
Level Set Segmentation of Retinal

Structures

Submitted by

Chuang Wang

for the degree of Doctor of Philosophy

of the

Department of Computer Science
Brunel University London

April 2016



Declaration

I hereby declare that this thesis is solely completed by the candidate, Chuang Wang.

The original research work has not been presented for the award of any other degree in

the past. Some work in it has been published previously and that is stated in the text

where relevant. All sources of material have been properly acknowledged and references

have been provided.

i



List of Publications

Part of the work included in this thesis has been previously published in the following

papers:

1. Chuang Wang, Yaxing Wang and Yongmin Li “Automatic Choroidal Layer Seg-

mentation Using Markov Random Field And Level Set Method.”, (under review).

2. Chuang Wang and Yongmin Li “Blood Vessel Segmentation from Retinal Images

Using the Level Set Method.” (under review).

3. Chuang Wang, Djibril Kaba and Yongmin Li “Level Set Segmentation of Optic

Discs from Retinal Images.” Journal of Medical and Bioengineering, Vol. 4, No.

3, pp. 213-220, June 2015.

4. Chuang Wang, Yaxing Wang, Djibril Kaba, Zidong Wang, Xiaohui Liu and Yong-

min Li, “Automated Layer Segmentation of 3D Macular Images Using Hybrid

Methods.” The 8th International Conference on Image and Graphics (ICIG).

Springer International Publishing, 2015, 614-628.

5. Chuang Wang, Yaxing Wang, Djibril Kaba, Haogang Zhu, Zidong Wang, Xiaohui

Liu and Yongmin Li “Segmentation of Intra-retinal Layers in 3D Optic Nerve

Head Images.” The 8th International Conference on Image and Graphics (ICIG),

Springer International Publishing, 2015, 321-332.

6. Chuang Wang, Djibril Kaba and Yongmin Li “Level Set Segmentation of Optic

ii



Discs from Retinal Images.” International Conference on Biomedical and Bioin-

formatics Engineering (ICBBE 2014).

The author of this thesis has also published the following papers during the PhD

period, but the contents are not included in this thesis:

1. Djibril Kaba, Yaxing Wang, Chuang Wang, Yongmin Li, Xiaohui Liu, Haogang

Zhu and Ana G. Salazar-Gonzalez “Retina Layer Segmentation Using Kernel

Graph Cuts and Continuous Max-Flow.” Optics Express, 2015, 23(6): 7366-

7584.

2. Djibril Kaba, Chuang Wang, Yongmin Li, Ana Salazar-Gonzalez, Xiaohui Liu,

and Ahmed Serag. “Retinal blood vessels extraction using probabilistic mod-

elling.” Health Information Science and Systems, 2, no. 1 (2014): 2.

iii



To my parents and brother

iv



Abstract

Changes in retinal structure are related to different eye diseases. Various retinal

imaging techniques, such as fundus imaging and optical coherence tomography (OCT)

imaging modalities, have been developed for non-intrusive ophthalmology diagnoses

according to the vasculature changes. However, it is time consuming or even impossible

for ophthalmologists to manually label all the retinal structures from fundus images

and OCT images. Therefore, computer aided diagnosis system for retinal imaging

plays an important role in the assessment of ophthalmologic diseases and cardiovascular

disorders. The aim of this PhD thesis is to develop segmentation methods to extract

clinically useful information from these retinal images, which are acquired from different

imaging modalities. In other words, we built the segmentation methods to extract

important structures from both 2D fundus images and 3D OCT images.

In the first part of my PhD project, two novel level set based methods were pro-

posed for detecting the blood vessels and optic discs from fundus images. The first one

integrates Chan-Vese’s energy minimizing active contour method with the edge con-

straint term and Gaussian Mixture Model based term for blood vessels segmentation,

while the second method combines the edge constraint term, the distance regularisation

term and the shape-prior term for locating the optic disc. Both methods include the

pre-processing stage, used for removing noise and enhancing the contrast between the

object and the background.

Three automated layer segmentation methods were built for segmenting intra-

retinal layers from 3D OCT macular and optic nerve head images in the second part

of my PhD project. The first two methods combine different methods according to the

data characteristics. First, eight boundaries of the intra-retinal layers were detected

from the 3D OCT macular images and the thickness maps of the seven layers were pro-

duced. Second, four boundaries of the intra-retinal layers were located from 3D optic

nerve head images and the thickness maps of the Retinal Nerve Fiber Layer (RNFL)

were plotted. Finally, the choroidal layer segmentation method based on the Level Set
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framework was designed, which embedded with the distance regularisation term, edge

constraint term and Markov Random Field modelled region term. The thickness map

of the choroidal layer was calculated and shown.
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Chapter 1

Introduction

Changes in the retinal structure, such as the area of the optic disc cup and optic disc,

the thickness of retinal layers and so on, manifest many important eye diseases as well

as systemic diseases, which originate either in the eye, the brain or the cardiovascular

system. Much research in retinal structure analysis has been done to diagnose some of

the most prevalent ocular diseases including glaucoma, diabetes, diabetic retinopathy,

cardiovascular disease and age-related macular degeneration, most of which are common

causes of irreversible blindness in the world. It is necessary and important to extract

the retinal structure from retinal images, which are acquired from different imaging

modalities, to assist the ophthalmologists in diagnosing eye diseases accurately and

provide efficient treatment and management systems. In order to understand how

retinal diseases affect the retinal structure, retinal structure analysis is introduced in

Section 1.1. Section 1.2 introduces the aims of the Ph.D project. Finally, a thesis

overview is briefly introduced in Section 1.3.

1.1 Retinal Structure Analysis

Retinal structure analysis has attracted more and more researchers and ophthalmolo-

gists over the past 20 years. During this period retinal imaging technology has rapidly
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developed and enabled greater visibility of structures behind the retina and choroid.

Retinal structure analysis has become an essential part of detecting and diagnosing eye

diseases, and preventing loss of sight or blindness. Fundus imaging and optical coher-

ence tomography (OCT) imaging modalities are two of the most widely used imaging

systems in clinics and eye hospitals, used to aid ophthalmologists in obtaining a diag-

nosis. Therefore, we mostly focus on retinal structure analysis using both the fundus

images and OCT images.

Fundus imaging is an essential part of diagnosing and treating diabetic retinopathy

(DR) and Age-related Macular Degeneration (AMD), which are the two most common

forms of vision loss and blindness across the world. Almost all patients diagnosed with

diabetes will develop diabetic retinopathy. AMD is the leading causes of vision loss

among the elderly. It is non-reversible with undetectable early symptoms and eventu-

ally may destroy sharp central vision. As diagnoses of diabetes are increasing and the

percentage of the worlds’s elderly population is continuing to rise, both DR and AMD

are becoming more serious health problems [Abràmoff et al., 2010]. However, both dis-

eases are manageable with a range of treatments available if patients are examined at

least once a year [Ouyang et al., 2013]. The fundus image taken during such an exami-

nation is analysed by ophthalmologists for signs of abnormality or further deterioration

within the retina area. Based on the data analyse from the fundus images, diagnoses

and treatments can be made and prescribed to the patient before the condition can

deteriorate beyond a state where it can be managed.

Fundus photography can be used to diagnose other medical conditions in the body

[Abràmoff et al., 2010]. Often, cardiovascular conditions such as stroke, myocardial

infarction and hypertension can change the structure of the retina, affecting the di-

ameter of retinal arterioles and venules [Wong et al., 2004]. For example, when the

ratio of the diameters of arterioles and venules becomes unbalanced, this can indicate

an abnormality in the arterioles and venules, which is often associated with myocar-

dial infarction. The ability to view such abnormalities from fundus images by using
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some retinal structure analysis tools can help to detect symptoms and diagnose the dis-

eases earlier, enabling proper treatment to prevent deterioration or even non-reversible

blindness.

OCT imaging provides more information about the retinal morphology, which

makes it possible for this imaging technique to be used for close monitoring of reti-

nal status and guidance of retinal treatment strategies [Abràmoff et al., 2010]. OCT

imaging is successfully used as an image guided diagnosis and treatment system in

ophthalmology, especially in diabetic macular edema (DME) and choroidal neovascu-

larization. DME is a form of diabetic retinopathy, while choroidal neovascularization

(CNV) is the wet form of age related macular degeneration. The DME causes vision

loss through fluid leakage into the macula. By using the OCT imaging technology, the

thickness of the central retina can be measured and used as an important indicator for

diagnosing DME [Murakami and Yoshimura, 2013]. CNV is the creation of new blood

vessels in the choroid layer which can rupture and bleed because they are weaker than

normal blood vessels. The CNV may produce extreme myopia, myopic degeneration,

or age-related developments, which may cause a sudden degeneration of central vision.

The parameters of the cystoid spaces, diffuse intra-retinal fluid, sub-retinal fluid, sub-

retinal hyper-reflective material, or a change of fluid measured from OCT images is

important to indicate CNV [Mokwa et al., 2013].

OCT photography is widely used to diagnose glaucoma, which is the second most

common cause of blindness all over the world [Resnikoff et al., 2004]. The structural

changes in the optic nerve head and retinal nerve fiber layer are measured from OCT

images for early glaucoma diagnosis and aid in providing proper treatment to prevent

visual loss. The cup-to-disc ratio calculated from 3D optic nerve head OCT images is

an important indicator for glaucoma. The thickness of the retinal nerve fiber layer is

calculated for aiding a glaucoma diagnosis.

Retinal structure analysis is increasingly important in clinical applications for as-

sisting ophthalmologists in diagnosing eye diseases, especially during early diagnosis
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Figure 1.1: The overview of my Ph.D. Work.

and management for eye diseases. The aim of my Ph.D project is to build a structure

analysis tool for extracting important retinal structures from both 2D and 3D retinal

images, which are obtained from different imaging modalities including fundus cameras

and OCT imaging systems, for assisting ophthalmologists in diagnosing eye diseases

and providing the proper treatment strategies in advance to prevent serious deterio-

ration. Figure 1.1 shows the framework of this Ph.D project. The first part of this

project mainly focused on fundus image analysis to segment out the blood vessels and

optic discs. The second part of this project focused on OCT image analysis, and the

images involved in this project are acquired from two different imaging modalities and

taken around different retinal areas including the optic nerve head area and macular

area.
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1.2 Aims and Objectives

Retinal imaging technology has developed dramatically during the last few decades.

This has enabled ophthalmologists to capture a clearer view of the structure and tissues

of the retina or even the choroid. However, it is time consuming or even impossible to

hand label all the retinal structures to detect the tiny changes in the captured images.

Therefore, the aim of this thesis is to develop retinal image analysis tools for images

obtained from different imaging modalities. The tools are used to detect the retinal

structure changes and extract useful information, which enable ophthalmologists to

precisely diagnose diseases especially in their early stages and give proper treatment to

prevent future deterioration.

The specific objectives of the Ph.D. project, as described in this thesis, are sum-

marised as follows:

• Blood vessels : Develop an automated segmentation method for extracting blood

vessels from retinal images and evaluate the performance of the segmentation us-

ing two public datasets DRIVE and STARE.

• Optic disc : Develop an automated optic disc segmentation method for retinal

images and evaluate the performance of the segmentation method using three

public datasets DRIVE, DIARETDB0 and DIARETDB1.

• Macular : Develop a fully automated segmentation method for extracting seven

intra-retinal layers from 3D macular images and evaluate the performance of this

method using a dataset collected from Tongren Hospital, Beijing, China by using

the imaging modality SD-OCT Spectralis HRA+OCT (Heidelberg Engineering,

Germany).

• Optic nerve head : Develop a method for intra-retinal layers segmentation from

3D optic nerve head images and evaluate the performance of the method on

images obtained from Moorfield Eye Hospital by using the imaging modality
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RTVue-100 SD-OCT (Optovue, Fremont, CA, USA).

• Choroidal layer : Develop a method for detecting the choroidal layer from 3D

macular images and validate the performance of the method through a dataset

from Tongren Hospital by using the imaging modality SD-OCT Spectralis HRA+OCT

(Heidelberg Engineering, Germany).

1.3 Thesis Overview

This thesis includes 8 chapters. The rest of the thesis is organised as follows:

• Chapter 2 provides some relevant background and explains the major challenges

of this project. It includes an introduction to the anatomy of the eye. This is fol-

lowed by a describtion of the fundus and Optical Coherence Tomography (OCT)

imaging techniques. Then, some of the most prevalent retinal diseases includ-

ing glaucoma, diabetes, diabetes retinopathy, age-related macular degeneration,

and cardiovascular disease are discussed. Two classical models of the level set

method are discussed. Finally, some major topics and challenges in fundus and

OCT image analysis are described.

• Chapter 3 describes an automated and unsupervised blood vessel segmenta-

tion method from fundus images by using the level set method, which combines

Chan-Vese’s region based term with the Gaussian Mixture term and distance reg-

ularisation term. The morphological closing operation and matched filtering are

used as a preprocessing process to keep the vessels inside the optic disc, remove

the noise of the optic disc boundary, and enhance the blood vessel information.

The proposed method is tested and compared with the state-of-the-art meth-

ods on two public datasets namely DRIVE and STARE. It achieves an average

accuracy greater than 95%.

• Chapter 4 introduces an automated optic discs segmentation method obtained
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from digital fundus images. The template matching method is used to approx-

imately locate the optic disc centre, and the blood vessels are extracted to re-

located the centre of the optic disc. This is followed by applying the level set

method, which incorporates the edge term, distance regularization term and

shape-prior term, to segment the shape of the optic disc. Seven measurements

are used to evaluate and compare the performance of our proposed methods with

the state-of-the-art methods on three public datasets: DRIVE, DIARETDB0 and

DIARETDB1.

• Chapter 5 presents an automated segmentation method to detect intra-retinal

layers in OCT macular images acquired from a high resolution SD-OCT Spec-

tralis HRA+OCT (Heidelberg Engineering, Germany). The algorithm starts by

removing all the OCT imaging artifects including the speckle noise and enhances

the contrast between layers using both 3D nonlinear anisotropic and ellipsoid av-

eraging filers. Eight intra-retinal boundaries of the retina are detected by using

a hybrid method which combines the hysteresis thresholding method, level set

method, and multi-region continuous max-flow approaches.

• Chapter 6 introduces an intra-retinal layer segmentation method from SD-OCT

images around the optic nerve head acquired from a high resolution RTVue-100

SD-OCT (Optovue, Fremont, CA, USA). This method starts by removing all

the OCT imaging artifects including the speckle noise and enhances the contrast

between layers using the 3D nonlinear anisotropic diffusion filter. Afterwards,

we combine the level set method, k-means and Hidden Markov Random Field

(HMRF) method to segment four surfaces of the retinal images around optical

nerve head.

• Chapter 7 presents a choroidal layer segmentation method from 3D macular

images by using the level set method, which adopts the Markov Random Feld

term with the distance regularisation and edge constraint terms. Before that, the
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3D nonlinear anisotropic diffusion filter is used to remove all background noise.

The segmented results are compared with the manual segmented cross-sectional

B-scans. The experimental results show that our method can accurately estimate

the choroidal boundary.

• Chapter 8 provides conclusions for this Ph.D project in this thesis and highlights

some potential future research directions under investigation.
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Chapter 2

Background

This chapter describes the background of this Ph.D. project. In order to

understand the structure of the eye, Section 2.1 briefly discusses the eye

anatomy. Some typical retinal diseases are introduced in Section 2.2. This

is followed by a description of the retinal imaging techniques in Section 2.3.

A simple discussion of the retinal image analysis is given in Section 2.4.

Two famous level set models are introduced in Section 2.5.

2.1 Eye Anatomy

It is important to understand the structure and functions of the eye to help the diagnosis

and treatment of eye diseases. The diagram of the cross-sectional view of the eye and

its major structures [eye, 2015] is shown in Figure 2.1. The eye works similar to a

camera with many parts of the eye working together to produce clear vision. The

white part of the eye is called the sclera, which is used to protect the eyeball. The

black dot at the centre of the eye through which the light enters the eye is called the

pupil. The coloured iris, which is brown, green, blue or a mix of these colours is part of

the eye, and surrounds the pupil and adjusts the size of the pupil to control the amount

of light entering the eye. The curved shape of the cornea is the “front window”of the
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Figure 2.1: Schematic diagram of the cross-sectional view of eye and its major structures
copied from [eye, 2015]. The retina and choroid are the yellow tissue and reddish tissues
with blood vessels inside, respectively.

eye and transmits and focuses light onto the lens underneath. The curve of the cornea

can determine if someone has near or long sight as well as other vision impairments.

Corrective laser surgery works by reshaping the cornea to change the focus.

The lens is located behind the pupil and acts similarly to a camera lens by focusing

light onto the retina. The retina is the yellow part of the eye and contains two types

of photoreceptor: rods and cones. There are approximately 6 million cones within

the macula area of the retina and are the most densely spaced together in the Fovea.

Cones primarily process light and colour. Rods are positioned in the outer edge of

retina and are responsible for sight during low light and peripheral vision. Through

the photoreceptor cells, the retina absorbs and converts light to electrical impulses,

which are transferred to the brain along the optic nerve. The optic nerve is located in

the centre of the retina. The choroid is located between the retina and the sclera and
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provides oxygen and nourishment to the retina.

Figure 2.2: Photograph of retina structures: blood vessels, optic disc, optic cup, macula
and fovea

Figure 2.2 shows the digital fundus image with retinal structures marked, which

includes retinal blood vessels, the optic disc, and macula. The macula area is the dark

region located roughly at the centre of the retina, which is responsible for the vision

needed for daily activities such as reading and writing. At the centre of the macula is

the fovea, which contains the greatest concentration of cone cells in the eye. The fovea

is responsible for central, sharp vision and is necessary for reading, driving and other

activities. The optic disc is the visible part located at the front of the optic nerve,

which is known as the blind spot because it contains no rods and cones. The optic cup

is located at the centre of the optic disc. The ratio between the diameter of the optic
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cup and the diameter of the optic disc is important in the diagnosis of glaucoma.

Figure 2.3: Illustration of ten cellular layers of the retina from Berne [Berne et al.,
2008].

Ten cellular layers of the retina from [Berne et al., 2008] are illustrated in Figure

2.3. The retina is divided into the following layers:

1. The pigment epithelium: the main function is to maintain the quality of an image

through absorbing the stray light and preventing scatter;

2. Photoreceptor layer: composed of photoreceptor (rods and cones), which receive

light from a particular part of the visual field;

3. The external limiting membrane: it forms intercellular connections with the pho-

toreceptors, Müller cells and photoreceptors;
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4. The outer nuclear layer: it includes the cell bodies of rods and cones;

5. The outer plexiform layer: formed of the synapses between the photoreceptors

(rods and cones) and retinal horizontal and bipolar cells;

6. The inner nuclear layer: made up of the nuclei, cell bodies of the horizontal cells,

the bipolar cells and Müller cells;

7. The inner plexiform layer: the synaptic formation between the bipolar cells axons

and ganglion cells dendrites;

8. The ganglion cell layer: formed by the cell bodies of the ganglion cells;

9. The retinal nerve fibre layer: composed of axons of the ganglion cells, through

which the electrical impulses are transmitted to the visual cortex;

10. The inner limiting membrane: it contains the Müller cells and is located within

the innermost layer of the retina.

Below the retina is the choroid, which supplies blood to the retina. The structure

of the choroid consists of the following layers:

1. The Bruch’s membrane: separates the choroid from retina;

2. The choriocapillaris;

3. The Sattler’s layer: contains the medium diameter blood vessels;

4. The Haller’s layer: composed of larger diameter blood vessels and is located at

the outermost layer of the choroid.

2.2 Retinal Imaging Techniques

Retinal imaging is used by optometrists to take pictures of the retina, blood vessels and

the optic nerve inside of the eye. These pictures help ophthalmologists to diagnose and
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manage eye diseases including glaucoma, diabetes, macular degeneration and so on.

This method is a non-invasive imaging technique, which captures a more detailed view

of inside of the eye compared to conventional methods. Retinal disorders are detected

in their early stages by using retinal imaging techniques. This early detection makes it

possible to prevent serious disease progression or even vision loss. Retinal images are

captured and stored giving a permanent and historical record of the eye, and make it

easier for ophthalmologists to discover minor changes in the eye by comparing images

taken over time. Nowadays, retinal imaging modalities, such as fundus photography

and optical coherence tomography (OCT) machines, are widely used in clinics. Fundus

imaging techniques are widely used to detect eye diseases including diabetic retinopa-

thy, glaucoma, and age-related macular degeneration, while OCT imaging techniques

are famous for diagnosing and managing patients with diabetic retinopathy, macular

degeneration, and inflammatory retinal diseases [Abràmoff et al., 2010].

2.2.1 Fundus Imaging

The Dutch ophthalmologist Van Trigt drew the first fundus image in 1853 [Van Trigt,

1853] as shown in Figure 2.4. Fundus photography was invented in the 1920’s and

has been widely used since the 1960’s [Gramatikov, 2014]. Fundus photographs are

used to detect medical signs, such as hemorrhages exudates, cotton wool spots, blood

vessel abnormalities, and pigmentation. Fundus imaging is one of the most widely used

imaging tools in clinics.

Fundus photography uses a fundus camera to capture retinal images of the interior

surface of the eye. A fundus camera is installed with a low power microscope which

provides a magnified view of the retina. A fundus image obtained from the camera

provides 2-D representative image of 3-D retina by using reflected light. The typical

width of the camera view is from 30 to 50 degrees. The whole imaging process takes

around 5 to 10 minutes. Figure 2.5 shows fundus images with three different widths of

view: 20, 40, 60 degrees, respectively [Saine and Tyler, 2002].
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Figure 2.4: First human fundus image drawn by Van Trigt in 1853 [Van Trigt, 1853].

The broad category of fundus imaging contains the following modalities [Abràmoff

et al., 2010]:

1. Fundus photography (including red-free photography): A filter is used to select

specific colours from the imaging lights to enhance the appearance of specific

areas of the retina. Red-free photography is used to highlight the blood vessels

by removing the red colour. An example image is shown in Figure 2.6(D).

2. Colour fundus photography: Provides a full colour fundus image, Figure 2.6(C)

shows an example of a colour fundus image.

3. Stereo fundus photography: Two images of the same retina are taken from two

different viewpoints and fused to obtain a virtual, depth-enhanced stereo image,
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Figure 2.5: Three different angle views of fundus images [Saine and Tyler, 2002].

which helps the physician study the patient’s retina more easily and compre-

hensively. Two retinal images taken from different angles are shown in Figure

2.6(E).

4. Hyper-spectral imaging (HSI): Used to obtain an electromagnetic spectrum for

each pixel in the image, which can be used to record subtle variations of spectral

properties, for finding objects, identifying materials, or detecting processes. It is

widely used for analysing the spectra of inhomogeneous materials that contain

a wide range of spectral and spatial information [Park et al., 2006]. The hyper-
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Figure 2.6: Some example images obtained from different fundus imaging techniques.
(A)Fluorescein Angiogram, (B) Scanning Laser Ophthalmoscopy, (C) Colour Fundus
Photography, (D) Red-Free Photography, (E) Two retinal images taken from two dif-
ferent viewpoints for Stereo Fundus Photography.

spectral camera detects the consumption of the oxygen in the retina, which is

used to diagnose diseases including hemorrhagic shock, peripheral artery disease,
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diabetes and many other abnormalities [Gramatikov, 2014].

5. Scanning laser ophthalmoscopy (SLO): Provides a high quality television image

of any specific area of the retina by utilising horizontal and vertical scanning

mirrors. This technique is widely used for diagnosing eye disorders, such as

glaucoma, macular degeneration and other retinal pathologies. Figure 2.6(B)

shows an example SLO image.

6. Adaptive optics SLO: Used to measure living retinal cellular and sub-cellular

structures in the human eye to help diagnose retinal disorders [Huang et al.,

2012]. It provides a high resolution image of a specific region of interest on

the retina with adaptive optics technology, which is used to reduce the effect of

wavefront distortions.

7. Fluorescein angiography: Require the injection of a small amount of dye into

a vein at the bend of the elbow. After that, a specialised camera is used for

imaging the blood flow in the retina and choroid. Because fluorescein angiography

obtains images with high contrast between the blood vessel and background, it

can be used to accurately detect and quantify the geometric changes in blood

vessels. However, this technique is not available for all patients because of allergic

reactions. Fluorescein angiography is normally used for the diagnosis of the eye

disorders, such as: macular degeneration, and diabetic retinopathy. An example

image of fluorescein angiography is shown in Figure 2.6(A).

2.2.2 Optical Coherence Tomography (OCT) Imaging

OCT is a non-invasive technology used to obtain high resolution, cross-sectional images

of the microstructure of the eye. OCT was designed by Fujimoto’s group at MIT in

1991 and was first introduced commercially in 1996 [Huang et al., 1991]. OCT uses

light to scan in a similar way to an ultrasound scan. An OCT scan generally shows

much finer detail than an ultrasound scan. However, ultrasound can be used to scan
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deeper into tissue and through structures that are opaque to light [Fujimoto et al.,

2000]. OCT is used to see details of the cornea or the retina, while ultrasound is used

to see structures hidden by the iris. A near infrared low intensity light is directed into

the retina of the patient. The light that is reflected back is captured by the OCT

modality’s detectors and converted into a high resolution cross-sectional image of the

internal microstructure of the retina, displaying the different intra-retinal layers. The

different layers of the retina reflect the light back at different frequencies. This allows

the different layers to be seen.

Figure 2.7: OCT scanner system schematic [Kraus et al., 2012]. Left: A-scan.
Backscattered intensity along the axial direction is measured and formed a single depth
profile. Middle: B-scan. The OCT beam is measured in transverse direction. Right:
Volumetric image. Multiple B-scans are acquired and formed into a 3D volumetric
image.

This imaging technique has been used to diagnose and manage many retinal disor-

ders including glaucoma, choroidal neovascularization, macular edema, vitreomacular

traction and diabetic retinopathy [Jaffe and Caprioli, 2004]. The main advantage of

this technique in medical applications is that it is possible to image tissue structure on
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site and in real time. There are three main OCT imaging techniques developed to cap-

ture cross-sectional or volumetric images of retina. An image scanned along the depth

direction of the retina is called A-scan as Figure 2.7 (Left). Several A-scans across the

area of the tissue can be collected together and used to create one cross sectional image

which is called a B-scan as Figure 2.7 (Middle). A 3D image can be created using a

collection of B-scans in parallel Figure 2.7 (Right).

Time-domain OCT (TD-OCT)

Figure 2.8: The setup of the time domain OCT (TD-OCT) imaging system [Schuman,
2008].

