chapter of this thesis.

Meaning Suffix Infix | Prefix Word
scientific i - - dale
taught us L - - Liale

his science ° - - adle
scientists ¢l - - slale
scientist - \ - ale
teaching - ¢ < gl
teacher - - o alza
sciences - P - asle
informative 4 \ Gl | AaDlatiul
information <l 5 N Cilaslaa

Table 3.4. Variations and Meanings of the Word (al).

40

Time (gﬁg?::tgf Part?c?;ants Verb
Past Male 1)
Past Female 1 Cd
Past Male 2 Lad
Past Female 2 Ul
Past Male 3 or more 582
Past Female 3 or more G
Present Male 1 ey
Present Female 1 A
Future Male 1 8
Future Female 1 i
Future Male 3ormore | saduws
Future Female 3ormore | (el

Table 3.5. Morphological Variations of the Word (w3).

3.2 Arabic Morphology

3.2.1 Definition of Morphology

Morphology or derivation in general means to take a part of an object or half of it,
and to derivate a word, is to change it by adding or omitting letters from the original
word [38]. Whereas in linguistics it has been given various definitions which are not
too far from the general definition, we choose among them the following [39]:

a- Deducting a branch from the original word containing the letters of the

original word.

b- Forming a word from another one by amending the order of the letters or

adding others to them.

c- Creating a new utterance from another one suiting each other in meaning

and structure while they are different in the form.

3.2.2 Conditions of Derivation

Arabic grammarians have set a number of conditions that should be fulfilled to

accept the derivation process as follow [40]:

41

a_

The derived word, either a noun or a verb, should have an original utterance,
since the derivate word is a branch that has been taken from an original
word as we have learned from the definitions above. Thus, if the word is an
original one it won’t be considered as a derivate. But the question here is
what the original word of the new one is? Is it a gerund or a verb? Since

there is a disagreement among the Arabic grammarians as we will see later.

The derivate should be adequate with the source in the used letters with
regards the number and order where they agree with the order used in the

source.

The meaning of the derived word should suite the original source in
containing the same meaning with slight deference in the way it exists. For
instance, by clarifying the number of times, gender or tense, such as
dharaba - <)< (he beat), dharb -)& (beating) and dharib - «
(beater). Since, the Kofians grammarians mentioned that it can be the same
letters but different vocalization as in dharaba - « = and dharb - «)xa

above.

3.2.3 Origins of Morphology

The origin of the word in Arabic which morphology relies on to drive the new words
have raised a controversial great and interesting debate among various grammarians
of the most famous schools of Arabic grammar , Kufans and Basrians. That is where
the Basrians see that the verb is derived from the source which is the gerund (L><-l')

since they have provided the following proofs [41]:

a- The gerund indicates an absolute and open period of time, while the “verb”

b-

shows a specific tense of time such as past or present etc. So the absolute

case should be the origin of the restricted one.

The gerund shares its origin letters in all tenses and doesn’t’ share some, and
excludes other tenses, and when they need to indicate a specific time they

derive the verb and adverb all together from the gerund.

42

The gerund is a noun (verbal noun) which a word that can stands and
understood by itself with no need to a verb, while the verb doesn’t work

separately.

The verb indicates the event and the time while the gerund indicates only the

action only.

The verb indicates the meaning of the gerund, whereas the gerund does not
indicate the meaning of the verb such as nasara - >3, which means (lead to
victory), and carries the meaning of nasr - _<ai meaning (victory), since the

verb is a branch that should have an origin.
The gerund has one example while the verb has more than one example.

If the gerund has been derived from the verb it would have a fixed pattern
similar to the verb instead of having deferent patterns for nouns such as the

noun of the subject or the passive participle.

On the other hand, the Kufans have provided their point of view to support their

position of considering the verb as the origin of the derived words in Arabic as

follow:

a-

The gerund is derived from the verb and it is a branch of it as in kataba:
kitaabatan - “4US ;S (to write: writing), gama :giyaaman - &L : (to
stand , standing), ista lama: isti’laaman - "Wais) a1l (to inquire: inquiry),

and iftataha: iftitaahan - "W\l ;=% (to open: opening).

The gerund follows the verb in is vocalization which means it becomes
defective if the verb is defective and vice versa, such as kharaja: khuroujan
- a4 :z_A (to go out: going out) and gaama: giyaaman - ~&'WLs : (to

stand: standing).

The verb controls and affects the gerund and not the opposite, such as
darabtu darban -Usxs &y (1 beat hardly) or ustugbila al mad’owwna

istigbalan haarran -"\,\s Yl ossead) J&L (the guests have been

43

welcomed very warmly). So it means that the verb governs the gerund, and

Is higher in strength than it is as an original word.

d- The gerund is used to strength the act (the verb) and gives it an emphatic
situation, such as tafattahat alworood tafattuhan -~ a5 6l <t (the roses
opened widely) and inshaqgqgat alardhu inshigaagan -"@Wisl = ¥ @il (the
earth have cracked hugely). So, it is clear that the verb exist before the
gerund in the previous examples, showing that it is the origin of the words

while the gerund is a branch.

e- In Arabic there are a number of verbs that do not have a gerund (L,~<<), such
as ni’'ma - #=5 (what a good or how good), bi'sa - («u (what a bad or how
bad), ‘asaa - == (may be or perhaps), laysa - &« (not) and the verbs of
interjection (wa=d), ma af’alu: ma ajmalu assamaa’ - swidl Jeal L (What a
beautiful sky). So they stated that the verb can exist without the gerund

which means it is the original.

Nevertheless, linguist Ibn Al-Anbaari argues in his book ‘Alinsaaf fi Masaa’il
Alkhilaaf’ regecting the Kufans argument, explaining that the Kufans are not correct

in the last three points because of the following reasons:

These evidences are rejected since we say in Arabic, as an example, jaa™ Zaidun
Zaidun s\>- 35 43 (Zaid came himself), raa’ytu Zaidan Zaidan -2) &l (1 saw
Zaid himself), and marartu be Zaidin Zaidin -1 a3 &, (1 passed by Zaid
himself). Ibn Al-Anbaari states that the second noun confirms and emphasizes the
first one in these three sentences whereas it wasn’t derived from the first, and is not a

branch either.

Also, the derivate can be used even if we do not use the source, while the source
will remain a source and the derivate remain as it is. It is said: tayrun ‘abaabeel Jx\
- “»h (separate birds), where the Arab used the plural without using a singular word
for birds, as tayr - s (bird). They also said tayrun abaabeel which means in groups,

and never used a plural for birds, as toyur - sk (birds). Since, some grammarians

44

claim that it doesn’t have singular. In addition there are some gerunds that do not

have verbs such as wailahu - 415 or waihahu - 45 (woe unto him).

Briefly, the contemporary grammarians tend to accept the standards of the
Kufans relaying on the studies of the comparative linguistics. That is according to
what they have extracted from the out coming theories and knowledge about various
types of languages. Also, with regards to that position, Wil Vincent stated in his book

“The History of the Semitic Languages’:

“The majority of the words have been derived from an original word of three
letters which is a verb added with one or two letters or more at the beginning (prefix)
or at the end (suffix) where one word can provide deferent images indicating

different meanings”.

Finally, a number of contemporary researchers see that derivation does not have
one original source. As well, the Arab have derived words from nouns, verbs,
particles as well as prepositions such as ‘ala: ‘alaa - >< : Je= (on: to go high) and
‘an: ‘an’ana (e o= - (about: to till chain of narrators’ of prophet statements).
However, since it looks difficult to find absolute evidence that can tell which is the
right school, it was decided to adopt the indications that show that the verb is the

source of the majority of words used in Arabic text.

3.2.4 The Use and Purpose of Morphology

There are several purposes and uses of morphology/derivation [42]. Below is a list of

the main benefits and uses of morphology [38]:

a- This linguistic art of morphology have expanded the list of Arabic
vocabularies. For example, we could see that one of the most popular
Arabic- Arabic dictionaries, Lisaan Alarab (<« ¢d) by Ibn Manzuur,
includes more than 7,500,000 words. With the use of
morphology/derivation it was less difficult to form adjectives, verbs,
adverbs, name of places and many derived words. Also, derivation and

Arabic dictionaries such as Lisaan Alarab, have helped poets to have more

45

control on the rhythms of their poems. They were able to develop their
skills in speech, which led to enrich their text with rhymed prose and

poetry.

b- By learning and understanding derivation, grammarians and linguists were
enabled to recognize the additional letters and the original words and their

meanings.

c- It helped to determine the purification of the word being originally Arabic,
and it is a way to distinguish between the original pure word and the foreign
one, where we cannot find an origin source to the latter one either in
utterance or semantically. For example, when we look to words such as
assiraat - bl »2ll (the way), or alfirdaws - =524l (the paradise), and other
Arabicized words, we will notice that they don’t have an origin in Arabic.
That means that there are no sources for the words assiraatt and alfirdaws,
since the presence of a root or origin indicates the Arabic origin of the

word.

3.3 Words Derivation Methods

Arabic linguists and grammarians have categorised derivation to four different types
according to the number of root letters and the way of deriving new words and their

meanings. These are listed below as the following:
3.3.1 Minimal Derivation (=¥ jLiidy/)

Minimal, small and general are different names given to this type, which focuses on
deriving a word from an original one where both should agree in meaning [43], the
original letters and their order. For example, the word dhaarib - «_t= (beater), and
the passive participle madhroob - « s« (beaten), are both derived from the source,
dharb - <) (beating), according to Basrians. It was said it is derived from the root

verb dharaba - < - (to beat), according to the Kufans.

46

According to Ibn jinny in his book Alkhasa’is [44], it is that type used by the
majority of people and consists of one idea keeping the same order. On the other
hand there is also a disagreement among grammarians, where some of them believe
that some words are derived. However some others do not, such as Sybawayeh, Abu
Obaidah, Al Asma’l, Abu Omar and Alkisa’l [assuyoti, Almuzhir - part one]. On top,
a third group of grammarians believe that all Arabic words are derived from a root.

This type of derivation is the most common one used in Arabic and it is the most
important too. So when the word: ishtigaq - &\&i) (derivation) is mentioned, it
represents this type of derivation and doesn’t mean any other type except with some
restrictions. Nevertheless, both scholars of Syntax and linguistics have approved of
minimal derivation. But the first have treated it by looking to the form of and shapes
of the words as a result of derivation, while the linguists are looking to the relation
between the two words, how much they suite each other and share in meaning, and
the number of letters they are formed of, without looking to the vocalization or
constant cases. Last but not least, scholars gave different opinions about the size of

circle that includes the words derivation process in this type.

3.3.2 Supreme Derivation (_ss<l/ (sLiiy/)

In this type of derivation, the letters of the root are disordered. According to Ibn
Jinni, in his book Alkhasa’is, this type is where you choose a three letters root word
and form six words of those letters by changing their order in a word, having a
related meaning among them [45]. On top, if there is any different in that meaning
we choose the impeaded meaning as the derivation specialists do with a specific
structure. As well, Ibn Jinni was the only one who believes that this type of
derivation is of “the supreme derivation” type. The following is an example given by
him:

The root letters of the word jabara - = , which refers to strength and
protections and as well to heal a broken bone, can be reordered and used as jaraba -

<>, which is to put something in a pocket to protect it as a bag for money or put

47

socks on. Also, from roots that are built using these three letters, different words can

be formed. Below are few examples of that:

- Rajulun mujarrib - <~ J>,, meaning an experienced man whom his
experiences in life have strengthened him by knowledge and attitude to

improve his life.
- Juraab - <!>, is a sock, in which protects the feet from cold and harms.

- Burj - z_, is a tower which is a strong building and is used for protection

against enemies.
- Rajab - <2, which refers to strength or to glorification and exalt.

So, we notice that Ibn Jinni have circulated the three root letters forming six
deferent word order but still go around the same meaning (jabara - _»», rajaba -
s, jaraba - «», baraja - z_»). However, this theory was hard to prove in some
cases, as Ibn Jinni found it difficult to generalize when he tried applying it with the
words of four letters root or more, therefore, he restricted it with the words of three

letters root.

In addition, this idea of circulating was treated earlier by Alkhalil bin Ahmad in
his book Al’ayn [46], where he registered all used Arabic words by circulating the
letters order in all possible ways, showing which word is used and which is not.
Alkhalil have also been followed by Ibn Duraid and others, but he did not see that all
the six different forms of roots of specific three letters should lay under the same root

meaning, whatever their location or order are.

On the other hand, Ibn Jinni’s teacher Aba Ali Al-farsi have approved of this
idea, despite the fact that it was clear that Ibn Jinni was not very successful in his
theory to be generalized for quad-literal words. As well, it was difficult in some cases
to find the meaning relations between words which are formed of the same three

letters.

48

3.3.3 Grand Derivation (¥ jliidy/)

This type of derivation also called linguistics replacement alibdaal allughawi - JlxY!
<, It is defined as the one where most of the letters in two words are united and
related such as in, nahaga - 3¢ (to bray) and na’aga - 3= (to croak) [47]. The grand
derivation is different from the phonetical one alibdaal assarfi - 3 »=ll JuY), since
the later exists for a phonetic reason by replacing a phonetical letter in a word by
another sound or letter when the letters appear close in pronunciation. An example of

that is seen in the words Saama - sL= (to fast) from the root sawma - » 5= (fasting).

The grand derivation is considered broad according to the size of letters, where
it includes new letters which did not appear in the original word. However, some
linguists believe that it could include all the alphabets, while others restricted them to
those close to each other in exit and sound. Some scholars such as Ibn Jinni and
Assuyouti have looked at this type of derivation as a special one while others have
rejected the idea, arguing that it is against the nature of derivation. Those scholars
considered this type as a phonetical phenomenon built on replacing letters instead of

other ones, because of reasons such as:

- Mishearing the words which led to different repentance.
- Phonetical development of the replaced letter.
- Misreading or mispronunciation.

