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Abstract

In this paper, a general event-triggered framework is set up to deal with the variance-constrained Ho, control problem for a
class of discrete time-varying systems with randomly occurring saturations, stochastic nonlinearities and state-multiplicative
noises. Based on the relative error with respect to the measurement signal, an event indicator variable is introduced and the
corresponding event-triggered scheme is proposed in order to determine whether the measurement output is transmitted to the
controller or not. The stochastic nonlinearities under consideration are characterized by statistical means which can cover several
classes of well-studied nonlinearities. A set of unrelated random variables is exploited to govern the phenomena of randomly
occurring saturations, stochastic nonlinearities and state-dependent noises. The purpose of the addressed multiobjective control
problem is to design a set of time-varying output feedback controller such that, over a finite horizon, the closed-loop system
achieves both the prescribed Ho noise attenuation level and the state covariance constraints. A recursive matrix inequality
approach is developed to derive the sufficient conditions for the existence of the desired finite-horizon controllers, and the
analytical characterization of such controllers is also given. Simulation studies are conducted to demonstrate the effectiveness

of the developed controller design scheme.
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1 Introduction

In the past few decades, there has been a surge of re-
search interest in the stochastic control problem since
stochastic modeling has been successfully applied in
many fields. A large body of literature has been de-
voted to the stochastic control or filtering problem for
different systems such as polynomial stochastic system-
s [1, 2, 4], Markovian jumping systems [20], switched
stochastic systems [13], discrete-time stochastic systems
with state-dependent noises [17], nonlinear stochastic
systems [8,19] and stochastic sampled-data control sys-
tem [21]. Among various stochastic control schemes, the
covariance control (CC) theory has gained particular
research attention due primarily to the fact that the
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performance requirements of many engineering control
systems are naturally expressed as the upper bounds on
the steady-state variances [11]. It has been shown that
the CC approach is ideally suited to handle the multi-
objective design problems where the multiple objectives
include, but are not limited to, variance constraints,
Hy-norm specification, H., performance index and pole
placement [6]. The CC theory was originally developed
for linear systems and has been recently extended to
nonlinear stochastic systems [11]. It is worth pointing
out that most results concerning the CC theory have
focused on the steady-state behaviors for time-invariant
systems over an infinite horizon. However, virtually al-
most all real-time control processes are time-varying es-
pecially when the noise inputs are nonstationary [10,12].
In such cases, it would make more sense to consider
the covariance control problems for time-varying sys-
tems over a finite-horizon in order to provide a better
transient performance.

Due to physical and safety constraints, the sensor sat-
uration is probably one of the most commonly encoun-
tered phenomena in practical control systems that can
severely degrade the system performance or even lead to
unstable behaviors. So far, considerable research atten-
tion has been paid to the filtering and control problems
for systems with sensor saturation, see [14,16] and the
references therein, where the saturation has been implic-
itly assumed to occur definitely, i.e., the sensor always
undergoes saturation. Such an assumption, however, is
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not always true. For example, in a networked environ-
ment, the sensor saturations may occur in a probabilistic
way where the saturation amplitude/intensity may be
randomly changeable. Such kind of randomly occurring
sensor saturation (ROSS) may result from networked-
induced intermittent sensor failures, sensor aging or sud-
den environment changes. On the other hand, stochastic
nonlinearities are often found in networked control sys-
tems where the nonlinearities are induced by randomly
fluctuated network loads due mainly to the communica-
tion limitations. Up to now, some initial efforts have been
made on the filtering and control problems for systems
with stochastic nonlinearities [10], while most available
results have been concerned with additive noises only.
Note that many plants may be modeled by systems with
state-dependent noises and some characteristics of non-
linear systems can be closely approximated by models
with state-multiplicative noises rather than by linearized
models. It is, therefore, one of the motivations of the
present research to investigate how the phenomena of
ROSS, stochastic nonlinearities and state-multiplicative
noises influence the state variance and H,, performance
of a class of time-varying control systems.