The TD-OCT technique is frequently compared to ultrasound due to the similarity

in technique. TD-OCT technique uses the backscattered echo time delay and light

intensity levels to create a cross-sectional image. TD-OCT has around 10µm axial

resolution, which is much higher than ultrasound at around 150µm. TD-OCT modality

captures around 400 axial scans per second. The traditional OCT method (TD-OCT)
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is used to represent the location of each reflection within the position of a moving

reference mirror in the time information [Huang et al., 1991]. The StratusOCT (Carl

Zeiss Meditec Inc., Dublin, CA, USA) is one of the most widely used TD-OCT devices

in clinical applications. It acquires 400 A-scans per second with an axial resolution of

10 µm. The highest lateral resolution is up to around 20µm.

Figure 2.8 shows the time-domain OCT (TD-OCT) imaging system setup [Schuman,

2008]. TD-OCT works by shining light from a light source, such as a superluminescent

diode (superluminescent diodes operate on a bandwidth of around 20 to 50 nanometers)

or a broad bandwidth laser into a beam splitter (fiber coupler). This splits the light

into two beams, with one going to the mirror on the reference arm, and one going to

the mirror on the sample arm which can be adjusted to localise the depth of scan into

the tissue. Some light from the sample arm mirror is reflected back off the eye tissue

but most of it scatters away in different angles. Light from the sample and reference

mirrors then travels back to the beam splitter. If the sample and reference lights are

coherent, meaning that the light depths of the sample and reference mirrors are the

same, a combination of both reflections of light produces an interference pattern that is

processed by the photodetector to produce an image or an A-scan [Huang et al., 1991].

If the sample and reference light are incoherent, they will not produce an interference

pattern that can be converted to an image. It is difficult to precisely image retinal

tissue in three dimensions because of eye movement.

Spectral-domain OCT (SD-OCT)

Although fundamentally similar to TD-OCT, SD-OCT has some significant variations.

SD-OCT systems are able to scan and perform imaging at a higher speed and scan

depth, and are able to take thousands of A-scans a second. Both TD-OCT and SD-

OCT use a central wavelength range of approximately 800 to 1100 nm. Figure 2.13

shows a schematic of spectral domain OCT (SD-OCT) imaging system setup. One of

the main differences is that the reference mirror is in a fixed position in SD-OCT. The
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adjustments of the referencing mirror used in TD-OCT are not efficient and limit in the

speed and sensitivity of the scans. It is faster and more efficient to detect reflections

from the entire range of depths simultaneously. Therefore, in SD-OCT the reference

mirror is kept stationary, and the interference between the sample and reference beams

is detected as a spectrum. The interference pattern is split using a grating diffraction

into its frequency components and all of these components are simultaneously detected

by a charge-coupled device (CCD) camera. The CCD camera is sensitive to several

different frequencies.

Figure 2.9: The setup of the spectral domain OCT (SD-OCT) imaging system [Schu-
man, 2008].

SD-OCT machines are up to 40 to 110 times faster than TD-OCT machines [Schu-

man, 2008]. This faster speed allows for a more rapid capturing of B-scans, and for

a higher level of precision when modelling and visualising 3D datasets. However, TD-

OCT is only be able to reach a maximum of around 512 A-scans. Images from B-scans

can be presented as grey scale or false colour images. Greyscale images are usually

preferable for identifying fine detail, for example, the differences in the layers of the
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retinal microstructure. In false colour images, bright colours such as red or white rep-

resent areas of high reflectivity, while darker colours such as blue or black represent

areas where the reflections are minimal or nonexistent.

Figure 2.10: The SD-OCT example images captured by using the RTVue-100 system
around the ONH area.

RTVue-100 (Optovue, Fremont, CA, USA) system is one example of a SD-OCT

imaging system with high speed image capture (26, 000 A-scans per second). It achieves

up to 5µm axial resolution, which is two times higher resolution than the StratusOCT

(Carl Zeiss Meditec Inc., Dublin, CA, USA) system. This system can obtain a 3D

optic nerve head (ONH) image with 16 bits per pixel and 101 B-scans, 513 A-scans,

768 pixels in depth. An example 3D image acquired by using RTVue-100 system around

the optic nerve head (ONH) area is shown in Figure 2.10. Figure 2.10 (A) shows the

ONH SD-OCT volume, Figures 2.10 (B)-(D) show the reduced volumes of the original

ONH volume in X, Y, Z direction. Figures 2.10 (E)-(O) are the 1st, 10th, 20th, 30th,
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40th, 50th, 60th, 70th, 80th, 90th, 100th scans from the ONH volume, respectively.

Figures 2.10 (P) and (Q) are the colour and the grey level en face images.

Figure 2.11: The SD-OCT example images taken by using the Spectralis HRA+OCT
system around the macular area.

Spectralis HRA+OCT (Heidelberg Engineering, Germany) is another example of

a SD-OCT system. It acquires up to 40, 000 A-scans per second for a 3D image. It

achieves up to 3.9µm axial resolution, 7µm depth resolution and 14µm lateral reso-

lution. This imaging system has been widely used to diagnose retinal diseases, which

provides 3D image with 256 B-scans, 512 A-scans, 992 pixels in depth and 16 bits

per pixel. Figures 2.11 and 2.12 show example volume images of SD-OCT Spectralis

HRA+OCT around the macula and ONH, respectively. Figure 2.11 (A) shows the

example macular SD-OCT volume, Figures 2.11 (B)-(D) show the reduced macula SD-

OCT volumes in X, Y, Z direction. Figures 2.11 (E)-(O) are the 1st, 25th, 50th, 75th,

100th, 125th, 150th, 175th, 200th, 225th, 250th scans from the ONH volume, respec-
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Figure 2.12: The SD-OCT example images taken by using the Spectralis HRA+OCT
system around the ONH area.

tively. The grey level and colour en face images of the macular volume are shown in

Figures 2.11 (P) and (Q) respectively. An example ONH volume captured by using the

Spectralis HRA+OCT system is shown in 2.12 (A). The reduced volumes of the ONH

volume in X, Y, Z direction are shown in Figures 2.12 (B)-(D), respectively. The 1st,

25th, 50th, 75th, 100th, 125th, 150th, 175th, 200th, 225th, 250th scans captured from

the ONH volume are shown in Figures 2.12 (E)-(O), respectively. Figure 2.12 (P) and

(Q) are the grey level and colour en face images.

Swept-source OCT (SS-OCT)

Swept-source OCT (SS-OCT) is the latest form of OCT. Because previous forms of

OCT technologies do not have the ability to view deeply or clearly enough into the eye

tissues, the primary function and development of SS-OCT is to enable a clearer and

deeper view into the eye, gaining the ability to visualise the choroid. SS-OCT employs
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a fast wavelength scanning light source such as laser rather than a low-coherence light

source compared to TD-OCT and SD-OCT [Lim et al., 2014].

Figure 2.13: The setup of the swept source OCT (SS-OCT) imaging system [Schuman,
2008].

The setup of the swept-source OCT imaging system is shown in Figure 2.13 [Schu-

man, 2008]. Instead of using a spectrometer and a CCD camera to detect the inter-

ference signal in SD-OCT technology, a frequency swept laser source and a high speed

photodetector are used to detect the interference signal. The reflections from the scan-

ning mirror and reference mirror are detected by a single photodetector, which greatly

increases the scanning speed and reduces the cost because the photodetector is much

cheaper and simpler than a CCD camera [Schuman, 2008]. By using the swept source,

the SS-OCT system is able to provide faster scanning speeds, uniform image quality and

improved vitreous visualisation. Furthermore, the SS-OCT adopts longer wavelengths

26



2.3. Retinal Diseases 2. Background

(1050 nm) which increase tissue penetration, reduce intra-tissue light scattering, and

make it possible to see the optic nerve and macula on the same scan.

DRI OCT-1 Atlantis (Topcon, Tokyo, Japan) is one example of a SS-OCT system.

It provides 100,000 A-scans per second with 1,050 nm wavelength, which is the fastest

scanning speed in the world [Schuman, 2008]. It enables the viewing of deep eye tissues

such as choroid and sclera within a very short time. This system achieves a high

resolution with 20 µm lateral resolution and 8 µm in-depth resolution.

2.3 Retinal Diseases

The retina is the light sensitive tissue which is responsible for vision. It is located on the

inside back wall of the eye. The retina are vulnerable to diseases, including glaucoma,

diabetes retinopathy, age-related macular degeneration, cardiovascular diseases and

other inherited retinal degenerations. Some of the diseases can lead to visual loss or

permanent blindness. Some of the most prevalent retinal diseases are briefly introduced

in the following.

2.3.1 Glaucoma

Glaucoma affects the optic nerve of the eye. It increases the pressure in the eye because

the extra eye fluid (Aqueous Humour) flows though an area of the sclera known as the

Trabecular Meshwork and disrupts this area [Quigley and Broman, 2006]. Glaucoma is

the second highest cause of permanent blindness [Thylefors et al., 1995]. The eye regu-

lates the necessary drainage of fluid through the Trabecular Meshwork. This pressure

is known as Intra Ocular Pressure (IOP). Although people with a high IOP may not

necessarily go on to develop Glaucoma, sufferers do tend to have a higher level of IOP

which may often be hereditary. Glaucoma is typically without symptoms until later in

life. These affected are usually 40 and over. The symptoms of Glaucoma are: gradual

loss of peripheral vision leading to tunnel vision.
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There are two main types of Glaucoma: Open-angle Glaucoma and Angle-closure

Glaucoma. Figure 2.14 compares the two types of Glaucomatous fundus images with

the image of a healthy fundus. The cup-to-disc ratio (CDR) is measured to diagnose

and track the progression of glaucoma. This ratio is calculated by comparing the

diameter of the optic cup with the diameter of the optic disc. A healthy eye normally

has almost a 0.3 cup-to-disc ratio. A large cup-to-disc ratio may indicate glaucoma.

Figure 2.14: Glaucomatous damage shown on fundus images [Gao et al., 2015]. (A)
Healthy fundus example, (B) Angle-closure Glaucoma fundus example, (C) Open-angle
Glaucoma fundus example.

Open-angle Glaucoma

Open-angle Glaucoma is the most common type of Glaucoma [Quigley and Broman,

2006]. The pressure in the eye is raised in two ways: first, the eye fluid cannot effectively

drain through the trabecular meshwork even though it may appear to be unobstructed;

second, the eye produces more fluid than can be drained. This type of Glaucoma is

usually caused by age-related degeneration. As the condition takes a long time to

manifest, sufferers may not be aware of symptoms until later in life, typically from

the ages of 40 onwards [Quigley and Broman, 2006]. Symptoms are often painless and

gradually lead to a slow degeneration of vision.
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Angle-closure Glaucoma

Angle-closure Glaucoma is the most serious form of Glaucoma [Quigley and Broman,

2006]. It occurs when the flow of eye fluid through the trabecular meshwork on to

the drainage site is impeded because the iris is at an angle and pushed against the

trabecular meshwork, causing an acute build-up of pressure. If Angle-closure Glaucoma

is not detected early, significant damage can be caused to the retina and optic nerve.

The symptoms of this form of Glaucoma manifest rapidly and include severe pain in

the eye, nausea, blurred vision, halos seen when looking into a light, and redness to

the eye. Angle-closure Glaucoma is treated as a medical emergency, as symptoms are

not apparent until they become severe.

Treatments for Glaucoma

Although Glaucoma cannot be cured, the condition can be managed. The degeneration

of the eye can be slowed by treatments which help drain the eye, such as prostaglandins

in the form of eye drops, oral supplements, or the use of beta blockers to reduce

pressure within the eye. Also, surgical treatments can be performed such as an argon

laser trabeculoplasty (ALT) , which improves the flow of fluid through the trabecular

meshwork, or removal of a portion of the trabecular meshwork to relieve pressure as

well as improve the flow of fluid.

2.3.2 Diabetes

Diabetes is a long term metabolic disease in which blood sugar levels are high because

the body produces an insufficient amount of insulin or the cells are unable to respond

properly to it. Nowadays, diabetes affects 387 million people worldwide, increasing

by 205 million by 2035 according the International Diabetes Federation [Guariguata,

2013]. There are two different types of diabetes. In Type 1 diabetes the body’s immune

system attacks the cells that produce insulin [Harjutsalo et al., 2013], [Alberti et al.,

1998]. Type 1 diabetes usually develops in children and young adults. People with Type
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1 diabetes need injections of insulin every day in order to manage blood glucose levels,

or they will die. In addition, regular blood tests are necessary to check blood-glucose

levels and a special diet should be followed as well. Type 2 diabetes accounts for 90%

of cases [Melmed et al., 2011]. The pancreas is not able to produce sufficient insulin

to regulate blood glucose levels or the body’s cells are unable to react to it properly.

Type 2 diabetes can occur at any age but is often associated with obesity. Damage

to the area of the retina that is used for fine vision (maculopathy) and cataracts are

the largest problems for people with Type 2 diabetes. Type 2 diabetes can usually

be managed with diet and exercise but most people eventually require oral drugs or

insulin injections.

Diabetes retinopathy, i.e. damage to the retina, is a side effect of diabetes, even-

tually leading to blindness. In the first 20 years of the disease nearly all patients with

Type 1 Diabetes and 60% of patients with Type 2 diabetes develop diabetic retinopa-

thy. Excess blood-glucose caused by diabetes damages the blood vessels in the eye

which can lead to fluid draining into the macula which causes it to swell leading to

blurred central vision. In later stages of diabetes retinopathy, these damaged blood

vessels can leak blood into the centre of the eye which can lead to loss of vision.

Figure 2.15: Some examples of fundus images which are affected by diabetes retinopa-
thy, including exudates, cotton-wool and drusen [Niemeijer et al., 2007].

Figure 2.15 shows some example diabetes retinopathy fundus images [Niemeijer
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et al., 2007]. There are four stages of diabetic retinopathy: Mild: The earliest stage of

retinopathy. Small balloon-like swellings occur in the retina’s tiny blood vessels causing

microaneurysms which begin to damage the eye. Moderate: Blood vessels leading to

the retina become blocked causing malnourishment and damage. Severe: The retina

attempts to grow new blood vessels but the vessels created are abnormal and weaker

than usual with thin walls which can rupture. These new weaker blood vessels rupture

causing them to leek blood into the retina, destroying it, and resulting in severe vision

loss or blindness.

The main symptoms of diabetes retinopathy are: intermittent blurred vision, double-

vision, difficulty reading, spots in field of vision, shadows or veils across the field of

vision, redness of the eye and pain or pressure [Melmed et al., 2011]. There is no direct

cure for diabetic retinopathy but laser surgery can reduce further damage especially

if carried out before the retina is severely damaged. A vitrectomy (surgical removal

of the vitreous gel) and anti-VEGF (Vascular endothelial growth factor) inactions or

anti-inflammatory medicine are effective in shrinking the new weakened blood vessels

in the later proliferative stage.

2.3.3 Age-Related Macular Degeneration (AMD)

Age-related macular degeneration (AMD) is a medical condition affecting the macula,

an area of the retina responsible for all central vision. AMD is a leading cause of

visual impairment and blindness in adults aged 50 and over [Friedman et al., 2004].

Typically, individuals with AMD experience loss or corruption of vision in the centre of

their visual field with peripheral vision generally unaffected. The symptoms of AMD

are: blurring of central vision, straight lines appearing blurred or distorted, blind spots

in the central field of vision, eyes taking longer than usual to adjust to normal light

after bright light. Deterioration and an increased frequency of symptoms occur more

quickly with those who have wet AMD. It is still unclear what causes AMD. However,

age, smoking, diet and family history are known to be contributory factors. There are
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two kinds of AMD, dry AMD and wet AMD. Figure 2.16 shows wet and dry AMD

examples on B-scan macula and fundus images.

Figure 2.16: Some examples of AMD damage shown on B-scan macula and fundus
images [mac, 2015]. (A) Dry AMD example for both B-scan macular and fundus
images, (B) Wet AMD example both on B-scan macula and fundus images.

Dry AMD

The dry form of AMD is caused by a build-up of waste products known as drusen

[Friedman et al., 2004]. Drusen are naturally occurring waste products that increase

in quantity with age as the eye becomes less able to remove them. It is uncertain

what causes the increase. Drusen cause macular degeneration, and there is often a

link between increased Drusen and Multiple Sclerosis (MS). Dry AMD is the most

common form of AMD and accounts for 90% of all AMD cases. Although dry AMD

cannot be cured or reversed, and it generally involves only a slow degeneration with

some individuals retaining clarity of vision for many years. In later stages dry AMD

can evolve into wet AMD. Although there are no current treatments for dry AMD, the

Age-Related Eye Disease Study (AREDS) has concluded that high dose of Antioxidants

and Zinc may help to slow the advance of dry AMD [Group et al., 2001].
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Wet AMD

The wet form of AMD is known as the choroidal neovascularization (CNV) [Friedman

et al., 2004]. It includes 10% of all AMD cases and is responsible for 90% of legal

blindness in all AMD patients [Holz and Spaide, 2010]. Wet AMD occurs due to

abnormal blood vessels breaking and leaking under the macula, eventually scarring

and causing cell damage. Symptoms of wet AMD can manifest quickly and without

treatment the condition can deteriorate rapidly, usually within a period of weeks or

even days. Several forms of treatment for wet AMD exist, most commonly in the form

of injections knowns as anti-angiogenic therapy. Anti-angiogenics, such as Lucentis,

help to stem the development of abnormal blood vessel growth around the macula.

Other treatments involve laser therapy which acts to block damaged blood vessels and

prevent further abnormal growth in areas around the macula helping to reverse some

of the damage and slow further degeneration.

2.3.4 Cardiovascular Diseases (CVD)

Cardiovascular diseases primarily affect the function of the heart and blood vessels. In

2008, over 17.5 million people died worldwide from CVD, 31% of all causes of death

[Alwan et al., 2011]. In the EU alone, the estimated annual cost of CVD to the economy

is around e196 billion [Nichols et al., 2012]. Within this total, 54% is for healthcare,

with 24% for productivity losses and 22% for informal care of CVD patients.

The primary examples of CVDs are:

1. Coronary heart disease (CHD): This disease is a blockage or narrowing of blood

vessels that supply oxygen and blood to the heart, caused by a buildup of fat

and cholesterol in the artery walls. It is the leading cause of death worldwide.

According to the National Health Service (NHS), it causes around 1117,000 deaths

per year in United Kingdom [of Health, 2000].

2. Cerebrovascular disease: A group of diseases affect the blood vessels to the brain,
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causing limited or no blood flow to the affected areas [Flammer et al., 2013].

Cerebrovascular disease includes aneurysms, a chronic dilation of the bronchi

which can enlarge and eventually rupture. This disease is often a common cause

of strokes. A stroke occurs when part of the brain is damaged by a lack of blood

supply or there is bleeding into the brain from a burst blood vessel. The lack

of blood supply causes part of the brain to die, a process known as cerebral

infarction. About 10% of strokes are caused by bleeding from arteries in the

brain, which directly damages the brain’s tissues and can also cause loss of blood

supply.

3. Peripheral arterial disease (PAD): This is also called Peripheral Vascular Disease

(PVD). Deposits of fat build-up in the arteries, restricting the blood supply to

the leg muscles. This process is called atherosclerosis. PAD is more common

with age increasing, affecting approximately 1 in 5 over 70s. On the average,

men develop PAD earlier than women.

4. Rheumatic Heart Disease (RHD): This disease is caused by rheumatic fever, strep-

tococcal bacteria, which damage the heart muscle and valves [Flammer et al.,

2013]. Rheumatic fever may develop in very young children and young adults,

but it is most common in 5 to 15 years old children.

5. Congenital heart disease (CHD): This disease is a malformation of the heart of

birth. It is a defect with the heart’s structure and blood vessels, which causes

more deaths than other disease in the first year of life. According to the NHS, it

affects up to 9 out of 1000 babies born in Unite kingdom [of Health, 2000].

6. Deep vein thrombosis (DVT) and pulmonary embolism: Blood clots mainly

formed in the veins in the lower leg and thigh. The clots can move to the heart

and the lungs when dislodged. According to the NHS, DVT affects 1 in every

1000 people in the United Kingdom each year [of Health, 2000].
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The retina is a unique place in the body where microcirculation can be viewed

directly. The retina tissue consumes one of the highest rates of oxygen in the body;

therefore detecting changes in the microcirculation within the eye can often predict

the development of cardiovascular diseases such as CHD [Liew and Wang, 2011]. Sub-

sequent study and analysis of the retinal micro-vasculature has produced information

about the structure as well as the functionality of the vessels. However, its clinical

application has only recently gained some attention.

Most of eye diseases can be diagnosed using retinal imaging techniques, such as

fundus imaging systems, OCT imaging systems and so on. Many algorithms have

been designed to extract retinal structures from retinal images, which are analysed by

ophthalmologists to diagnose eye diseases. Level set method is one of the most widely

used algorithms for segmenting and extracting retinal structures.

2.4 Level Set Method

There are two major classes of the level set method: region-based model and edge-based

model. The edge-based model uses local edge information to direct an active contour

to the object boundaries, while the region-based models use a certain descriptor to

identify each region of interest to guide the active contour to the desired boundary.

2.4.1 Region Based Model

The region based models usually include two parts: a regularity part to smooth the

shapes of the contours, and an energy minimisation part to detect uniform features.

The Mumford-Shah model [Mumford and Shah, 1989] was the earliest level set model

developed to segment images. Let Ω be the image domain, let I be a grey level image,

and let C be a contour desired to segment by using the energy function, which separates

the image domain Ω into 2 disjoint regions: Ω1, · · ·, ΩN . The energy function of the
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model is defined as:

FMS(u,C) =

∫
Ω

(u− I(X))2dX + µ

∫
Ω\C
| 5 u|2dX + ν|C| (2.1)

where |C| is the length of the contour, and u is an image that approximates the original

image I. The first term of (2.1) is the data term, the second is the smoothing term,

and the third is regularisation term. More specifically, the data term forces u to be

close to the image I, the smoothing term is to smooth the image area from the contour

C, and the regularisation term is to reduce the length of the contour C. However, the

fact that the unknown contour C has lower dimension and the non-convexity of FMS

makes it difficult to minimise FMS .

Chan-Vese (CV) [Chan and Vese, 2001] simplified the Mumford-Shah function and

proposed a powerful and flexible method, which is able to segment many types of

images. The energy function is defined as:

FCV (φ, c1, c2) =λ1

∫
outside(C)

(I(X)− c1)2dX + λ2

∫
inside(C)

(I(X)− c2)2dX+

µ · Length(C) + ν ·Area(inside(C))

(2.2)

where λ1, λ2 > 0, µ > 0, ν > 0 are fixed parameters determined by the user, which are

usually fixed as λ1 = λ2 = 1 and ν = 0 in calculations. The energy function can be

rewritten as:

FCV (φ, c1, c2) =λ1

∫
outside(C)

(I(X)− c1)2dX + λ2

∫
inside(C)

(I(X)− c2)2dX+

µ ·
∫

Ω
|∇H(φ(X))|dX + ν ·

∫
Ω
H(φ(X))dX

(2.3)

where φ is a level set function, the outside(C) and inside(C) indicate the region outside

and inside the contour C, respectively, and c1 and c2 are the average image intensity

of outside(C) and inside(C). The zero level set contour of φ is defined as C = {X :

φ(X) = 0}. This contour separates the image domain Ω into two disconnected regions
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Ω1 = {X : φ(X) > 0} and Ω2 = {X : φ(X) < 0}. The regularisation term Heaviside

function H and the average intensities c1 and c2 are formulated as:

Hε(x) =
1

2
(1 +

2

π
arctan(

x

ε
)) (2.4)

c1 =

∫
Ω I(X)H(φ(X))dX∫

ΩH(φ(X))dX
(2.5)

c2 =

∫
Ω I(X)(1−H(φ(X)))dX∫

Ω(1−H(φ(X)))dX
(2.6)

Variational region based level set methods are proposed to solve different segmenta-

tion problems based on the Chan-Vese model. The Local binary fitting model proposed

by Li et al. [Li et al., 2007] modifies the region term by two fitting functions instead of

the global average intensities of outside and inside of the contour with a kernel func-

tion. These two fitting functions approximate the local image intensity in outside(C)

and inside(C). Sun et al. [Sun et al., 2012] present the local morphology fitting model

by modifying the region term and adding a level set regularisation term. They use the

maximum fuzzy opening and minimum fuzzy opening instead of the average intensity

outside and inside of the contour in the region term for more complicated problems.

Li et al.[Li et al., 2008] introduce the region-scalable fitting model to improve their

previous work by using a Gaussian kernel function to scale the region term to solve

the segmentation problem under uneven illumination. Zhao et al. [Zhao et al., 2015]

develope a hybrid region term based level set model to extract region information from

two inputs to locate objects with irregular or oscillatory shapes.

2.4.2 Edge Based Model

Normally, the edge based models include two parts: the first part (regularity part)

constrains the shape of the contour, and the second part (edge constraint part) is to

drive the contour towards the object boundary. Caselles et al. [Caselles et al., 1993]
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presented the geometric active contour model for image processing in 1992, which was

the earliest edge based level set method. This method is able to segment smooth

shapes and can detect multi-regions simultaneously. A geodesic active contour model

was presented by Caselles et al. [Caselles et al., 1997], [Kichenassamy et al., 1995] based

on the theory of the geodesic curve. This method improves the geometric active contour

model and makes it more stable in order to detect boundaries with large variations and

gaps. According to Li et al’s model [Li et al., 2010], the energy function of the geodesic

model is rewritten as:

FE(φ) = λLg(φ) + αAg(φ), (2.7)

where λ > 0 and α ∈ R are constant coefficients. The energy functionals Lg(φ) and

Ag(φ) are formulated as:

Lg(φ) ≈
∫

Ω
g(x)δε(φ(X))|∇φ(X)|dX (2.8)

Ag(φ) ≈
∫

Ω
g(x)Hε(−φ(X))dX (2.9)

where g(x), Hε(x), δε(x) are the edge indicator function, the Heaviside function respec-

tively and Dirac delta function, respectively. The edge indicator function and Dirac

delta function are defined by:

g(x) ≈ 1

1 + |∇Gδ ∗ Im(X)|
(2.10)

δε(x) = H
′
ε(x) =

1

π

ε

ε2 + π2
(2.11)

where Gδ is the Gaussian kernel with a standard deviation δ. The indicator is used to

smooth the image and reduce the noise through the convolution.