More examples for this type of derivation include: sahala - Je= (to neigh), za ra
-,13 (to roar), and sa’la - J~= (to cough). So these three verbs indicate sounds
representing the sound of the horse, the lion and human being. When we compare
these forms with each other, we find that the first letters of the three verbs, sad - u=,
zay - Jand sin - o+, are hissing or whistling letters, while the middle letters, haa’ - =,
hamzah - « and ‘ayn - &, are guttural letters, noticing that the lam - J is shared at the
end of two verbs while it is a raa’ - in the other, and these are the letters of

derivation.

49

3.3.4 The Giant Derivation (&£ gidy/)

This type of derivation is also called annaht - <3l (the carving, here it means to
carve or coin a word) [48]. The giant derivation has been named by Abdullah Ameen
back in 1956 in his book Alishtiqaaq for what is called annaht - <=3l [47]. In which
the derivation is done by taking some letters from two or more words or from a
sentence, and utilizes them to create a word that suite them in meaning and utterance.

Arab has used this process to abbreviate complex structures such as the following:

Basmala - Je~z, which is to say bismillah - 4/ ~ (in the name of Allah).

Sabhala - >+ to say subhaan Alla - 4 ¢~ (glory be to Allah).

Hay’ala - J==: to say hayya ‘ala alfalah - z2&) Je o~ (come for success).

Hawgala - Jis=: to say la hawla wala qowwata illa billaah - Y138 Y5dss ¥

4L (no power and no capability but with Allah).

Hallala - Jl: to say la ilaha illa Allah - &) Y1 41 Y (no god but Allah).

Kabbara - »S: to say Allahu akbar - S & (Allah is the greatest).

Istarja’a - a>_iw): to say inna lillahi wa inna ilayhi raji’oun - 43 UGl & U

sl (we belong to Allah and we will return to him).

Jawgala - Jis>: to say hamal jawwan - "\ s> Jea (to carry things through air).

Also, this type is applied to create words for abbreviation to relate people or
nouns to their origin or their tripes. For example, the word abshami - «dx= is used to
when referring to someone or something that belongs to the tripe of Abdu Shams -
ol e, However, linguist Ibn Faris said that most of the four and five letters root
words are derived through this type of derivation, while only some of them were
original words or were derived through other types [49].

This type of derivation is considered as a way to generate new words to indicate
new meanings, where it was approved contemporary by Arabic complexes in

necessity. An example of that can be seen in the word barmaa’l - Sl

50

(amphibious), derived from the words bar - »» and maa - <\ (land and water). As
well, that process is applied in generating abbreviation names of companies, medical

structures or military expressions.

3.4 Roots and Derivation Patterns

Derivation is used to derive words that are verbs, including tenses like past, present
and imperative in different pattern forms, which are called awzaan - o))l in Arabic.
As well, it is used to derive words that are nouns, such as names of places, tools,
people, places, gerunds, adjectives and adverbs, including numbers and genders of
those nouns in addition to relations and abbreviations.

In the following, we provide examples of most famous derivation patterns used
in Arabic for both verbs and nouns in tables. That includes showing how they are
organized in a helpful way to understand the language for learners and researchers, as
well as those who are interested in Arabic literature and Islamic studies, or working
on developing the language threw modern technology like computing and software

engineering.

3.4.1 Verb Patterns

Verbs in Arabic language have ten basic pattern forms, according to linguist
Mahmoud Al-batal [50]. In the most commonly used Arabic-English dictionaries,
these are numbered I-X with roman numerals by convention. In Arabic literature
tradition, by contrast, those are not numbered. They are referred to by wazin - o)
(pattern), with a representative of the three letters root constants, fa-aa-la - Ja.
These three letters act as symbols that stand for three letters that make up a root. The
letter faa - < pronounced fa - < in this form, represents the first letter of the root.

The letter ain - pronounced aa, represents the second letter, while the letter lam -

pronounced la, represents the third letter of the root.

Pattern one | in Table 3.6 below, is considered to be the basic form that gives the core

meaning from which others are derived. The other patterns build upon that basic

51

meaning, each in a particular way, for example by making it transitive or passive.
Table 3.6 below shows a list of the main verbs patterns sorted depending on the tense
of the verb. Verb patterns are included in the implementation of the proposed root
extraction algorithm, and is explained in details in chapter 4 of the thesis. However,
not all verbs can be derived to all ten patterns, as for some the maximum derivation

can be nine only, as can be seen in the example given in Table 3.7.

Pattern Past Tense | Present Tense Gerund
I ad/0ad/(nd | Jaiy(JaiyJai varies

i Jeld delgy dlelss
\Y Ol adl Jd)
VI Jels Jeliy Jelis
VII Jadl) J=il Jadil
VI Ja8) Jaiy Jad)
IX Osd) O Jhadl
X sl Jniilg Jaii

Table 3.6. Verb’s Basic Pattern Forms.

Pattern | Past Tense P{gf}izt Gerund Meaning
| akd ki akd To cut
I clas ¢J=su cbs To chop up
I ks S akl To cut of
v RN i sl To agﬂgf P
v ék&.\ K éLm To be l(J:lgopped
Vi bl bl ablE To intersect
Wil %] ki i) To be cut of
Vil el RE i To ta|(()(1§: a cut
IX - - - -
X il il il To deduct

Table 3.7. Basic Pattern Forms of the Verb (a&f).

52

In previous examples in Table 3.6 and Table 3.7, patterns are derived from the

three letters root in the past and present tenses, considering the subject of the third

person being singular and masculine. In addition to these patterns, suffixes and

prefixes could change, or more of them must be added differently. That depends on

the person or object and its gender and number. In Table 3.8, more examples are

shown adding suffixes and prefixes depending on the person, number of subjects and

gender, in the past and present tenses with examples of their pronouns as well.

P.ngigt Meaning TPe ansste Meaning Ps(t)trer;n Stlgje?:];s Person Gender Pronoun | Meaning
s et . : .y male & :
vy VS Ealad il
- I write L I wrote 1 1st female lam
. We . We . Plural male & .
i write i wrote (2+) 1st female o We are
i You g You Culad 1 2nd male il You
write wrote are
o You ., You . ot You
i . G Culzd iy
O write i wrote ’ 1 2nd female g are
& Yc_Ju ki You L Two ond male/fem L You
write wrote ale/both are
22 You 2 You 5 Plural . You
O write | ™ | wrote | P (3+) 2nd male & are
You You T Plural You
RN G X P . .-~‘
OiSS write s Wrote Cilad (34) 2nd female gt are
LS He IS He Jad 1 3rd male P He
writes wrote
s L2 She % - She ° %%
- writes) Wrote 1 3rd female) She
O They (IS They ad Two 3rd male L They
write wrote
Os They | yuge | They gy, Two 3rd female L They
write wrote
i They). They . Plural s
:) | |
OsiSy write e Wrofe slxd (34) 3rd male e They
. They . They o Plural i
OGS Write S Wrofe Ol=d (34) 3rd female oA They

Table 3.8. Patterns of the Verb (<) Considering the Person, Number and Gender.

53

3.4.2 Noun Patterns

Table 3.9 shows different patterns of noun derivation from the root, depending on

various letters order, and regarding positions of long vowels or root vocalizations.

Plural of the Place Source Pa5_5|_v € Ac'tl\'/e Root Meaning
place participle participle
ke e s & i< S To writ
makaatib maktab kitaabah maktuob kaatib kataba ownte
Sia Kiaa oS O sSua SR e .
. . To live
masaakin maskan sakan maskuon saakin sakana
gk i CHd g i ks Gyl To drink
mashaarib mashrab shurb mashroub shaarib sharaba
Jals Jik Jsad Jsada Jala Ja3 Toent
madaakhil | madkhal | dukhoul | madkhoul | daakhil | dakhala O enter
i s b s C"u o To open
mafateh maftah fateh maftouh faatih fataha
e e | s | gkl | ot .
. , , R " R To cut
maqaati magqta qate maqtou qaati gata’a
Jalia Al G s W
- = £ ¢ = ¢ To sleep
manamaat manaamah nawm munaam naa’im naama
Js Sl Ki Jsfle Jsi Y To eat
ma’akil ma’kal akel ma’koul aakil akala‘
RS sa s $¥%A e s To auide
mahaadi mahda hady mahdi haadi hadaa g
" ol : .
) M_ A e _“Lw 2 ey e w) ﬁ o R To study
madaaris madrasah diraasah madrous daaris darasa
i S "USJ i o oS To be big
mukabbiraat | mukabbir takbiir mukabbar kaabir kabura

Table 3.9. Noun Patterns Examples with Different Letters Order.

In addition to noun patterns of singular subjects, more nouns patterns are used
for plural. Most common patterns of those are displayed in Table 3.10. Both noun
patterns, singular and plural, are employed in the implementation of the introduced
root extraction algorithm alongside the verb patterns, which is explained further in

chapter 4 of the thesis.

54

Singular _
Pattern Example Plural Pattern Example meaning
A SR
d”ﬁ o vy e colour/colours
fa’l lawn af’aal alwaan
s Ay Jadl 3
fa’al walad af”aal awlaad boy/boys
b glia il il I |
fa’aal mataa’ af’ilah amti’ah uggage/iuggage
Jacd e Jadi A
fa’l shahr aful ashhur month/months
fu’lah qublah fu’al qubal iss/kisses
Jad d= Jd Jos mountain/
fa’al jabal fi’aal jibaal mountains
fa’l bayt fu’oul boyout house/houses
s i3 P oY
dé’fé):.‘f" cvéé ;\’);j . .
fa2iil amiir fu’alaa’ umaraa’ prince/princes
s - e - temple/tembl
mif*aal miftaah mafa’iil mafatiih key/keys
Jeld E Jels il o
faa’il jaanib fawaa’il jawaanib side/sides
fa’iilah gabiilah fa’aa’il qabaa’il tribe/tribes
s e Jad o it
fa’iilah madiinah fu’ul mudun cityfcities
. ¥ G L
‘{b@ "l d?,' -y bracelet/bracelets
fi’aal siwaar afa’il asawir
d, ’ 2 JJ : o . kantar/kantars
fin’aal qintaar fa’aalil ganaatir

Table 3.10. Plural Noun Patterns Examples.

55

3.5 Summary

In this chapter, the main aspects of the Arabic Language were briefly introduced.
This included the general characteristics of Arabic, alongside its morphological
structure and the history correlated to it. At the end, it was elaborated on derivation
methods and the derivation patterns of verbs and nouns with different examples for

both, noun derivation and verb derivation patterns.

56

Chapter 4

Roots Extraction

In this chapter a linguistic root extraction approach that is composed of three main
phases is presented. In the first phase removal of affixes including prefixes, suffixes
and infixes is handled. Prefixes and suffixes are removed depending on the length of
the word, while checking its morphological pattern after each deduction to remove
infixes. In the second and third phases, the root extraction algorithm is developed
further to handle weak, hamzated, eliminated-long-vowel and two-letter geminated
words as there is a rationally great amount of irregular Arabic words in texts. Before
roots are extracted, they are checked against a predefined list of 3800 tri-literal and
900 quad literal roots. Series of experiments are conducted on a selected data set
from Al-Sulaiti’s online Arabic corpora [51]. The data set of Al-Sulaiti is gathered to
give a sample text material for Arabic teachers, learners and mainly Arabic language
researchers. The corpus consists of 842684 words and 14 different categories, which
are processed to improve and test the performance of the proposed algorithm. The

work presented in this chapter was published in [52].

57

4.1 Methodology

The proposed root extraction algorithm is composed of three main phases. These
phases are processed after a text pre-processing stage where all stop words and vowel
marks are removed. In the first phase we focus on eliminating suffixes and prefixes
according to the length of the word, while employing a pattern matching process to
remove infixes and extract the root of the word. The words are matched against
patterns of similar length after every prefix/suffix deletion, to improve the speed of
root extraction and avoid removing original letters of the word that are equal to a

group of a suffix/prefix letters.

In the second phase, if the word root is still not found, it is decided to remove
suffixes and prefixes that are of one letter where the word is more than three letters
long. If the word is three letters long, it is then processed depending on it being
hamzated, weak, geminated, or a word with eliminated long vowel. Finally, if the
word is of two letters, it is processed depending on its being a geminated or a long-
vowel-eliminated word. Below is a detailed explanation of the three phases of the

algorithm.

4.1.1 First Phase

Within this phase, the algorithm is defined to process words according to their
length, starting with rules for long words and moving towards shorter words. After
every suffix/prefix deletion the word is checked against a list of patterns of the same
length, as seen in Table 4.1. If a pattern is matched, the root is extracted and is
validated by checking if it exists in a predefined root list of 3800 tri-literal and 900
quad literal roots, otherwise the word is processed through the second phase of the

algorithm

58

Length of Patterns/Roots Patterns

Length 4 Jlad (Aad (Jria (Jadl (Jgad (Jamd (Jlad e ld
Lenath 5 patt f tri-literal (Jzd) (Jadi) (Je o8f (Jeldi (Jadia ¢ Jladl (Jelia cdladi ¢ Jinsi

engtn S patterns ot tri-iitera (Jelil ¢ Jilad ¢Alind cJe b cJlaia coDlad b o Dlad ¢ Jniba
roots Al cilaia cAladd Rllad _lnb ¢ 5ol ¢ <) ynia
Length 5 patterns of quad roots ad (Allad ¢ Jlnda ¢ Jlads
Length 6 patterns of tri-literal celia ddlelia cJeldia (Jladil () (Jadine ¢Jadinl
roots e g2ia ¢Jo g2l (e ldl (o Madl
Length 6 patterns of quad roots Hladia ¢ Jatdl ¢ JMad) ¢ Jullad
Length 6 or more Dlandl (Jlaiiin

Table 4.1. Arabic Patterns and Roots.