In networked control systems, an important issue is how
to transmit signals more effectively by utilizing the avail-
able but limited network bandwidth. To alleviate the
unnecessary waste of communication/computation re-
sources that often occurs in conventional time-triggered
signal transmissions, a recently popular communication
schedule called event-triggered strategy has been pro-
posed in [9, 15, 18, 22, 23]. The triggering mechanism
refers to the situation where the measurement output
is transmitted to a remote controller/filter only when
certain conditions are satisfied. In other words, a con-
stant measurement signal is maintained until a speci-
fied event condition is violated in an event generator. In
comparison with the conventional time-triggered com-
munication, a notable advantage of the event trigger-
ing scheme is its capability of reducing redundant trans-
missions while preserving the guaranteed system perfor-
mance. In recent years, increasing attention has been
drawn on the event-triggered techniques for stochastic
systems and many important results have been reported
in the literature, see [5,7]. However, it should be point-
ed out that, many established results referring to event-
triggering schemes are in the framework of continuous-
time systems and, when it comes to the discrete-time
systems, the corresponding results have been scattered.
The representative one [7] has addressed the problem
of designing optimal event-triggered controllers under
costly observations, in which the optimal event-trigger
depends on the difference between the state estimates at
controller and event-trigger. Although the importance of
relative error-based event-triggering criterion has been
widely recognized, the corresponding results for discrete-
time systems have been very few especially when the
variance-constrained H., control problem becomes a re-
search focus. It is also noticed that, despite its engineer-
ing significance, the event-triggered control problem for
time-varying stochastic systems with both variance and
H, performance constraints over a finite horizon has not
received adequate research attention yet, not to mention
the case when ROSS, stochastic nonlinearities and state-
multiplicative noises are simultaneously present. There-
fore, the main motivation of this paper is to shorten such

a gap by launching a systematic investigation.

In this paper, we make the first of the few attempts to
consider the event-triggered multiobjective control prob-
lems for time-varying systems with ROSS, stochastic
nonlinearities and state-multiplicative noise. The mul-
tiple objectives include the state variance constraints
and the H, disturbance rejection attenuation level. The
main contributions of this paper are highlighted as fol-
lows. 1) A wvariance-constrained Hy, controller is pro-
posed for discrete nonlinear time-varying systems in the
framework of event-based communication protocol. 2) A
new event indicator variable is constructed to reflect the
event-triggered information in the controller analysis so
as to decrease the frequency of data transmission and
also reduce the conservatism in the controller design as
compared to existing literature. 3) The developed recur-
sive algorithm merits online applications. 4) The system
model addressed is new, which is quite comprehensive to
cover time-varying parameters, stochastic nonlinearities,
multiplicative noise as well as ROSS, hence reflecting the
reality more closely.

Notation. The notation used here is standard except
where otherwise stated. tr(A) represents the trace of a
matrix A. The symbol ® denotes the Kronecker product.
Matrices, if they are not explicitly specified, are assumed
to have compatible dimensions.

2 Problem Formulation

Consider the following class of discrete time-varying s-
tochastic systems

o(k+1)=(A(k) + Y Ai(k)wi(k))z(k)
i=1

+ glk,2(k)) + D(K)o(k) + By (k)u(k)
2(k)=L(k)z(k) + Ba(k)u(k)
and m sensor measurements with randomly occurring
saturations
yi(k) =a;(k)o (Ci(k)z(k)) + (1 — a;(k))Ci(k)z(k) 2)
+ E;(k)wi(k) (i=1,2,...,m)
where (k) € R™ represents the state vector; y;(k) € R
is the measurement output measured by sensor i from
the plant; z(k) € R"= is the controlled output vector;
u(k) € R™ is the control input vector; w;(k) € R
(¢t =1,2,...,r), v(k) € R™ and w;(k) € R"™ (i =
1,2,...,m) are, respectively, the multiplicative noise,
the process noise and the measurement noise for sensor
1. The noise sequences are mutually uncorrelated zero-
mean Gaussian sequences with E{w;(k)w! (k)} = 1,
E{u(k)oT (k)} = V (k) and E{e; (k) (k)} = Wi(k).
A(k), A;(k), B1(k), Ba(k), D(k), L(k), C;(k) and E;(k)
are known, real, time-varying matrices with appropriate
dimensions.
The nonlinear function g(k,x(k)) with g(k,0) = 0 is a
stochastic nonlinear function having the following sta-
tistical characteristics:

E {g(k, 2(k)[2(k)} = 0,
E {g(k o()g" (7, 2(k)) ()} =0, k#j

and

(1)

E{g(k,x(k))g" (k,x(k))|x(k)}



= mml E{a" (k)T(k)x (k) }
i=1

=S 0u(R)E {2" (k)Ti(k)z(k)}
i—1

where ¢ is a known nonnegative integer, ©;(k) and T';(k)

3)

(i = 1,2,...,q) are known matrices with appropriate

dimensions.

The saturation function o(-) : R — R is defined as
o(¥9) = sign(¥) min {1, |J|}. (4)

Here, sign(-) denotes the signum function. Without loss
of generality, the saturation level is taken as unity.
The variable a; (k) (i = 1,2,...,m)in (2), which governs
the ROSS phenomenon, are Bernoulli distributed white
sequences taking values on 0 or 1 with

Prob{a;(k) =1} =&, Prob{we;(k)=0}=1-a, (5)
where & € [0, 1] is a known constant. Throughout the pa-
per, the stochastic variables «; (k) (i = 1,...,m), v(k),
w;(k) (i=1,2,...,m)and w;(k) (i=1,...,r) are mu-
tually uncorrelated.
For notational brevity, we set

T
y(k) = [T (k) T ) - yh0)] s Ra = In@a,

Ay (k) = diag{aq (k), aa(k), ..., am(k)},
E(k) = diag{F/ (k), Ea(k), ..., En(k)}, (6)
C(k) = [CT (k) CT(k) -+ Ch(K)|

k) = [ ) =T k) - L)

m

Then, the sensor model (2) can be expressed in the fol-
lowing compact form:

y(k) =Aa(k)o(C(k)x(k)) + (I — Aa(k))C(k)x(k) ™
+ E(k)w (k)
where o(C'(k)z(k)) := | o7 (C1(k)x(k)) 0T (Co(k)x(k))

T
. UT(Cm(k)x(k))} . In this paper, the notation o

has been slightly abused to denote both the vector-
valued and the scalar-valued saturation functions.

As in [14], for diagonal matrices K; and Ky satisfying
0 < K; < I < Ky, the saturation function in (7) can be
decomposed into a linear and a nonlinear part as

o(C(k)x(k)) = KrC(k)z(k) + W (C(k)x(k)) (8)

where W(C'(k)xz(k)) is a nonlinear vector-valued function
satisfying the following sector condition:

VT (C (k) (k) (W(C(K)a(k) = KC(k)x(k)) <0 (9)
with K = K2 — Kl.

In this paper, we define the event generator function
f(-,-) as follows:

flo(k),0) = " (k)p(k) — oy (k)y(k) ~ (10)
where p(k) := y(k;) — y(k), y(k;) is the measurement at
latest event time, y(k) is the current measurement and
delo, 1).

The execution is triggered as long as the condition

fle(k),0) >0 (11)
is satisfied. Therefore, the sequence of event-triggered
instants 0 < kg < k1 < --- < k; < --- is determined
iteratively by

kiv1 = inf{k € NJk > ki, f(o(k),8) > 0}.  (12)

Accordingly, any measurement data satisfying the event
condition (11) will be transmitted to the controller.

Remark 1 The event triggering mechanism is adopted
here in order to effectively decrease the data communica-
tion frequency and network bandwidth usages.