The first term Lg(φ) calculates the line integral of the edge indicator function g

along the zero level set contour of φ with the Dirac delta function δε. When the zero
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level set of φ as a contour is parameterised as C: [0, 1] → Ω, the first term Lg(φ) can

be rewritten as
∫ 1

0 g(|∇I(C(s))|)|(C(s))|ds. This term
∫ 1

0 g(|∇I(C(s))|)|(C(s))|ds was

first introduced by Caselles et al. [Caselles et al., 1997], where g(|∇I(C(s))|)| contains

the boundary information of the object. The energy of this term Lg(φ) is minimised

when the level set function φ is close to the target boundary of the object.

A weighted area of the region Ω−φ ≈ φ(X) < 0 is calculated by the second term

Ag(φ). When g(x) = 1 as a special case, this term Ag(φ) computes the area within

the contour Ω−φ . This term Ag(φ) is applied to speed up the motion of the level set

function φ to the desired object boundary in the evolution process, especially when the

initial contour is located far away from the target boundary of the object. The level

set function φ is negative inside the zero level contour and positive outside the zero

level contour. The coefficient α for the weighted area term should be positive when the

initial contour is located outside the object, so that the zero level contour will shrink

to the target boundary in the level set evolution. Otherwise, the coefficient α should

be negative when the initial contour is located inside of the initial contour, so that the

zero level contour will expand to the target boundary in the level set evolution. When

the edge indicator function g(x) is close to the object boundary, this weighted area

term Ag(φ) will slow down the shrinking or expanding of the zero level contour.

In order to achieve different segmentation requirements, variational edge based level

set models are developed based on the geometric active contour model. The distance

regularised level set method [Li et al., 2010] adds a distance regularisation term to the

geometric active contour model to maintain the desired shape of the level set function

φ and avoid its induced numerical errors. Pratondo et al. [Pratondo et al., 2016]

introduce an edge-stop functions based level set method to stop the contour evolution

at the proper boundary. It is considered as a challenge to stop the contour evolution at

proper boundary. Li et al. [Li et al., 2015] present a new geodesic model to integrate

the local and global edge information in a signed pressure force function. This method

can deal with images large variations in intensity.
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2.5 Retinal Image Analysis

Retinal imaging has rapidly developed within ophthalmology over the past 20 years,

becoming an essential part of detecting and diagnosing eye diseases, preventing serious

deterioration such as sight loss or blindness. Development of affordable and efficient

forms of imaging technology, such as fundus imaging cameras and OCT imaging modal-

ities, has made it possible to examine the eye to detect and diagnose several different

eye diseases efficiently and non-invasively. The retinal images from different imaging

modalities are the main indicators of different retinal diseases as well as cardiovascular

diseases. However, it is time-consuming or even impossible to hand-label all of the

retinal structures in these images. Therefore, automated fundus and OCT image anal-

ysis tools are extremely important for ophthalmologists to detect and analyse even tiny

structural changes, and to make more accurate diagnoses and give proper and efficient

treatments in the early stages to prevent serious deterioration.

2.5.1 Fundus Image Analysis

Fundus imaging is one of the most widely used imaging systems in clinics and eye hospi-

tals. Fundus cameras capture a 2D fundus image, which is obtained by using reflected

light to form a 2D representation of 3D retinal semi-transparent tissues. The retinal

structures of fundus images are important indicators for eye diseases, it is necessary

to extract and analyse these information for disease diagnosis. Therefore, many re-

searchers from different backgrounds including computer science and medical analysis

are attracted to research of fundus images. More than 1000 papers have been published

in this area. They cover the following topics [Abràmoff et al., 2010]:

1. Retinal structure detection and extraction:

• retinal blood vessels: vessels diameter, vein classification, vessel occlusion;

• fovea, optic disc, optic cup and rim, cupping.
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2. Retinal abnormalities location and extraction:

• retinal abnormalities due to blood vessels: hemorrhages, microaneurysms,

cottonwool spots;

• retinal abnormalities due to the pigment opithelium: drusen, hyper and

hypopigmentation;

• retinal abnormalities due to the choroid: nevus and melanoma, choroidal

lesions.

3. Image quality assessment:

• image quality verification, imaging artifact location, and iatrogenic lesion

detection.

Our study mainly focuses on the segmentation of retinal blood vessels and optic

discs from fundus images. More details of the methods will be given in chapters 3 and

4. The presence of exudates and lesions, low contrast between vessels and background,

and the intensity inhomogeneity, make accurate vessel segmentation more difficult and

complex. The current challenges of blood vessel segmentation are summarised as follows

[Abràmoff et al., 2010]:

• Detect the smaller vessels of which the diameter is only a few pixels;

• Avoid misclassifing vessels on the boundary of the optic disc;

• Avoid misdetection of the intensity inhomogeneities due to lesions in blood ves-

sels;

• Segment vessels accurately, given the low contrast between the vessels and the

background;

• Detect blood vessels inside the optic disc.
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It is difficult to accurately detect and segment the optic discs from fundus images,

because of the irregular shape of optic disc, the intensity inhomogeneity in the optic

disc, and the presence of retinal pathologies around or within the optic disc. The main

challenges of optic disc segmentation are listed in the following [Abràmoff et al., 2010]:

• Detect the optic disc when it is affected by retinal pathologies;

• Segment optic discs with complex or irregular shapes;

• Avoid misdetecting the optic disc when there is optic disc swelling;

• Avoid misclassifing the optic disc boundary when it is obstructed by retinal ves-

sels;

• locate the optic disc when there is poor contrast with background.

2.5.2 OCT Image Analysis

Compared to the fundus imaging technique, the OCT imaging technique is able to cap-

ture 3D images with a wealth of relevant information. The increasing improvements in

OCT imaging technique has enabled a clearer view of retinal structures and detailed

tissues. The information obtained by OCT imaging modalities is especially important

for eye experts to diagnose the diseases and develop proper treatment strategy. How-

ever, it is time consuming or even impossible to hand label all the retinal structures

and analyse this information. Therefore, automated and advanced OCT image analysis

methods are required to segment and analyse the clinically relevant structures. Up till

now, many papers have been covered the following research topics [Abràmoff et al.,

2010]:

• detect and analyse the intra-retinal layers from 3D OCT images;

• locate and reconstruct the retinal vessels from 3D OCT images;

• segment and analyse the optic nerve head from 3D OCT optic nerve head images;
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• classify and analyse retinal lesions from 3D OCT images.

We focus our study on the intra-retinal layer segmentation from both 3D macular

and optic nerve head images. The details of the segmentation methods are discussed

and explained in chapters 5, 6 and 7. By comparing with 2D layer segmentation

methods on a sequence of 2D OCT slices, 3D layer segmentation methods take ad-

vantages of 3D contextual information on 3D OCT image. However, there are still

several challenges in intra-retinal layers segmentation from 3D OCT images, which can

be summarised as follows:

• Perturbation of 3D OCT images and image artefacts are produced by the eye

movements during the imaging. It is difficult to remove all the noise and at the

same time keep the relevant image structures;

• Intra-retinal layers segmentation can be difficult in images affected by disease;

• The leakages and irregular shapes of the optic nerve head can make it difficult to

detect the intra-retinal layers accurately in ONH images;

• The layer boundaries within the retina is not distinct because of immature imag-

ing modalities. The appearance of the layers may be inhomogeneous and incon-

sistent because of the presence of blood vessels and blood vessel shadows inside

the layers.

In order to overcome these challenges mentioned above, level set based methods

are proposed and applied to extract retinal structures, including retinal blood vessels

and optic disc from 2D fundus images, intra-retinal layers and macular layer from 3D

macular OCT images and intra-retinal layers from 3D optic nerve head images, in the

following chapters. In chapters 3 and 4, we focus on the 2D retinal image analysis and

the retinal structures are segmented from 2D retinal images. In chapters 5, 6 and 7, we
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move the topic to the 3D retinal structure analysis and the retinal structures from 3D

retinal images are segmented. The main baseline of the proposed methods are based

on the level set method. These retinal structure information, extracted by methods

presented in the following chapters, can be analysed and used by ophthalmologists to

diagnose eye diseases in early stages.
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Chapter 3

Bayesian Level Set Method

Based Retinal Blood Vessels

Segmentation

The blood vessels and the optic disc are two important retinal structures from a fun-

dus image. The blood vessels are one of the most important indicators for diagnosing

eye diseases. This chapter presents an automated and unsupervised method for seg-

menting retinal blood vessels from fundus images by using the level set method, which

adopts Chan-Vese region-based term with a Gaussian mixture model and a distance

regularisation term. Also included in the method are the morphological closing op-

eration and matched filtering to preserve the vessels while removing the noise of the

optic disc boundary, and to enhance the blood vessel information. The effectiveness

of this method is demonstrated by testing and comparison with the state-of-the-art

methods on two public datasets DRIVE and STARE. The experimental results show

that our method offers several advantages over other methods, in particular in dealing

with interference from the optic disc, displaying the vessels inside the optic disc and

segmenting small vessel branches.
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The work included in this chapter has been submitted for publication [Wang and

Li, 2016]. The manuscript is lead-authored by the author of this thesis, who made

substantial contributions to the conception, data collection, processing and writing-up,

and sole contributions to the implementation and result analysis.

3.1 Introduction

Computer aided-diagnosis is an important tool in modern ophthalmology for detecting

and tracking several retinal diseases such as diabetic retinopathy, hypertension, glau-

coma, macular disintegration, neo-vascularisation and vein occlusion. The morphology

of retinal blood vessels is an important structural indicator for assessing the presence

of retinal diseases and can provide a measure of their progression over time. The quan-

tification of the diameter and tortuosity of retinal blood vessels, manual planimetry has

commonly been obtained by ophthalmologists using, which is in general time consum-

ing and prone to human errors [Kwon et al., 2009], especially when the vessel structure

is complicated or a large number of images are to be labelled. Therefore, a reliable

automated method for retinal blood vessel segmentation, which preserves various vessel

shapes, is attractive in computer aided-diagnosis.

Various methods have been developed for segmenting retinal blood vessels from 2-D

fundus images. Chaudhuri et al. [Chaudhuri et al., 1989] used 12 different Gaussian

templates to find the vessels in all possible directions before extracting them. Hoover

et al. presented a vessel segmentation method in [Hoover et al., 2000]. Zana et al.

[Zana and Klein, 2001] reported a curvature evaluation method to detect vessel-like

patterns in retinal images after noise reduction using morphology operation. Staal et

al. [Staal et al., 2004] implementing a k Nearest Neighbor (k-NN) classifier by using

extracted image ridges as feature vectors to segment retinal vessels. Mendonca et al.

[Mendonça and Campilho, 2006] segmented the retinal vessels using four directional

differential operators. The operator responses are used to train a classifier to obtain
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the centreline of the blood vessel. Then the vessel information is obtained by a region

growing method. Soares et al. [Soares et al., 2006] performed vessel segmentation

using Bayesian classification with Gaussian Mixture Models (GMMs) on 2D Gabor

wavelet transform response images. Nguyen et al. [Nguyen et al., 2013] combined the

generalised line detector with the basic line detectors at varying scales to segment the

blood vessels. Kaba et al. [Kaba et al., 2013] developed an automated segmentation

method of the retinal blood vessel by combining bias correction and a matched filter

to enhance the appearance of the blood vessels. The vessels were extracted using

the Expectation Maximisation algorithm. Azzioardi et al. [Azzopardi et al., 2015]

segmented blood vessels by thresholding the sum of the responses of two rotation-

invariant B-COSFIRE filters. Zhao et al. [Zhao et al., 2015] detected blood vessels by

using a hybrid region information based active contour framework.

The aforementioned methods produced some good experimental results. However,

due to the intensity inhomogeneity, the poor contrast of the vessels and the presence of

lesions in the retinal images, those methods tend to classify the optic disc boundary and

the lesions as vessel pixels, especially during the pre-processing steps. Methods such

as [Hoover et al., 2000, Soares et al., 2006, Staal et al., 2004, Mendonça and Campilho,

2006] depend on the training sets to achieve good results, and additional training is

required for performing segmentation on new datasets.

To address the above problems, we present an automated method for segmenting

retinal structure using the level set method. We apply a pre-processing technique

based on morphological closing to remove the boundary of the optic disc and retain

the vessels inside the optic disc and obtain the closed image. The most likely blood

vessel pixels are chosen as seeds. The appearance of the blood vessel is enhanced by

using matched filtering. The level set method incorporates the Chan-Vese region based

term, a Gaussian mixture term and a distance regularisation term to effectively segment

blood vessels from retinal images. Finally, a length filter is used to remove noises and

small contours.
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The contributions to our method are as follows: (1) The absolute difference between

the grey level image and the closed image obtained is calculated to remove the noise

due to the high luminosity and retain the images of the blood vessels within the optic

disc. (2) The hybrid region based terms including the Chan-Vese region term and

Gaussian mixture region term are integrated into the level set method. The hybrid

terms maximise the region information, which is extracted from the difference image

and vessel enhanced image, to keep small vessels and compensate for variations in the

intensity. (3) The Gaussian mixture term computes the negative log likelihood of the

blood vessels and background probabilities according to the GMM model, which is

updated through each level set iteration according to the characteristics of the image

itself, to achieve better segmentation results.

The rest of the chapter is organised as follows. In Section 2, a detailed description

of the proposed method is presented. The experimental results on two public datasets

are demonstrated in the Section 3. Finally, conclusions are drawn in Section 4.

3.2 Methods

Retinal blood vessels are segmented by three major steps: pre-processing step, vessel

segmentation step and post-processing step. Figure 3.1 shows the block diagram of the

blood vessel segmentation method. During the pre-processing step, the morphological

closing operation and matched filtering are applied to remove the optic disc inference

and retain the images of the blood vessels inside the optic disc, and to enhance the blood

vessel information and deal with the variations in contrast of the retinal images. In

the second step, we apply the level set method with the Chan-Vese region based term,

Gaussian mixture term and distance regularisation term to carry out the segmentation.

This is followed by the minimisation of a level set energy function. Finally in the post-

processing step, we use the length filter to remove background noise due to intensity

inhomogeneity.
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Figure 3.1: Block diagram of the proposed blood vessel segmentation method. (a)
The original retinal image. (b) The grey level image (Ig) of the original image. (c) The
closing operation of Ig (Ic). (d) The difference image Id is obtained from the absolute
difference between Ig and Ic. (e) The matched filtering response of Id (Im). (f) Final
output of the proposed method.

3.2.1 Pre-processing

In order to improve the robustness and efficiency of the level set method, a pre-

processing step is implemented. The grey level image (Ig) (see Figure 3.1 (b)) contains

the intensity information from the colour image, which includes all the vessel informa-

tion. Then, a morphological closing operation is applied to remove the blood vessels

of (Ig). The closed image (Ic) is shown in Figure 3.1 (c). After that, we calculate the

image Id from the absolute difference between the Ig and Ic to remove the noises due to

the large luminosity and optic disc interference and retain the images of vessels inside

the optic disc. Figure 3.1 (d) shows the difference image.

This is followed by a two dimensional matched filtering [Chaudhuri et al., 1989] on Id

to enhance the appearance of blood vessels. The approach maximises the response over

blood vessels and minimises the response for image background. There are three main
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characteristics of the blood vessels in fundus images: first, the blood vessels usually

have small curvatures; second, the blood vessels have lower reflectance compared to

other retinal structures; finally, the width of the blood vessel decreases when it travels

away from the optic disc. According to the characteristics of the blood vessel, the

variations in vessel intensity can be approximated by a Gaussian curve function as:

f(x, y) = A{1− ke
−d2

2σ2 } (3.1)

where d is the perpendicular distance from pixel (x, y) to the straight line through centre

of the blood vessel in the same direction along its length, A is grey-level intensity of the

local background of Id, k represents the ratio of the reflectance between blood vessel and

its neighbourhood, and σ defines the spread of the vessel intensity profile.The widths

of the vessels are ranged within 2-10 pixels. For the initial calculation, the width of

blood vessels are set to 2σ.

Two dimensional matched filter kernel is applied to convolve with the original image

and defined as:

K(x, y) = −e−
x2

2σ2 for |y| ≤ L

2
(3.2)

where L denotes the segmented vessel length for which the vessel is assumed in a fixed

direction. The direction of the vessel is assumed with the alignment along the y-axis. A

vessel is assumed to orient at any angle θ(0 6 θ 6 φ). The matched filter has maximise

response only at an angle θ ± φ
2 . Therefore, the filter will be rotated for all possible

angles to obtain the maximum response for each pixel.

This filter suppresses the response due to the significant background noise. The

procedure of the filter reduces the rate of false detection of blood vessels in a non-ideal

environment. Here, we use a set of 12 matched filters because the kernel is rotated by

±15◦) to cover all possible directions. According to the experiment, the kernel size of

the filter is set to 16∗15. The filtered image Im is shown in Figure 3.1 (e). In addition,

because the level set method needs an initialisation input, here we select the most likely

blood vessel information as input seeds by thresholding the histogram of Id. According
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to the distribution of the histogram, the 20% highest intensity of Id will be selected as

the input seeds.

3.2.2 Hybrid region terms based segmentation

Our purpose is to segment the blood vessels. Let Ω be the image domain and let φ be

a level set function. The level set function φ is used to separate the image domain Ω

into two disjoint regions: Ω1 and Ω2. The novelty of the proposed method is that we

are integrating the hybrid region information, which has been extracted from the en-

hanced image (Im) and difference image (Id) by using the Chan-Vese region term [Chan

and Vese, 2001] and Gaussian mixture term, into the level set method. The intensity

distributions of the vessels and background are assumed to be relatively constant, the

Chan-Vese region term is used to model the region information extracted from the ves-

sel enhanced image (Im) (See Page 35). Furthermore, the region information from the

difference image (Id) is modelled by using the GMM into the Gaussian mixture term.

The Chan-Vese region term segments all big vessels and some small vessels, while the

Gaussian mixture term locates most of the small vessels and suppresses noise due to

intensity inhomogeneity by computing the negative log-likelihood of probabilities from

Id to separate the blood vessels and background. This hybrid region terms based seg-

mentation method maximises the region information from different inputs to keep most

of the small branch vessels and compensate the intensity inhomogeneity. Additionally,

the distance regularisation term keeps the blood vessel region boundary smooth and

avoids background noises due to intensity inhomogeneity.

Prior model construction

Let the blood vessels and background region be labelled 0 and 1 (L = {0, 1}), re-

spectively. The GMM is used to model the blood vessels and background region,

respectively. Let the pixel of Id be B = (b1, ..., bi, ..., bN ), where N is the total number

of all pixels. A = (a1, ..., ai, ...aN ) (ai ∈ L) is the corresponding initial label according
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to the level set function φ. The initial GMM with C components parameter set Θ0

is learned from A and B by using the EM algorithm. It is assumed that the pixel

intensity yi follows the GMM with C components parameters θi given the label ai,

P (bi|ai) = Gmix(bi; θi).

The parameters set Θ = {θl|l ∈ L} can be expressed as:

θl = (µl,1, σl,1, ωl,1), ..., (µl,C , σl,C , ωl,C) (3.3)

The E-step: At the tth iteration, we can obtain the parameters Θt, and the conditional

expectation can be deduced as:

Q(Θ|Θt) = EA
[
lnP (A,B|Θ)|B,Θt

]
=
∑
A∈L

P (A|B,Θt) lnP (A,B|Θ)
(3.4)

where L is the set of all possible labels, and P (A,B|Θ) can be rewritten as:

P (A,B|Θ) = P (A|B)P (B|Θ) (3.5)

M-step: Next parameter set Θt+1 is estimated through maximising Q(Θ|Θt):

Θt+1 = arg max
Θ

Q(Θ|Θt) (3.6)

The parameters are updated by using P (l|bi)

µ
(t+1)
l =

∑
i P

t(l|bi)bi∑
i P

t(l|bi)

(σ
(t+1)
l )2 =

∑
i P

t(l|bi)(bi − µ(t+1)
l )2∑

i P
t(l|bi)

(3.7)

Then, let Θt+1 → Θt and repeat from E-step until it converges.

Compared to the supervised learning methods, our method updates the GMM pa-

rameters set through each level set iteration until it converges or reaches the maximum

iteration number instead of obtaining the constant parameters set from a training pro-

cess. The performance of these supervised methods normally depends on the variety of

images covered in their training set. Our method can update the parameters according

to the characteristics of the input data itself.
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Gaussian Mixture term

Because of the intensity inhomogeneity of the difference image Id due to the hemor-

rhages, exudates and neovascularisation, it is difficult to use one single Gaussian to

model the blood vessels and one single Gaussian to model the background. Therefore,

a Gaussian mixture model is used to accurately estimate blood vessels. The energy

function of this term is formulated:

EM (φ) = −ν
∫

Ω

log(P (B|A,Θ))dxdy (3.8)

where ν ∈ R is a constant coefficient. This term calculates the negative log-likelihood

of the posterior segmentation probability. Based on the conditional independence as-

sumption of each pixel b, the conditional segmentation probability P (B|A,Θ) can be

expressed as:

P (B|A,Θ) =

N∏
i=0

P (bi|ai, θai) =

N∏
i=0

Gmix(b; θai) =

N∏
i=0

C∑
c=1

ωai,cg(b;µai,c, σai,c)

=

N∏
i=0

C∑
c=1

ωai,c exp(
−log(2πσ2

ai,c)

2
+
−(b− µai,c)2

2σ2
ai,c

)

(3.9)

According to the Jensen’s inequality, if
∑C

c=1 ωai,c = 1, we have:

−log(

C∑
c=1

ωai,cg(b; θai,c)) 6 −
C∑
c=1

ωai,clog(g(b; θai,c)) (3.10)

This indicates that minimising the right-hand term will lead to the minimisation of the

left term. Therefore, the conditional log-likelihood energy function U(B|A,Θ) can be

estimated:

U(B|A,Θ) =

L∑
l=0

ωlU(b|a,Θl)

=

L∑
l=0

C∑
c=1

ωl,c[
(b− µl,c)2

2σ2
l,c

+
1

2
log(2πσ2

l,c)]

(3.11)

Finally, the region-based term can be rewritten as:

EM (φ) = ν

∫
Ω

U(B|A,Θ)dxdy

= ν{
∫

Ω

U(b|a,Θ0)(1−H(φ)) + U(b|a,Θ1)H(φ)dxdy}
(3.12)
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According to [Zhao et al., 1996], where the Heaviside function H(φ) is expressed as:

H(φ) =


1
2 [1 + φ

ε + 1
π sin(πφε )], |φ| ≤ ε

1, φ > ε

0, φ < −ε.

(3.13)

where ε is a parameter, usually set to 1.5 [Li et al., 2010].

Level Set formulation

The energy function E(φ) of our proposed model can be formulated as:

E(φ) =ν{
∫

Ω

U(y0|x0,Θ0)(1−H(φ))dxdy +

∫
Ω

U(y1|x1,Θ1)H(φ)dxdy}+∫
Ω

λR
2

(|∇φ| − 1)2dxdy +

∫
Ω

λ1(Im − c1)2(1−H(φ))dxdy+∫
Ω

λ2(Im − c2)2H(φ)dxdy

(3.14)

where λR, λ1 and λ2 are constant parameters. The first two terms of the proposed

model are applied to calculate the negative log-likelihood probabilities according to the

prior parameter set (Θ0,Θ1) to separate the blood vessels from the background. The

third term is the distance regularisation term, which follows Li et al’s approach [Li

et al., 2010] by smoothing the level set function φ and maintaining the signed distance

property |∇φ| = 1 of the level set function φ in the entire domain. This term is used

to derive the level set function φ close to the blood vessel boundary and avoid the

background noise due to intensity inhomogeneity.

The final two terms of our model follow the classical Chan-Vese model [Chan and

Vese, 2001] (See Page 35), it ensures that blood vessels and background have approx-

imately constant intensity from Im. The blood vessels and background of the vessel

enhanced image Im are relatively homogeneous. Additionally, the average image inten-

sity of the blood vessels and background c1 and c2 defined on Page 37.

The energy function E(φ) is minimised by using gradient descent method with

respect to φ, the formulation is:

∂φ

∂t
= −∂E(φ)

∂φ
, (3.15)
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where ∂E(φ)
∂φ is the Gâteaux derivative. According to the Euler-Lagrange equations

[Aubert and Kornprobst, 2006], and the corresponding gradient flow equation is defined

as:

∂φ

∂t
=ν{−U(y0|x0,Θ0) + U(y1|x1,Θ1)}δ(φ)+

λR(∇2φ− div(
∇φ
|∇φ|

)) + {−λ1(Im − c1)2+

λ2(Im − c2)2}δ(φ)

(3.16)

where div(·) is the divergence operator, which is used to calculate the curvature of the

evolving curve by using the spatial derivatives φ up to the second order. The Dirac

delta function δ is approximated by:

δ(φ) =
d

dφ
H(φ) =


1
2ε [1 + cos(πφε )], |φ| ≤ ε

0, |φ| > ε.
(3.17)

3.2.3 Post-processing

Obviously, some background pixels are misclassified as blood vessel pixels. Through

investigating the segmentation result of the level set method, we found that most of the

small contours are intensity inhomogeneous noise. The length filter [Chanwimaluang

and Fan, 2003] is used to eliminate all the background noise. This approach is designed

to discard connected groups of pixels which are smaller than a given threshold. Groups

of pixels larger than the threshold are retained, for which is defined as blood vessel

information. Figure 3.1 (f) shows the final output of the length filter.

3.3 Results

The proposed method described in the previous section was evaluated on two public

databases, the DRIVE [Staal et al., 2004] and the STARE [Hoover et al., 2000], with a

total of 60 images. The DRIVE dataset includes 40 color images with 768×564 pixels

and 8 bits per RGB channel, which were captured by a Canon CR5 non-mydriatic

3CCD camera at 45◦ of view (FOV) and initially saved in JEPG-format. This database
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includes two sets: a test and training set with 20 images each. Both sets have hand-

segmented images, and a second independent hand-label is available for the test set.

We tested our method on all the 40 images, however, as the dataset site only has the

performance of the test set, we will only report the performance of this set. The STARE

dataset contains 20 images originally collected by Hoover et al. [Hoover et al., 2000]

from the whole STARE database. The first 10 images are abnormal and the remaining

10 are normal. These images were captured by a TOPCon TRV-50 fundus camera at

35◦ FOV. The size of the image is 700×605 pixels, 8 bits per RGB channel. Both the

normal and abnormal images were hand-labeled by two different experts. To evaluate

our method, we compare our result with the first expert (AH) for the STARE dataset

and with the first manually segmentation for the DRIVE dataset.