The process of this method is described in the steps below, and a corresponding

flowchart of this phase is represented in

e First, if the word starts with the letters ‘J" then remove them.
e If the word length is equal or greater than six, check for the following prefixes

and remove them:
Prefixes- e Chud cCu ol cdlj cd\J WJe Ja cd\.\ JE

e If the word length is still greater than or equal to five, remove the following
prefixes/suffixes:

Prefixes- !« () cg (s 6o ¢
Suffixes- o) (o ¢y el cla el ¢ 3¢ ey o O €S (S @i e e (s

e If the word is equal or greater than four letters long, remove the following

prefixes/suffixes:
Prefixes- J g o
SUfﬁXES- s AT T

e If no root was found, the word is then processed through the second phase of

the algorithm.

59

[
»

no
yes
yes
no
no
e |
{ no
oY

+

Figure 4.1. Flowchart Representation of Phase 1.

4.1.2 Second Phase

In this phase, the cases of hamzated, weak, geminated and eliminated-long-vowel

words are handled.

e |f the word contains one of the hamzated letters “5°, ‘s’ or ‘¢, such as in the
word (JS), or the letter <" which expresses the hamzated alif I with the
long vowel alif *”” as in the word (<_l), change it to ‘> then validate if it was
a root or not. In the case of (JSx), the letter ‘s’ is removed in Phase 1 and the
letter <3’ is changed to ‘I*, giving us the correct root (JSi).

o If the word’s second letter is weak, ‘1’, ‘¢’ or ‘5, then change it to ‘’, if the

root was not present change it to ‘s’, if the root was not found change it to ‘.

An example of this case is the word (J&) whose root is (J8).

60

If the root is still not found, that mean the word is either geminated or an
eliminated-long-vowel word with one letter prefix/affix. In this algorithm we
remove the prefixes of the letters ‘s’ and ‘<’ like in the word (¢=2) which is
geminated, and the word (935) which is an eliminated-long-vowel word.

If the root was not found and the word is three letters long, return root was not

found, otherwise if the word is two letters long, proceed to Phase 3.

4.1.3 Third Phase

In this phase, words that are two letters long are handled. These words can either be

geminated, eliminated-long-vowel or hamzated with an alif that is removed from

imperative verbs like in (di) and (h’s) of the roots (JsT) and (21).

The first step here is to double the last letter of the word that is geminated, as
doubled verbs roots have the second highest percentage of popularity in
Arabic language after consonant verbs [5]. An example of this case is the
verbs (2=) and (1<) of the roots (2x<) and (2).

If the root is still not valid, the word could be an eliminated-long-vowel. Thus
we add the long vowel ‘5’ in between, as weak roots of the vowel ‘s’ comes
third in the roots popularity list.

If the root was not found, add the vowel ‘s’ in the middle of the word.

Lastly, if the root is still not found, add a hamzated alif in the beginning then
check for root validation. If the root was not found at this stage, return root

was not found.

61

4.2 Implementation

The Root Extraction method developed is implemented using Java programming
language, which have been used in many stemming and document classification
application such as Lucene Apache software [53], and Carrot? Classification
Software [54] [55]. The implementation process is divided in different stages for
each phase of the Root Extraction method. In this section, each stage of

implementation is explained separately. These stages are identified as the following:

a. Pre-processing Stage.

b. Affixes Elimination and Pattern Matching Stage.
c. Handling Hamzated, Weak and Geminated Words.
d. Final Stage (Handling Two-Lettered Words).

For each of the stages above, a separate class is defined in the Java code to create a

sustainable design, and develop a high standard of coding quality.

Pre-processing Stage

In this stage, the code is initialized to enable reading numerous text files and process
them accordingly for stemming, stop words removal and the root extraction process

overall. This task is done in the main class of the code, “RootExtractor.java”.

The “main” function in the RootExtractor class is the starting point of the
implementation. At first, all files are read one by one, and an ArrayL.ist is created for
them by a separate function named “createList”. This function accepts each name of
the text files as a string to be parsed and processed. Each file is open opened in Java,
where all lines are read one by one adding their contents in another ArrayList

belonging to that text file.

The next step of this stage is to remove all stop-words which should be
eliminated before the root extraction process. As each word is parsed, it is matched

against all stop-words that are listed in a different text file using two loaded

62

ArrayLists. After that, stop-words are removed from each text file’s ArrayList as

seen in Figure 4.2.

public static void removeStopWords(List<Strings articleWordsList)
{
for (String currentword : articleWordsList) {
if (!stopwordsList.contains{currentword)} {
articleNoStopwords.add({currentword);

¥

Figure 4.2. Instantiation of the removeStopWords() Function.
Affixes Elimination and Pattern Matching Stage

In this stage the words are processed according to their length form longer to shorter.
Each word is to be checked for specific suffix/prefix removal for each length. The
word is then checked if it’s a root or not. If the root is found, the root is extracted and
returned. Otherwise, the word is checked against a list of defined morphological
patterns. If the word matches a pattern, the root is extracted and is checked against
list of roots. Finally if the root is found it is returned, otherwise the word is processed
further according to its length. For these two main procedures, two classes are
implemented, SuffixPrefix.java and Pattern.java. In addition, the class Root.java is

implemented to apply the root validation step.

SuffixPrefix.java

The SuffixPrefix class contains a “remove” function which takes 3
arguments. The first argument is the word which is currently being processed.
The second one is the patternList which is to be matched against it. While the
third is the rootList, which is employed when applying the root validation

step.

The word is passed through this class after being processed in the main
RootExtractor class. After that, the length of the word is checked, and then it
is passed to the SuffixPrefix class where suffixes and prefixes are removed
accordingly. Several ‘if* statements are defined for each word length, starting

with the length 6 or more, and then decreasing one level at a time until

63

reaching length 4. As the length and condition are matched, the appropriate
suffixes/prefixes are removed. For example, if the length of the word is 5 and
the last two characters of it are 'o~', which represents one of the prefixes
which should be removed from words of length 5, they are removed. An
instantiation of the code to remove suffixes from words of 5 letters is shown
in Figure 4.3. After an affix is eliminated, the word is returned to the Pattern
class to be checked against the appropriate patterns, and is then passed to the
“check” function where the class Root is employed for the root validation

process.

if (word.length(}>=5}{

if (word.charAt(1)==('y') && word.charAt(8)==(".")
|| word.charAt(1l)==('J"') && word.charAt{@}==(":"
|| word.charAt(1)==('J") && word.charAt{@)==("'_"
|| word.charAt{1)==("'.") && word.charAt{@}==("'."
|| word.charAt({1)=={'-") && word.charAt{@}==('."
|| word.charAt(1)==('J") && word.charAt{@}==("'"
I)
|l)
'l

word.charAt(1)==(';") && word.charAt{@)}==("_"
word.charAt(1)==('="') && word.charAt{@)==('_"
word.charAt(1)==("',") && word.charAt{@}=("'_"
word = word.substring{2);

el A

{

}

word = Pattern.check({word, patternsList, triRootsList):

Figure 4.3. Code Implementation to Remove
Suffixes for 5 Lettered Words.

Pattern.java
In this class, the word is matched against a list of patterns of the same length,
where each letter of the word is compared with the letters of the pattern of the
same position. If all letters matches, except those of the positions of the three
consonant root letters (J-g-<), the root is extracted. In this class, the function
CharAt() of the java’s String class is used compare the letters of the words

against those of the pattern, as shown in Figure 4.4.

As well, this class contains the "check™ function which is employed in
previous class SuffixPrefix.java, where the word is checked against the lists of

roots to validate the root if found.

64

for (String pattern : patternslList){
if (pattern.length()==word.length{)}{
boolean match = true;
for (int j=8; j < word.length{); j++} {
char ¢l = pattern.charft(j);
char ¢2 = word.charAt{j);
if (€1 = 'a' || €1 = "¢' || €1 = 'J'){
indexes.add(j);
¥
else if { !'{cl = 2}){
match = false;
indexes.clear();
break;

¥

}

if (match) {
matchedPatterns.add(pattern);

addIndexes = String.valuedf(word.charAt(indexes.get{8)))+
String.value0f(word.charAt{indexes.get(1)))+
String.valueOf (word.charAt{indexes.get(2))};

if (indexes.size() == 4}{
addIndexes += String.valueOfi{word.charAt(indexes.get(3)}));
if(pattern.contains (" Jg ;z5"))
addIndexes = String.valuedf (word.charat{indexes.get(8)))+
String.valueOf (word.charAt{indexes.get (1)) }+
String.value0f (word.charAt{indexes.qget(3))};
}
1

foundwWord = addIndexes;

Figure 4.4. Implementation of the Pattern Matching Process.

Root.java

In this class, the word is processed class to match it against the list of TriRoots
or Quadroots according to its length. These roots are compiled from two text
files into two different ArrayLists, and consist of 3800 tri-literal and 900
quad-literal roots. As the word is processed through this class, it is passed to
one of the functions, checkTriRoot or CheckQuadRoot of the Root Class. The
implementation of the checkTriRoots() function is shown in Figure 4.5. Both
functions receive two arguments, one being the word to be matched, and the
tri-literal or quad-literal roots list, in which the word is compared with the root

list. If the word and the root match correctly, the root is found is then returned.

65

public static String checkTriRoots(String newWord, List<String> triRootsList)
{
String newWordRoot="";
for (String triRoot : triRootsList){
if (triRoot.equals(newWord) }{
newWordRoot=newWord;
RootExtractor.mylLists [RootExtractor.currentIterationl]
. rootFoundlist.add (newWordRoot) ;
}
1

return newWordRoot;

Figure 4.5. Implementation of the checkTriRoots() Function.

Handling Hamzated, Weak and Geminated Words

If this stage is reached and the root is not found, this means that the word either
includes a hamzated letter, a geminated or a weak letter. Thus, defined rules are
applied while the word is being checked is it was a root or not. That is by using the
if-else conditions, done at the end of the main class RootExtractor before the rules of

the final stage.

This step is implemented by checking each location of the word for specific
characters, such as hamzated letters 3’, ‘s’ and ‘¢’ and weak letters V’, ‘¢’ and ‘5 .
If they match, the letter is replaced accordingly. Figure 4.6 shows the implementation
of the code to replace the hamzated letters to a hamzated alif. Then the word is
returned to the Root class to be checked is against the defined lists of TriRoots or
QuadRoots depending on its length. If the root is found, it is then returned, otherwise
the root is set to be not found, or the word is processed further if it was shortened to

two-lettered word.

for (int 1 = @; i < newWord.length{); i++} {
if {(newWord.charAt({i) == '&'
|| newWord.charat{i) == ';'
|| newWord.charat{i) == '.'
|| newWord.charat{i) = '7') {
String hamzahModified = newWord.substring(@, i)+']
+newWord.substring{i + 1, newWord.length()};
root = Root.checkTriRoots(hamzahModified,
triRootsList);

Figure 4.6. Code Implementation for Handling Hamzated Words.

66

Final Stage (Handling Two-Lettered Words)

The final part of implementation is to develop the code to handle the words of two
letters length. Meaning if all stages are completed while the root is still not found,
and the processed word is of or has reached the length of two letters, few rules are
applied accordingly. The implementation includes the use of if-else statements to
apply the rules and to check if the created word is a root or not. If the word is a root
then the root is finally extracted. Else, apply the following rule and so on. These rules

are defined as the following:

e Double the last letter, which occurs in cases of geminated words.

e Add the letter waw - ‘5’ in the middle of the word, for cases of eliminated
vowel words.

e Add the letter yaa - ‘¢’ in the middle of the word, for cases of eliminated
vowel words.

e Add a hamzated alif - ‘" in the beginning of the word, for cases of

eliminated alif of imperative verbs.

If the root is found after applying one of those rules, the root is returned. Otherwise
the root is set to be not found. That is implemented at the end of the main class
RootExtractor, after the code of handling hamzated, weak and geminated words.
Implementation of the code handling geminated and eliminated alif words is

presented in Figure 4.7.

if (newwWord. length(}==2)
{
String repeatlLetter = newWord+newWord.charAt(1);
String root = Root.checkTriRoots(repeatletter, triRootsList);
if ("".equals(root)}{
newWord = '’ '+newWord;
root = Root.checkTriRoots(newWord, triRootsList);
if {("".equals(root)}{
¥
}

Figure 4.7. Code Implementation to Handle Geminated
and alif Eliminated Words.

67

4.3 Results and Discussion

Data Set

In order to support and test our algorithm, a number of entries are selected from Al-
Sulaiti’s online Arabic corpora [51]. The data set of Al-Sulaiti is collected to provide
a prototype text material for Arabic teachers, new learners and mainly Arabic
language researchers and engineers. The corpus consists of 842684 words and 14
different categories. In previous work on Arabic root extraction, most testing
methods do not include manual checking to verify if the root of the word was
extracted correctly and does actually belong to that word or not. Instead, the roots are
defined as correct if the word was shortened to a tri-literal word, or if it did exist in a
predefined list of roots. Also, the percentage of the correctly extracted roots is shown
to be higher than other compared algorithms within the work despite using a different
data set of different amount. Thus, we decided to manually verify the results of the
algorithm, selecting several entries making up to 4341 words as the total text, to be

compared with Khoja’s stemming algorithm result.