For system (1), the following controller structure is
adopted:

ze(k +1) = Ac(k)zc(k) + Be(k)y (ki)
u(k) = Ce(k)zc(k)

where z.(k) € R™ is the controller state, A.(k), B.(k)

and C.(k) are the controller parameters to be designed.

Under the output feedback controller (13), the closed-
loop system becomes

(13)

0k + 1)=Vi(k) + Hog(k. a( +Zwl (k)
+ Bo(k)C(k)n(k) + B <k> (C(k)n(k))(14)
+ D(k)E(k)
2(k)=M (k) (k)

B.k) =0 (BuwA.(k)7] , C0) = [ctw) 0],
D(k) =ding{ D(k), B.(K)E()}.

The state covariance matrix of the dynamical system
(14) can be defined as

B NIECHEGCIEE
K= {0 ()= {lmm] lwcu«)] } 1

Our objective of this paper is to design a dynamic out-
put feedback controller of the form (13) over the finite
horizon [0, N] such that the following two requirements
are satisfied simultaneously:

e (Q1): For the given disturbance attenuation level v >
0, the positive definite matrices Uy, Us, S and the
initial state 2(0), the controlled output z(k) satisfies
the following performance constraint:



N—-1
Ji:=E { > (IIZ(@II2 - '72|5(k)|?]) }
k=0
—E {27 (0)S2(0)} <0 (V{£(R)} £0) (16)
where [[€(k)[|; = €7 (k)UE(k), U = diag{U1, U}
e (Q2): The state covariances satisfy the following con-
straints:
Jo i=E{z(k)z" (k)} < Y(k) (17)
where T(k) (0 < k < N) is a sequence of given
matrices specifying the acceptable covariance upper
bounds obtained from the engineering requirements.
Remark 2 In the desired performance requirement
(Q2), the estimation error variance at each sampling
time point is required to be not more than an individual
upper bound.

3 Main results

Before deriving the main results, we define the event
indicator variable u(k) as follows:

if the event generator condition is
satisfied at the current instant k (18)

0 if no event is triggered

(k) ==

3.1 Fvent-triggered H, Performance
For presentation clearly, we denote

Z11(k)
= 2(A(k) + Bo(k)Aa K1 C (k)" P(k + 1) x
(A(K) + Be(k) Ao Ko C(R)) + M7 (k)M (k)

q
+Zfi
+ZAT

+a(1—a)CT() k)P(k+1) »(k)C (k)
)

o
+5((Ao K1 + 1 —A,)C (k) (A Ki+1-A,)
< C() + 86(1 - 8)((T - KT (I — K )C®),
2(
(k

{HOT P(k+1)H©;(k)

Pk +1)A;(k) — P(k)

(
Eoo(k) = 2BY(k)P(k 4 1)B.(k) — I,
E31 (k)
= (B (k)Ao)" P(k+ 1) (A(k )

)AaF1C(R))
+a(l - )Bf;)(k) (k+1)B. )

B.(k
»(k)C (k

A1 (k) KC(k) + 6A7 (A1 + 1 — Aa)C (k)
+oa(l - a)(I — K1)CO(k),
Es3(k)

ZQ(BC( )A )T (k+1) (k) a_Al(k)I
+a(1 — @) B, (k)P(k + 1) B, (k)

+0ALA, +da(l - a)l,
Ea1 (k) = B (k) (Ao Ky + 1 — Aa)C(k),

B4(k)

=2D"(k)P(k + 1) D(k) + §E" (k) E(k) —7*U
+1°(k)E" (k) B (k)P(k + 1) B.(k)E(k),
[y(k) = diag{T;i(k),0}, E(k) =[0 E(k)],

P(k+1) = diag{M(k + 1), N(k + 1)},

Beylk) = [BT(k) BT ()] . S = ding{(s.0},

Bll) = g (B, (9. BB, B )
Be(k) = diag{Bc, (k), Be, (k), ..., B, (k)},

T
Be,(k) = B (k) BL, (k) -+ B (k)]
B.. (k)= [Bg; LR BT (k) B;{Lﬁw(k)r
(i=1,2,....,m). (19)