Three performance measurements are selected to evaluate different retinal extrac-

tion algorithms, (1) True Positive Rate (TPR), (2) False Positive Rate (FPR), and (3)

Accuracy Rate (ACC). These metrics are defined as:

TPR =
NTP

NTP +NFN
, FPR =

NFP
NFP +NTN

, ACC =
NTP +NTN
NP +NN

(3.18)

where NTP , NFN , NFP , NTN are the number of true positive, false negative, false

positive and true negative, respectively; NP and NN represent the total positive (vessel)

pixels and negative pixels. The following expressions, TP is the number of vessel pixels

that are labelled correctly, FP is the number of non-vessel pixels that are wrongly

labeled as vessel pixels, TN is the number of non-vessel pixels that are correctly labeled

and finally FN is the number of vessel pixels that are wrongly labelled as non-vessel

pixels.

Most of the extraction methods measure the performance using the whole image.

However, Staal’s method [Staal et al., 2004] evaluates the performance without includ-

ing the dark area outside the FOV and Mendonca’s method [Mendonça and Campilho,

2006] estimates the performance on both the whole image and the FOV. The number

of the true negatives NTN obtained by measuring within the FOV only is smaller than

the number obtained from the whole image, as it is easy to segment the area outside
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Method TPR FPR ACC TPR FPR ACC

DRIVE STARE

2nd Human observer
[Mendonça and Campilho, 2006] 0.7761 0.0275 0.9473 0.8951 0.0438 0.9522

[Martinez-Perez et al., 2007]

Supervised methods

Niemeijer
[Niemeijer et al., 2004] 0.6898 0.0304 0.9417 - - -

Staal [Staal et al., 2004] 0.7194 0.0227 0.9442 0.6970 0.0190 0.9516

Soares [Soares et al., 2006] 0.7332 0.0218 0.9466 0.7207 0.0253 0.9480

Ricci [Ricci and Perfetti, 2007] 0.7750 0.0280 0.9595 0.9030 0.0610 0.9646

Marin [Maŕın et al., 2011] 0.7067 0.0199 0.9452 0.6944 0.0181 0.9526

Unsupervised methods

Chaudhuri
[Chaudhuri et al., 1989] - - - 0.6134 0.0245 0.9384

Hoover [Hoover et al., 2000] - - - 0.6747 0.0435 0.9275

Mendonca
[Mendonça and Campilho, 2006] 0.7344 0.0236 0.9463 0.6996 0.0270 0.9479

Martinez
[Martinez-Perez et al., 2007] 0.7246 0.0345 0.9344 0.7506 0.0431 0.9410

Zhang [Zhang et al., 2010] 0.7120 0.0276 0.9382 0.7177 0.0247 0.9484

Azzopardi
[Azzopardi et al., 2015] 0.7655 0.0296 0.9442 0.7716 0.0299 0.9497

Roychowdhury
[Roychowdhury et al., 2015] 0.7390 0.0220 0.9490 0.7320 0.0160 0.9560

Zhao [Zhao et al., 2015] 0.7420 0.0180 0.9540 0.7800 0.0220 0.9560

Our method without
Gaussian Mixture term 0.7318 0.0234 0.9468 0.7156 0.0240 0.9483

Our method 0.7719 0.0204 0.9548 0.7756 0.0204 0.9574

Table 3.1: Performance of the segmentation methods on the DRIVE and STARE
datasets
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Method TPR FPR ACC

Normal images

Chaudhuri [Chaudhuri et al., 1989] 0.7335 0.0218 0.9486

Hoover [Hoover et al., 2000] 0.6766 0.0338 0.9324

Mendonca [Mendonça and Campilho, 2006] 0.7258 0.0209 0.9492

Soares [Soares et al., 2006] 0.7554 0.0188 0.9542

Zhang [Zhang et al., 2010] 0.7526 0.0221 0.9510

Roychowdhury [Roychowdhury et al., 2015] 0.7571 0.0123 0.9586

Our method without
Gaussian Mixture Term 0.7464 0.0224 0.9518

Our method 0.7921 0.0188 0.9607

Abnormal images

Chaudhuri [Chaudhuri et al., 1989] 0.5881 0.0384 0.9276

Hoover [Hoover et al., 2000] 0.6736 0.0528 0.9211

Mendonca [Mendonça and Campilho, 2006] 0.6733 0.0331 0.9388

Soares [Soares et al., 2006] 0.6869 0.0318 0.9416

Zhang [Zhang et al., 2010] 0.6828 0.0273 0.9458

Roychowdhury [Roychowdhury et al., 2015] 0.7062 0.0192 0.9535

Our method without
Gaussian Mixture Term 0.6848 0.0264 0.9456

Our method 0.7591 0.0220 0.9541

Table 3.2: Performance of vessel segmentation method on the STARE dataset (normal
versus abnormal images)

of FOV and which occupies around 25% of the whole image pixels in both the public

datasets. It only affects the measurements FPR and ACC.

3.3.1 Performance of blood vessel segmentation

In order to prove that the hybrid region based terms of our method are necessary,

we compared the performance of the proposed method with the performance of this

method without the Gaussian mixture model on both STARE and DRIVE datasets.

As shown in Table 3.1 and 3.2, it proves that our proposed method performs much

better than the proposed method without the Gaussian mixture term.

Table 3.1 compares our segmentation method with the alternative methods, using

TPR, FPR and ACC on DRIVE and STARE datasets for the comparison. On the
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Drive dataset, the average accuracy of our method is higher than the other unsuper-

vised learning methods and most of other supervised learning methods except Ricci et

al. [Ricci and Perfetti, 2007]. For the supervised learning methods, a learning process

on the training sets is needed before doing the experiments on a new dataset. The

performance of these methods generally depends on the training set. In other words, if

the training images are similar to the test images, the performance will be better. In

terms of the FPR, our method is only inferior to the methods of Zhao et al. [Zhao et al.,

2015] and Marin et al. [Maŕın et al., 2011] with 0.24% and 0.05% differences, respec-

tively. Finally, the TPR is only slightly inferior to the 2nd Human observer with 0.42

% difference. Although our method doses not have the best performance, the overall

performance from the three measurement is still comparable with the labelling by 2nd

Human observer with ACC= 0.9473, FPR=0.0275 and TPR=0.7761 on comparison

with the ground truth.

The results obtained on the STARE dataset are shown in Table 3.1. All the segmen-

tation methods were tested on all the 20 images except that Staal et al. [Staal et al.,

2004] only tested on 19 (10 healthy and 9 unhealthy) images. We consider the 2nd

Human observer labelled as the target performance level (ACC=0.9522, FPR=0.0438

and TPR=0.8951) with the first observer labelled as the ground truth in Table 2. Our

method achieves the best performance as measured by average accuracy, when com-

pared with all other unsupervised methods. However, our method is marginally inferior

to the supervised technique presented by Ricci et al. [Ricci and Perfetti, 2007] with

0.72% difference. Regarding the FPR, our method is better than all the other methods

except the Staal’s method [Staal et al., 2004], Marin’s method [Maŕın et al., 2011], and

Roychowdhury’s method [Roychowdhury et al., 2015]. Finally, in terms of TPR, our

method is only slightly inferior to the unsupervised method Zhao et al. [Zhao et al.,

2015] and supervised method Ricci et al. [Ricci and Perfetti, 2007].

The performance of the normal and abnormal sets from the STARE dataset are

compared in Table 3.2. The average accuracy rate of our method on the normal and

59



3.3. Results 3. Bayesian Level Set Method Based Retinal Blood Vessels Segmentation

Figure 3.2: The DRIVE dataset: (a, d) Retinal images. (b, e) Our segmentation
results. and (c, f) Ground truth image.

Figure 3.3: The STARE dataset (Normal): (a, d) Retinal images. (b, e) Our segmen-
tation results. and (c, f) Ground truth images.
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Figure 3.4: The STARE dataset (Abnormal): (a, d) Retinal images. (b, e) Our
segmentation results. and (c, f) Ground truth images.

abnormal sets is better than that of all the other methods. In terms of the TPR, our

method achieves the best result over all the other methods on both normal and abnor-

mal sets. In terms of the FPR, our method is only slightly inferior to Roychowdhury’s

method [Roychowdhury et al., 2015] with 18% difference on the abnormal set, while on

the normal set, our method is slightly inferior to Roychowdhury et al. [Roychowdhury

et al., 2015] and achieves the same result as Soares et al. [Soares et al., 2006]. An

overview of the results on the STARE dataset, our proposed method can work on both

normal and abnormal sets and get relatively good results.

Figure 3.2-3.4 illustrate the segmentation results of our proposed method and

ground truth images from DRIVE and STARE datasets. Fig 3.2 illustrates the output

images of our proposed method and ground truth images for the DRIVE dataset. Fig-

ure 3.3 and Figure 3.4 display the output images with ground truth images on normal

set and abnormal set of the STARE dataset, respectively.

Finally, our approach is implemented on MATLAB. The computation time of our

algorithm is less than 75 seconds for an image from the DRIVE dataset, and less than
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80 seconds for a STARE image, on a MAC OX X. The computational complexity is

O(n log(n)), n is the image.

3.4 Conclusions

In this chapter, we have presented a level set based blood vessel segmentation method,

which incorporates the Gaussian mixture information, region information and distance

regularisation information. The method was implemented in a typical three-staged pro-

cess together with the pre-processing and post-processing to enhance the blood vessel

information and the contrast between vessel and background, and remove background

noises.

We have evaluated our method against alternative methods on two publicly avail-

able datasets: the STARE dataset and the DRIVE dataset. The comparison results

demonstrate that the proposed approach has the following advantages: (1) It performs

equally well on different datasets and on both healthy and unhealthy images, while

many previous methods perform poorly on unhealthy images. (2) It is capable of ex-

tracting the blood vessels inside the optic disc and removing the noise of the optic disc

boundary, other methods have difficulty in retaining this boundary. (3) It can detect

more small branch vessels compared to other methods.

The key attributes of this chapter are: (1) In order to retain the images of the blood

vessels inside the optic disc and remove the optic disc interference, the difference image

is calculated to compensate. (2) The hybrid region information from the difference

image and enhanced image are integrated into the level set method to keep the small

branch vessels and compensate the intensity inhomogeneity. (3) The negative log like-

lihood of the blood vessels and background probabilities are computed according to the

prior GMM parameters as a Gaussian mixture region term, and the GMM parameters

set is reconstructed on level set iteration.

In this chapter, the Bayesian level set method is proposed and applied to detect the
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blood vessels, which are one of the most important retinal structures from a fundus

image. The optic disc is another important retinal structure of a fundus image. It is

important and necessary to segment the optic disc from a fundus image; this is the

topic of the next chapter.
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Chapter 4

Level Set Segmentation of Optic

Discs from Retinal Images

The analysis of retinal images can provide important information for detecting and

tracing retinal and vascular diseases. We have already proposed a method for segment-

ing blood vessels from fundus images in last chapter. Therefore, the purpose of this

work in this chapter is to design a method that can automatically segment the optic

disc, which is another important retinal structure of a fundus image. The template

matching method is used to approximately locate the optic disc centre, and the blood

vessels are extracted to reset the centre of the optic disc. This is followed by apply-

ing the level set method, which incorporates the edge term, distance regularisation

term and shape-prior term, to segment the shape of the optic disc from retinal images.

Seven measurements are used to evaluate the performance of the methods including

our method. The effectiveness of the proposed method is evaluated against alterna-

tive methods on three public data sets DRIVE, DIARETDB1 and DIARETDB0. The

results show that our method outperforms state-of-the-art methods on these datasets.

The work included in this chapter was previously published in [Wang et al., 2015a],

lead-authored by the author of this thesis, who made substantial contributions to the

conception, data collection and processing and writing-up, and sole contributions to
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the implementation and result analysis.

4.1 Introduction

Glaucoma, predicted to affect about 70 million people around the world by 2020 [JMJ,

2002], is one of the major causes of blindness in the world. This disease manifests by

gradual degeneration of the retinal ganglion cell axons and cupping of the optic disc.

Thus the optic disc nerve is an important structure in glaucoma analysis. Over the past

years, glaucoma experts have analysed the amount of cupping using manual planimetry

on stereo colour photographs of the optic disc nerve. However, the manual planimetry

of the optic disc nerve is time consuming and can be affected by human error. Thus,

a reliable automated method for the optic disc segmentation, which preserves various

optic disc shapes, is attractive for computer aided-diagnosis and for large-scale retinal

disease screening.

In the literature, numerous studies have been published on automated segmentation

of the optic disc. Shape based template matching is one of the earliest methods.

This method models the optic disc as a circular or elliptical object [Abdel-Ghafar and

Morris, 2007, Lalonde et al., 2001, Chrástek et al., 2002, Sekhar et al., 2008, Zhu

and Rangayyan, 2008, Pallawala et al., 2004]. The performance of this method is

affected by the presence of the blood vessels inside the optic disc region. To overcome

these limitations, the images of the blood vessels are removed by using a morphological

operation in [Abdel-Ghafar and Morris, 2007]. Nevertheless, the shape based modelling

approach of the optic disc extraction is not effective due to the intensity inhomogeneity

and the changes of the disc shape caused by the exudates present in abnormal images.

To address the problem of shape irregularity and intensity inhomogeneity, several

gradient based active contour methods have been developed [Lowell et al., 2004, Osareh

et al., 2002, Novo et al., 2009]. Those methods initialise the contour automatically or

manually and performed the deformation of the contour with an energy functional
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derived from the image gradient. Then a gradient vector flow based contour model is

used to detect the optic disc boundary, and the energy functional is minimised. This

process is achieved using pre-processing step or incorporating a circular or elliptical

shape constraint term into the segmentation algorithm to model the optic disc. To

further improve the active contour method by handling the local gradient minima, a

variational level set based deformable model was developed to smooth the segmentation

with an ellipse fitting operation [Wong et al., 2008]. This process either incorporates

the shape model into the energy formulation or uses a post-processing step. However, a

limitation of this method is that it may not perform well on these images with irregular

shapes of optic discs.

Model free snake methods are developed to effectively segment any irregular disc

shape using a supervised classification [Xu et al., 2007, Li and Chutatape, 2003, Li and

Chutatape, 2004]. These methods classify the contour points by using a supervised

manner into an edge point cluster or an uncertain point cluster in each evolution [Joshi

et al., 2011]. The uncertain point cluster groups the points belonging to the blood

vessel region. To address the local gradient variation, the deformation of each point

used global and local information. Though this method produces good segmentation

results on normal and irregular optic disc shapes, the segmentation accuracy is sensitive

to the contour initialisation.

The model proposed by Shah et al. [Mumford and Shah, 1989] has been widely used

in region based active contour to overcome the local gradient variation, the sensitivity

to contour initialisation and the noise. This region based active contour approach

[Chan and Vese, 2001] applies statistical models to define both the foreground and

the background before minimising the energy functional. For example, the method

proposed in [Joshi et al., 2010] achieved a good segmentation performance but it was

unable to accurately segment the boundary of images with smooth region transition

between the optic disc area and the background. To address this problem, the Chan-

Vese method [Chan and Vese, 2001] was incorporated with a circular shape into the
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segmentation formulation. Tang et al. [Tang et al., 2006] developed an automatic

method to segment the papilla using the combination the Chan-Vese model and an

elliptic shape restraint to ensure that the evolving curve stays an ellipse. Though

this method shows a good performance in detecting the papilla shapes, restricting the

segmentation to an elliptic shape may adversely affect the segmentation of irregular

optic disc shapes.

In order to improve the segmentation of the optic disc boundary, we present in this

chapter a novel method by combining the template matching model and the level set

method. The segmentation formulation incorporates edge, distance regularisation and

shape-prior terms respectively, making it possible to segment the optic disc with large

gradient near the boundary and preserve various optic disc shapes.

4.2 Optic disc centre detection

Inspired by the method reported by Lowell et al. [Lowell et al., 2004], the template

matching method is used to locate the approximate optic disc centre. Figure 4.1 shows

the process to locate the optic disc centre. There are two main stages for the optic disc

centre detection: (1) template matching, and (2) relocating the optic disc centre.

The size of the optic disc varies from dataset to dataset. In order to ensure a fixed

scale for the optic disc, we rescale the original retinal images into 570×760×3 (Figure

4.1 (a)). The I channel, which contains the intensity information in the HSI colorspace,

is extracted. Then, the morphological closing operation is applied to remove the blood

vessels, and the closed image is shown in Figure 4.1 (c). A 201×201size binary image is

used as a template (Figure 4.1 (d)). This is followed by correlating the template with

the closed image. In this work, the full Pearson-R correlation [Lowell et al., 2004] is

used to explain the variations of the mean intensity and contrast, the formulation is
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Figure 4.1: The process to locate the optic disc centre. (a) Rescaled image. (b) The
I channel image. (c) Closing operation of I channel. (d) The template with the size
of 201×201. (e) The Fourier correlated image. (f) The mask of rescaled image. (g)
The border eroded image. (h) The convoluted image. (i) The optic disc centre located
image. (j) The cropped image from Fr with the size of 201×201. (k) The blood vessel
segmented image. (l) Open operation of vessel segmented image. (m) The optic disc
centre reseted image.

defined as:

Ci,j =

∑
x,y(Fc(x, y)− F̄c(x, y))(Ft(x− i, y − j)− F̄t)∑

x,y(Fc(x, y)− F̄c(x, y))2
∑

x,y((Ft(x− i, y − j))− F̄t)2
(4.1)

where Fc is the closed image, F̄t and F̄c are the mean value of the template Ft and the
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area covered by Ft, respectively. The correlated image is shown in Figure 4.1 (e). The

peak of the image is the approximate centre of the optic disc. However, it is obvious

that the near-circular rim is with high intensity. In order to eliminate the effect of the

rim, an eroded image (see Figure 4.1 (g)) is used to convolute with the correlated image

to remove the near circular rim area (Figure 4.1 (e)). The eroded image is obtained

from the mask (Figure 4.1 (f)) by using morphological erode operation. The Figure 4.1

(h) shows the convoluted image.

After the template matching method, the approximate centre of the optic disc is

located by detecting the peak of the convoluted image. The optic disc centre located

image is shown in Figure 4.1 (i). This is followed by cropping the rescaled image into

201×201×3 by using the peak as the centroid. Figure 4.1 (j) shows the cropped image.

As the centre of the optic disc is usually located around the blood vessel and the level

set method is sensitive to the initialisation, the blood vessel information is extracted

to reset the centroid by using the method defined in last section. The blood vessel seg-

mented image is shown in Figure 4.1 (k). After that, the morphological open operation

is applied to prune small branches of vessels and keep the main arcade of blood vessels,

Figure 4.1 (l) shows the opened image. We let (cx, cy) as the approximate centre of the

optic disc. According to the experiments, we assume that cy is already located at the

centroid of the optic disc. Therefore, we keep the y value of the approximate centre

unchanged (cy′) and find a new cx value according to Fo (cx′). The optic disc reset

image is shown in Figure 4.1 (m), and the red point of the image is the new centroid

and the blue one is the original centre.

4.3 Optic Disc Extraction

We perform the segmentation using the grey level image, which contains all the infor-

mation necessary. However, the high contrast of the blood vessel inside the optic disc

misguides the segmentation energy functional and breaks the continuity of the optic
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Figure 4.2: Morphological close operation on the cropped retinal images. The first
row contains the input images, the second row contains the closed images.

disc boundary. Therefore, we apply the morphological closing operation to remove the

blood vessels. Figure 4.2 shows sample images before and after the closing operation.

The prominence of the blood vessels is reduced but they can still be seen.

Our aim is to segment the optic disc from the vessel removed image. Let Ω be

the image domain and φ be a level set function. To obtain a better segmentation, we

develop an energy functional as:

E(φ) = ES(φ) + EE(φ) + ER(φ), (4.2)

Each term of the energy functional models a different aspect of the problem. The first

term ES is a shape prior term, which is used to compensate these intensity inhomo-

geneities inside the optic disc due to the intensity inhomogeneity after the blood vessel

removal. In order to locate the boundary of the optic disc accurately, we incorporate

edge-based information into the energy formulation. The edge based term EE adapts

the Li et al’s model [Li et al., 2010] (See Page 37), because the optic disc has significant

edge information. The last term ER is a distance regularisation term, which keeps the

optic disc boundary smooth.
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4.3.1 Shape prior Term

The shape-prior term was first introduced by Azadeh et al. [Yazdanpanah et al., 2009].

Because the intensity inside the optic disc is inhomogeneous even after vessel removal,

the shape-prior term is incorporated to compensate these intensity inhomogeneities

inside the optic disc. Usually, the shape of the optic disc is circular. Therefore, a

circular prior term is applied to assist the algorithm when the edge information is

insufficient for detecting the optic disc boundary. The square distance from a point

(x, y) to the shape constraining boundary is defined as:

D(x, y) = [(x− cx′)2 + (y − cy′)2 − r2] (4.3)

where (cx′ , cy′) is the optic disc centre, and r is the approximate radius of the optic

disc according to the level set function φ.

The circular prior term is used to encourage the boundary of the level set function

φ to lie on a circle. Therefore, the shape term can be formulated as:

ES(φ) = λS

∫
Ω
D(x, y)δε(φ(x, y))|∇φ(x, y)|dxdy (4.4)

where λS ∈ R is a constant coefficient, and δε is the Dirac delta function. This term

calculates the line integral of D along the zero level boundary of φ. It keeps the

boundary of φ circular. The Dirac delta function δε is defined as Page 55.

4.3.2 Distance Regularisation Term

The accuracy of the located boundary of the optic disc is improved by smoothing. Thus

the following distance regularisation term is added to the energy functional:

ER(φ) = λ
′
RE

′
R(φ) + λ

′′
RE

′′
R(φ), (4.5)
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where λ
′
R and λ

′′
R are positive valued parameters. The first term E

′
R(φ) computes

the contour length of the zero level set φ to smooth the boundary of the optic disc.

However, the penalty term from Li et al [Li et al., 2005] is added to keep the zero level

set function φ close to the optic disc boundary. The terms of E
′
R(φ) and E

′′
R(φ) are

defined by:

E
′
R(φ) =

∫
Ω
δε(φ(x, y))|∇φ(x, y)|dxdy, (4.6)

and

E
′′
R(φ) =

∫
Ω

1

2
(|∇φ(x, y)| − 1)2dxdy. (4.7)

The second term E
′′
R(φ) is used to maintain the signed distance property |∇φ| = 1.

This term will be minimised when |∇φ| = 1.

4.3.3 Energy minimisation

The energy terms defined by a shape term, an edge term and a regularisation term,

are substituted into 4.2, and our energy model of E(φ) can be rewritten as:

Eφ =λS

∫
Ω
D(x, y)δε(φ(x, y))|∇φ(x, y)|dxdy + λ

∫
Ω
gδε(φ(x, y))|∇φ(x, y)|dxdy+

α

∫
Ω
gHε(−φ(x, y))dxdy + λ

′
R

∫
Ω
δε(φ(x, y))|∇φ(x, y)|dxdy+

λ
′′
R

∫
Ω

1

2
(|∇φ(x, y)| − 1)2dxdy

(4.8)

where the Heaviside function Hε is expressed as Page 54.

In calculus of variations [Aubert and Kornprobst, 2006], minimising the energy

functional of E(φ) with respect to φ by using gradient descent method as follows:

∂φ

∂t
= −∂E(φ)

∂φ
(4.9)

where ∂E(φ)
∂φ is the Gâteaux derivative [Aubert and Kornprobst, 2006] of the energy
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function E(φ). According to Euler-Lagrange equations [Aubert and Kornprobst, 2006],

the gradient flow is expressed by :

∂φ

∂t
=λS(∇D|∇φ|+Ddiv(

∇φ
|∇φ|

))δε(φ)+

{λ(∇g|∇φ|+ gdiv(
∇φ
|∇φ|

) + αg}δε(φ)+

λ
′
Rdiv(

∇φ
|∇φ|

)δε(φ) + λ
′′
R(∇2φ− div(

∇φ
|∇φ|

))

(4.10)

where ∇ is the gradient operator, div(·) is the divergence operator, which is used to

calculate the curvature of the evolving curve by using the spatial derivatives φ up to

the second order. The curvature div( ∇φ|∇φ|) as follows:

div(
∇φ
|∇φ|

) =
φ2
x

φ2
x + φ2

y +$
+

φ2
y

φ2
x + φ2

y +$
(4.11)

φx and φy are the directional derivative of φ in x direction and y direction. In order to

prevent the denominator to be zero, $ is a small positive number.

4.4 Experimental Results

4.4.1 Dataset

The proposed method was evaluated on three public datasets, the DRIVE [Staal et al.,

2004], the DIARETDB0 [Kauppi et al., 2006] and the DIARETDB1 [Kauppi et al.,

2007], with a total of 259 images.

The DRIVE dataset includes 40 fundus images with 768×564 pixels and 8 bits per

RGB channel, which were captured by a Cannon CR5 non-mydriatic 3CCD camera

at 45◦ of view (FOV) and initially saved in JEPG-format. This database includes

two sets: a test and training set with 20 images each. Both sets have blood vessel

hand-segmented images, and a second expert’s hand-labelling is available for the test

set.
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The DIARETDB0 dataset consists of 130 color images where 20 of them are normal

and 110 of them contain signs of the diabetic retinopathy. These images were captured

by 50◦ FOV digital fundus cameras with unknown camera settings (flash intensity,

shutter speed, aperture, gain), and have a size of 1500×1152 pixels.

The DIARETDB1 dataset contains 89 retinal images, of which 84 have at least one

indication of diabetic retinopathy. The images were captured with a digital fundus

camera at 50◦ FOV with varying imaging settings (flashing intensity, shutter speed,

aperture, gain). The size of the image is 1500×1152 pixels, 8 bits per RGB channel. In

addition, the dataset provides ground truth on hard exudates, hemorrhages, red small

dots and soft exudates obtained from four experts, one for each area.

None of the three datasets provide the ground truth for the optic disc. In order

to evaluate the performance of the proposed segmentation method, we created hand

labeled sets for the three datasets according to an expert’s guidance. The optic disc

ground truth for all of the three datasets available at 1.