Testing and Evaluation Method

Arabic stemming and root extraction research included various different algorithms,
but only a few has focused on solving the problem of tri-literal words that are weak,
hamzated, geminated or eliminated-long-vowel. Nevertheless, Khoja’s stemmer is
one of the very well-known Arabic stemming algorithms that also handle these cases.
Therefore, we process our data through our root extraction system taking the text
input from a text file containing the data set. The same data set is then processed
through Khoja’s stemming system which is available for download [32]. After that,
the results of all processed words and their roots are manually checked, as some roots
can be extracted for the words as long as they appear in the roots defined list, but not
necessary belong to those words, thus inaccurately extracted. Both the results of the
introduced algorithm and the results of Khoja’s stemmer are checked and compared

for evaluation.

68

Results and Findings

Using the same collected data set as input to both our root extraction system and
Khoja’s system, we achieve the results as shown in Table 4.2 and Figure 4.8. It can be
seen that Khoja’s system extracted 3162 roots out of 4341 words (73%), while our
system has extracted 3061 roots (70%). However, not all roots were correctly
extracted because of excessive root extraction steps in Khoja’s algorithm that leads to
extracting roots for Arabicized, Proper noun words, and words that are a combination
of a prefix/suffix and a stop word. For example,Khoja’s system extracts the root
(i) for the word (WUay), which means the country Italy and do not have a root in
Arabic. It also extracts the root (1) for the word (¥), which is a combination of the
prefix waw (s) and the stop word (¥). Both words however are defined to have no
root when processed through the introduced extraction algorithm. Although both
algorithms extracted a number of inaccurate roots, which exist in the Arabic roots list
but do not represent the processed word, the number of inaccurate roots extracted
ishigher in Khoja’s system results (13.7%) than in the proposed root extraction
system (5.2%). That is due to extracting roots of Arabicized and Proper noun words
as well as failing to extract the correct roots for many tri-literal weak and hamzated
roots. Such as extracting the root (.2) for the word (<4s_) where the correct root
which is extracted through the new algorithm is (<), and the root (L) for the
word (Lal), where the correct root is (Ual). Overall, our system extracted more
accurate roots (65%) than Khoja’s system (59%) with an improvement rate of 6%

(Figure 4.7).

69

3500

3000
2500
2000
1500
1000

500

-

Roots Extracted Accurate Roots Inaccurate Roots

m Khoja's

H Proposed
Algorithm

Figure 4.8. Proposed Algorithm vs Khoja’s Testing Results

Proposed

Algorithm Khoja’s Algorithm

#Io@R00s | 3061 | 7059 @ 3162 | 72.8%
Extraced noots | 224 | B2% | 593 | 13.7%
o Acourale 2837 | 654% | 2560 | 59.2%

Table 4.2. Proposed Algorithm vs Khoja's Testing Results.

70

4.4 Summary

In this chapter an improved root extraction algorithm for Arabic words, which is
based on morphological analysis and linguistic constraints was presented. The
algorithm handles the problems of infixes removal by eliminating prefixes and
suffixes while checking the word against a predefined list of patterns. The problem of
extracting the roots of weak, hamzated, and eliminated-long-vowel words has been
handled. As well as the two-letter geminated words, that is by identifying linguistic
based rules to replace, eliminate or duplicate certain letters where needed. The
experiments and testing were conducted by using thousands of Arabic words
gathered from an online Arabic corpus which is collected to aid Arabic language
based research. Human judgment was applied to evaluate the results and accuracy of
the algorithm. The algorithm is introduced with the aim of supporting Arabic
stemming/root extracting tools. The results obtained shows that the root extraction
algorithm is promising and is worth being applied in various Arabic language

processing programs.

71

Chapter 5

Documents Classification

It is mentioned previously in this thesis that text classification requires the use of text
pre-processing methods and feature identification algorithms to represent the text
before processing text classification.

In this chapter, a new approach to identify significant keywords for Arabic
corpora is presented. As well, three different text classification methods are
implemented using the extracted keywords as the main features for classification.
Finally, the classifications results of each method are evaluated and discussed as a

whole.

5.1 Feature Selection

5.1.1 Methodology

The feature selection procedure is done by implementing the advanced stemming and
root extraction algorithm, as well as Term Frequency-Inverse Document Frequency
(TF.IDF) topic identification method [56] Both methods are employed to find
features of different data sets representing six different categories. These are culture,
economy, international, local, religion and sports. The first step to identify the

features is to stem and index each data set. After that, the TF.IDF algorithm is used

72

to calculate the weights of the roots to identify the highly significant keywords for
each category. A prototype vector is then built using the keywords selected. The
weight for each element in the vector is obtained as the combination of the term
frequency TF (w,d), that is the number of times the word w is repeated in the
document d, and IDF (w), which is the inverse document frequency [57] [58]. The
weight of the word w; in document d is called d; and is obtained using equation (5.1)

[57]:
d; = TF(w,d) x IDF(w) (5.1)

The IDF (w), which is the inverse document frequency of the term, is calculated by

applying equation (5.2) [57]:

IDF(w) = log (DF’ZW)) (5.2)

where N is the total number of documents and DF is the number of documents in
which the term has occurred in [57]. As we calculate the TF.IDF value for each term
in the data set, we extract the terms with the highest TF.IDF to present the highly

significant terms of the topic.

5.1.2 Implementation

In order to implement the TF.IDF algorithm to select topic features, the Root
Extraction system is employed. That is to extract the roots of all articles in the
category and calculate their TF.IDF values subsequently. To accomplish this task,
two functions are built as an extension to the Root Extractor. These are
calculateIDF() which calculates the IDF values, and calculate tfidf() which calculates
the TF.IDF values. In FiguresFigure 5.1 andFigure 5.2, instantiations of both

functions are presented.

73

public static void calculateIdf() {

int currentCounter = @;

HashMap<String, Integer= CountMap_df = new HashMap==()};

List<String> wordslist = new ArraylList<String=(
MyLists.allwords_tf.keySet());

for (int y = 8; y < wordslist.size(); y++) {
for (int 1 = @; i = number0fFiles; i++) {
if {myLists[i].rootFoundList.contains({wordslist.get(y]}} {
currentCounters+;
if (CountMap_df.containsKey(wordslist.get(y)})) {
CountMap_df.put(wordslist.get(y]),
CountMap_df.get(wordslist.get(y)) + 1);
¥ else {
CountMap_df.put(wordslist.get(y]), 1);
+

}

float temp = (float) Math.logle((float) numberOfFiles
f (float) currentCounter};

MyLists.idf.add((float) temp);
currentCounter = 8;

Figure 5.1. Implementation of the calculateldf() function.

public static void calcultetfidf{) throws FileNotFoundException,
UnsupportedEncodingException {

List=String> wordslist = new ArrayList<String={ MyLists.allwords_tf.keySet()};

for (int y = @; y < wordslist.size(); y++) {
String currentword = wordslist.get(y);
Float idf = MyLists.idf.get(y);
Integer tf = MyLists.allwords_tf.get(currentword);
Double tfidf = (double) (tf = idf) ;
MyLists.tfidf.putlcurrentword, tfidf);

1

ValueComparator bvec = new ValueComparator{MyLists.tfidf);
TreeMap<String,Double> sorted_map = new TreeMap=<String,Double=(bvc);
sorted_map.putAll(MyLists.tfidf);

System.out.print(sorted_map.size()+" roots in ");
ReadWrite.writeToFile(folderPath, sorted _map, sorted map.size()};

Figure 5.2. Implementation of the calculate tfidf() function.
5.1.3 Experiments and Results

Until recently, there are no standard Arabic text corpora for data mining and
classification research purposes. However, a number of studies are trying to
scientifically compile representative training data sets for Arabic text classification,

which cover different text topics that can be used in future as a benchmark [59].

74

Therefore, many works dealing with topic identification or text categorization for
Arabic language were conducted out using non representative and small corpora. In
order to test this algorithm, a text corpus of 1000 articles which corresponded to
thousands of words is selected. The corpus was retrieved from an online Arabic
database resource providing thousands of Arabic online newspaper articles
(http://www.sourceforge.net/projects/arabiccorpus). The text we selected for testing
belongs to the ‘Culture and Education’ category (&l <¥dll) and should extract

culture related terms as the highly significant topics.

In our experiment, a data pre-processing step was conducted before the
stemming and weighting stage. Every article was processed to remove punctuation
marks and digits and eliminate stop words. After that, we implement our root-based
stemmer to extract and index the words as roots, reducing the number of indexed
terms and to achieve a better result covering the main terms of the category avoiding
repetitive listing of words that belongs to the same morpheme. Sequentially, the
TF.IDF values are calculated to extract the highly significant terms. As we calculated

the TF.IDF values, we extracted the top ten terms to represent the category, as shown

in Table 5.1.

TF.IDF Extracted Term
4318 ple
3891 Sae
3816 uae
3306 s
3182 «e
3160 B
3303 o
2334 T
2267 ad
2156 GINEN

Table 5.1. Terms extracted via Root-stemming
and TF.IDF.

75

Subsequently, the extracted terms are compared with the top TF.IDF terms
extracted from the same category articles where a light stemmer is implemented to

stem the words [30], as shown in Table 5.2.

TF.IDF Extracted Term
1867 dn e
1308 e
1192 alle
1179 ee
1063 Qus
1056 aud
1053 o
1042 ZHEY
1030 A

948 ol

Table 5.2. Terms extracted via light stemming
and TF.IDF.

It can be seen that the terms represented by roots in our results have a higher
TF.IDF value as more than one world relates to the same morpheme. For example,
our results list the root (0#) of the noun (¢#) instead of listing more than one word
that belongs to the same noun, such as (&), (¢#) and (0k). As well as for the words
(=) and (=), the term extracted using our method is «_=. These roots weights
higher TF.IDF values than terms extracted without the use of advanced stemming
and root extraction methods. Thus, implementing a feature selection algorithm by
combining root-based stemming as well as TF.IDF weighting approach gives a result
of less indexed terms and a more efficient terms weighting than when using light

stemming methods.

5.1.4 Main Feature Selection

Consequent to the results of the root-based TF.IDF feature selection method, it is
implemented to define the main features of several Arabic text corpora. Most
research on Topic Identification or Text Classification for Arabic language was
conducted by utilizing non representative small corpora [60] [61] [62] [63]. This

could be a cause of erroneous results and inaccurate evaluation. One of the few

76

studies in the field which was carried out employing a fairly representative corpus is
presented in [64]. However, the number of categories included was three only, which

is not sufficient to produce accurate results.

Thus, the corpus selected to aid the text classification phase of this research, was
retrieved from an online Arabic database resource, which provides thousands of
Arabic online newspaper articles (http://www.sourceforge.net/projects/arabiccorpus).
The text corpora selected contains six different categories and nearly 9000 articles,
and was employed in few studies including [30], while [4] employed part of it. Those
categories are Culture, Economy, International, Local, Religion, and Sports. In

Table 5.3. Number of Documents, the number of articles for each category is

presented.

Caegory | Doquments

Culture 2782

Economy 3468

Local 2035

International 3596

Religion 3860

Sports 4550

Table 5.3. Number of Documents
for each Category.

In order to select the main features for each category, the training database
which represents 80% of each category are employed. The database is first pre-
processed to remove stop-words, punctuations and unnecessary diacritics, while
replacing the important ones. After that, it is processed through the root-based
TF.IDF feature selection system where optimal features are selected for each
category, according to their TF.IDF scores. In TablesTable 5.4 -Table 5.9, the top ten
features for each category alongside their scores and examples of possible derived

words are shown.

77

TF.IDF Words Examples Related Words Term
20411.05 C5iSa oS oS ¢ QIS AiSe | Writing, Library S
18847.66 OB 0B (OB e Exhibition s

o il
15669.13 Lmd ¢ pdi el ¢ el Poetry s
14964.31 Jsal @l o L Fine Art J<a
13631.92 O sbian cJian dyliiad (i Play, Act, Actors Jia
12048.44 e dage da e (e Arab, Arabian g
11757.18 OS5 6058 liilS ¢S Creation OsS
11171.34 (B el e s Art, Artist o
10910.20 A ¢SS PSS Increment B
10890.13 S i ¢l Expressing e
Table 5.4. Features Selected for the 'Culture-48&" Category.

TF.IDF Words Examples Related Words Term
24681.27 st Ayl el | 9»
20177.52 BIECEISPEN Involved Jis
19988.14 Alad] galaB) Lo Economy Aad
19953.71 Aaiie il «ladie Product e
18404.06 Busms o3 smsl (375 ¢(3 gl Marketing, Market | (s
17815.44 Jasai ¢l sal ¢ N Money, Finantial | Jse
15956.08 Gle sias (puay (pua alas | Factory, Making rua
15918.21 O 5adlios carlios (abls cage Stock, stack e
15824.37 g Uil ¢adad cp Unin cp U Sector ki
15206.12 Gle 5 pla g bia e 5 ik Project g~

Table 5.5. Features Selected for the 'Economy-4ua®' Category.