Theorem 1 Consider the discrete time-varying non-
linear stochastic system described by (1)-(2). Let the
disturbance attenuation level v > 0, the positive definite
weighted matrices Uy > 0, Uy > 0 and S > 0, the scalar
0 € [0, 1) and the controller parameters A.(k), B.(k)

and C.(k) in (13) be given. The performance criterion
defined in (16) is guaranteed for all nonzero £(k) if, with
the initial condition P(0) = diag{M(0), N(0)} < +28S,
there exist families of positive scalars {\1(k)}refo, N—1]
and a sequence of positive definite matrices P(k) =
diag{M (k), N(k)}rep, Ny > O satisfying the following
recursive matrix inequalities:

(k) = * *

[1]

= o O E22(k) * *
=(k)= Eai(k) 0 = 33(k) * R
Ealk) 0 6ET(k)Ay Eaulk)

Proof: See Appendix 1.

3.2 Event-triggered Variance Analysis

Theorem 2 Consider the discrete time-varying nonlin-
ear stochastic system described by (1)-(2). Let the s-
calar § € [0, 1) and the controller parameters A.(k),
B.(k) and C.(k) in (13) be given. We have Q(k) > X(k)
(Vk € {1,2,--- , N+1}) if, with initial condition Q(0) =
X(0), there exists a sequence of positive definite matrices
{Q(E)} <h< i1 satisfying the following matriz inequal-
ity: Qk+1) > @ (QUF) (21)
where

+3mB, (k) Ao AL BY (k) + ) Ai(k)Q(k) AT (k)
+>  Ho®;(k)Hy - tr [Ti(k)Q(k)] (22)



+26(1 = @) B(k)C (k) (I ® Q(k))CT (k) BY (k) a1 (k) = | A(k) /26T — a)Be(K)C (k) VZD(k)
+2a(1 — a)mB.(k)BE (k) + 2D(k)V (k) DT (k) o
(0B () ECR)V () E” ()BT 1), KB |
é ( ) z 1(k3) C’z,Q(k) éz nz—&-nc :| my =tr [m(l_\g[\a + d(l - Oé)I):| )
(i=1,2,...,m), V(k)= {()Wk = 1
06 = cngt o Ol Ol () =ting] =1, 0 Q7).
W (k) = diag{W1 (k), Wa(k Wi (k)}. _ = =
Proof:(Sge Appgédi;(ﬂ) 2 ) ()} — I ©Q ' (k), =V (k), -V 1(’@}7
Corollary 1 The inequality holds i B B B
T (k) =|A1(k) Az(k) -+ A.(R)|,
J2i=E {a(k)a" (k)} = [1 0| X(k) [T 0| = HIX(k)Ho (k) =40 2() )
7(k) 2a
< HIQ(k)Ho, k< [0,N — 1]. =vn(k) +20(1 - a)m,
For presentatlon snnphmty7 we denote (k) =66(imy + p(k)) + 30t [ET(k;) (k:)f/(k‘)}
= —diag{ (k) Ra(k) — P<k>,—f}, r
z:: Os51 = {Hom Homy - H07Tq:| )
T
Ak = [AT () AF (k) - AT(h)] 0 ~dine{ il el vl
=21 () ~diog{ (1) } o =(r [BRQM]) ™ (= 1.2.....0)
(0) =tias] (9170} Pl C(8) (1= Aa) 1= R (1= )1 CIQR)
T Theorem 3 Consider the discrete time-varying nonlin-
Ea1 (k) = [—'311(147) 0} E40(k) = [ﬁBCT(k) 0 ()} , ear stochastic system described by (1)—(2). Let the dis-
N turbance attenuation level v > 0, the positive definite
\f( (k) + + B (k ) C’(k)) weighted matrices Uy > 0, Uy > 0 and S > 0, the s-
- calar § € [0, 1) and the controller parameters A.(k),
Ay (A ) ~ B.(k) and C.(k) in (13) be given. Then, for the closed-
= Vva(l —a)BCp( )C(k) loop system (14), we have J; < 0 and Jo < 0 (Vk €
Esn(k) = VO(AuKy + 1 — )C’(k) J {0,1,...,N+1}) if there ezistfamilz:es of positive scalars
\f\/T - K)) (k {Al(k)}ke[o, N-1]; {Ri(k)}ogng (i=12,--+,q) and
@) 1) families of positive definite matrices {M (k)}1<k<n+1,
M (k) ] {N(k) hi<wen+1 and {Q(k)} < p< nyy satisfying the fol-