4.4.2 Performance measures

Seven performance measurements are selected to evaluate different retinal extraction

algorithms. Four of them are sensitivity (Rsen), specificity (Rspe), predictive value (Pv)

and overlapping ratio (Or), respectively. These metrics are defined as:

Rsen =
NTP

NTP +NFN
(4.12)

Rspe =
NTN

NTN +NFP
(4.13)

Pv =
NTP

NTP +NFP
(4.14)

Or =
area(A ∩B)

area(A ∪B)
(4.15)

where NTP , NFN , NFP , NTN are the number of true positive, false negative, false

positive and true negative, respectively; A and B represent the optic disc region seg-

1http://www.brunel.ac.uk/ cspgccw

74



4.4. Experimental Results 4. Level Set Segmentation of Optic Discs from Retinal Images

mented by the human expert and our proposed method, respectively. The term, TP is

defined as all the vessel pixels that are labelled correctly, FP is all the non-vessel pixels

that are wrongly labeled as vessel pixels, TN is the number of non-vessel pixels that

are correctly labeled and finally FN is the number of vessel pixels that are wrongly

labelled as non-vessel pixels. The sensitivity (Rsen) and specificity (Rspe) measures

are calculated to show the percentage of true positive and true negative, respectively.

The predictive value (Pv) [Walter et al., 2002] predicts the probability that a pixel is

correctly classified as exudate. Finally, overlapping ratio (Or) of the optic disc region

between the ground truth and the output of the proposed method is computed.

This is followed by computing the Euclidean distance between the optic disc centroid

obtained by the proposed method and the centre of the ground truth region. The

Euclidean distance (ED) is:

ED(A,B) =
√

(x1 − x2)2 + (y1 − y2)2 (4.16)

where (x1, y1) and (x2, y2) are the centroids of the A and B, respectively.

In addition, the mean absolute distance (MAD) between the optic disc boundary

extracted by the proposed method and the ground truth is calculated as a measurement

of detection accuracy [Chalana et al., 1996]. The formulation of the MAD is defined

as:

MAD(Ac, Bc) =
1

2
{ 1

n

n∑
i=1

d(ai, Bc) +
1

m

m∑
i=1

d(bi, Ac)} (4.17)

Where Ac and Bc are sets of points from the optic disc contour of our segmentation

method and ground truth, i.e. Ac={a1, a2, ..., an} and Bc={b1, b2, ..., bm}. Further-

more, d(ai, Bc) is the minimum distance from ai to the set of points Bc. Finally, the

last measurement is the computation time, which indicates the efficiency of the method.
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Methods Detection Detection Detection
performance performance performance
(DRIVE (DIARETDB1 (DIARETDB0
dataset) (%) dataset) (%) dataset) (%)

Sopharak[Sopharak et al., 2008] 95 59.55 -
Walter[Walter et al., 2002] 77.5 92.13 -
Seo[Seo et al., 2004] 95 80.89 -
Kande[Kande et al., 2008] 95 86.51 -
Stapor[Stapor et al., 2004] 87.5 78.65 -
Lupascu[Lupascu et al., 2008] 95 88.76 -
Welfer[Welfer et al., 2013] 100 97.7 -
Our method 100 97.75 97.7

Table 4.1: The optic disc detection performance on the DRIVE, DIARETDB0 and
DIARETDB1 datasets.

4.4.3 Results

Table 4.1 shows the performance of the optic disc location on the DRIVE, DIARETDB0

and DIARETDB1 datasets. The performance of our method is compared with the

alternative methods: Sopharak et al. [Sopharak et al., 2008], Walter et al. [Walter

et al., 2002], Seo et al. [Seo et al., 2004], Kande et al. [Kande et al., 2008], Stapor

et al. [Stapor et al., 2004], Lupascu et al. [Lupascu et al., 2008] and Welfer et al.

[Welfer et al., 2013] taken from [Welfer et al., 2013]. The comparison indicates that

the proposed method achieves the best performance in detecting the optic disc. This

method can 100% detect the location of the optic disc on DRIVE dataset, 97.75% on

DIARETDB1 dataset (2 out of 89 images), and 97.7% on DIARETDB0 dataset (3

out of 130 images). Welfer et al. [Welfer et al., 2013] obtain almost the same result

as the template matching method on the DRIVE and DIARETDB1 datasets. The

performances of the other methods are all inferior to this method.

Table 4.2 compares the performance of the optic disc segmentation with the state

of the art methods: Sopharak et al. [Sopharak et al., 2008], Walter et al. [Walter et al.,

2002], Seo et al. [Seo et al., 2004], Kande [Kande et al., 2008], Stapor et al. [Stapor

et al., 2004], Lupascu et al. [Lupascu et al., 2008] and Welfer et al. [Welfer et al., 2013]
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taken from [Welfer et al., 2013]. All of the other methods are tested on two datasets:

DRIVE and DIARETDB1 datasets only. We use DIARETDB0 dataset to evaluate

the performance of our method. Our method achieves 89.06% mean overlapping ratio,

94.65% mean sensitivity, 98.89% mean specificity, 93.95% average predictive value, 2.76

mean Euclidean distance and 2.48 mean absolute distance on the dataset.

On the DRIVE dataset, our method for optic disc segmentation has an average

sensitivity 92.58%, predictive value 94.23%, overlapping ratio 88.16%, Euclidean dis-

tance 3.11 and mean absolute distance 2.52. It outperforms all the alternative methods.

However, the value of the average specificity achieved by our method is marginally in-

ferior to the other methods except Kande et al. [Kande et al., 2008] and Stapor et al.

[Stapor et al., 2004].

Similarly to the DRIVE dataset, our method achieves the best over all performance

on DIARETDB1 dataset. As we can see from the Table 4.2, the proposed method

outperforms all the other methods on average sensitivity, predictive value, overlap-

ping ratio, Euclidean distance and mean absolute distance. Nevertheless our method

achieves lower average specificity compared to the alternative methods.

Figures 4.3-4.5 illustrate the output images of our proposed method and ground

truth images for the DRIVE, DIARETDB1 and DIARETDB0 datasets, respectively.

The proposed approach is implemented on MATLAB R2011b. The average com-

putation time of the algorithm is 17.55 seconds for an image in the DRIVE dataset,

18.25 seconds for an image of DIARETDB1, and 18.3 seconds for an image of DI-

ARETDB0 on Intel Core i5-2500 CPU, clock of 3.3GHz. The computational complexity

is O(n log(n)), n is the image.

4.5 Conclusions

We have presented a novel method to detect and remove the optic disc from retinal

images. First, the template matching method is used to approximately locate the
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Methods Sens (%) Spec (%) Pred (%) Or (%) ED MAD Time(s)
DRIVE dataset

Sopharak
[Sopharak et al., 2008] 21.04 99.93 93.34 16.88 20.85 23.15 14.92
Walter
[Walter et al., 2002] 49.88 99.81 86.53 29.32 16.51 14.96 219.60
Seo
[Seo et al., 2004] 50.29 99.83 84.3 31.09 19.68 14.00 7.23
Kande
[Kande et al., 2008] 69.99 98.88 52.18 29.66 29.66 12.49 111.74
Stapor
[Stapor et al., 2004] 73.68 99.20 61.98 33.42 11.12 7.5 43.00
Lupascu
[Lupascu et al., 2008] 77.68 99.68 88.14 40.01 9.51 9.71 -
Welfer
[Welfer et al., 2013] 83.54 99.81 89.38 42.54 7.48 5.65 22.66
Our method 92.58 99.26 95.19 88.17 2.46 2.51 17.55

DIARETDB1 dataset
Sopharak
[Sopharak et al., 2008] 46.03 99.94 95.93 29.41 6.99 16.86 74.55
Walter
[Walter et al., 2002] 65.69 99.93 93.95 36.97 13.10 16.03 308.56
Seo
[Seo et al., 2004] 61.03 99.87 88.78 35.32 13.62 9.84 15.63
Kande
[Kande et al., 2008] 88.08 98.78 54.48 33.41 21.77 8.50 120.55
Stapor
[Stapor et al., 2004] 84.98 99.64 80.34 34.08 6.74 6.03 59.72
Lupascu
[Lupascu et al., 2008] 68.48 99.69 81.17 30.95 16.04 13.81 -
Welfer
[Welfer et al., 2013] 92.51 99.76 87.60 44.58 4.95 3.91 24.10
Our method 93.24 98.94 94.23 88.16 3.11 2.74 18.25

DIARETDB0 dataset
Our method 94.65 98.89 93.95 89.06 2.76 2.48 18.3

Table 4.2: The optic disc segmentation performance on DRIVE, DIARETDB0 and
DIARETDB1 datasets.
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Figure 4.3: The DRIVE dataset: (a, d, g, j) The cropped retinal images. (b, e, h, k)
The optic disc centre reseted images. (c, f, i, l) Our segmentation results (Red is our
segmentation result, blue is the ground truth).

Figure 4.4: The DIARETDB1 dataset: (a, d, g, j) The cropped retinal images. (b, e,
h, k) The optic disc centre reseted images. (c, f, i, l) Our segmentation results (Red is
our segmentation result, blue is the ground truth).

Figure 4.5: The DIARETDB0 dataset: (a, d, g, j) The cropped retinal images. (b, e,
h, k) The optic disc centre reseted images. (c, f, i, l) Our segmentation results (Red is
our segmentation result, blue is the ground truth).
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position of the optic disc. Then, the morphological based method is applied to remove

the blood vessels, after which the centroid of the optic disc is reset. Then, the level

set method incorporated with shape-prior term, distance regularisation term and edge-

based term is used to segment the optic disc.

The effectiveness of our method is evaluated against the-state-of-the-art methods

on two public datasets: the DRIVE and DIARETDB1 datasets. The DIARETDB0

dataset is used to evaluate the proposed method. The overall experimental results

show that the proposed method outperformed all the alternative methods chosen for

comparison. Our method has advantages over the shape-based template matching

method as it addresses the intensity inhomogeneity and the obstruction because of

the vessels inside the optic disc area. which generally affects the segmentation of the

optic disc. Unlike the gradient based active contour methods, the model free snake

methods and general region based active contour methods, our method can perform

the segmentation of normal and irregular optic disc shapes without constraining the

optic disc shape.

In this chapter, the shape constraint level set method is proposed and applied to

detect the optic disc, which is a major structure of fundus image. However, the 2D

fundus images do not provide enough information for diagnosing eye diseases. The

OCT imaging techniques are introduced to provide a clearer information of retina in

3D. Therefore, the tools for 3D retinal structures extraction from 3D OCT images is

necessary and important to assist ophthalmologists to diagnose eye diseases in the early

stages. The intra-retinal layer segmentation from 3D macular images is the topic of

the next chapter.
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Chapter 5

Automated Layer Segmentation

of 3D Macular Images

Two major retinal structures of fundus images are segmented by using the method

we proposed in chapters 3 and 4. However, 2D fundus camera may not capture all

the disorders in the retina in the early stages. Spectral-Domain Optical Coherence

Tomography (SD-OCT) is is a non-invasive imaging modality, which provides retinal

structures with unprecedented detail in 3D. In this chapter, we propose an automated

segmentation method to detect intra-retinal layers in OCT images acquired from a

high resolution SD-OCT Spectralis HRA+OCT (Heidelberg Engineering, Germany).

The algorithm starts by removing all the OCT imaging artifects include the speckle

noise and enhancing the contrast between layers using both 3D nonlinear anisotropic

and ellipsoid averaging filers. Eight boundaries of the retina are detected by using

a hybrid method which combines hysteresis thresholding method, level set method,

multi-region continuous max-flow approaches. The segmentation results show that our

method can effectively and accurately locate eight retinal layer surfaces for varying

quality 3D macular images.

The work included in this chapter was previously published in [Wang et al., 2015b],

lead-authored by the author of this thesis, who made substantial contributions to the
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conception, data collection and processing and writing-up, and sole contributions to

the implementation and result analysis.

5.1 Introduction

Optical Coherence Tomography (OCT) is a powerful biomedical tissue-imaging modal-

ity, which can provide a wealth of information, such as structure, blood flow, elastic

parameters, change of polarisation state and molecular content [Huang et al., 1991].

Therefore, it has been increasingly useful in diagnosing eye diseases, such as glau-

coma, diabetic retinopathy and age-related macular degeneration, which are the most

common causes of blindness in the developed countries according to the World Heath

Organisation (WHO) survey [Organization, 1988]. In order to help ophthalmologists

diagnose eye diseases more accurately and efficiently, some medical image processing

techniques are applied to extract useful information from OCT data, such as retinal

layers, retinal vessels, retinal lesions, optic nerve head, optic cup and neuro-retinal rim.

In this work, we focus on the intra-retinal layer segmentation of 3D macular images.

There are two main reasons for intra-retinal layer segmentation [Garvin et al., 2009].

First, the morphology and thickness of each intra-retinal layer are important indicators

for assessing the presence of ocular disease. For example, the thickness map of the

nerve fiber layer is an important indicator of glaucoma. Second, intra-retinal layer

segmentation improves the understanding of the pathophysiology of systemic diseases.

For instance, the damage of the nerve fiber layer can provide an indication of brain

damage.

However, it is time consuming or even impossible for an ophthalmologist to manu-

ally label each layer, specifically for those macular images with complicated 3D layer

structures. Therefore, a reliable automated method for layer segmentation is attractive

in computer aided-diagnosis. 3D OCT layer segmentation is a challenging problem,

and there has been significant effort in this area over the last decade. A number of
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different approaches have been developed to do the segmentation, however, no typical

segmentation method works equally well on different macular images collected from

different imaging modalities.

For most of the existing 3D macular segmentation approaches, a typical two-step

process is adopted. The first step is de-noising, which is used to remove the speckle

noises and enhance the contrast between layers (usually with a 3D anisotropic diffusion

method, 3D median filter, 3D Gaussian filter or 3D wavelet transform). The second

step is to segment the layers according to the characteristics of the images, such as

shapes, textures or intensities. The existing 3D OCT layer segmentation approaches

can be classify into three distinct groups: snake based, pattern recognition based and

graph based.

Snake based methods [Kass et al., 1988] attempt to minimise the energy of a sum

of internal and external energy of the current contour. These methods work well

on those images with high contrast, high gradient and smooth boundaries between

the layers, however, the performance is adversely affected by blood vessel shadows,

other morphological features of the retina, or irregular layer shapes. Zhu et al. [Zhu

et al., 2010] proposed a floating canvas method to segment 3D intra-retinal layers.

This method can produce relatively smooth layers, however, it is sensitive to any low

gradients between layers. Yazdanpanah et al. [Yazdanpanah et al., 2011] proposed an

active contour method, incorporating with circular shape prior information, to segment

intra-retinal layer from 3D OCT image. This method can effectively overcome the

effects of the blood vessel shadows and other morphological features of the retina,

however it cannot work well on those images with irregular layers.

Pattern recognition based techniques perform layer segmentation by using bound-

ary classifier, which is used to classify each voxel either as a layer boundary or a non

boundary. The classifier is trained through a learning process by using reference layer

boundaries. Fuller et al. [Fuller et al., 2007] designed multi-resolution hierarchical sup-

port vector machines (SVMs) to segment OCT retinal layer. However, the performance
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of this algorithm is not good enough. It has 6 pixels of line difference and 8% of the

thickness difference. Lang et al. [Lang et al., 2013] trained a random forest classifier to

segment retinal layers from macular images. However, the performance of the pattern

recognition based techniques are highly dependent on training sets.

Graph based methods find the global minimum cut of the segmentation graph,

which is constructed with a regional term and a boundary term. Garvin [Garvin et al.,

2008] proposed a 3D graph search method by constructing geometric graph with edge

and regional information. Five intra-retinal layers were successfully segmented. This

method was extended in [Chiu et al., 2010], which combined graph theory and dynamic

programming to segment the intra-retinal layers. Eight retinal layer boundaries were

located. Although these methods provide good segmentation accuracy, they can not

segment all layer boundaries simultaneously and the processing speed is relatively slow.

Lee et al. [Lee et al., 2012] proposed a parallel graph search method to overcome these

limitations. Kafieh et al. [Kafieh et al., 2013] proposed coarse grained diffusion maps

relying on regional image texture without requiring edge based image information.

Ten layers were segmented accurately. However, this method has high computational

complexity and cannot work well for abnormal images.

In this chapter we propose an automatic approach for segmenting macular layers

by using the graph cut and level set method. A de-noising step including the nonlin-

ear anisotropic diffusion approach and ellipsoidal averaging filter is applied to remove

speckle noise and enhance the contrast between layers. The segmentation of the layer

boundaries is performed by using the combination of classical region based level set

method, and multi-region continuous max-flow approaches. All the segmentation tech-

niques use the layers characteristics, such as voxel intensities and positions of layers.

This chapter is organised as follows. A detailed description of the proposed method

is presented in Section 2. This is followed by the experimental results in Section 3.

Finally, conclusions are drawn in Section 4.
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5.2 Methods

Intra-retinal layers are segmented by two major steps: a preprocessing step and a layer

segmentation step. Figure 5.1 shows the process of layer segmentation. During the

preprocessing step, the nonlinear anisotropic diffusion approach [Gerig et al., 1992] and

ellipsoidal averaging filter are applied to 3D macular images to remove speckle noise,

enhance the contrast between object and background and remove staircase noise. At the

second step, eight intra-retinal boundaries are segmented by using different methods,

which include the level set method, hysteresis method, and multi-region continuous

max-flow algorithm, according to the characteristics of each layer.

Figure 5.1: Block diagram of retinal layers segmentation process. (NFL: Nerve Fiber
Layer, GCL: Ganglion Cell Layer, IPL: Inner Plexiform Layer, INL: Inner Nuclear
Layer, OPL: Outer Plexiform Layer, ONL: Outer Nuclear Layer, IS: Inner Segment,
OS: Outer Segment, RPE: Retinal Pigment Epithelium)
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Figure 5.2: a) Original 3D macular image. b) The filtered image by nonlinear
anisotropic diffusion. c) The filtered image by ellipsoidal averaging.

5.2.1 Preprocessing

During the OCT imaging of the retina, the speckle noise is introduced simultaneously.

Figure 5.2 (a) shows the original 3D macular image, which contains a significant level of

speckle noise. The conventional anisotropic diffusion approach (Perona-Malik) [Gerig

et al., 1992] is used to remove the speckle noise and sharpen the object boundary. The

nonlinear anisotropic diffusion filter is defined as:

∂

∂t
I(x̄, t) = div[c(x̄, t)∇I(x̄, t)] (5.1)

where the vector x̄ represents (x, y, z) and t is the process ordering parameter. I(x̄, t)

is macular voxel intensity. c(x̄, t) is the diffusion strength control function, which is

depended on the magnitude of the gradient of the voxel intensity. The function c(x̄, t)

is:

c(x̄, t) = exp(−|∇I(x̄, t)|
κ

2

) (5.2)

where κ is a constant chosen according to the noise level and edge strength. Finally,

the voxel intensities are updated by the following formula:

I(t+4t) = I(t) +4t ∂
∂t
I(t) (5.3)
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The filtered image is shown in Figure 5.2 (b). Due to the stair-casing (a byproduct

of the anisotropic method), the ellipsoidal averaging filter is applied to remove the noise

and smooth the images. The filter reduces the amount of intensity variation between

one pixel and the next. The filter function is defined as

h(x, y, z) =

 1, ( x2

(X/2)2
+ y2

(Y/2)2
+ z2

(Z/2)2
) > 1

0, otherwise
(5.4)

where X, Y, Z are the mask size of x, y, z axis direction of the filter, respectively, x,

y and z are the rectangular grid in 3D space and are obtained by using the function

as ndgrid(−X/2 : X/2,−Y/2 : Y/2,−Z/2 : Z/2). In our experiments, the size of the

filter is set to [9, 9, 9]. This is followed by convolution with 2× 2× 2 ones array, and

we can get the result f . Finally, the filter mask is: f = f/sum(f). The result of this

filtering is shown in Figure 5.2 (c).

5.2.2 Vitreous and choroid boundaries segmentation

Due to different characteristics of each layer, different methods are applied to segment

different layers. Through the de-noising process, most of the speckle noise is removed

and the contrast between background and object is enhanced. The level set method is

used to segment the vitreous and the choroid boundaries because it works well when

there is large gradient between the retina and background. In this study, the classical

region based Chan-Vese model [Chan and Vese, 2001] is used to locate the boundaries

of victorious and choroid layer from 3D macular images. The formulation of the energy

function of the Chan-Vese method is defined on Page 35.

In calculus of variations [Aubert and Kornprobst, 2006], minimising the energy

functional of E(φ) with respect to φ by using gradient descent method:

∂φ

∂t
= −∂E(φ)

∂φ
(5.5)
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where ∂E(φ)
∂φ is the Gâteaux derivative [Aubert and Kornprobst, 2006] of the energy

function E(φ). The equation of (4) is derived by using Euler-Lagrange equation [Smith

et al., 2008], which gives us the gradient flow as follow:

∂φ

∂t
=− {λ1(I(X)− c1)2 − λ2(I(X)− c2)2}H(φ(X)) (5.6)

5.2.3 NFL, GCL-IPL, INL, OPL, ONL-IS, OS, RPE (See Page xx)

boundaries segmentation

After locating the boundaries of the vitreous and choroid layers, we define a region

that includes all the layers see Figure 5.3 (b). Because of the low intensities of the

OS-RPE layers, the 3D hysteresis method is used to locate the boundary of IS layer,

where two threshold values and a loop are used to produce a connect segmentation

results with fewer isolated pixels. A dual thresholding operation using two threshold

values (lower and upper) is applied on the reduced images to detect the boundary of

IS layer. Furthermore, this method takes advantage of the 3D connectivities by filling

image regions and holes to produce a smooth boundary.

In order to reduce the computation load and increase the speed of the segmentation,

we further split the region into two parts (upper part (Figure 5.3 (d) ) and lower part

(Figure 5.3 (c)). From Figure 5.3 (c) and Figure 5.3 (d), looking at the intensity

variation between different layers, it is obvious to distinguish layers from each other.

The multi-region continuous max-flow (Potts model) is applied to segment both the

upper part and lower part, the detail of this method is presented in the following. For

the upper part, the NFL, GCL-IPL, INL, OPL and ONL-IS boundaries are segmented.

On the other hand, OS and RPE boundaries are located for the lower part.

Graph cut is an interactive image segmentation method, which was first introduced

by Boykov et al [Boykov and Jolly, 2001]. This method minimise a segmentation

function, which consists of a regional term and a boundary term, to find the globally

optimal cut of images. The regional term is defined by computing the likelihoods
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Figure 5.3: a) The de-noised 3D macular image. b) The segmented object image. c)
The lower part of the segmented image across the IS boundary. d) The upper part of
the segmented image across the IS boundary.
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Figure 5.4: a) Graph construction for continuous max-flow and min cut with two
labels; b) Graph construction for max-flow and min-cut with n labels.

of foreground (object) and background, while the boundary term is calculated from

voxel intensities, textures, colours with smoothing. Here, the multi-region continuous

max-flow (Potts model) is used to segment both the upper and lower part to obtain

the NFL, GCL-IPL, INL, OPL and ONL-IS boundaries and OS and RPE boundaries,

respectively.

Graph construction and Min-cut

Each 3D macular image is represented by a graph G(ν, ξ) consisting of a set of vertices

ν and a set of edges ξ ⊂ ν × ν. The graph contains two terminal vertices: the source s

(foreground) and the sink t (background). There are two types of edges: spatial edges

and terminal edges. The spatial edges (n-links) link two neighbour vertices except

terminal vertices (s or t), and the terminal edges link the terminals s or t to each

voxel in the image, respectively. In other words, each voxel p ⊂ ν\{s, t} is connected

to terminal s called s-link, and linked to terminal t called t-link. Each edge e ∈ ξ is

assigned a weight we ≥ 0.

A cut is a subset of edges C ∈ ξ, that separates the macular image into two or more

disjoint regions. It is through assigning each vertex to the source s or the sink t to cut
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the graph into two disjoint regions, called s-t cut. The mathematical expressions are:

ν = νs
⋃
νt, νs

⋂
νt = ∅ (5.7)

The optimal cut minimises the sum of edge weights. The corresponding cut-energy

is defined as:

min
C⊂ξ

∑
e∈C

we (5.8)

Let A= (A1, ..., Ap, ..., AP ) be a binary vector, and Ap labels p voxel in the graph

to be object (”O”) or background (”B”). According to Boykov et al [Boykov and Jolly,

2001], the energy function is defined as:

E(A) = λ ·R(A) +B(A) (5.9)

where R(A) is regional term, B(A) is the boundary term. λ is a nonnegative coefficient,

which represents the importance of R(A). According to the the voxel intensities of the

selected seeds, the intensity distributions are: Pr(I|O) and Pr(I|B). The regional

penalty Rp(·) assigns the likelihood of voxel p to object and foreground as:

Rp(obj) = −lnPr(Ip|O),

Rp(bkg) = −lnPr(Ip|B)

(5.10)

The regional term can be expressed as:

R(A) =
∑
p∈P

Rp(Ap) = −
∑
p∈O

lnPr(Ip|O)−
∑
p∈B

lnPr(Ip|B) (5.11)

The boundary term B(A) is formulated as:

B(A) =
∑
{p,q}∈N

B{p,q} · δ(Ap, Aq) (5.12)
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where δ(Ap, Aq) =1 if Ap = Aq, and otherwise is equal to 0. The boundary penalty

B{p,q} is defined as:

B{p,q} ∝ exp(−
(Ip − Iq)2

2σ2
) · 1

dist(p, q)
(5.13)

The B{p,q} is large when the intensities of voxel p and q are similar and the B{p,q} is

close to 0 when two are different.

Multi-region Potts model

The continuous max-flow convex related Potts model was proposed by Yuan et al [Yuan

et al., 2010] to segment the image into n disjoint regions {Ωi}ni=1. This model modified

the boundary term of the original model by calculating the perimeter of each region.

The segmentation functional is modified as:

E(A) = R(A) + αB(A) =

n∑
i=1

∫
Ωi

Ci(x)dx+ α

n∑
i=1

|∂Ωi| (5.14)

s.t.
⋃n

i=1
Ωi = Ω; Ωp

⋂
Ωq = ∅ p 6= q (5.15)

where |∂Ωi| is the length of the perimeter of each disjoint region Ωi, i=1 ... n, and α

is a positive weight to give the trade-off between the two terms; the function Ci(x) is

the cost of region Ωi with Ci(x) = |I(x) − li|, where l1 · · · ln are the given constants.

By using the piecewise constant Mumford-Shah function, E(A) can be rewritten as:

E(A) =

n∑
i=1

∫
Ω
ui(x)Ci(x)dx+ α

n∑
i=1

∫
Ω
|∇ui|dx (5.16)

s.t.
n∑
i=1

ui(x) = 1, ∀x ∈ Ω (5.17)

where ui(x), i=1 ... n, indicates the region to which the voxel x belongs,

ui(x) =

 1, x ∈ Ωi

0, x 6∈ Ωi

, i = 1 . . . n (5.18)
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The convex relaxation is introduced to solve the Potts model based image segmentation

as:

min
u∈S

E(A) (5.19)

where S is the convex constrained set of

{u(x) = (u1(x), . . . , un(x)) ∈ 4+, ∀x ∈ Ω}, (5.20)

and 4+ is simplex set, for example:

for ∀x ∈ Ω,

n∑
i=1

ui(x) = 1; ui(x) ∈ [0, 1], i = 1 · · ·n. (5.21)

This multi-terminal ’cut’ problem as above functional is solved by using a continuous

multiple labels max-flow algorithms [Yuan et al., 2010].