78

TF.IDF Words Examples Related Words Term
; LT . Leader, ;
13787.63 el n el Al (o) Presidency e
12724.58 2 ga e g8 cBaag Unity, Unite g
- . Rules,
11552.32 ASal deaa o Sa (uSla Government Sa
11208.67 Al AN ¢ (Jal (Jal Quit, Fired i
. . . o Race, Origins, .
8429.17 Geoe «Bloe «@e el Ancient Soe
8205.78 EET I PO T EN TR TN Investigate, Truth (3ia
5 . Country,
759235 MJ\M cd}‘.l\ ‘d}.ﬁ ‘&}J Exchange djd
7415.71 ARYETS VIR PRE State, Guardian AP
6674.06 Jilse A3l g 5usa ¢ g pmsn Responsibility Jhs
6426.66 AT A cdls Elections, Elected GAS
Table 5.6. Features Selected for the 'International-4slle' Category.
TF.IDF Words Examples Related Words Term
24033.76 Al (s s cltha Student, Request NN
. .o 5 Study, School
21529.82 Osmida ¢ pm) A yda M.m\).) Teaching 'Y
18284.75 Ghalic dalaia ¢(3lali ((3Uas Area Gkl
17886.96 RPENFRPPCUNRIERIRIVEN Thanking APEN
16375.33 el ade e ddas Rise, Promotion e
16245.06 S e ¢ 38 pe ¢ 38 5 Centre, Focus Ky
15855.13 JIAs (Jae g3 (A Involved BIEN
P, Stand, s
15094.73 e eslie o ol Resistance e
14356.54 dae pd e il op g e Project B
() gan (s laa 3 palaa
14050.21 - }4.. > Talk, Guest P-TN

D]

Table 5.7. Features Selected for the "Local-<\das" Category.

79

TF.IDF Words Examples Related Words Term
52252.21 Js8 Jid el @ Ji Saying, Article Jsé
51342.675 el osle oo e Rise, Higher Sl
43563.39 adgi eV g ey i State, Guardian AP
38164.648 | e o rn Al) Pro&gigai”d’ e
37477.15 A5 S 55 e Empower JSs
34618.99 A8 (Jal (Ul ol Quit, Fired Ji
32371.37 O ¢S e0p S¢S Being, Creation SIS
31368.11 sha (las o) s 3a Pray, Prayer b
30993.07 O ¢ paldil ¢l ¢ pu g Breath, Soul i
24864.95 DS B S YRS ¢ i Increment S

Table 5.8. Features Selected for the *Religion-4" Category.

TF.IDF Words Examples Related Words Term
37578.00 ClB 5 8 e38 6308 ¢ B Team B8
36589.12 e e daal ey cala Field, Players Gl
31424.21 Gl (Al idie National Team i
26906.35 Jhay ¥ shy (JUadf ¢l shay Championship Sy
25217.00 B 9 63 ga s g cdal g Unity, United g
23098.08 Qaay (el (dasa dea Greatful LPEN
21980.21 e s ¢Flm Compettion G
20441.41 i eeli ¢ A ¢ Dual i
19032.99 Calaa ccilaal ciaa Goal o
18814.56 S Kn S | SR POSON | g

Table 5.9. Features Selected for the 'Sports-4s4l ' Category.

After selecting the top ten features for each category, they are set as vectors and
are implemented in documents classification. In the next sections, both training and
testing database, which was not included in feature selection, are processed through
different classification methods. At first, each document in the database is processed

through the root-based extractor, calculating the document’s terms frequencies, and

80

then employing those measures to classify the document through different

classification methods.

5.2 Terms Frequency-based Classification

5.2.1 Methodology

Terms Presence and Term Frequency have been a significant measure in documents
classification techniques. In this section, a document classification approach is
introduced, which is completely based on term weighting and terms presence within
each document and category documents as a whole. In this method the topic vectors
selected through the TF.IDF method, as listed in previous section, are employed to
classify each article in the database. That is done by pre-processing each document in
each category, and then processing it to extract the roots. Meanwhile, all the terms in
an article matching those in the topic vectors, and their frequencies are calculated.
Subsequently, the document topic is found depending on the frequencies total found
for each topic vector. In other words, the document topic with the highest frequencies

sum is selected.

5.2.2 Implementation

In order to implement the Term-Frequency-based Classifier, the class
TF.IDFClassifier.java was built while utilizing the output files of the Root Extraction
system. These include the roots lists extracted from each article in the database
alongside their frequencies. As well, each topic vector selected through the TF.IDF
system is utilized. In the main function of the class, each vector is added as a
topicMap in a Maps ArrayList, ArrayList<Map>(). The category folder is also
initiated at the beginning and all its roots files are added to a File[] type of list named
listOfFiles. As well, the variables topicMap, highTotal and cat, are initiated to define
the category of the highest total. Next, a LinkedHashMap<String, Double>() named
matchedTerms is created. That is to add the terms and their frequencies of the
article’s roots, which matches the topicMap terms.

81

After that, the total of frequencies for matched terms is calculated for the
topicMap, and is set as the highTotal at first. Subsequently, the frequencies total is
calculated for the next topicMap, and is set to the highTotal if is higher than the
previous one, and so on. At last, the category is selected depending on the highest
frequencies total, for each article in the category. In Figure 5.3, an instantiation of the

main part of the Terms Frequency-based Classifier code is presented.

int x = @;
for (File file : listOfFiles) {
Map=5tring, Double> docMap = new LinkedHashMap=String, Double=(};
docMap = ReadFiles(listOfFiles[x].getMName());
int topicMap = @;
double highTotal = @;
int cat = @;

for (int i=0;i<topicMaps.size();i++){
Map=String, Double= matchedTerms = new LinkedHashMap<String, Double=();
matchedTerms.clear();

for [String key : docMap.keySet()) {
if {topicMaps.get(i}.containsKey(key)){
matchedTerms.put {key,docMap.qget(key));
+

1

Map<String, Double> currentMap = topicMaps.get(i);
int element = @;

double total = B8;

for (Map.Entry<String, Double> entry : currentMap.entrySet(}) {
element++;
if {matchedTerms.containsKey(entry.getKey())){
total = total + matchedTerms.get{entry.getKey());
¥
}
if (total == highTotal){
highTotal = total;
cat = i + 1;

1
1
String Category = "";
switch (cat) {
case 1: Category = "Culture";
break;
case 2: Category = "Economy";
break;
case 3: Category = "International";
break;
case 4: Category = "Local”;
breal;
case 5: Category = "Religion";
break;
case 6: Category = "Sports";
break;
1
kS

Figure 5.3. Implementation of the Terms Frequency-based Classifier.

82

Figure 5.4. Flowchart Representation of the Terms
Frequency-based classifier Implementation.

5.2.3 Results

After the implementation is done, documents of both training database which
represents 80% articles of each category, and the testing database which represents
20%, are processed for classification. The execution time here was fairly rapid, as it
took about 15 minutes to classify all files. In Table 5.10, the final results of the Terms
Frequency-based classification method are presented. The accuracy of the
classification results for each category is calculated as the percentage of articles that
are classified to the correct category. The classification results of each classification

method are discussed further in section 5.5 of this chapter.

83

Category Culture Economy International Local Religion Sports
Training 58.2% 59.8% 73.7% 46.6% 61.8% 77.4%
Database é >

[S¢g
DTz;Ztt';gge £ 5| 60.6% 60.7% 75.7% 51.8% 79.7% 77.6%
8 <
overall |G 1 594% | 603% | TAT% | 49.2% | 70.8% | 77.5%

Table 5.10. Terms Frequency-based Classification Results.

84

5.3 Artificial Neural Networks Classification

5.3.1 Introduction

Neural networks are the powerful tools used for forecasting of recent developments in
artificial intelligence research and many information retrieval and classification
applications [65] [66]. These involve non-linear models that may be used for mapping
of past and future trends and time series data, and for revealing the hidden relationships
and structures that govern them. The tools are used in several applied fields, for
example economics, computer sciences, and medicine. They are used in the analysis of
the relationships among financial and economic phenomena, generating time-series

and optimization, and forecasting and filtration [67].

ANN s are considered as an electronic model based on a neural structure similar to
the human brain. This modelling involves a less technical way of generating solutions,
much as the brain does on the basis of experience. ANN is a non-linear self-adaptive
data driven method. It takes vector (y;...yk) as input and is a type of real function. The
output is usually a function, mostly a sigmoid function i.e. tangent hyperbolic or
logistic function. These types of functions (multilayer perceptron) consist of
combinations of weighted sums of the functions parallel to the neurons. Cascade-
forward and feedforward networks are particularly applicable in approximation
functions when all inputs and outputs are known. The Neural network training

parameters are:
e The initial weights and biases randomly between -1 and +1
e Training parameters learning rule Back-propagation
e Adaptive learning rate is 0.001
e Momentum constant is 0.9
e Acceptable mean-squared error is 0.001

e Performance function: mean square error (MSE)

85

There are several types of neural networks that work effectively and efficiently to

execute the process of the research.

5.3.2 Methodology

In ANN, the nodes are seen as ‘artificial neurons’, where each artificial neuron is a
computational model inspired by natural neurons [68]. Biological natural neurons, as
seen in Figure 5.5, receive signals through synapses that are located on the dendrites
or membrane of the neuron. When the signals received are strong enough (surpass a
certain threshold), the neuron is activated then emits a signal through the axon. This

signal might be sent to another synapse, and might activate other neurons.

Dendrites
| — ! —
~ |)-i J Cy
-""--. .I--. | 1 .-"r. T
_L\H % \‘|
;) Axon .
(Yo .L’J Synapse \
.'l_'__.-'f . I—\- ',I /J‘*--,
- . 'l b h ~ |- |
o ., L __zrl_ = '_H‘ L
JI|) ._J-{____ .r:
T ;'r W ‘uﬁ_
| - |'r .I
| Vi
L =

Figure 5.5. Biological Neuron Model.

The complexity of real neurons is significantly simplified when modeling
artificial neurons, as seen in Figure 5.6. These basically consist of inputs like
synapses, which are multiplied by weights, the strength of the respective signals, and
then computed by a mathematical function which determines the activation of the
neuron. Another function, which may be the identity, computes the output of the
artificial neuron, in some cases in dependance of a certain threshold. ANNs combine

artificial neurons in order to process information.

86

Weights

. I . HT\\
— fActl\"f}UUﬂ. Output

— 3 Function »

Inputs

». /

s i

Figure 5.6. An Artificial Neuron

The Backpropagation Algorithm

The backpropagation algorithm is used in layered feed-forward Artificial Neural
Networks. Backpropagation is a multi-layer feed forward, supervised learning
network based on gradient descent learning rule. Where the algorithm is provided
with examples of the inputs and outputs that the network is required to compute, and
then the error, difference between actual and expected results, is calculated. The idea
of the backpropagation algorithm is to reduce this error, until the Artificial Neural
Network learns the training data. Figure 5.7 shows a diagram of the feed forward

ANN.

Input Hidden Layer Output
Layer Layer

Input #1 —»

Figure 5.7. An Artificial Neural Network Structure.

87

The activation function of the artificial neurons in ANNs implementing the
backpropagation algorithm is a weighted sum of the inputs x; multiplied by their

respective weights w;i , as in equation 5.3 below [68]:

A n \
A G w)— 2z XiWiji 5.3)

— 1
0, (x,w)=)

(5.4)

Since the error is the difference between the actual and the desired output, the error
depends on the weights, and it is needed to adjust the weights in order to minimize
the error. The error function for the output of each neuron can be defined as in

equation 5.5 as follows [68]:

E; G W, d)= (Oj- G E’)_ dfj (5.5)

The backpropagation algorithm calculates how the error depends on the output,

inputs, and weights as in equation 5.6 below [68]:

oE

¢ Wi

Aw; =-n
(5.6)

The adjustment of each weight (Awji) will be the negative of a constant eta (1)
multiplied by the dependence of the “wji” previous weight on the error of the
network.

First, it is essential to calculate how much the error depends on the output as in
the following equation [68]:

C

oF
00, = 2(0_;' - d_!')

(5.7)

88

After that, the output value that depends on the activation, which in turn depends on

the weights, is calculated by equation 5.8 as follows [68]:

00, 00, o4,

"‘.1,-___ A, ow -
ow;; 0A4; Owy;

- .
=0;(I1-0))x;

(5.8)

Therefore, the adjustment to each weight will be calculated as in the following

equation [68]:

Aw,; =-2(0; —d, P;(1-0))x,

(5.9)

In order to adjust vik, the weights of a previous layer, It is required to calculate how

the error depends not on the weight, but on the input from the previous layer i.e.

replacing w by x, as shown in equation 5.10 below [68]:

‘ O OE ox,
AVg = Mo —="MN—%
Vi ox; Cvy,
where
dE
— = z(c)j. —a’j))j-(l - 0w,
oW -
S
and
ox;
— = X (1= x;)vy
OVig

(5.10)

(5.11)

(5.12)

89

5.3.3 Implementation

Both the ANN and SVM classification methods are implemented in MATLAB
technical computing software, which have been used in developing and
implementing many text mining applications [69]. As well, it includes a great amount
of algorithms and methods that are highly used in text mining, which are already
programmed as functions and toolboxes. The frequencies of all top terms for each
article in the training and testing databases, representing 80% and 20% of the
database respectively, were previously generated as an output to the Terms
Frequency-based Classifier. After that, those frequencies are converted to a matrix
database to be ready for classification in MATLAB, derived from MATrix
LABoratory [69]. That is because it was originally developed as a programming
language used to manipulate and operate with matrices. In Figure 5.7 it can be seen
how the ANN algorithm is implemented to classify the articles of the first category as
an example. The topology of the implemented ANN is a single hidden layer with 12
neurons, the activation function for the hidden layer is tangent-sigmoid and the
output is linear, while the number of training epochs is 100. As well, it is shown

where the files are processed and how the results are plotted.

clear all;

load training_data.txt

load testing_data.txt
tr_Inputsl=[training_data(:,1:18)°];
tr_Targetsl=training_data(:,62}';
ts_Inputsl=[testing_data(:,1:18)'];
ts_Targetsl=testing_data(:,62)"':

netl = newff(tr_Inputsl,tr_Targetsl, [28]);
netl.divideParam.trainRatio=@.8;
netl.divideParam.valRatio=0.2;
netl.divideParam.testRatio=0.8;

netl = train(netl, tr_Inputsl,tr_Targetsl);
tr_Predictl = sim{netl,tr_Inputsl);
ts_Predictl = sim{netl,ts_Inputsl);
plotconfusion{tr_Targetsl,tr Predictl)
pause;
plotconfusion{ts_Targetsl,ts_Predictl)
pause;

Figure 5.7. Instantiation of the ANN classification code.