lowing recursive matrixz inequalities:

[

a3 (k) =diag{ - P Y k+1),-I,® P~ (k+1),
~I(k) ) <0, (i=1,2 ) (23)
, =14,
Hym; —Pil(k + 1) ¢

— I, @ P N k+1),—1,—1I, —I},

E44(k3) :—_13®P_1(]€+1), i Ell(l{?) * * *
\/ﬁBc(k)Aa 0 EQl(k) EQQ(k) * * <0 (24)
0 0 E31(k) Esa(k) Esz(k)  * ,
(k) — a(l—a)By,(k) 0 Eqi(k) Baa(k) 0 Eaa(k)
82 VoA, VOE(k)|’
Voad—ayl 0 —QE+1) s
7 - 0 7 0 | :(2915(1]“) nzz(k) _:)55 : <0, (25)
E41(k) = |:0 E412(k):| 5 E42(k) - |:0 E422f):| 9 é41 (k‘) O O é44(k>
E422(@ = [0 \/gDT(k) N(k)ET(k)BZ(k)} ) with the initial condition
Zan (k) = [VBAG) (1)B.(0) VBT BL(WA] POy (20
Q(0) =X(0)
= . -1
Ena(k) :dlag{ —Q (k),~, _I}’ where the system data are defined in (23).



Proof: Based on some straightforward algebraic manip-
ulations and under the initial conditions (26), we can see
that the inequalities (23) and (24) imply (20), and the in-
equality (25) is equivalent to (21). Therefore, according
to Theorem 1, Theorem 2 and Corollary 1, the H, index
defined in (16) satisfies J; < 0 and, at the same time,

the system state covariances achieves E {z(k)z” (k)} <

T
[1 o} Q(k) [1 o} Wk € {0,1,--- , N + 1}. The proof
is complete.

4 Variance Constrained Controller Design

Theorem 4 Let the disturbance attenuation levely > 0,
positive definite weighted matrices Uy, Uy and S > 0, a
scalar § € [0, 1) and a sequence of prespecified variance
upper bounds {Y(k)}o<k<n+1 be given. The addressed
event-triggered variance constrained controller design
problem is solvable for the stochastic nonlinear system
(14) if there exist families of positive definite matrices

{IM(E) hicren+1, IN(B) hicren+, {Qu(k) hick<n+1,
{Qa(k) hricksny1, positive scalars {A1(k)}rejo, N—1],
{Ri(k)}Yochen (i = 1,2,---,q) and families of real-
valued matrices {Q3(k)}1§k<N+17 {Ac(k)}ogkgjv,

{Bc(k)Yocren and {C.(k) bogkn satisfying the follow-
ing recursive matrix inequalities:

—R; (k) * *
m —M(k+1) * <0, (i=1,2,...,9)(27)
0 0 -N(k+1
Dy (k) = * * .
Doy (k) Poa(k) = * *
D31(k) Paa(k) Pas(k) = * < 0,(28)
Dy(k) O 0  Dyu(k) =
0 Ds(k) O 0 ®s5(k)
—-Qk+1) * * * %
1 (k)®o1 (k) —Q(k)  * * *
D3 (k) 0 D33(k) = * < 0,(29)
Dy (k) 0 0 dy(k) =
D51 (k) 0 0 0 s5(k) |
Q1(k+1)—"T(k+1) <0,30)
with the initial conditions
M(0)—~258 0 ] -
0 N(0) (31)
E {CC } Ql 1(0)
and the pammeters update
M(k+1) = M~ Yk+1), (k:+1)_/\/ Yk+1) (32)
where
N(k + 1) = diag{M(k + 1), N'(k + 1)},

6= Vall —a). Culk) =
B (k) = diag{ SRCLICE

@21 (k

- I)C(k)>
M(k),—N(k:),—I},
dlag{)\l

)KC(k),0,0},

Qu3(k)= [Q{(k) Qg(k)}T’ D55 (k)=—L @ N'(k + 1),

®oo (k) = diag{ — A1 (k)I, —*U1, —7*Us },

e [ ]t ]
o) = \/ch(k)(\C{f;(i)AaCk(k))

S OV LTS AP

Qaor () = | AT (K) Gal(Bop(R)C (k)"

Va(RaCulk) + C)" —0,VaCT(H)]
21 (K) = [0 60 BT (k) V3R 6VE1] |
Quza(k) = [0 uzaa (k)| DK) = [0 V2D(K)]

Quzoa (=0 0 VIET (k) 0], salk)=ding{D(R) B (K},
) Ba(vC(h)] . [0 vaBr )] ).

Py (k) = diag{ [L(

P33(k) = diag{ — M(k+1), =N (k +1),
~LON(k+1),-L,@N(k+1),—I,—I},
®yq(k) =diag{ — I, —-M(k + 1), -N(k + 1)},
B(k) = [VET ()BT (k) 0 u(k) ET ()BT (k)]
Auwy =[50 A0 - AT )]
A”(k): T(k) 0] (i=1,2,...,7),
By () — | ABIQLE) + Br(k)C(R)Qa(h)”
| (A(K)QF () + B (k) Ce(k) Q2 (k)™
(Be(k)(I — Aa)C(R)Qu(K) + (k)Qg(k))T]
(Be(k)(I = Aa)C(K)QF (k) + Ac(R)Qs (R))T|
_ T
Qa1 (k) = [#(k) Be(k) VEmB.(k)Aa| .
D31 (k) = {0 (_231(]@)} , ®33(k) = diag{—1I,—1I},
T 0 00 V26uCT (k) 0 ’




Table 1

The Event-triggered Variance Constrained Controller Design

(EVCCD) algorithm:

Step 1.  Given the disturbance attenuation level v, the

positive definite weighted matrices Uy > 0,
Uz > 0, S > 0 and the scalar § € [0, 1).
Select the initial value for matrix M (0), N(0)
and Q1(0) (¢ = 1,2,...,1) which satisfy the
condition (31) and set k = 0.

Obtain the values of matrices {M(k+1),
Nk + 1),Q:(k + 1),Q2(k + 1),Qs(k + 1)}

and the desired controller parameters
{A:(k), Bc(k),Ce(k)} for the sampling in-
stant k by solving the matrix inequalities
(27)-(30).

Set k = k + 1 and obtain {M(k + 1)} and
{N(k+1)} by the parameter update formula
(32).

Step 4. If k < N, then go to Step 2, else go to Step 5.
Step 5. Stop.

Step 2.

Step 3.

— [ () 2Tk
( C (I—A)"(I—Ad)+¢21)
< [ct >Q3<>})

Os= dla{ 11,9221,...,f(qI},%(k):\/ﬁ(k)—i—2a(1—a)m,
(m

#1(k) = 65(my + p(k)) + 36t [ET(k)E(k)V(k)} :

REHCIE

2
i(k)=Qus(k)AT (k) (i=1,2,....7),
i(k) = Qus(k)C] (k) [BL, (k) Bg, (k) - Bc, (k)]
(i=1,2,...,m).