5.3 Experiments

The images used in this study were obtained with the Heidelberg SD-OCT Spectralis

HRA imaging system (Heidelberg Engineering, Heidelberg, Germany) in Tongren Hos-

pital. Non-invasive OCT imaging was performed on 13 subjects, with ages ranging from

20 to 85 years. This imaging modality has been widely used in clinics and hospitals to

diagnose retinal diseases. This imaging system provides 3D image with 256 B-scans,

512 A-scans, 992 pixels in depth and 16 bits per pixel. It is time-consuming to do the

manual grading for all the B-scans of the 13 subjects. Therefore, the ground truth was

specified by human experts by manually labelling a number of positions on a fixed grid

and the rest pixels were interpolated.

5.3.1 Results

To provide a quantitative evaluation of our method, four performance measurements

are selected by comparisons with the ground truth, (1) Signed mean error (µunsign), (2)
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Surface Signed difference Unsigned difference
(mean±SD) (mean±SD)

1 -0.75±1.67 1.65±2.12

2 0.69±1.73 1.43±2.17

3 0.73±1.34 1.22±1.93

4 -0.67±1.53 1.73±2.01

5 -0.93±1.18 1.81±2.32

6 1.53±1.45 2.23±1.93

7 1.29±1.81 1.23±2.13

8 0.79±1.01 1.12±1.37

Table 5.1: Signed and unsigned mean and SD difference between the ground truth and
the proposed segmentation results for the eight surfaces, respectively.

Signed standard deviation (σunsign), (3) Unsigned mean error (µsign), and (4) Unsigned

standard deviation (σsign).These metrics are defined as:

µunsign =
1

M ∗N

M∑
j=1

N∑
i=1

|Gi,j − Si,j |

σunsign =

√√√√ 1

M ∗N

M∑
j=1

N∑
i=1

(Gi,j − Si,j − µunsign)2

µsign =
1

M ∗N

M∑
j=1

N∑
i=1

(Gi,j − Si,j)

σsign =

√√√√ 1

M ∗N

M∑
j=1

N∑
i=1

(Gi,j − Si,j − µsign)2

(5.22)

where Gi,j , Si,j are the ground truth and the proposed segmentation result of each

surface at the (i, j) pixel; M and N are 25 and 512.

Our method successfully located eight intra-retinal surfaces of all the 13 3D macular

images without any segmentation failures. The segmentation results are consistent with

visual observations and are confirmed by the experts from the hospital as accurate.

The signed and unsigned mean and standard deviation (SD) difference between the

ground truth and the proposed segmentation results of the eight surfaces are given in

Table 5.1. In terms of the signed difference, the surface 4 gives the best performance
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Layers Average thickness Absolute thickness Relative thickness
difference difference

(mean ± SD) (mean ± SD)

NFL 15.99 1.75±1.77 -1.05±2.12

GCL+IPL 25.88 2.11±1.83 1.17±1.83

INL 14.59 1.79±1.93 -0.97±1.72

OPL 8.48 1.73±2.13 0.67±1.54

ONL+IS 26.19 1.83±2.21 1.19±1.75

OS 10.72 1.95±2.68 1.37±1.86

RPE 17.24 1.69±1.73 -1.09±2.11

Overall 119.07 1.98±1.69 -0.93±1.79

Table 5.2: Average thickness of the 7 layers and overall of all the 30 volume images,
absolute thickness and relative thickness difference between the ground truth and the
proposed segmentation results of the 7 layers and overall from all the data.

(-0.67±1.53); while in terms of the unsigned difference, the surface 3 performs the best,

it achieves around 1.22±1.93.

Table 5.2 shows the average thickness and overall thickness of the seven layers of the

30 volume images, besides that the absolute thickness and relative thickness difference

between the ground truth and the proposed segmentations of the seven layers of the 30

images are calculated and showed. In terms of the average thickness of the Table 5.2,

the overall is around 119.07; the GCL+IPL and ONL+IS layers are 25.88 and 26.19,

respectively, as they include two layers, the thinest layer is OPL (8.48). The absolute

thickness difference and relative thickness difference of the overall are 1.98±1.69 and-

0.93±1.79, respectively.

Figure 5.5 shows an example of eight intra-retinal layers segmented result on an

example B-scan. Three examples of 3D segmented results are demonstrated in Figure

5.6. Figure 5.7 illustrates the segmented results of 12 example B-scans from a segmented

3D macular, and Figure 5.7 (a)-(m) are from 30th to 230th B-scans, respectively.

The retinal thickness maps of all the layers are important indicators for diagnosis

and understanding of retinal pathologies. Therefore, after an accurate segmentation

of the eight retinal boundaries, we generate the thickness maps of seven retinal layers.
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Figure 5.5: Illustration of eight intra-retinal layers segmented result on an example
B-scan from top to bottom: 1. Vitreous, 2. NFL, 3. GCL-IPL, 4. INL, 5. OPL,
6.ONL-IS, 7. OS, 8. RPE, 9. Choroid.
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Figure 5.6: Three examples of 3D visualisation of eight surfaces.
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Figure 5.7: Twelve B-scan segmentation results from an example 3D segmented mac-
ular, (a)-(m) are10th, 30th, 50th, 70th, 90th, 110th, 130th, 150th,170th, 190th, 210th,
230th B-scans, respectively.

Figure 5.8 shows the thickness maps of all the retinal layers, which includes thickness

maps of layer 1 to layer 5.8, layers above OS and total retinal layers.

The proposed approach was implemented on MATLAB R2011b on Intel(R) Core(TM)

i5-2500 CPU, clock of 3.3GHz, and 8G RAM memory. The computational complexity

is O(n2), n is the image.

5.4 Conclusions

In this chapter, we have presented a novel hybrid intra-retinal layer segmentation

method, which includes a hysteresis thresholding method, the CV model based level

set method, and the Potts model based multi-region continuous max-flow method. Ac-

cording to the characteristics of different layers, different methods are applied to seg-

ment different layers accurately and efficiently. This was implemented with a typical
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Figure 5.8: Examples of thickness maps of 7 retinal layers, layers exclude choroid layer
and total layers. The seven layers are 1. NFL, 2. GCL-IPL, 3. INL, 4.OPL, 5.ONL-IS,
6. OS, 7. RPE
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two-staged process: de-noising step and segmentation step. The nonlinear anisotropic

diffusion approach and ellipsoidal averaging filter are used to filter the speckle noise and

enhance the contrast between the layers as a preprocessing. The segmentation results

show that our approach can detect seven layers accurately for 3D macular images with

no failure.

The overall segmentation process may look over complicated as it involves three dif-

ferent methods at different stages, namely the level set method, the hysteresis thresh-

olding method and the multi-region continuous max-flow method. It may seem much

more concise if a single method is used to simultaneously segment all layers. However,

our experiments show that such an approach would demand much higher memory and

much longer computation time for the algorithms to run, simply because of the high

volume of 3D images. If methods such as sub-sampling are used to reduce the data

size and computation time, the accuracy of segmentation would be degraded. In con-

trast, our approach is able to deliver a better performance with less computation. In

particular, the level set method first segments the volume region containing all the 6

middle layers, the simple, fast hysteresis thresholding method partitions this region

further into two parts along the easiest boundary between the ONL-LS and OS layers,

and finally the multi-region max-flow method is used to segment the individual layers

in the upper and lower parts.

The macula is one of the most important areas in the retina. Retinal structures of

macula provide important infomration is important for ophthalmologists to diagnose

some eye diseases in early stage. It is necessary and important to extract and analyse

these structure information. In this chapter, the hybrid method is proposed and applied

to detect seven intra-retinal layers from 3D macular images. However, eye disease such

as glaucoma mainly affects the optic nerve head in the early stages, which is considered

as another important area of the retina. The intra-retinal layer segmentation from 3D

optic nerve head images is the topic of the next chapter.
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Chapter 6

Segmentation of Intra-retinal

Layers in Optic Nerve Head

Images

The intra-retinal layer information of 3D macular images is one of the most important

information for ophthalmologists. The method for segmenting layers from 3D macular

images was presented in chapter 5. The intra-retinal layer information from 3D optic

nerve head images is another important information for eye diseases diagnosis. In

this chapter, we propose an automated segmentation method to detect intra-retinal

layers in SD-OCT images around the optic nerve head acquired from a high resolution

RTVue-100 SD-OCT (Optovue, Fremont, CA, USA). This method starts by removing

all the OCT imaging artifacts including the speckle noise and enhancing the contrast

between layers using the 3D nonlinear anisotropic diffusion filter. Afterwards, we com-

bine the level set method, k-means and MRF method to segment three intra-retinal

layers around the optical nerve head. The segmentation results show that our method

can effectively delineate the surfaces of the retinal tissues in the noisy 3D optic nerve

head images.
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The work included in this chapter was previously published in [Wang et al., 2015c],

lead-authored by the author of this thesis, who made substantial contributions to the

conception, data collection and processing and writing-up, and sole contributions to

the implementation and result analysis.

6.1 Introduction

Several medical image processing techniques are designed and applied to extract useful

information from OCT data, such as retinal layers, retinal vessels, retinal lesions, optic

nerve head, optic cup and neuro-retinal rim, to help ophthalmologists to perform more

accurately and efficiently the diagnosis of eye diseases. In this work, we focus on the

intra-retinal layer segmentation of 3D retinal images obtained from around the macular

and the optic disc head.

There are two main reasons for intra-retinal layer segmentation [Garvin et al., 2009]:

First, the morphology and thickness of each intra-retinal layer are important indicators

for assessing the presence of ocular disease. For example, the thickness of the nerve

fiber layer can be used to indicator the patient is glaucoma. Second, intra-retinal

layer segmentation improves the understanding of the pathophysiology of the systemic

diseases. For example, the damage of the nerve fiber layer can provide an indication of

brain damage [Garvin et al., 2009].

In this chapter, we propose an automatic approaches to segmenting intra-retinal

layers from optic nerve head images. Markov Random Field (MRF) and level set

method are used to segment retinal layers for 3D optic nerve head images. Firstly,

the nonlinear anisotropic diffusion approach is applied to de-noise the optic nerve head

images and enhance the contrast between intra-retinal layers. Then, the level set

method is used to segment the retinal layer area. After that, the initial segmentation

is obtained by using the k-means method. Because of the inhomogeneity and blood

vessel shadows, the k-means method cannot segment all layers well. Therefore, MRF
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method is used to improve the initial segmentation through iteration until it converges

or reaches the maximum iteration.

This chapter is organised as follows. A detailed description of the proposed method

for 3D OCT optic nerve head images is presented in Section 2. The experimental results

are shown in Section 3. Finally, conclusions are drawn in Section 4.

6.2 Method

Figure 6.1: Block diagram of retinal layers segmentation process for 3D optic nerve
head images.

Figure 6.1 shows the process of layer segmentation for 3D optic nerve head images.

The intra-retinal layers for optic nerve head images are segmented by two major steps:

preprocessing step and layer segmentation step. During the preprocessing step, the

nonlinear anisotropic diffusion approach is applied to 3D optic nerve head images to

remove speckle noise and enhance the contrast between retinal layers and background.

Intra-retinal layers are segmented by two major steps: preprocessing step and layer

segmentation step. At the second step, four intra-retinal layers are segmented by using

a combination of methods, which include level set method, K-means cluster and MRF.

The OCT imaging of the retinal is affected by speckle noise. The conventional
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anisotropic diffusion approach (Perona-Malik) [Gerig et al., 1992] is used to remove the

speckle noise and sharpen the boundaries of the retinal layers during the preprocessing

process. The nonlinear anisotropic diffusion filter is defined as Page 86. In this study,

the classical region based Chan-Vese model (See Page 35) [Chan and Vese, 2001] is

used to locate the boundaries of vitreous and choroid layer from 3D optic nerve head

images because it works well when there is large gradient between retinal tissues and

background.

6.2.1 RNFL and RPE layers segmentation

After locating the boundaries of the vitreous and choroid layers, we define a region

that includes all the layers. In order to reduce the computation load and increase the

speed of the segmentation, we cut the retinal area out along the top and bottom layer

boundaries. The K-means cluster is used to initialise the reduced image Is into k classes

S = {S1, S2, ..., Sk}:

A = arg min
S

k∑
i=1

∑
Is(p)∈Si

‖Is(p)− µi‖2 (6.1)

where µi is the mean intensity in Si.

However, the k-means cluster fails to accurately locate all the layers due to the blood

vessel shadows and intensity inhomogeneities. Therefore, MRF is applied to update the

initial input A through iteration until it converges or reaches the maximum iteration.

There are four main steps of this method: first we calculate the likelihood distribution

according to the initialisation information; then we estimate the labels using MAP

method; after that, the posterior distribution is calculated and the parameter set is

updated.

The MRF was first introduced to segment brain MR images [Zhang et al., 2001].

Given a 3D image B = (b1, ..., bi, ..., bN ), where N is the total number of voxels and

each bi is a grey level voxel intensity, and A = (a1, ..., ai, ...aN ) (ai ∈ L) is corresponding

initial label of each voxel of the image. For example L = {0, 1}, the image is segmented

into two regions. The RNFL and RPE layers are segmented by using MRF method.
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Here, we set L = {0, 1, 2, 3}.

EM algorithm is used to estimate the parameter set Θ = {θl|l ∈ L}. It is assumed

that the voxel intensity bi follows the Gaussian Mixture Model with C components

parameters θai given the label ai:

P (bi|ai) = Gmix(bi; θai) (6.2)

Based on the conditional independence assumption of b, the joint probability can be

expressed as:

P (B|A) =

N∏
i=0

P (bi|ai) =

N∏
i=0

Gmix(bi; θai) (6.3)

Start: The initial GMM with g components parameter set Θ0 is learned from the

labels A and image data B. The parameters can be expressed as:

θl = (µl,1, σl,1, ωl,1), ..., (µl,C , σl,C , ωl,C) (6.4)

And the weighted probability of the GMM is:

Gmix(bi; θai) =

C∑
c=1

ωai,cG(bi;µai,c, σai,c)

=

C∑
c=1

ωai,c√
2πσ2

ai,c

exp(− (bi − µai,c)2

2σ2
ai,c

)

(6.5)

E-step: At the tth iteration, we can obtain the parameters Θt, and the conditional

expectation can be deduced as:

Q(Θ|Θt) = E
[
lnP (A,B|Θ)|B,Θt

]
=
∑
A∈L

P (A|B,Θt) lnP (A,B|Θ)
(6.6)

where L is the set of all possible labels, and P (A,B|Θ) can be rewritten as:

P (A,B|Θ) = P (A|B)P (B|Θ) (6.7)
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M-step: Next let parameter set Θt+1 is estimated through maximising Q(Θ|Θt):

Θt+1 = arg max
Θ

Q(Θ|Θt) (6.8)

The next let Θt+1 → Θt, and repeat from E-step.

It is assumed that the prior probability can be written as:

P (A) =
1

Z
exp(−U(A)) (6.9)

where U(A) is the prior energy function. We assume that:

P (B|A,Θ) =
∏
i

P (bi|ai, θai) =
∏
i

Gmix(bi; θai)

=
1

Z ′ exp(−U(B|A))

(6.10)

Under these assumptions, the MRF algorithm [Wang, 2012] is given below:

1. Initialise the parameter set Θ0.

2. Calculate the likelihood distribution P t(bi|ai, θai).

3. Estimate the labels by MAP estimation using the current parameter Θt:

A(t) = arg max
A∈L
{P (B|A,Θ(t))P (A)}

= arg min
A∈L
{U(B|A,Θ(t)) + U(A)}

(6.11)

Given A and Θ, the likelihood energy (also called unitary potential) is

U(B|A,Θ) =

N∑
i=1

U(bi|ai,Θ) =

N∑
i=1

[
(bi − µai)2

2σ2
ai

+ lnσai ] (6.12)

The prior energy function U(A) is defined as:

U(A) =
∑
g∈G

Vg(A) (6.13)

where Vg(A) is the clique potential and G is the set of all possible cliques. For 3D image,

we assume that each voxel has at most 26-neighbors: the voxel in its 26-neighborhood

in 3D.

G ={(x± 1, y, z), (x, y ± 1, z), (x, y, z ± 1),

(x± 1, y ± 1, z), (x± 1, y, z ± 1),

(x, y ± 1, z ± 1), (x± 1, y ± 1, z ± 1), }

(6.14)
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The clique potential is defined as:

Vg(xi, xj) = β(1− Ixi,xj ) (6.15)

where β is a constant coefficient set to 1/6. The function Ixi,xj is:

Ixi,xj =

 1, if xi = xj

0, if xi 6= xj

(6.16)

Firstly, the initial estimation A0 is calculated from the previous loop of the EM

algorithm. Then, an iterative algorithm is developed to estimate the Ak+1 provided

Ak until U(B|A,Θ) + U(A) converges or reaches the maximum k.

4. Calculate the posterior distribution for all l ∈ L and voxels bi using Bayesian

rule:

P t(l|bi) =
Gmix(bi; θl)P (l|ati)

P t(bi)
(6.17)

where the conditional probability P (l|ati):

P (l|atNi) =
1

Z
exp(−

∑
j∈Ni

Vg(l, a
t
j)) (6.18)

where atNi is the neighborhood configuration of ati, and the intensity distribution func-

tion is:

P t(bi) = P (bi|θt) =
∑
l∈L

Gmix(bi, θl)P (l|atNi) (6.19)

5. Update the parameters by using P (l|atNi)

µ
(t+1)
l =

∑
i P

t(bi)bi∑
i P

t(bi)

(σ
(t+1)
l )2 =

∑
i P

t(bi)(bi − µ(t+1)
l )2∑

i P
t(bi)

(6.20)

6.3 Experiments

We tested the proposed method on SD-OCT optic nerve head images obtained with

RTVue-100 SD-OCT (Optovue, Fremont, CA, USA) in Moorfileds Eye Hospital. The
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Surface Signed difference Unsigned difference
(mean±SD) (mean±SD)

1 -0.42±0.65 0.83±0.79

2 1.01±1.13 1.43±1.98

3 0.51±1.14 1.02±1.62

4 -0.9±1.53 1.93±2.21

Table 6.1: Signed and unsigned mean and SD difference between the ground truth and
the proposed segmentation results for the four surfaces, respectively.

ages of the enrolled subjects ranged from 20 to 85 years. This imaging modalities have

been widely used in clinics and hospitals for diagnosing the glaucoma. This imaging

system provides a 3D image with 16 bits per pixel and 101 B-scans, 513 A-scans, 768

pixels in depth. Our methods successfully segmented the four intra-retinal surfaces of

all the 3D optical nerve head images without any segmentation failures. The signed and

unsigned mean and standard deviation (SD) difference between the ground truth and

the proposed segmentation results of the four surfaces are given in Table 6.1. In terms

of the signed and unsigned differences, the first surface gives the best performance

(-0.42±0.65) and (0.83±0.79), respectively.

To provide a quantitative evaluation of our method, four performance measurements

are selected by comparing with the ground truth, (1) Signed mean error (µunsign), (2)

Signed standard deviation (σunsign), (3) Unsigned mean error (µsign), and (4) Unsigned

standard deviation (σsign). These metrics are defined on Page 94. Our method suc-

cessfully located four intra-retinal surfaces for 3D optic disc images. The segmentation

results are consistent with visual observations and are confirmed by the experts from

the hospital as accurate.

Figure 6.2 shows two examples of three intra-retinal layers segmented results from

a 3D OCT optic nerve head image which the layer 1 is a retinal nerve fiber layer, layer

2 includes Ganglion Cell Layer, Inner Plexiform Layer, Inner Nuclear Layer and Outer

Nuclear Layer (GCL, IPL, INL and ONL), layer 3 is retinal pigment epithelium layer.

Figure 6.2 (a) shows the 60th B-scan, which includes the optic disc region. In Figure

108



6.3. Experiments 6. Segmentation of Intra-retinal Layers in Optic Nerve Head Images

Figure 6.2: Illustration of three intra-retinal layers segmented results of two cross-
sectional B-scans from a 3D OCT optic nerve head image. (a) the 60th B-scan, which
includes the optic disc region, (b) the 10th B-scan. Layer 1: retinal nerve fiber layer
(RNFL), Layer 2 includes Ganglion Cell Layer, Inner Plexiform Layer, Inner Nuclear
Layer and Outer Nuclear Layer (GCL, IPL, INL and ONL), Layer 3: retinal pigment
epithelium layer (RPE).

6.3, four segmented layer surfaces are illustrated in 3D, and the shape of the surfaces

are hypothesised to be related with eye diseases. Three examples of 3D OCT optic

nerve head image layer segmented results are demonstrated in Figure 6.4. Figure 6.4

illustrates the segmented results of 10 example B-scans from a segmented 3D optic

nerve head image. These segmented segmentation results show that our method can

efficiently and accurately detect each layer of the retina in the 3D retinal images around
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Figure 6.3: Three examples of 3D OCT optic nerve head image layers segmentation
results. Four segmented layer surfaces of 3 different 3D images are visualised in 3D.
The shape of the surfaces are hypothesised to be related with eye diseases.

the optic nerve head.

The RNFL thickness map is useful in discriminating glaucomatous eyes from normal
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Figure 6.4: Ten B-scan segmentation results from an example 3D segmented optic
nerve head image, (a)-(k) are 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th,
100th B-scans, respectively. According to the segmentation results on B-scans from
the 3D retinal images around the optic nerve head, the efficiency and accuracy of our
method are shown.

eyes. Therefore, the RNFL layer thickness map is generated after the segmentation of

different retinal layers. With the thickness map of RNFL, we can distinguish the

glaucomatous patient from normal subjects. Figure 6.5 shows two examples of the

thickness map of RNFL of a healthy subject and a glaucomatous patient. In Figure

6.5 (a), we can observe a thick retinal nerve fiber layer, while Figure 6.5 (b) displays a

thin retinal nerve fiber layer.

The proposed approaches are implemented on MATLAB R2011b. The average

computation time of our algorithm is 208.45 seconds for a 3D optic never head image

on Intel(R) Core(TM) i5-2500 CPU, clock of 3.3GHz. The computational complexity

is O(n2), n is the image.

6.4 Conclusions

In this Chapter, an automated hybrid retinal layer segmentation method is presented for

3D optic nerve head images. This method was implemented with a typical two-staged
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Figure 6.5: The thickness maps of retinal nerve fiber layer (RNFL) from two 3D optic
nerve head image examples. The RNFL thickness map is useful in discriminating for
glaucomatous eyes from normal eyes. (a) a healthy subject (b) a glaucomatous patient.

process: de-noising step and segmentation step. The nonlinear anisotropic diffusion

approach is used to filter the speckle noise and enhance the contrast between the layers

as a preprocessing step.

A novel hybrid intra-retinal layer segmentation method for 3D optic nerve head

images has been presented. This method combines the CV model based level set, k-

means cluster and the Gaussian Mixture Model based Markov Random Field. The

segmentation results show that our approach can detect four surfaces accurately for

3D optic nerve head images.
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It seems that the segmentation process is too complicated to involve three different

methods, namely the level set method, k-means cluster and MRF. However, it is difficult

or even impossible to segment all the layers simultaneously by using a single method

because it requires larger computation memory and longer computation time for a high

volume of 3D images. Although methods such as sub-sampling are applied to reduce the

volume size, some important information may lose. Conversely, a better segmentation

with less computation is obtained by using our method. More specifically, the CV model

based level set method first segments the volume of retinal area, the k-means cluster

method initialises the volume data into k regions, and the MRF method updates the

initialisation to overcome the artifacts such the the blood vessel shadow and variation

of the image intensity.

Two intra-retinal layer segmentation methods for 3D macular images and 3D optic

nerve head images are presented respectively in chapters 5 and 6. The choroidal layer

is a vascular layer located in the far rear between the retina and sclera, and provides

the oxygen and nourishment to the retina. Because the location and medical function

of this layer in the retina, the retinal structures of this layer will be easily affected if

there is any disorder in the retina. Therefore, it is important to design an automation

method for segmenting the choroidal layer for 3D macular images, which is the topic

of the next chapter.
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Chapter 7

Automatic Choroidal Layer

Segmentation Using Level Set

Method

We detected the intra-retinal layers from 3D macular images and 3D optic nerve head

images by the proposed methods in chapters 5 and 6. The choroid is another impor-

tant retinal layer that supplies oxygen and nourishment to the retina. The changes in

thickness of the choroid have been hypothesised to relate to a number of retinal dis-

eases in pathophysiology. Therefore, an automatic method is proposed for segmenting

the choroidal layer from macular images by using the level set method. The distance

regularisation and edge constraint terms are embedded into the level set method to

avoid the irregular and small regions and keep information about the boundary be-

tween the choroid and sclera. Besides, the Markov Random Field method models the

region term by correlating the single pixel likelihood function with neighbourhood in-

formation to compensate for the inhomogeneous texture and avoid the leakage due to

the shadows of blood vessels cast during imaging process. Before that, the 3D nonlinear

anisotropic diffusion filter is used to remove all the OCT imaging artifacts including
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the speckle noise as well as to enhance the contrast. The effectiveness of this method

is demonstrated through testing and comparing with manual segmented cross-sectional

B-scans. The results show that our method can successfully and accurately estimate

the choroidal bottom boundary.

The work included in this chapter has been submitted to publication [Wang et al.,

2016]. The manuscript is lead-authored by the author of this thesis, who made sub-

stantial contributions to the conception, data collection and processing and writing-up,

and sole contributions to the implementation and result analysis.

7.1 Introduction

The choroid is an important vascular layer and lies between the retina and the sclera.

It contains connective tissues and blood vessels and provides oxygen and nourishment

to the retina. The changes of the choroid are important indicators of many eye diseases,

such as polypoidal choroidal vasculopathy, choroidal tumors and age-related macular

degeneration (AMD). Therefore, it is important to segment the layers and reconstruct

the retinal structure of the choroid and measure the changes of the choroid. Many

commercial OCT imaging modalities are updated and used to capture the 3D choroid

images, which provide a clearer structure of the choroid. However, due to the ultra-

depth location of the choroid and the limitations of recent imaging instruments, the

vascular structure and the boundary between the choroid and sclera in the images is

not apparent in some locations.