90

5.3.4 Results

Following the implementation of the ANN classifier, documents of both training
and testing databases are processed for classification. The execution time here was
quite fast as that of the Terms Frequency-based classification, as it took about 15 to
20 minutes to classify all files. Plotted results for categories of both databases can be
seen in Appendix A: at the end of this thesis. In Table 5.11, the final results of the

ANN classification method are shown, which are discussed in more details in

section 5.5 of this chapter.

Category Culture Economy International Local Religion Sports
Lraining 5, 91.7% | 90.5% 915% | 91.3% | 915% | 85.0%
Testing |8 & 0 0 0 0 0 0
Database & 2 88.7% 89.4% 90.8% 88.8% 89.9% 83.9%
Overall 8 < 0 0 0 0 0 0
Results 90.2% 90% 91.2% 90.5% 90.7% 84.5%

Table 5.11. ANN Classification Results.

91

5.4 Support Vector Machine Classification

5.4.1 Methodology

SVM theory was developed by Vladimir Vapnik in 1995. It is considered as one of
the most important breakthroughs in machine learning field and can be applied in
classification and regression [70] [71] [72]. In modelling the SVM, the main goal is to
select the optimal hyperplane in high dimensional space ensuring that the upper bound
of generalization error is minimal. SVM can only directly deal with linear samples but
mapping the original space into a higher dimensional space can make the analysis of
nonlinear sample possible [73]. For example if the data point(xi,yi), was given
randomly and independently generated from an unknown function, the approximate

function form by SVM is as in equation (5.11) :
gx) =wd(x)+b (5.11)

where @(x) is the feature and nonlinear mapped from the input space x. w and b are

both coefficients and can be estimated by minimizing the regularized risk function.

R(C) = C=Zi L(dyy) +5lwl? (512)

_(ld=yl—e¢ ld —y| > ¢,
L{d.y) = { 0 otherwise, (5.13)

In equations (5.12) and (5.13) above, both C and ¢ are prescribed parameters. C is

called the regularization constant, while ¢ is referred to as the regularization constant.

L(d,y) is the intensive loss function and the term c%Z’i"zlL(di ,¥;) Is the empirical

error, while %llwll2 indicates the flatness of the function. The trade-off between the

empirical risk and flatness of the model is measured by C. Since introducing positive

92

slack variables { and (* the equation (5.13) transformed to equation (5.14) as the

following:
RW,) =ww’ +Cx (ZL,(369) (5.14)

Subject to:
di - W@(Xl) - bi <e+ Zi (516)
(i, =0 (5.17)

The decision function (kernel function) comes up finally after the Lagrange
multipliers are introduced and optimality constraints exploited. The below function is

the form of kernel function:

where «; are Lagrange multipliers. The satisfy the equalities a; X a; = 0,a; =
0,a; = 0. The kernel value is the same with the inner product of two vectors x; and
x; in the feature space @(x;) and @(x;). The most popular kernel function is Radial

Basis Function (RBF) as in equation (5.19): .

K(xi,xj) =exp (—y ”xl - xj||2) (5.19)

Theoretical background, geometric interpretation, unique solution and
mathematical tractability are the main advantages which has made SVM attract
researchers and investors interest and be applied to many applications in different

fields such prediction financial time series.

93

5.4.2 Implementation

As mentioned previously in section 5.3.3, the SVM classification method was
developed and implemented in MATLAB computing software in which the matrix
files of the training and testing databases, representing 80% and 20% of the database
repsectly, are processed. In Figure 5.8, it is shown how the SVM classification is
implemented to classify the articles of the first category for instance, where the
kernel function is Radial Basis Function. In addition, it can be seen where the files

are processed and how the results are plotted.

clear all;

load training_data.txt

load testing_data.txt
tr_Inputsl=[training_data(:,1:18)];
tr_Targetsl=training_data(:,62}+2-1;
ts_Inputsl=[testing data(:,1:18)];
ts_Targetsl=testing_data(:,62)%2-1;

netl = svm(1@, °"rbf', [8], 1@@};

netl = svmtrain(netl, tr_Inputsl, tr_Targetsl, [], @);
tr_Predictl = svmfwd(netl,tr_Inputsl);

ts_Predictl = svmfwd({netl,ts_Inputsl);
plotconfusion(tr_Targetsl'/2+8.5,tr_Predictl'/2+8.5)
pause;
plotconfusion{ts_Targetsl'/2+8.5,t5_Predictl'/2+8.5)
pause;

Figure 5.8. Instantiation of the SVM classification code.
5.4.3 Results

Subsequent to the implementation of the SVM classifier, documents of both
training and testing databases are processed for classification. The execution time
here was fairly slow compared to that of the Terms Frequency-based and ANN
classification. It took about 3 to 4 hours to classify all files, and around 30 minutes to
classify each category. Plotted results for categories of both databases can be seen
in Appendix D: at the end of this thesis. In Table 5.12, the final results of the SVM
classification method are shown, which are discussed further in section 5.5 of this

chapter.

94

Category Culture Economy International Local Religion Sports
g;;";gg;% 5| 95.7% 95.1% 91.9% 95.0% 94.4% 96.5%
Testing | 8 S 87.1% 88.0% 83.1% 89.3% 89.4% 86.7%
Database |’z 3 ' ' ' ' ' '

© <
g‘gseljf‘t'; o 91.4% 91.6% 87.5% 92.2% 92% 91.6%
Table 5.12. SVM Classification Results.
5.5 Overall Results Discussion

Category Culture | Economy | International | Local Religion Sports :“3 \::eurraa?ci/
c
o -

E g;?;gg‘sge 58.2% | 59.8% 73.7% | 51.8% | 61.8% | 77.4% | 63.78%

53

g s .

O 3 DTeS““g 60.6% | 60.7% 75.7% | 46.6% | 79.7% | 77.6% | 66.82%

= 2 atabase

2

n gg:ljﬁ'; 59.4% | 60.3% | 747% | 49.2% | 70.8% | 77.5% | 65.32%

|_

é _ ggi‘;gg‘sge 91.7% | 90.5% 91.5% | 91.3% | 91.5% | 85.0% | 90.25%

% g Dg‘i;tk')gge 88.7% | 89.4% 90.8% | 88.8% | 89.9% | 83.9% | 88.58%
<

z Overall | g1 7oy 90% 91.2% | 90.5% | 90.7% | 84.5% | 89.42%

< Results) ' ' ' ' ’

é _ g;f;‘;’;g% 95.7% | 95.1% 91.9% | 95.0% | 94.4% | 96.5% | 94.77%

% 5 D-;etsz;\ttl)r;ge 87.1% | 88.0% 83.1% | 89.3% | 89.4% | 86.7% | 87.27%
<

2 Overall | 91 405 | 91.6% 875% | 92.2% | 92% 91.6% 91%

n Results

Table 5.13. Overall Results of each Classification Method.

Each identified classification method was tested over both the training and testing

database, representing 80% and 20% correspondingly.

As it can be seen in Table 5.13, the Terms Frequency-based classification scores
the least in both databases, of an average accuracy rate of 64% and 67% respectively.
As well, the average accuracy of the testing database is found to be 3% higher than
that of the training database. However, both the ANN and SVM classification

methods show a high accuracy scores ranging between 85%-95%. Meanwhile, the

95

average accuracy of the TF-based Classification is around 65%, which 20% less

accurate.

In both the ANN and SVM classification methods, it is noted that the accuracy
rate of the training database is higher than that of the testing database. However, the
SVM classification of the training database achieves around 5% higher accuracy rate
than that of the ANN classification method. Overall, SVM classification methods
show superior performance over the TF-IDF and ANN classification methods,
achieving an accuracy rate of 91%. Moreover, in a different study by Abbas, Smaili
and Berkani [30], different classification methods including SVM were evaluated
while using light stemming. In their study, SVM shows a superior result over the
other methods and an accuracy of up to 97%. However, the database which was used
for testing is different from the selected database in this research, thus it is not ideal
to compare it with the SVM classification using root-based stemming which is

applied here.

In addition to the results reported above, the classifiers were tested using the
confusion matrix, the result are presented in Appendix C. The confusion matrix, also
known as an error matrix is a specific table layout that allows visualization of the
performance of a classification algorithm. Each column of the matrix represents the
instances in a predicted class while each row represents the instances in an actual

class (or vice versa).

The following example, given by Wikipedia, explains the concept. If a classification
system has been trained to distinguish between cats and dogs, a confusion matrix will
summarize the results of testing the algorithm for further inspection. Assuming a
sample of 13 animals — 8 cats, and 6 dogs, the resulting confusion matrix could look

like the Table 5.14.

96

Predicted

Cat | Dog

Cat |5 3
Actual
class

Dog|2 |4

Table 5.14. Example of Confusion
Matrix Table.

In this confusion matrix, of the 8 actual cats, the system predicted that three were
dogs, and of the 6 dogs, it predicted 4 correctly and and 2 were cats. 2 actual dogs
were predicted as cats and 3 actual cats were predicted as dogs. We can see from the
matrix that the system in question has trouble distinguishing between cats and dogs.
All correct guesses are located in the diagonal of the table, so it's easy to visually

inspect the table for errors, as they will be represented by values outside the diagonal.

97

5.6 Summary

In this chapter, a new approach to identify significant keywords for Arabic corpora
was presented. The feature selection procedure, which is required to extract features
for each topic, was accomplished by implementing the advanced root extraction
algorithm, as well as the Term Frequency/Inverse Document Frequency (TF.IDF)
topic identification method. Then, features of the database corpora representing six

different categories were extracted.

Subsequently, selected features were set as vectors for each topic, and were
employed as the main features for document classification. Both training and testing
database, which was not included in feature selection, were processed through
different classification methods. The classification methods introduced included the
Terms Frequency-based classification method, the ANN method, and the SVM
method. The Terms Frequency-based classification scored the least of an average
accuracy rate of 64% and 67% respectively. Nevertheless, both the ANN and SVM
classification methods show a high accuracy scores ranging between 85%-95%.
Meanwhile, the average accuracy of the TF-based Classification is around 65%,

which 20% less accurate.

98

Chapter 6

Conclusions and Future work

In this chapter, the stages of the work of this thesis are illustrated in brief, and a

number of methods that may improve the system in the future are presented.

6.1 Conclusions

In this thesis, an improved root extraction algorithm for Arabic words which is
based on morphological analysis and linguistic constraints was presented. The
algorithm handles the problems of infixes removal by eliminating prefixes and
suffixes while checking the word against a predefined list of patterns. The problem of
extracting the roots of weak, hamzated, and eliminated-long-vowel words has been
handled. As well as the two-letter geminated words, that is by identifying linguistic
based rules to replace, eliminate or duplicate certain letters where needed. As well, a
new approach to select feature keywords for Arabic corpora was introduced, and
different classification methods utilizing the selected features and the root extraction
method for text processing were evaluated. These include Terms Frequency-based

method, Artificial Neural Networks (ANN), and Support Vector Machine (SVM).

99

6.1.1 The Root Extraction Algorithm

The root extraction algorithm is constructed following two main stages. The first
stage is to process the text to remove affixes from the text, considering prefixes,
suffixes and infixes. Simultaneously, the word is checked against its morphological
pattern depending on its length after each deletion. If there was a match between the
morphological pattern and the world, the root will be extracted. Else, the process
continues to the second stage of the root extraction, where the algorithm is developed
further to handle different types of words. The second stage includes two phases,
where in the first, the cases of hamzated, weak, geminated and eliminated-long-
vowel words are handled. In the last phase, words that are two letters long are
handled. These words can either be geminated, eliminated-long-vowel or hamzated
with an alif that is removed from imperative verbs like in (J£) and (34) of the roots
(Js1) and (2al). After the roots are extracted, they are verified by checking them
against a list of predefined roots, containing 3800 trilateral and 900 literal roots. The

performance of the algorithm is then tested by performing a number of experiments.

The experiments and testing were conducted by using thousands of Arabic words
gathered from an online Arabic corpus which is collected to aid Arabic language
based research. Human judgment was applied to evaluate the results and accuracy of
the algorithm, where the list of all words and their extracted roots was checked
manually to check which roots are extracted correctly belonging to the original
world, and which are not. The algorithm is introduced with the aim of supporting
Arabic stemming/root extracting tools. The results obtained shows that the root
extraction algorithm is promising and is worth being applied in various Arabic

language processing programs.

100

6.1.2 Feature Selection and Classification

In addition, a new approach to identify significant keywords for Arabic corpora was
presented. The feature selection procedure, which is required to extract features for
each topic, was accomplished by implementing the advanced root extraction
algorithm, as well as the Term Frequency/Inverse Document Frequency (TF.IDF)
topic identification method. Then, features of the database corpora representing six

different categories were extracted.

Subsequently, selected features were set as vectors for each topic, and were
employed as the main features for document classification. The classification system
is trained on six different categories: culture, economy, international, local, religion
and sports. From each category the top ten frequent terms are selected as features.
Both training and testing database, were processed through different classification
methods. The classification methods introduced included the Terms Frequency-based
classification method, the ANN method, and the SVM method. The Terms
Frequency-based classification scored the least of an average accuracy rate of 64%
and 67% respectively. The other two main non-parametric classifiers of Artificial
Neural Networks (ANN) and Support Vector Machine (SVM) are tested where the
system is trained on 80% of the collected database. Testing the classification
methods has been done on the remaining 20% of the documents. The results of ANN
and SVM are compared to the standard method used for text classification, the terms
frequency-based method. The results obtained indicate that ANN and SVM have
better accuracy, with scores ranging between 85-95%, compared to the standard TF-
based classification method, with rates ranging between 64-67%. The proposed
classification method proves the ability to categorize the Arabic text documents into
the appropriate categories with a high precision rate while selecting the top features
of each category and employing the root extraction algorithm in the text

preprocessing stage.