It is time consuming or even impossible to manually delineate all the choroidal

structures and layers for a large number of images because of the indistinct struc-

tures and boundaries in some areas. Therefore, automatic choroidal layer segmenta-

tion and reconstruction have attracted many researchers. Particularly, the changes of

the choroidal thickness are directly or indirectly related with glaucoma, high myopia,

neovascular and non-neovascular AMD, central serous chorioretinopathy and Vogt-
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Koya-nagi-Harada disease. In this study, we mainly focus on layer segmentation and

thickness measurement.

Many automatic or semi-automatic methods [Kajić et al., 2012, Hu et al., 2013, Tian

et al., 2013, Alonso-Caneiro et al., 2013, Danesh et al., 2014, Esmaeelpour et al., 2014]

for segmenting the choroidal boundary have been reported recently. Kajie et al. [Kajić

et al., 2012] presented a statistical model based on texture and shape to automatically

segment the choroid layer from OCT B-scans. Hu et al. [Hu et al., 2013] performed

the choroid segmentation semi-automatically by using the graph search algorithm from

3D OCT volumes. Tian et al. [Tian et al., 2013] reported an automatic segmentation

method for 2D enhanced depth imaging (EDI) OCT images. The choroidal-scleral

interface is located by using the Dijkstra’s algorithm. This algorithm is used to find

the shortest path for the graph, which is constructed by the valley pixels. Alonson-

Caneiro et al. [Alonso-Caneiro et al., 2013] developed a dual probability gradient based

method to segment the choroid layer automatically from the enhanced OCT B-scans.

Danish et al. [Danesh et al., 2014] segmented the choroidal boundary using a multi

resolution texture modelled graph cut method for 3D EDI OCT images.

It is difficult to perform reliable segmentation at some positions of the volume,

because the boundary is indistinct. It is a challenge for edge based segmentation

methods to perform reliable segmentation results at some positions of the volume. In

order to keep the boundary smooth, the shape constraint term is embedded into the

segmentation method. However, the constraint term of some methods is too strong

to obtain good results, especially for irregular choroidal boundary images. Some

area-based methods may not achieve a good performance on those low contrasts and

indistinct boundary B-scans. Besides, the performance of some supervised methods

depends on the variety of training images.

The aforementioned choroidal layer segmentation methods have their own limits

and cannot perform equally well on images of varying quality acquired from different

imaging modalities under different conditions. Besides, there are many difficulties in
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Figure 7.1: The challenge of the choroidal layer segmentation. (a) The original
macular B-scan. (b) The inhomogeneous texture from the B-scan. (c) The inseparable
histogram distribution of the background and object from the B-scan. (d) The ground
truth of the B-scan.

segmenting the choroidal layer from macular images. Figure 7.1 shows examples of the

challenges,

• The boundary between the choroid and sclera is not distinct. It is even invisible

in some locations as shown in Figure 7.1 (c), thus the edge based segmentation

method cannot accurately segment the layers;

• It is difficult to locate the choroid by using an intensity based segmentation

method because of the inseparable histogram distribution between the choroid

and sclera as Figure 7.1 (a);

• The intensity inhomogeneity and the inconsistent texture (Figure 7.1 (b)) of the

choroid make region based and texture based segmentation ineffective because of

the presence of the blood vessels in the choroid layer.
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In order to overcome these difficulties, we present an automatic choroidal layer

segmentation method. The baseline of the method is built on the level set framework,

with a region based term, by using the Markov Random Field method to model the

choroidal layer and sclera. The edge constraint term is obtained by calculating the

the line integral of the edge function and the weighted area of the object region. The

distance regularisation term is obtained by computing the contour length of the object

region. The advantages of our method are the following:

1. It includes edge information which is still important for segmenting parts of the

choroid.

2. We build the correlations between the neighbouring pixels and the pixel likeli-

hood function by using the Markov Random Field method. It compensates for

the intensity inhomogeneity of the choroid and avoids small regions caused by

shadows cast by blood vessels. Furthermore, the prior information of the back-

ground and choroid is calculated and used to obtain the posterior probability to

guide the contour to the desired boundary of the choroid.

3. Finally, the distance regularisation term is used to prevent small and irregular

contours appearing during the iterations.

The contributions of this chapter are as follows, (1) The Markov Random Field

model is embedded into the level set method to segment the background and choroidal

layer by using a Gaussian Mixture Model (GMM) and incorporating the neighbouring

information; (2) The prior model is constructed by using the GMM, and it is an updated

through each level set iteration instead of learning from a fixed training set; (3) In order

to increase the speed of the level set method, we adapt the narrowband around the

zero level set by using the gradient vector flow (GVF).

The remainder of this chapter is organised as follows. In Section 2, the proposed

segmentation method is described. The experimental results are presented in Section

3. The last section draws the conclusions.
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7.2 Methods

Figure 7.2: Block diagram of automatic choroidal layer segmentation. (a) The original
macular OCT image. (b) The de-noised OCT image by using the 3D anisotropic
diffusion method. (c) The chopped OCT image.

The choroidal layer is segmented using a typical two-step method, which includes

a pre-processing step and a segmentation step. Figure 7.2 shows the overview of the

automatic choroidal layer segmentation method. At the first step, the 3D anisotropic

diffusion method [Gerig et al., 1992] is used to remove the speckle noise and to enhance

the contrast between the background and object. We apply the region based term, edge

constraint term and distance regularisation term based level set method to locate the

choroidal layer boundary at the second step. Finally, the energy functional is minimised

by using partial differential equations (PDE).

7.2.1 Pre-processing step

The OCT imaging process for eyes produces speckle noise and imaging artifacts. Figure

7.2 (a) shows the original 3D macular image, which contains a significant level of
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speckle noise and artifacts. The conventional anisotropic diffusion approach (Perona-

Malik) [Gerig et al., 1992] is used to remove the speckle noise and sharpen the contrast

between the choroidal layer and sclera. The nonlinear anisotropic diffusion filter is

defined as Page 86.

The de-noised image is shown in Figure 7.2 (b). However, it is impossible to remove

all the imaging artifacts by using the de-noising method. In order to reduce the com-

putational complexity and improve the computation efficiency, we cut this image into

a small volume by removing all the background information. The boundary is acquired

by using the graph cut method which was proposed in chapter 5, Figure 7.2 (c) shows

the chopped OCT volume.

It is obvious that the bottom boundary of the choroidal layer is located below the

retinal pigment epithelium boundary. Besides that, we hypothesise the shape of the

choroidal lower boundary is similar to the boundary of the retinal pigment epithelium.

Therefore, we initialise the potential choroidal layer area from the retinal pigment

epithelium boundary to 130 pixels below this boundary. Let Ω be the image domain,

the zero level set function φ(x, y, z) is initialised as:
φ(x, y, z) = −2, if (x, y, z) ∈ choroidal layer

φ(x, y, z) = 2, if (x, y, z) ∈ background

φ(x, y, z) = 0, if (x, y, z) ∈ ∂Ω

(7.1)

7.2.2 Level Set Method

Our purpose is to segment the choroidal layer from the reduced OCT image. The

energy functional of our segmentation model is formulated as:

E(φ) = EM (φ) + EE(φ) + ER(φ), (7.2)

The first term EM is a region-based term, in which the Markov Random Field method is

used to incorporate the neighbouring pixels with the single pixel likelihood function to

smooth and tighten the choroidal boundary and to avoid leakages from the boundary.
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The second term EE (see Page 37) incorporates the edge information to direct the

initial contour to the boundary. Although the edge between the choroid and sclera is

indistinct or even invisible at some locations, the edge information is still important

in guiding the contour to the desired boundary. Therefore, we incorporated the edge-

based information to assist the segmentation. In order to maintain the boundary of

the choroid, the distance regularisation term (ER) is added to the energy functional.

ER(φ) (See Page 71) computes the contour length of the zero level set function φ to

smooth the boundary of the choroidal area.

Before that, the Gaussian Mixture Model based (GMM) prior model (See Page

51) is built according the initial level set function. The GMM parameter set is up-

dated through the segmentation iterations by using the EM algorithm. We update the

parameters with each iteration until they converges or a maximum iteration number

is reached. This is in contrast with other methods that obtain the parameters from

a training process. Unlike other methods, our method can update the parameters

according to the characteristics of the input data itself.

Region-Based Term

Markov Random Fields have been used for image segmentation for decades. They

were first introduced to segment Brain MR images by Zhang et al. [Zhang et al.,

2001]. Chen [Chen, 2010] reported the Bayesian risk term based level set method

for medical image segmentation. Yang et al. [Yang et al., 2015] improved Chen’s

method by incorporating the neighbouring pixel information and presented a MRF

embedded level set method for 2D image segmentation by using a single Gaussian

Mixture Model (GMM). Because the intensity inhomogeneity and inconsistent texture

both of the choroidal area and background, it is difficult to model the complexity of the

problem with a single Gaussian mixture model. Therefore, the mixture of Gaussian is

integrated into the Markov Random Field method to accurately estimate the choroidal

layer. Afterwards, a region-based term is used to correlate the neighbouring pixels with
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the single pixel’s likelihood function to keep the choroidal layer boundary smooth and

tight and to avoid leakages. The region-based energy functional is formulated as:

EM (φ) = −ν
∫

Ω

log(P (A|B))dxdydz (7.3)

where ν ∈ R is constant coefficients. This term calculates the average of negative

log-likelihood of the posterior segmentation probability.

According to the Bayes theorem, P (A|B) can be formulated as:

P (A|B) =
P (B|A)P (A)

P (B)
(7.4)

where P (B) is defined by the image itself and is a constant. Therefore, it can be

rewritten as:

P (A|B) ∝ P (B|A)P (A) (7.5)

where P (B|A) is the conditional segmentation probability, and P (A) is the prior prob-

ability.

Based on the conditional independence assumption of b, the conditional segmenta-

tion probability P (B|A,Θ) can be expressed as:

P (B|A,Θ) =

N∏
i=0

P (bi|ai, θai) =

N∏
i=0

Gmix(bi; θai)

=
1

Z ′ exp(−U(B|A))

(7.6)

The weighted probability of the GMM is:

Gmix(bi; θai) =

C∑
c=1

Gmix(bi;ωai,c, µai,c, σai,c)

=

C∑
c=1

ωai,cg(bi;µai,c, σai,c)

=

C∑
c=1

ωai,c√
2πσ2

ai,c

exp(− (bi − µai,c)2

2σ2
ai,c

)

=

C∑
c=1

ωai,c exp(
−log(2πσ2

ai,c)

2
+
−(bi − µai,c)2

2σ2
ai,c

)

(7.7)
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According to the Jensen’s inequality, if
∑C

c=1 ωai,c = 1, we can generate the following

formulation:

−log(

C∑
c=1

ωai,cg(bi; θai,c)) 6 −
C∑
c=1

ωai,clog(g(bi; θai,c)) (7.8)

According to the formulation, it indicates that minimising the right-hand term will lead

to the minimisation of the left term. Therefore, the conditional log-likelihood energy

function U(B|A,Θ) can be defined by:

U(B|A,Θ) =
N∑
i=0

ωaiU(bi|ai,Θ)

=

N∑
i=0

C∑
c=1

ωai,c[
(bi − µai,c)2

2σ2
ai,c

+
1

2
log(2πσ2

ai,c)]

(7.9)

The prior probability P (A) is defined as:

P (A) = P (φ) =
1

Z
exp(−U(φ)) (7.10)

where the prior energy function U(φ) is defined as:

U(φ) =
∑
n∈N26

Vn(φ) (7.11)

where Vn(φ) is the clique potential and N26 is the set of all possible cliques (See Page

106).

Finally, the region-based term can be rewritten as:

EM (φ) =ν

∫
Ω

{U(B|A,Θ) + U(A)}dxdydz

=ν{
∫

Ω

{U(B|A,Θ0) + U(A)}H(−φ)dxdydz+∫
Ω

{U(B|A,Θ1) + U(A)}H(φ)dxdydz}

(7.12)

where H(φ) is the Heaviside function and is defined as:

H(φ) =

 1, φ > 0,

0, φ < 0,
(7.13)

The main contribution of this part is that we construct the region-based term by

using the GMM based MRF method and embedded into the level set method.
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7.2.3 Partial Differential Equation based Energy Minimisation

The energy terms defined as a region-based term, an edge based term and a distance

regularisation term are substituted into 7.2. Our energy model of E(φ) can be rewritten

as:

E(φ) =ν{
∫

Ω

{U(B|A,Θ0) + U(A)}H(−φ)dxdydz+∫
Ω

{U(B|A,Θ1) + U(A)}H(φ)dxdydz}+

λ

∫
Ω

gδ(φ)|∇φ|dxdydz + α

∫
Ω

gH(−φ)dxdydz+

λR

∫
Ω

δ(φ)|∇φ|dxdydz

(7.14)

According to the Euler-Lagrange differential equation [Aubert and Kornprobst,

2006], the energy minimisation problem ∂E(φ)
∂φ can be reformulated as:

∂φ

∂t
= −∂E(φ)

∂φ
(7.15)

and the corresponding gradient flow equation is defined as:

∂φ

∂t
=ν{−{U(B|A,Θ0) + U(A)}+

{U(B|A,Θ1) + U(A)}}δ(φ)+

{λ(∇g|∇φ|+ gdiv(
∇φ
|∇φ|

) + αg}δ(φ)+

λRdiv(
∇φ
|∇φ|

)

(7.16)

where div(·) is the divergence operator, which is used to calculate the curvature of the

evolving curve by using the spatial derivatives φ up to the second order.

Finally, the level set equation can be reformed as:

φ(t+ 1) =φ(t) +∇t{ν{−{U(B|A,Θ0) + U(A)}+

{U(B|A,Θ1) + U(A)}}δ(φ)+

{λ(∇g|∇φ|+ gdiv(
∇φ
|∇φ|

) + αg}δ(φ)+

λRdiv(
∇φ
|∇φ|

)}

(7.17)

where ∇t is the time step, and t is the temporal index.
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In order to reduce the computational cost of a level set method, the narrowband

around the zero level set is implemented instead of updating φ in the full image domain.

The gradient vector flow (GVF) method [Xu and Prince, 1998] is used instead of the

sparse field method [Jalba et al., 2013] to construct the narrowband around the zero

level set. The GVF method preserves a diffusion of the gradient feature information

and avoids the leakage of the boundary by estimating more comprehensive narrow band

around φ with the sparse field method. According to [Xu and Prince, 1998], the vector

flow field ~V (x, y, z) = [u(x, y, z), v(x, y, z), w(x, y, z)] is defined to minimise an energy

function as follows:

ε =

∫
µ|∇~V |2 + |∇~f |2|~V −∇~f |2dxdydz (7.18)

where µ is a regularisation parameter, f is the edge map of the Heaviside function H,

f = Gσ(x, y, z) ∗H(φ(x, y, z)) (7.19)

where Gσ(x, y, z) is a three-dimensional Gaussian function with standard deviation

σ. The first term is smoothing term and the second term is the data term, which is

minimised when V = ∇f .

The numerical implementation of this energy function problem is formulated as:

ut+1(x, y, z) =µ∇2ut(x, y, z)−
[
ut(x, y, z)− fx(x, y, z)

]
[
fx(x, y, z)2 + fy(x, y, z)2 + fz(x, y, z)

2
] (7.20)

vt+1(x, y, z) =µ∇2vt(x, y, z)−
[
vt(x, y, z)− fy(x, y, z)

]
[
fx(x, y, z)2 + fy(x, y, z)2 + fz(x, y, z)

2
] (7.21)

wt+1(x, y, z) =µ∇2wt(x, y, z)−
[
wt(x, y, z)− fz(x, y, z)

]
[
fx(x, y, z)2 + fy(x, y, z)2 + fz(x, y, z)

2
] (7.22)

Finally, in order to simulate a wider narrowband, the Dirac delta function δ(φ) can be

rewritten as:

δ(φ) = u(x, y, z) + v(x, y, z) + w(x, y, z) (7.23)
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The novelty of this part is that we try to compute the narrowband around the

zero level set by using the GVF, which can efficiently estimate more comprehensive

narrowband than the sparse field method and increase the calculation speed.

7.3 Experiments

The macular images were obtained at Tongren Hospital, Beijing, China by using the

Heidelberg SD-OCT Spectralis HRA imaging system (Heidelberg Engineering, Heidel-

berg, Germany). This dataset includes thirteen 3D OCT images. Thirteen subjects

participated in this research. The ages of the subjects ranged from 20 to 85 years.

This imaging modalities protocol has been widely used to diagnose retinal diseases and

provides 3D images with 256 B-scans, 512 A-scans, 992 pixels in depth and 16 bits per

pixel. Besides that, 20 B-scans of each volume were randomly selected and manually

labelled by experts as the ground truth.

In order to evaluate the performance of our segmentation method, we compare

the segmented results with the ground truth using three performance metrics. Two

common metrics of error used to evaluate the performance of our segmentation were the

signed and unsigned mean difference. Figure 7.3 shows the signed and unsigned mean

and standard deviation (sd) between the ground truth and the proposed segmentation

results of the bottom choroidal boundary of 13 images in this dataset. In terms of

the segmentation error of the bottom choroidal boundary, the mean signed difference

is 0.72 ± 1.26 and the mean unsigned difference is around 0.87 ± 1.51. Furthermore,

Figure 7.5 compares the mean signed and unsigned mean and standard deviation (sd)

between the ground truth and the segmentation results from different methods of the

bottom choroidal boundary in this dataset. Our method archieved the best results,

compared to the other methods.

Finally, Dice’s coefficient was used to measure the similarity between the segmen-
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Figure 7.3: The segmentation error of the bottom choroidal layer boundary of the
dataset. (a) The signed mean and standard deviation(sd) difference between the ground
truth and the proposed segmentation results for the bottom choroidal boundary (b)
The unsigned mean and sd difference between the ground truth and the proposed
segmentation results for the bottom choroidal boundary.

tation results and the ground truth. The coefficient is defined as:

s =
2|A

⋂
B|

|A|+ |B|
(7.24)

where A and B are the segmented choroidal region and the manual labelled choroidal

region, respectively. The Dice’s coefficient of the dataset was calculated and plotted in

Figure 7.4. The mean Dice’s coefficient of 13 images in the dataset is around 92% with

the standard deviation around 3%. The best Dice’s coefficient value is around 96% in

the dataset, while the worst is around 87%. Besides that, the mean Dice’s coefficient of

the dataset was calculated and compared with different methods including the proposed

method in Figure 7.6.
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Figure 7.4: The Dice’s coefficient of the choroidal layer between the proposed method
and the ground truth.

Figure 7.5: The mean segmentation error of the bottom choroidal layer boundary
of the different methods, including the proposed method (A), GMM and MRF based
Level Set Method (LSM) (B), MRF (C), Graph Cut method (D), Canny Edge detection
(E), K-means algorithm (F), and Chan-Vese LSM (G). (a) The mean signed mean and
standard deviation (sd) difference between the ground truth and the segmentation
results (b) The mean unsigned mean and sd difference between the ground truth and
the segmentation results.
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Figure 7.6: The mean Dice’s coefficient of the choroidal layer between the methods
and the ground truth, including the proposed method, GMM and MRF based LSM,
MRF, Graph Cut, Canny Edge detection, K-means algorithms, and Chan-Vese LSM.

Figure 7.7: A choroid layer segmented example. (a)-(l) are the 10th, 30th, 50th,
70th, 90th, 110th, 130th, 150th,170th, 190th, 210th, 230th B-scans with the segmented
choroidal bottom boundary marked in red, respectively.

It is important to note that a number of parameters are required to be set in

the proposed approach. We have used a simple trial-and error method for this. In our
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Figure 7.8: Choroidal thickness map of the choroidal layer from this segmented ex-
ample.

Figure 7.9: 3D view of the segmented choroidal bottom boundary from this example.

experiments, inappropriate parameter settings did affect the segmentation performance

and occasionally failed to produce the desired results. However, we believe this is a

common issue for all the level set based methods.

According to the experimental results, our segmentation method can estimate and

segment the choroidal boundary efficiently on all 13 images with low error. Figure
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7.7 (a)-(l) shows 12 B-scans with the segmented choroidal bottom boundary marked

in red from a choroidal layer segmented volume. Besides, two ways of visualising the

segmented choroidal boundary are shown in Figure 7.8. The thickness map of the

choroidal layer is calculated and displayed in Figure 7.8. Figure 7.9 shows the shape of

the bottom choroidal boundary in 3D, which is irregular shape compared to the other

layers in the retina. The computational complexity is O(n2), n is the image.

7.4 Conclusions

According to the choroidal characteristics, there are three main challenges in segment-

ing the choroidal layer: (1) The contrast between the choroid and sclera is weak. (2)

The intensity of this layer is inhomogeneous and the texture of this layer is inconsistent

because of the blood vessels inside the layer. (3) The histogram distribution between

the choroidal layer is inseparable.

In this study, we have presented an automatic choroidal layer segmentation method

for 3D OCT volume scans. In the first step, we use the anisotropic diffusion filter to

remove the speckle noise and enhance the contrast between the choroid and sclera.

Afterward, the zero contour function is initialised according to the prior information

from the choroidal layer. Based on the zero contour, the Gaussian Mixture Model

(GMM) is used to model both the choroidal area and the background. The region-based

term is embedded into the level set energy function by using the Markov Random Field

method to build correlations between the neighbouring pixels with the single pixel log-

likelihood function. Furthermore, the edge constraint term and distance regularisation

term are merged into the level set function to direct the contour to the desired boundary

avoiding small and irregular contours.

The choroid layer segmentation method has been evaluated against the manually

labelled dataset from Tongren Hospital. The experimental results show that the pro-

posed algorithm has the following advantages: (i) The GMM used to model the sclera
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and background is incorporated into the MRF modelled term, which adequately models

the intensity inhomogeneity of the choroid. (ii) The neighbouring information is mod-

elled into the region based term to avoid small regions and smooth the boundary. (iii)

The edge constraint term is embedded into the energy function to direct the contour

to the desired boundary. (iv) The distance regularisation term is modelled into the

energy function to avoid small and irregular contours.

The contributions of our method are: (1) The region based term, incorporating the

neighbouring pixel information with the single pixel log-likelihood function by using the

Markov Random Field, is modelled the level set method; (2) The GMM is constructed

according to each level set iteration update; (3) Finally, the GVF method is used to

estimate a more comprehensive narrowband around the zero level set to increase the

speed of a segmentation.
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Chapter 8

Conclusions and Future Work

During the last few decades, retinal imaging technology has developed dramatically.

This has enabled ophthalmologists to have a clearer view of the vascular structure and

tissues in the retina. Changes of the vascular structure are important indicators of

different eye diseases as well as systemic diseases including diabetes, diabetes retinopa-

thy, age-related macular degeneration, and other inherited retinal degenerations. It is

time consuming or even impossible to hand label all the retinal structures due to the

large amount of data, and the irregular retinal structure shapes. Therefore, a powerful

and robust retinal image analysis tool is necessary and important to extract important

retinal structures in order to aid in diagnosis and treatment.

Fundus imaging and OCT imaging systems are two of the most widely used imaging

modalities in clinics and eye hospitals, so retinal structure analysis tool for 2D fundus

and 3D OCT images is increasingly important in aiding ophthalmologists to detect

and diagnose eye diseases and prevent further deterioration. Therefore, in this Ph.D.

project, some fully automated retinal structure extraction methods are presented for

both 2D fundus images and 3D OCT images, which are acquired by using different

fundus cameras and OCT imaging systems.

The aim of the thesis is to build a retinal structure analysis tool for retinal images

including both 2D and 3D images. The first part of my project is mainly focused on the
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fundus image analysis. Two different methods were proposed to segment blood vessels

and optic discs from these images. In the second part of the project, intra-retinal layers

are detected and segmented from 3D macular and optic nerve head images. Our pro-

posed methods are evaluated on several public fundus datasets including the DRIVE,

STARE, and DIARETDB, and 3D OCT images collected from Tongren Hospitals (Bei-

jing, China) and Moorfields Eye Hospital (London, United Kingdom), and compared

with alternative methods. The experimental results show that our methods can detect

and segment all the retinal structures accurately and efficiently.

8.1 Retinal Structures Extraction from Fundus Images

In the first part of the Ph.D. project, our aim was to detect and segment some obvious

retinal structures from fundus images. Two automated methods were designed to

extract the blood vessels and optic discs from these images. In chapter 3, the bayesian

level set method was applied to segment the blood vessels from these images, and the

region enhanced level set method was proposed to segment the optic discs from these

images in chapter 4.

The blood vessel segmentation method is a typical three staged process together

with the pre-processing and post-processing. At the pre-processing stage, we remove

the noise due to the high luminosity and optic disc interference and retain vessels inside

the optic disc, which is considered as a challenge in the blood vessel segmentation area.

In the post-processing stage, some background pixels misclassified as blood vessel pixels

were removed by using the length filter. During the segmentation process, the hybrid

region terms including the CV region term and Gaussian Mixture term are embedded

into the bayesian level set method with the distance regularisation term to maximise

the region information, compensate for the intensity inhomogeneity, and avoid the

background noise. The negative log likelihoods of the blood vessels and background

probabilities are computed according to the prior GMM parameters as a Gaussian
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Mixture region term, and the GMM parameters set was updated through the level set

iteration.

The effectiveness of this method is demonstrated through testing and comparing

with state-of-the-art methods on two public datasets DRIVE and STARE. The exper-

imental results show that our method offers several advantages over other methods in

the following. First, our method performs equally well on different datasets and on

both healthy and unhealthy images. Normally, it is difficult to obtain as good segmen-

tation results on these unhealthy images as healthy images. Second, our method is able

to segment the blood vessels inside the optic disc and remove the noise of the optic

disc boundary, which is generally considered a challenge in vessel segmentation area.

Third, our method extracts all the big blood vessels and most of the small branches.

Besides, our segmentation method has more than 95% average accuracy on both the

DRIVE and STARE datasets.

There are two main parts of the optic disc segmentation method, namely includes

the optic disc centre detection and optic disc extraction. In the optic disc centre de-

tection part, the template matching method is applied to approximately locate the

centre of the optic disc. Then, the morphologic based method is used to segment the

big vessels. Finally, the centroid of the optic disc is re-estimated by using these blood

vessel information. In the optic disc extraction part, the level set method, which incor-

porates the edge constraint term, shape prior term and distance regularisation term,

was designed to segment the optic disc. The shape prior term is applied to compensate

for intensity inhomogeneities inside the optic disc due to the shadows remaining after

the blood vessel removal. The edge information is extracted from the vessel removed

image and is modified into the energy function to assist the segmentation. The distance

regularisation term is applied to keep the optic disc boundary smooth.

The proposed method was evaluated on three public datasets, the DRIVE, DI-

ARETDB0 and DIARETDB1, with a total of 259 images. None of the three datasets

provides the ground truth for the optic discs. In order to evaluate the performance of
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our segmentation method, hand labelling ground truths were created for all of the three

datasets according to expert guidance. The effectiveness of our method is compared

with alternative methods using three public datasets. The experimental results show

that our method outperforms state-of-the art methods on these datasets. The over-

lapping rate between the segmentation results and ground truth is over 88% on these

datasets. Our method has several advantages over alternative methods as shown by

the experiments. In the first place, our method addresses the obstruction of the vessels

inside the optic disc and the intensity inhomogeneity, which are considered as the main

factors affecting the segmentation of the optic disc. In the second place, our method

performs the segmentation well for both regular and irregular optic disc shapes.

8.2 Retinal Structures Extraction from OCT images

In the second part of the Ph.D. project, our aim is to locate and extract retinal struc-

tures from 3D OCT images. Three automated methods were designed to segment the

intra-retinal layers from 3D OCT images, which were acquired from different imag-

ing modalities. The layers were imaged around the optic nerve head and macular area.

Chapter 5 provides the hybrid method based automatic layer segmentation for 3D OCT

macular images. This is followed by a discussion of the intra-retinal layers segmenta-

tion from 3D optic nerve head images in chapter 6. In chapter 7, the choroidal layer is

located and segmented by using the level set based method from 3D macular images.

In the first part of the OCT image analysis, eight boundaries of retinal layers were

detected and segmented from 3D macular images by a hybrid method which includes

CV region term based level set method, hysteresis thresholding method, multi-region

continuous max-flow based graph cut approaches. The method starts by removing

all the OCT imaging artifects including the speckle noise and by enhancing the con-

trast between layers using 3D nonlinear anisotropic filters. Due to the stair-casing, a

byproduct of the anisotropic method, the ellipsoidal averaging filter is used to remove
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the noise. Because the gradient between the retinal tissue and background is large and

the basic CV model based level set method works well in this situation, this method

is applied to segment the retinal area by locating the boundaries of the vitreous and

choroid.

Because of the high contrast between the OS layer and the IS layer, the boundary

of IS layer is segmented by using the 3D hysteresis thresholding method, which two

threshold values and a loop are used to provide more connected segmentations. After

that, the 3D retinal area is split into two parts to reduce the size. It ensures that the

computation load will be reduced and the speed of the segmentation will be increased.

Finally, a multi-region continuous max-flow (Potts model) based graph cut method is

used to segment intra-retinal layers into two parts. Our proposed method was evaluated

on 13 3D macular images acquired with Heidelberg SD-OCT Spectralis HRA imaging

system (Heidelberg Engineering, Heidelberg, Germany) in Tongren Hospital (Beijing,

China). The experimental results show that our method can successfully and accurately

segment eight boundaries without any failure.

In the second part of the OCT image research, four boundaries of retinal layers

were located and extracted from 3D optic nerve head images by using an automated

segmentation method, which combines the 3D nonlinear anisotropic filter, CV based

level set method, k-means clustering method and MRF method. This method is a typ-

ical two step processing method together with de-noising step and segmentation step.

The de-noising process removes all the OCT imaging artifacts including the speckle

noise and enhances the contrast between layers by using the 3D nonlinear anisotropic

filtering method. According to the characteristics of the image itself, different methods

are combined and applied to achieve the segmentation more efficiently and accurately.

Because the contrast between the retinal area and background is high, the basic CV

model based level set method is applied to locate and segment the retina area by

detecting the vitreous and choroidal boundaries.

In order to reduce the computational complexity and increase the segmentation
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speed, the volume of the retinal area is obtained by removing all the background.

Then, the k-means clustering method is applied to locate the layers approximately as

an initialisation for the next step, because the contrast between the different layers is

relatively high. However, due to the shadows of the blood vessels, imaging artifacts and

intensity inhomogeneities of the image, the k-means method fails to locate all the layers

accurately enough. After that, MRF is used to update the initial input by considering

the neighbouring information from the k-means through iteration until convergence or

the maximum number of iterations is reached. Our 3D optic nerve head images were

acquired with RTVue-100 SD-OCT (Optovue, Fremont, CA, USA) from Moorfields Eye

Hospital (London, Unite Kingdom). In order to prove the effectiveness and efficiency

of our method, we test the proposed method on the data. According to experimental

results, our method can accurately segment four layer boundaries over the optic nerve

head.

Both the methods we proposed for intra-retinal layer segmentation from 3D macular

images and optic nerve head images may look over complicated because they involve

different methods at different stages. The first method includes the CV model based

Level Set Method, the hysteresis thresholding method and multi-region continuous

max-flow graph cut method for the first method, and the second one includes the CV

model based level set method, the k-means clustering method and MRF. It may look

much more concise if a single method is applied simultaneously to detect all retinal

boundaries. According to our experiments, such an approach would demand much

higher memory and longer computation time or even fail to segment due to the limit

of the computation memory because of the high volume of the data.

In order to segment all the layers simultaneously, many alternative methods reduce

the data size by using the sub-sampling method. However, the sub-sampling method

may get rid of some important information. Therefore, our approach is able to deliver a

better performance with less computational time. More specifically for the first method,

the level set method first segments the volume region containing all the 6 middle layers.
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The simple and fast hysteresis thresholding method partitions this region further into

two parts along the easiest boundary between the ONL-LS and OS layers, and finally

the multi-region max-flow method is used to segment the individual layers in the upper

and lower parts. While for the second method, the CV model based level set method

first segments the volume of retinal area, the k-means cluster method initialises the

volume data into k regions, and the MRF method updates the initialisation to overcome

artifacts such as the blood vessel shadow and variation of the image intensity.

The choroid is an important layer which supplies oxygen and nourishment to the

retina. The changes of the choroidal thickness have been hypothesised to relate to a

number of retinal diseases within the pathophysiology. Therefore, in the final part of

OCT image analysis, an automatic method based on the level set method was proposed

to segment the choroidal layer from 3D macular images, which are acquired from the

Heidelberg SD-OCT Spectralis HRA imaging system (Heidelberg Engineering, Hei-

delberg, Germany) in Tongren Hospital (Beijing, China). This method is a typical

two-step method, which includes the pre-processing step and segmentation step. At

the pre-processing step, the 3D anisotropic diffusion method is applied to remove the

imaging artifacts including the speckle noise and to enhance the contrast between the

background and object. In order to reduce the computational complexity and improve

the computational efficiency, we cut this original volume down into a small volume

along the retinal pigment epithelium boundary, which was segmented by using the

method proposed in chapter 7.

There are some challenges in locating and segmenting the choroidal layer: (1) the

boundary between the choroid and sclera is not distinct and is even invisible in some

locations, (2) the histogram distribution between the choroid and sclera is inseparable,

(3) the grey level intensity of the choroid is inhomogeneous and the texture of the

choroid is inconsistent, because of the blood vessels in this layer and immaturity of

the imaging techniques. Therefore, an automatic choroidal layer segmentation based

on the level set method was proposed to overcome these challenges by integrating the
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MRF based region based term, edge constraint term and distance regularisation term.

The region term is modelled in the level set method by using the MRF method, which

correlates the single pixel likelihood function with neighbourhood information to com-

pensate for the inhomogeneous texture and avoid leakage due to the shadows of the

blood vessels. The edge constraint term is embedded to keep the edge information

between the choroid and sclera, while the distance regularisation is combined to avoid

irregular and small regions. The effectiveness of this method is demonstrated by com-

parison with manual segmented cross-sectional B-scans. The experimental results show

that our method can efficiently and accurately locate and segment the choroidal bottom

boundary.

The contributions of the method are illustrated in the following: (1) The Gaussian

Mixture Model (GMM) used to model the sclera and background is incorporated into

the MRF modelled term, which adequately models the intensity inhomogeneity of the

choroid. (2) The neighbouring pixel information with the single pixel log-likelihood

function are modelled into the level set method by using the Markov Random Field;

(3) The GMM parameter set is updated with each level set iteration according to the

characteristics of the input data itself; (4) The Gradient Vector Flow method is applied

to estimate a more comprehensive narrowband around the zero level set to increase the

speed of the segmentation.

8.3 Contributions of the Project

In order to achieve our aims, the main contributions that we have made are summarised

in the following:

1. A Bayesian level set method was proposed and implemented to segment the blood

vessels from retinal images. This method is based on the region enhanced level set

method with the hybrid region terms and the distance regularisation term. The

blood vessel information is extracted by using two different region terms including
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the Chan-Vese region term and Gaussian Mixture region term from two different

inputs. The distance regularisation term is used to remove background noise due

to intensity inhomogeneity. According to the input image itself, the Gaussian

Mixture region term calculates the negative log likelihood of the blood vessels

and background probabilities respectively to achieve better segmentation results.

2. A level set based segmentation method was designed to segment optic discs from

retinal images. This method incorporates the edge-based term, distance regulari-

sation term and shape-prior term into the basic level set method to achieve better

segmentation results. According to the prior shape information of the optic disc,

the shape prior term is incorporated into the level set method to maintain and

constrain the shape of the optic disc and compensate the intensity inhomogeneity

inside of the optic disc. Furthermore, the edge-based term maintains the edge

information of the optic disc, while the distance regularisation term avoids the

background noise due to intensity inhomogeneity.

3. A hybrid method including the hysteresis thresholding method, level set method

and multi-region continuous max-flow approaches was proposed and implemented

to segment eight intra-retinal boundaries from 3D macular images. According

to the characteristics of the intra-retinal layers, different methods are applied

to detect the specific layers efficiently and accurately. It may sound much more

concise if a single method is used to simultaneously segment all layers because the

overall segmentation process may look over complicated as this method involving

three different methods. However, it demands much higher memory and much

longer computation time or is even impossible due to the memory limit of the

computer through our experiments because of the high volume of 3D images.

4. The level set method and Markov Random Field method were combined to seg-

ment four intra-retinal boundaries from 3D optic nerve head images. The basic

3D CV model based level set method is applied to locate the retinal layer area,
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while the MRF method is used to detect the retinal boundaries inside the retinal

area by considering the neighbouring information according to the initialisation

from the K-means method. According to the characteristics of the data itself,

the two methods are sequently applied to segment the four boundaries more effi-

ciently and accurately. Even though it is more simple to use one single method to

segment all the layers simultaneous, due to the memory and computation issues

of one single method because of a high volume of 3D data, the combination of

methods achieve better segmentation results with less computation time.

5. A segmentation method was proposed to detect the choroidal layer from 3D mac-

ular images based on the level set method, which incorporates the edge constraint

term, distance regularisation term and Markov Random Field modelled term. Be-

cause the boundary between the choroid and sclera is visible at some locations,

the edge constraint term is merged into this method to keep the edge information.

The markov random modelled term is used to compensate the intensity inhomo-

geneity of the choroid and avoid small regions due to the blood vessel shadows

by building the correlations between the neighbouring pixels and pixel likelihood

function. The distance regularisation term is applied to avoid small and irreg-

ular contours. This method can predict the choroidal boundary accurately and

efficiently.

8.4 Comparison of Proposed Methods

In order to extract important retinal structures from retinal images including 2D fun-

dus images and 3D OCT images to assist ophthalmologists to diagnose eye diseases,

three different methods were proposed based on the level set method and two different

methods were proposed by using the Chan-Vese model based level set method. The

comparison of five different methods is summarised in the following.

The intra retinal layers are segmented by using two different hybrid methods from
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3D OCT macular and optic never head images respectively in chapter 5 and 6. In

order to reduce the computational load and save the computational memory, both

methods use the basic Chan-Vese model based level set method to locate the region of

interest for further calculation. Some other low-level image processing methods, such

as canny edge detection, thresholding method, watershed segmentation and so on, may

achieve similar results for some cases. However, the performances of the segmentation

results by those low-level image processing methods are not consistent good due to

the variational intensity and texture of the dataset. After that, a simple hysteresis

thresholding method is used to locate one of the most obvious boundary in the region of

interest for the layers segmentation from macular images, while for the layers extraction

from optic nerve head images the K-means method is used to initialise the layers in the

region of interest. The region of interest of the macular image is divided into two smaller

volumes through the boundary which was segmented. Finally, the graph cut method

is applied to this two volumes to locate all other boundaries for macular images, while

for the optic nerve head images the Markov Random Field method is applied to refine

the initialisation through iterations to detect all boundaries. Both proposed methods

use the combination of different methods to segment the intra retinal layers accurately

and efficiently according to the characteristics of the data itself.

Three different terms are modelled and embedded into the level set method to

solve three different image segmentation problems. For the first one in chapter 3, the

region enhanced level set method is proposed by using the Gaussian mixture region

term and Chan-Vese region term to extract the region information. We apply this

method to extract the blood vessel information from 2D fundus images. This method

could perform good segmentation results for those 2D and 3D images with slightly low

contrast between the object and background and reasonable intensity inhomogeneity.

For the second one in chapter 4, the prior shape based level set method is proposed by

using the shape constraint term and edge based term to extract the object with strong

model of shape. This method is applied to segment the optic disc from 2D fundus
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image. Apart from that, this method would perform well for those 2D and 3D images

with strong model of object shape. For the final one in chapter 7, the prediction model

based level set method is proposed by using the Markov Random Field based term and

edge based term to predict and segment the object. Here, this method is applied to

locate the choroidal layer from 3D macular images. It can be used to segment those

images, in which boundary of the object is indistinct boundary at some of the places

and the texture and intensity of the object is inconsistent.

In the first part of the thesis, we focus on 2D fundus image analysis. In terms

of the blood vessel segmentation method in chapter 3, the hybrid region term based

level set method is used to maximise all the blood vessel information and minimise the

background information. Because the blood vessel region in fundus images is relatively

distinct from the background region, a Gaussian mixture term is used to model the

background and blood vessels according to the image itself. The Chan-Vese region

term is used to enhance the region information with the Gaussian mixture term. The

method is proposed for segmenting an object that distinguishes from the background

with reasonable intensity inhomogeneity. However, the hybrid region based level set

method cannot be used to accurately segment the optic disc because the optic disc is

not a region based problem. The optic disc has a strong model of shape with high

intensity inhomogeneity, a shape constraint term is modelled into the level set method

with an edge term and a distance regularisation term to detect the optic disc in chapter

4. The shape constraint term is used to constrain the shape of the segmentation result

and overcome the intensity inhomogeneity. The edge term is used to derive the zero

level set function close to the boundary of the optic disc. The method is proposed for

detecting an object with strong shape model.

In the second part of the thesis, we move on to 3D OCT image analysis. The

hybrid methods are proposed to segment the intra-retinal layers from 3D macular

images and 3D optic nerve head images in chapters 5 and 6. The graph cut method

is applied to segment the layers from 3D macular images, while the MRF method is
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applied to segment the layers from 3D optic nerve head images. In order to reduce the

computational complexity, the background of the OCT image is removed and the Chan-

Vese region based level set method is applied to locate the retina. The boundaries of

some layers of the optic nerve head image are disconnected around the optic nerve head,

the graph cut method may not perform well on this problem. However, the the Markov

Random Field method can segment the boundaries with disconnections in the middle

accurately. The intensity distribution of some layers of 3D macular images is relative

similar, the Markov random field method may not perform well for this problem. The

graph cut can detect the boundaries with low intensity variation.

Finally, the choroidal layer segmentation method is proposed in chapter 7. Because

the far rear location of the choroidal layer and the immature imaging system, the

boundary of the choroidal layer is indistinct. An estimation method is necessary to

estimate the boundary of the choroidal layer. Therefore, the Markov Random Field

method is modified into the level set method with an edge based term and a distance

regularisation term. The Markov random field term is used to model the choroidal layer

and the background according to the image itself to estimate the choroidal boundary.

The edge based term is used to retain the edge information of the image itself. This

method is proposed to locate an object with unclear edge information at some positions.

8.5 Limitations and Future Work

In the last decade, medical imaging analysis has been dramatically increased in the

clinical applications aiding ophthalmologists in accurately diagnosing different kinds of

disease. Retinal imaging analysis is one of the hottest topics in medical image analy-

sis. Many different automatic methods were presented to extract and segment retinal

structures from 2D and 3D retinal images, which are acquired from different imaging

modalities including both fundus cameras and OCT imaging systems. However, the
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major limitations of our research are in the following:

1. Because we do not have direct cooperation with clinics or hospitals, we can not

obtain the data we need. For example, we need more data with specific eye

disease. If we have a large dataset including normal and un-normal data, we can

design different methods to understand the specific eye disease better.

2. Due to limited advices from ophthalmologists, we may not know the first hand in-

formation about what clinics or hospitals need. According to these requirements,

we can design the algorithms to solve the problem in real.

3. Due to the limitation of the hardware of the desktop, we can not improve the

calculation speed by using multi-core processing or graphic processing unit pro-

gramming.

There are many other potential directions of research in the retinal image analysis.

Some of the most potential research directions are concluded and discussed in the

following.

1. OCT image de-noising: Similar to many other imaging modalities, OCT imaging

systems introduce lots of speckle noise during the imaging process. Many de-

nosing methods have already been presented, such as median filter, wavelet filter,

anisotropic diffusion filter and so on. However, these methods may still have some

room for improvement. Therefore, some more powerful and efficient de-noising

methods are useful and necessary, which can filter out all noise and keep all the

tissue structures of the data. Such methods can makes the structure extraction

easier and more efficient.

2. Retinal image registration from time series: In order to monitor the progress

of eye diseases and to detect even tiny changes through the time series on the

image taken around the same area of retina, the registration methods are ur-
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gently needed for 2D and 3D images, which are acquired from different imaging

modalities.

3. Retinal image registration from different modalities: Retinal images obtained

from some imaging systems can provide more obvious retinal structures than

other imaging modalities, for example the fundus images show more obvious blood

vessel and optic disc information than OCT images. The registration method

for retinal images acquired from two different imaging systems is necessary and

important to align the mutual information on these images.

4. Blood vessel segmentation and reconstruction from choroidal layer: The choroid

is the vascular layer and located between the retina and sclera. The choroidal

vessel segmentation makes it available to visualise and measure the choroidal

structure and morphological information, which is important for improving the

understanding of the pathogenesis of circulation-related ocular diseases.

5. Disease decision making: It is useful and necessary to Investigate the correla-

tion between the choroidal thickness map and choroidal diseases, and to build

the relationship between the vascular structures in the choroidal layer and the

choroidal diseases.
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521. 35

[Lim et al., 2014] Lim, L., Cheung, G., and Lee, S. (2014). Comparison of spectral

domain and swept-source optical coherence tomography in pathological myopia. Eye,

28(4):488–491. 26

[Lowell et al., 2004] Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher,

E., and Kennedy, L. (2004). Optic nerve head segmentation. Medical Imaging, IEEE

Transactions on, 23(2):256–264. 65, 67

156



[Lupascu et al., 2008] Lupascu, C. A., Tegolo, D., and Di Rosa, L. (2008). Automated

detection of optic disc location in retinal images. In Computer-Based Medical Sys-

tems, 2008. CBMS’08. 21st IEEE International Symposium on, pages 17–22. IEEE.

76, 78

[Maŕın et al., 2011] Maŕın, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M.

(2011). A new supervised method for blood vessel segmentation in retinal images

by using gray-level and moment invariants-based features. Medical Imaging, IEEE

Transactions on, 30(1):146–158. 57, 59

[Martinez-Perez et al., 2007] Martinez-Perez, M. E., Hughes, A. D., Thom, S. A.,

Bharath, A. A., and Parker, K. H. (2007). Segmentation of blood vessels from

red-free and fluorescein retinal images. Medical image analysis, 11(1):47–61. 57

[Melmed et al., 2011] Melmed, S., Polonsky, K. S., Larsen, P. R., and Kronenberg,

H. M. (2011). Williams textbook of endocrinology: Expert consult. Elsevier Health

Sciences. 30, 31

[Mendonça and Campilho, 2006] Mendonça, A. M. and Campilho, A. (2006). Segmen-

tation of retinal blood vessels by combining the detection of centerlines and mor-

phological reconstruction. IEEE Trans Med Imaging, 25(9):1200–13. 46, 47, 56, 57,

58

[Mokwa et al., 2013] Mokwa, N. F., Ristau, T., Keane, P. A., Kirchhof, B., Sadda,

S. R., and Liakopoulos, S. (2013). Grading of age-related macular degeneration:

comparison between color fundus photography, fluorescein angiography, and spectral

domain optical coherence tomography. Journal of ophthalmology, 2013. 3

[Mumford and Shah, 1989] Mumford, D. and Shah, J. (1989). Optimal approximations

by piecewise smooth functions and associated variational problems. Communications

on pure and applied mathematics, 42(5):577–685. 35, 66

157



[Murakami and Yoshimura, 2013] Murakami, T. and Yoshimura, N. (2013). Structural

changes in individual retinal layers in diabetic macular edema. Journal of diabetes

research, 2013. 3

[Nguyen et al., 2013] Nguyen, U. T., Bhuiyan, A., Park, L. A., and Ramamohanarao,

K. (2013). An effective retinal blood vessel segmentation method using multi-scale

line detection. Pattern recognition, 46(3):703–715. 47

[Nichols et al., 2012] Nichols, M., Townsend, N., Luengo-Fernandez, R., Leal, J., Gray,

A., Scarborough, P., and Rayner, M. (2012). European cardiovascular disease statis-

tics 2012. European Heart Network, Brussels, European Society of Cardiology, Sophia

Antipolis, page P104. 33

[Niemeijer et al., 2004] Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., and

Abramoff, M. D. (2004). Comparative study of retinal vessel segmentation meth-

ods on a new publicly available database. In Medical Imaging 2004, pages 648–656.

International Society for Optics and Photonics. 57

[Niemeijer et al., 2007] Niemeijer, M., van Ginneken, B., Russell, S. R., Suttorp-

Schulten, M. S., and Abramoff, M. D. (2007). Automated detection and differentia-

tion of drusen, exudates, and cotton-wool spots in digital color fundus photographs

for diabetic retinopathy diagnosis. Investigative ophthalmology &amp; visual science,

48(5):2260–2267. xiii, 30, 31

[Novo et al., 2009] Novo, J., Penedo, M. G., and Santos, J. (2009). Localisation of

the optic disc by means of ga-optimised topological active nets. Image and Vision

Computing, 27(10):1572–1584. 65

[of Health, 2000] of Health, D. (2000). National service framework for coronary heart

disease. 33, 34

[Organization, 1988] Organization, W. H. (1988). Coding instructions for the who/pbl

eye examination record (version iii). Geneva: WHO. 82

158



[Osareh et al., 2002] Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R. (2002).

Colour morphology and snakes for optic disc localisation. In The 6th medical image

understanding and analysis conference, pages 21–24. BMVA Press. 65

[Ouyang et al., 2013] Ouyang, Y., Heussen, F. M., Keane, P. A., Sadda, S. R., and

Walsh, A. C. (2013). The retinal disease screening study: prospective comparison of

nonmydriatic fundus photography and optical coherence tomography for detection of

retinal irregularities. Investigative ophthalmology &amp; visual science, 54(2):1460.

2

[Pallawala et al., 2004] Pallawala, P., Hsu, W., Lee, M. L., and Eong, K.-G. A. (2004).

Automated optic disc localization and contour detection using ellipse fitting and

wavelet transform. In Computer Vision-ECCV 2004, pages 139–151. Springer. 65

[Park et al., 2006] Park, B., Lawrence, K. C., Windham, W. R., and Smith, D. P.

(2006). Performance of hyperspectral imaging system for poultry surface fecal con-

taminant detection. Journal of Food Engineering, 75(3):340–348. 16

[Pratondo et al., 2016] Pratondo, A., Chui, C.-K., and Ong, S.-H. (2016). Robust edge-

stop functions for edge-based active contour models in medical image segmentation.

Signal Processing Letters, IEEE, 23(2):222–226. 39

[Quigley and Broman, 2006] Quigley, H. A. and Broman, A. T. (2006). The number of

people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology,

90(3):262–267. 27, 28, 29

[Resnikoff et al., 2004] Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Parara-

jasegaram, R., Pokharel, G. P., and Mariotti, S. P. (2004). Global data on visual

impairment in the year 2002. Bulletin of the world health organization, 82(11):844–

851. 3

159



[Ricci and Perfetti, 2007] Ricci, E. and Perfetti, R. (2007). Retinal blood vessel seg-

mentation using line operators and support vector classification. Medical Imaging,

IEEE Transactions on, 26(10):1357–1365. 57, 59

[Roychowdhury et al., 2015] Roychowdhury, S., Koozekanani, D., and Parhi, K.

(2015). Iterative vessel segmentation of fundus images. 57, 58, 59, 61

[Saine and Tyler, 2002] Saine, P. J. and Tyler, M. E. (2002). Ophthalmic photography:

retinal photography, angiography, and electronic imaging, volume 132. Butterworth-

Heinemann Boston. xii, 14, 16

[Schuman, 2008] Schuman, J. S. (2008). Spectral domain optical coherence tomography

for glaucoma (an aos thesis). Transactions of the American Ophthalmological Society,

106:426. xiii, 20, 21, 22, 26, 27

[Sekhar et al., 2008] Sekhar, S., Al-Nuaimy, W., and Nandi, A. K. (2008). Automated

localisation of retinal optic disk using hough transform. In Biomedical Imaging:

From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on,

pages 1577–1580. IEEE. 65

[Seo et al., 2004] Seo, J., Kim, K., Kim, J., Park, K., and Chung, H. (2004). Mea-

surement of ocular torsion using digital fundus image. In Engineering in Medicine

and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the

IEEE, volume 1, pages 1711–1713. IEEE. 76, 78

[Smith et al., 2008] Smith, B., Saad, A., Hamarneh, G., and Moller, T. (2008). Re-

covery of dynamic pet regions via simultaneous segmentation and deconvolution.

Analysis of Functional Medical Image Data (MICCAI functional), pages 33–40. 88

[Soares et al., 2006] Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., and

Cree, M. J. (2006). Retinal vessel segmentation using the 2-d gabor wavelet and

supervised classification. Medical Imaging, IEEE Transactions on, 25(9):1214–1222.

47, 57, 58, 61

160



[Sopharak et al., 2008] Sopharak, A., Uyyanonvara, B., Barman, S., and Williamson,

T. (2008). Automatic detection of diabetic retinopathy exudates from non-dilated

retinal images using mathematical morphology methods. Computerized medical

imaging and graphics, 32:720–727. 76, 78
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