101

6.2 Future Work

There are several possible methods and techniques that can be applied in the future to
develop and improve what has been done in this thesis. In regards to the root
extraction method, it can be improved by developing a friendly GUI interface which
will allow the system to be used for different educational and research proposes. As
well, the root extraction algorithm can be extended to involve type of word detection
and Arabic text analysis such as tagging each part of the word to identify the genre of
number of subjects, gender, and verbs tenses or types of nouns if the word was a
noun. As well, the root extraction algorithm can be applied in various web mining
and text tagging applications to highlight main topics of articles for example, or to

support generating metadata for online resources.

In regards to the feature selection and classification methods, it could be
improved further by selecting the top features of the topics manually, depending on
the user’s interest and personal view of the topic/topics. Selecting highly important
terms of the topic as the topic’s feature by the user, would enhance the documents
classification outcome. Also, many classification algorithms can be implemented to
employ the root-based stemming and root features, and be evaluated and improved

accordingly.

102

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

G. Kanaan, R. Al-Shalabi, S. Ghwanmeh and H. Al-Ma'adeed, “A Comparision of Text-
Classification Techniques Applied to Arabic Text,” Journal of the American Society for

Information Science and Technology, vol. 60, no. 9, pp. 1836-1844, 2009.

G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer, “A KNN model based approach and its
application in text categorization,” in Proceedings of the Computational Linguistics and

Intelligent Text Processing, 5th International Conference, Berlin, 2004.

M. K. Saad and W. Ashour, “Arabic Morphological Tools for Text Mining,” in
Proceedings of the 6th International Conference on Electrical and Computer Systems

(EECS'10), Lefke, North Cyprus, 2010.

A. Ghareb, A. R. Hamdan and A. Abu Bakar, “Text Associative Classification
Approach for Mining Arabic Data Set,” in Proceedings of the 4th Conference on Data
Mining and Optimization (DMO), Langkawi, Malaysia, 2012.

L. S. Larkey, L. Ballesteros and M. E. Connell, “Improving Stemming for Arabic
Information Retrieval: Light Stemming and Co-occurrence Analysis,” in Proc. SIGIR

'02, Tampere, Finland, 2002.

J. A. Haywood and H. M. Nahmad, A new Arabic grammar of written language,
London: Lund Humphries, 1998.

A. Alzamil, “The relationship between roots and patterns: new classification for Arabic
language roots (A83al) 4 yuall cp Hsdall o) 35V (Catiead s g3 4310 & 52l in Proc. of
the Int. Symposium on Computers & Arabic Language, Riyadh, KSA, 2007.

M. A. Otair, “Comparative Analysis of Arabic Stemming Algorithms,” International
Journal of Managing Information Technology (IJMIT), vol. 5, no. 2, 2013.

R. Alshalabi, “Pattern-based stemmer for finding Arabic roots,” Information

Technology, vol. 4, no. 1, pp. 38-43, 2005.

[10] M. Y. Al-Nashashibi, D. Neagu and A. A. Yaghi, “An improved root extraction

technique for Arabic words,” in Proceedings of the 2nd International Conference on

Computer Technology and Development (ICCTD 2010), Cairo, Egypt, 2010.

[11] Y. Kadri and J. Y. Nie, “Effective stemming for Arabic Information Retrieval,” in Proc.

103

of the International Conference at the British Computer Society, London, October,

2006.

[12] G. Kanaan, R. Al-Shalabi, M. Ababneh and A. Al-Nobani, “Building an effective rule-
based light stemmer for Arabic language to improve search effectiveness,” in
International Conference on Innovations in Information Technology, IIT, December,
2008.

[13] S. Ghwanmeh, R. Al-Shalabi, G. Kanaan and S. Rabab'ah, “Enhanced algorithm for
extracting the root of Arabic words,” in Proc. of the 6th IEEE International Conference
on Computer Graphics and Visualization, 2009.

[14] A. Brahmi, A. Ech-Cherif and A. Benyettou, “Arabic texts analysis for topic modeling

evaluation,” Information Retrieval, vol. 15, no. 1, pp. 33-53, 2012.
[15] R. Al-Shalabi, G. Kanaan and H. Muaidi, “New approach for extracting Arabic roots,”

Alexandria, Egypt, 2003.

[16] H. Al-Serhan and A. Ayesh, “A triliteral word roots extraction using Neural Network
for Arabic,” in Proceedings of the 2006 International Conference on Computer

Engineering and Systems, November, 2006.
[17] S. Khoja, “Stemming Arabic Text,” Lancaster University, Lancaster, U.K., 1999.

[18] M. Swalha and E. Atwell, “Comparative evaluation of Arabic language morphological
analyzers and stemmers,” in Proceedings of the 22nd International Conference on

Computational Linguistics (COLING), 2008.

[19] E. M. Saad, M. H. Awadalla and A. Alajmi, “Arabic Verb Pattern Extraction,” in
Proceedings of the 10th International Conference on Information Science, Signal

Processing and their Applications (ISSPA 2010), Kuala Lumpur, Malaysia, 2010.

[20] H. Al-Ameed, “A proposed new model using a light stemmer for increasing the success

of search in Arabic terms,” PhD Thesis, University of Bradford, Bradford, UK, 2006.
[21] M. A. B. Ar-Rhazi, Mukhtar us-Sihah, Beirut: Librairie du Liban, 1986.

[22] H. Bayyomee, K. Kolfat and A. Al-Shafe'e, Lexicon for Arabic Verbs Morphology,

Cairo: Dar Ilias Modern Publishing Company, 1989.

[23] K. Darwish and D. W. Oward, “Adapting Morphology for Arabic Information

Retrieval,” in Arabic Computational Morphology, Springer, 2007, pp. 245-262.

104

[24] K. Beesley, “Arabic Finite-State Morphological Analysis and Generation,” in
Proceedings of the International Conference on Computational Linguistics (COLING-
96), 1996.

[25] K. Beesley, T. Buckwalter and S. Newton, “Two-Level Finite-State Analysis of Arabic
Morphology,” in Proceedings in the Seminar on Bilingual Computing in Arabic and
English, Cambridge, UK, 19809.

[26] G. Kiraz, “Arabic Computational Morphology in the West,” in Proceedingd of the 6th
International Conference an Exhibition on Multi-lingual Computing, Cambridge, UK,
1998.

[27] A. Abdul-Al-Aal, An-Nahw Ashamil (s~ Jalill), Cairo: Maktabat Annahda Al-
Masriya, 1987.

[28] K. Darwish, “Building a Shallow Arabic Morphological Analyzer in One Day,” in
Proceedings of the ACL Workshop on Computational Approaches to Semitic
Languages, Philadelphia, PA, 2002.

[29] M. Abbas and K. Smaili, “Comparison of Topic Identification Methods for Arabic
Language,” in Proceedings of the International Conference on Recent Advances in
Natural Language Processing (RANLP), Borovets, Bulgaria, 2005.

[30] M. Abbas, K. Smaili and D. Berkani, “Evaluation of Topic Identification Methods on
Arabic Corpora,” Journal of Digital Information Management, vol. 9, no. 5, pp. 185-
192, October 2011.

[31] M. Antoine and O. Zaiane, “Text document categorization by term association,” in
Proceedings of the IEEE International Conference on Data Mining (ICDM '02),
Maebashi City, Japan, 2002.

[32] S. Khoja and R. Garside, “Stemming Arabic text,” Lancaster, UK, 1999.

[33] K. Brustad, M. Al Batal and A. Al Tonsi, Alif Baa: Introduction to Arabic Letters and

Sounds, Georgetown University Press, 2010.
[34] J. Mace, Beginner's Arabic Script, McGraw-Hill/Contemporary, 2000.
[35] A. Al-Rajhi, Gukill & »all, Dar Alnahdhah Alarabiyah, 2004.

[36] S. Eldin, “Development of a computer-based Arabic lexicon,” in Proceedings of the

International Symposium on Computers and Arabic Language (ISCAL), Riyadh, KSA,

105

2007.

[37] R. Duwairi, M. Al-Refai and N. Khasawneh, “Feature Reduction Techniques for Arabic
Text Categorization,” Journal of the American Society for Information Science and

Technology, vol. 60, no. 11, p. 2347-2352, 2009.

[38] A. Ibn Manzir, Lisan Al-‘arab, Cairo, Egypt: Matba‘at Mustafa al-Baabi al-Halabi,
1988.

[39] J. A.-D. As-Suyuti, Al-’asbah wa An-naza’ir fi An-nahw, T. ‘. Saad, Ed., Cairo, Egypt:
Maktabaht al-Kulliyyat al-’ Azhariyyah, 1975.

[40] A. a.-Q. Az-Zajjaji, Al-jumal, M. Ibn *Abi Sanab, Ed., Beirut, Lebanon: Dar al-Kutub
al-‘Ilmiyyah, 1986.

[41] A. Ibn al-’Anbari, Al-’insaf fi Masa’il il-xilaf bayna An-nahawiyyin, M. M. Jawdah,
Ed., Cairo, Egypt: Maktabaht al-Khanji, 2002.

[42] U. A. lbn Jinni, Al-xasa’is, M. An-Najjar, Ed., Cairo, Egypt: Dar al-Kutub al-
Misriyyah, 1952.

[43] A. A. Wafi, Figh Allughah, Egypt: Nahdhat Misr Establishment, 2004.

[44] A.-f. Abaadi, Al-gamous Almuheet, 8 ed., Beirut, Lebanon: Al-arisaalah Establishment

for Printing, Publishing and Distripution, 2005.
[45] I. Anees, Min Asrar Allughah, Egypt: Maktabat Al-Anjlo Al-Misriyyah, 1978.

[46] A.-X. A. Al-Farahidi, Muxtsar Kitab Al-‘ayn, H. H. Hammauadi, Ed., Masqat, Oman: Al-
Maktabah a§-Sarqiyyah, 1998.

[47] A. Ameen, Al-Ishtigaq fi Allughati Al-Arabiyyah, Cairo, Egypt: The Translation and
Publishing Committee, 1956.

[48] A. Matloob, Annaht Fi Al-Lughat Al-Arabiyyah, Lebanon: Maktabat Lubnan, 2002.

[49] A. Bin Faris, Mu’jam Maqayees Al-Lughah, A. Haroon, Ed., Cairo, Egypt: Dar Al-Fikr,
1979.

[50] M. Al-batal, Alkitab fi Ta’allum al-*Arabiyyah, George town University, 2004.
[51] L. Al-Sulaiti, “Latifa Al-Sulaiti's Website: Arabic Online Corpus,” 2009.

[52] A. Alsaad and M. Abbod, “Arabic Text Root Extraction via Morphological Analysis
and Linguistic Constraints,” in Proceedings of the 16th UKSim-AMSS International

Conference on Computer Modelling and Simulation, Cambridge, UK, 2014.

106

[53] M. McCandless, E. Hatcher and O. Gospodneti¢, Lucene in Action, 2 ed., Manning,
2010.

[54] S. Osinski and D. Weiss, “Carrot2: Design of a Flexible and Efficient Web Information
Retrieval Framework,” in Proceedings of the third International Atlantic Web

Intelligence Conference (AWIC 2005), Lodz, Poland, 2005.

[55] S. Demir, E. A. Sezer and H. Sever, “Modifications for the Cluster Content Discovery
and the Cluster Label Induction Phases of the Lingo Algorithm,” International Journal
of Computer Theory and Engineering, vol. 6, no. 2, pp. 86-90, 2014.

[56] C. D. Manning, P. Raghavan and S. Hinrich, Introduction to Information Retrieval,
Cambridge: Cambridge University Press, 2008.

[57] T. Joachims, “A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text
Categorization,” Pittsburgh, 1996.

[58] G. Salton, Developments in Automatic Text Retrieval, vol. Science 253, 1991, pp. 974-
979.

[59] S. Al-Harbi, A. Almuhareb, A. Al-Thubaity, M. S. Khorsheed and A. Al-Rajeh,
“Automatic Arabic Text Classification,” in 9es Journees Internationales d'Analyse
Statistique des Donnees Textuelles (JADT), Lyon, France, 20009.

[60] M. El-Kourdi, A. Bensaid and T. Rachidi, “Automatic Arabic Document Categorization
Based on the Naive Bayes Algorithm,” in Proceedings of the Workshop on
Computational Approaches to Araboc Script-based Languages, Geneve, Switzerland,
2004.

[61] H. Sawaf, J. Zaplo and H. Ney, “Statistical Classification Methods for Arabic News
Articles,” in Proceedings of the Arabic Natural Language Processing in ALC 2001,
Toulouse, France, 2001.

[62] A. El-Halees, “Mining Arabic Association Rules for Text Classification,” in
Proceedings of the 1st International Conference of Mathematical Sciences, Al-Azhar
University of Gaza, Palestine, 2006.

[63] M. M. Syiam, Z. T. Fayed and M. B. Habib, “An Intelligent System for Arabic Text
Categorization,” in 1JICIS 6, 2006.

[64] R. Duwairi, M. Al-Refai and N. Khasawneh, “Stemming Versus Light Stemming as

107

Feature Selection Techniques for Arabic Text Categorization,” in Proceedings of the 4th
International Conference on Innovations in Information Technology, Dubai, UAE,

2007.

[65] R. Moraes, J. F. Valiati and W. P. G. Neto, “Document-level sentiment classification:
An empirical comparison between SVM and ANN,” Expert Systems with Applications
International Journal, vol. 40, no. 2, p. 621-633, 2013.

[66] N. Sharma and T. Gedeon, “Aurtificial Neural Network Classification Models for Stress
in Reading,” in Neural Information Processing, Berlin, Springer Berlin Heidelberg,

2012, pp. 388-395.
[67] Jian, Mao and Mohiuddin, Neural Networks: A tutorials, IEEE, 2016.
[68] R. Rojas, Neural Networks: A Systematic Introduction, Berlin: Springer, 1996.

[69] R. E. Banchs, Text Mining with MATLAB, 1 ed., New York: Springer-Verlag New
York, 2013.

[70] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learning, vol. 20, pp.
273-297, 1995.

[71] J. Shawe-Taylor and N. Cristianini, Support Vector Machines and other kernel-based
learning methods, Cambridge: Cambridge University Press, 2000.

[72] Y. Bi, S. Kapoor and R. Bhatia, Intelligent Systems and Applications: Extended and
Selected Results from the SAI Intelligent Systems Conference (IntelliSys) 2015.,
Switzerland: Springer International Publishing, 2016.

[73] M. Pontil and A. Verri, “Properties of Support Vector Machines,” Neural Comput., vol.
10, pp. 955-974, 1998.

[74] K. Seymore and R. Rosenfeld, “Using Story Topics for Language Model Adaptation,”
in Proceeding of the European Conference on Speech Communication and Technology,

1997.

108

Appendix A: Java Implementation Codes

public static void removeStopWords(List<String= articleWordsList)
{
for (String currentword : articleWordsList) {
if (!stopwordsList.contains(currentword)} {
articleMoStopwords.add(currentword) ;
'
T
}

Figure A.1. Instantiation of the removeStopWords() Function.

if { word.length()==5}{
if (word.charAt(1)==(',') && word.charAt(@)==('.")

|| word.charAt(1)==('s"} && word.charAt{@)}==("'1")
|| word.charAt(1l)==('J'"} && word.charAt(@}==("'1"}
|| word.charAt(1)==(";"'} && word.charAt(@}=('.")
|| word.charAt({1l)==('=") && word.charAt{@}==('.")
|| word.charAt(1)==('s"} && word.charAt{@}==("':")
|| word.charAt(l)==(';:")} && word.charAt{@}==('.")
|| word.charAt(l)==('="} && word.charAt(@}==("'1")
|| word.charAt{1)==("',") && word.charAt{@}==("'2")){

word = word.substring(2);
}

word = Pattern.check(word, patternsList, triRootsList);

Figure A.2. Code Implementation to Remove
Suffixes for 5 Lettered Words.

for (String pattern : patternsList){
if (pattern.length()==word.length()}{
boolean match = true;
for (int j=0; j < word.length(); j++} {
char ¢l = pattern.charAt(j);
char €2 = word.charAt{j);
if (€1 =="'s" || el=";" || €1 ="'}
indexes.add(j);

}
else if (!{cl = c2} M
match = false;
indexes.clear();
break;
}
}
if (match) {

matchedPatterns.add(pattern);

addIndexes = String.valueOf(word.charAt(indexes.get{8)))+
String.valueOf (word.charAt(indexes.get(1)))+
String.valueOf (word.charAt({indexes.get(2))};

if (indexes.size() == 4)}{
addIndexes += String.valueOf(word.charAt(indexes.get{3}});
if(pattern.contains (" g z5") M
addIndexes = String.valueOf(word.charAt{indexes.get(@2)))+
String.valueOf (word.charAt({indexes.get(1))}+
String.valueOf (word.charAt({indexes.get(3))};
h
}

foundwWord = addIndexes;

Figure A.3. Implementation of the Pattern Matching Process.

109

public static String checkTriReots(String newWord, List<String> triRootsList)
{
String newWordRoot="";
for (String triRoot : triRootsList){
if (triRoot.eguals(newWord) }{
newWordRoot=newWord;
RootExtractor.mylLists [RootExtractor.currentIteration]
. rootFoundList. add (newWordRoot) ;
b
1

return newWordRoot;

Figure A.4. Implementation of the checkTriRoots() Function.

for (int i = B; i < newWord.length{); i++} {
if (newWord.charAt(i) == '3°
| | newWord.charat{i) == '’
|| newWord.charAt{i) == '.'
| | newWord.charAt{i) == '7'} {
String hamzahModified = newWord.substring(@, i)+'1
+newWord.substring(i + 1, newWord.length()};
root = Root.checkTriRoots{hamzahModified,
triRootsList);

Figure A.5. Code Implementation for Handling Hamzated Words.

if (newWord.length(})==2}
{
String repeatletter = newWord+newWord.charAt(1};
String root = Root.checkTriRoots(repeatletter, triRootsList};
if {"".equals(root)}{
newWord = '’ '+newWord;
root = Root.checkTriRoots{newWord, triRootslList);
if ("".equals(root)}{
}

Figure A.6. Code Implementation to Handle Geminated
and alif Eliminated Words.

110

public static void calculateIdf() {

int currentCounter = @;

HashMap<String, Integer= CountMap_df = new HashMap<=()

List<String> wordslist = new ArraylList<String=>({
MyLists.allwords_tf.keySet());

for (int y = 8; y < wordslist.size(); y++) {
for (int 1 = @; i < numberOfFiles; i++) {
if {myLists[i].rootFoundList.contains(wordslist.get(y])}) {
currentCounters+;
if (CountMap_df.containskKey(wordslist.get(y))) {
CountMap_df.put{wordslist.get(y],
CountMap_df.get(wordslist.get(y)}) + 1);
} else {
CountMap_df.put{wordslist.get(y), 1);
}

¥

float temp = (float) Math.logl@((float) number0fFiles
/ (float) currentCounter);

MyLists.idf.add{(float) temp);
currentCounter = 8;

Figure A.7. Implementation of the calculateldf() function.

public static void calcultetfidf() throws FileNotFoundException,

UnsupportedEncodingException {

List=String= wordslist = new ArraylList<String={ MyLists.allwords_tf.keySet()}

for (int vy = 8; y < wordslist.size(); y++) {
String currentword = wordslist.get(y);
Float idf = MyLists.idf.get(y);
Integer tf = MyLists.allwords_tf.get({currentword);
Double tfidf = (double) (tf * idf) ;
MyLists.tfidf.put{currentword, tfidf);

¥

ValueComparator bvc = new ValueComparator{MyLists.tfidf);
TreeMap=String,Double> sorted_map = new TreeMap<String,Double=({bvc);
sorted_map.putAll(MyLists.tfidf};

System.out.print(sorted_map.size()+" roots in ");
ReadWrite.writeToFile(folderPath, sorted _map, sorted _map.size());

Figure A.8. Implementation of the calculate tfidf() function.

111

int x = 8;
for {(File file : listOfFiles) {
Map<String, Double> docMap = new LinkedHashMap<String, Double=(};
docMap = ReadFiles(listOfFiles[x].getMame()});
int topicMap = @;
double highTotal = @;
int cat = @;

for (int i=0;i<topicMaps.size();i++){
Map<5tring, Double> matchedTerms = new LinkedHashMap<String, Double=();
matchedTerms.clear();

for (String key : docMap.keySet()) {
if (topicMaps.get(i).containsKey(key)}{
matchedTerms. put (key, docMap.get (key));
}

1

Map<String, Double> currentMap = topicMaps.get{i);
int element = @;

double total = @;

for (Map.Entry<String, Double= entry : currentMap.entrySet(}) {
element++;
if (matchedTerms.containsKey(entry.getkKey())){
total = total + matchedTerms.get{entry.getKey());
¥
1
if (total »= highTetalld{
highTotal = total;
cat = 1+ 1;

1
1
String Category = "";
switch (cat) {
case 1: Category = "Culture";
break;
case 2: Category = "Economy";
break;
case 3: Category = "International®;
break;
case 4: Category = "Local";
break;
case 5: Category = "Religion";
break;
case G: Category = "Sports";
break;
1
p S5 H

Figure A.9. Implementation of the Terms Frequency-based Classifier.

112

Appendix B: Matlab Implementation Codes

clear all;

load training_data.txt

load testing_data.txt
tr_Inputsl=[training_data(:,1:18)'];
tr_Targetsl=training_data(:,62}"';
ts_Inputsl=[testing_data(:,1:18)'];
t5_Targetsl=testing_data(:,62)"';

netl = newff(tr_Inputsl,tr_Targetsl, [28]);
netl.divideParam.trainRatio=0.8;
netl.divideParam.valRatio=0.2;
netl.divideParam.testRatio=0.0;

netl = train(netl,tr_Inputsl,tr_Targetsl);
tr_Predictl = sim(netl,tr_Inputsl);
ts_Predictl = sim(netl,ts_Inputsl);
plotconfusion({tr_Targetsl,tr_Predictl)
pause;
plotconfusion(ts_Targetsl,ts_Predictl)
pause;

Figure B.1. Instantiation of the ANN classification code.

clear all;

load training_data.txt

load testing_data.txt
tr_Inputsl=[training_data(:,1:1@8)];
tr_Targetsl=training_data(:,62)}%2-1;
ts_Inputsl=[testing_data(:,1:18)];
ts_Targetsl=testing_data(:,62)%2-1;

netl = svm(1@, ‘'rbf', [8], 1@a};

netl = svmtraininetl, tr_Inputsl, tr_Targetsl, [], @};
tr_Predictl = svmfwd(netl,tr_Inputsl);

ts_Predictl = svmfwd(netl,ts_Inputsl);
plotconfusion(tr_Targetsl'/2+@.5,tr_Predictl'/2+8.5)
pause;
plotconfusion(ts_Targetsl'/2+@.5,ts_Predictl'/2+8.5)
pause;

Figure B.2. Instantiation of the SVM classification code.

113

Appendix C: ANN Classification Results

C.1 Training Database

In the confusion matrix presented in Figure C.1 below, the first two diagonal cells show
the number and percentage of correct classifications by the trained network. It can be
seen that 13261 of the documents which do not belong to the Culture category are
classified as not related. On the other hand, 1620 of the documents representing 10% of
the database which belong to the Culture category are classified as related. That gives
an accuracy rate of 91.7% as shown in the bottom right cell of the matrix. However, the
other two diagonal cells, the number and percentage of incorrect classification is shown,

giving inaccuracy percentage of 8.3%.

Confusion Matrix

Output Class

0 1
Target Class

Figure C.1. ANN Classification Results of the ‘Culture’
Category Training Database.

114

Confusion Matrix

0 1
Target Class

Figure C.2. ANN Classification Results of the ‘Economy’

Confusion Matrix

Q 1
Target Class

Figure C.3. ANN Classification Results of the ‘International’
Category Training Database.

115

Confusion Matrix

Q0 1
Target Class

Figure C.4. ANN Classification Results of the ‘Local’
Category Training Database.

Confusion Matrix

Output Class

0 1
Target Class

Figure C.5. ANN Classification Results of the ‘Religion’
Category Training Database.

116

Output Class

.

Confusion Matrix

0 1
Target Class

Figure C.6. ANN Classification Results of the ‘Sports’
Category Training Database.

117

C.2 Testing Database

Confusion Matrix

0 1
Target Class

Figure C.7. ANN Classification Results of the ‘Culture’
Category Testing Database.

Confusion Matrix

Q 1
Target Class

Figure C.8. ANN Classification Results of the ‘Economy’
Category Testing Database.

118

Confusion Matrix

0 1
Target Class

Figure C.9. ANN Classification Results of the ‘International’
Category Testing Database.

Confusion Matrix

Output Class

Q 1
Target Class

Figure C.10. ANN Classification Results of the ‘Local’
Category Testing Database.

119

Confusion Matrix

Output Class

0 1
Target Class

Figure C.11. ANN Classification Results of the ‘Religion’
Category Testing Database.

Confusion Matrix

0 1
Target Class

Figure C.12. ANN Classification Results of the ‘Sports’
Category Testing Database.

120

Appendix D: SVM Classification Results
D.1 Training Database

Confusion Matrix

Output Class

0 1
Target Class

Figure D.1. SVM Classification Results of the ‘Culture’
Category Training Database.

Confusion Matrix

Output Class

0 1
Target Class

Figure D.2. SVM Classification Results of the ‘Economy’
Category Training Database.

121

Confusion Matrix

Output Class

0 1
Target Class

Figure D.3. SVM Classification Results of the ‘International’
Category Training Database.

Confusion Matrix

0 1
Target Class

Figure D.4. SVM Classification Results of the ‘Local’
Category Training Database.

122

Output Class

Confusion Matrix

0 1
Target Class

Figure D.5. SVM Classification Results of the ‘Religion’
Category Training Database.

Output Class

Confusion Matrix

0 1
Target Class

Figure D.6. SVM Classification Results of the ‘Sports’
Category Training Database.

123

D.2 Testing Database

Confusion Matrix

Output Class

0 1
Target Class

Figure D.7 SVM Classification Results of the ‘Culture’
Category Testing Database.

Confusion Matrix

Output Class

0 1
Target Class

Figure D.8. SVM Classification Results of the ‘Economy’
Category Testing Database.

124

Confusion Matrix

Output Class

0 1
Target Class

Figure D.9. SVM Classification Results of the ‘International’
Category Testing Database.

Confusion Matrix

0 1
Target Class

Figure D.10. SVM Classification Results of the ‘Local’
Category Testing Database.

125

Confusion Matrix

0 1
Target Class

Figure D.11. SVM Classification Results of the ‘Religion’
Category Testing Database.

Confusion Matrix

Output Class

0 1
Target Class

Figure D.12. SVM Classification Results of the ‘Sports’
Category Testing Database.

126