Proof: Decompose the variable Q(k) as Q(k) =
Ql (k‘) *
Qs3(k) Q2(k)
diag{ M (k), N(k)}, we define P~1(k) = diag{M(k),
N (k)}. It is easy to see that the inequalities (23)—(25) are
equivalent to (27)—(29), respectively. Therefore, accord-
ing to Theorem 3, we have J; < 0 and E {z(k)z” (k) } <
[10]Q(k)[I 0], Vke{0,1,---,N + 1}. From (30), it
is obvious that

Efe(k)a (k)< 1 0| Q)| 1 0]™<Tx, vhe(0,1, N},

It can now be concluded that the requirements (Q1) and
(Q2) are simultaneously satisfied. The proof is complete.

]. Meanwhile, noticing that P(k) =

By means of Theorem 4, the algorithm for designing the
Event-triggered Variance Constrained Controller (EVC-
CD) can be outlined as Table 1.

5 An Illustrative Example
Following [3], we consider the networked control prob-

lem for an industrial continuous-stirred tank reactor sys-
tem, where chemical species A react to form species B.

Fig. 1 shows the cross-sectional diagram of continuous
flow stirred-tank reactor and Fig. 2 illustrates the phys-
ical structure of the system, where Cy;, Ca, T, T are,
respectively, the input concentration of a key reactant
A, the output concentration of chemical species A, the
reaction temperature and the cooling medium tempera-

ture.
When modeling the industrial continuous-stirred tank

reactor system, there exist modeling errors (state-
multiplicative noises) and linearization errors (nonlin-
ear disturbances). Moreover, since the system is in a
network environment, the sensor saturations may occur
in a probabilistic way and are randomly changeable in
terms of their types and/or levels due to the random
occurrence of networked-induced phenomena such as
random sensor failures, sensor aging, or sudden envi-
ronment changes.

By selecting the state and input variables as =z =
T T
(cr 1] w = |12 CF]
is obtained as the form of (1)—(2), where system ma-
trix A(k) and the control matrix B;(k) are taken from

the linearized model of an industrial continuous-stirred
tank reactor system in [3]:

0.9719 0.0013 0.0839 0.0232
A(k) = 1(k) = [

. A discrete-space model

0.0340 0.8628 0.0761 0.4144|

Our purpose is to design a time-varying controller in
the form of (13) in order to control the cooling medium
temperature T¢ and the input concentration C4; of a
key reactant A in a network environment. To this end,
other parameters are set as follows:

0.05cos(k) —0.1

A1(k)[ ],El(k)Ez(k)E3(k)0~17

0.1 0.02sin(k)
T
0.05sin(k) 0.1 0.2 —-0.2
. ( ) 7D(k): aCQ(k): ;
sin(k) 0.02 —0.05 0.05
L(k) = [0.15in(k) 03], Ba(k) = [0.35in(k) 0.1]
C1(k)=]~0.1sin(k) 0.05] , C3(k)=[0.1 ~0.3sin(k)]
The disturbances w1 (k), we(k), v(k) and w(k) are mu-
tually independent Gaussian distributed sequences with
unity variances. The probability is taken as @ = 0.8. The
saturation level is set to be 1, and other parameters are
chosen as Ky = 0.4, K = 0.6, V(k) = 0.5, W1 (k) = 0.8,
Wg(k‘) = 0.8 and W3(k’) =1
The nonlinear function g(k, z(k)) is chosen as follows:
g(k,2(k))=[0.1 0.3]7%(0.221 (k)& (k) + 0.3z (k)& (k)
where x; (k) (i = 1,2) is the ith element of z:(k), and &; (k)
(¢ = 1,2) are zero mean, uncorrelated Gaussian white
noise processes with unity variances that is also uncor-
related with wq (k), wa(k), v(k) and w(k). The positive
definite weighted matrices Uy, Uy, S and variance up-
per bounds {Y (k) }o<k<n+1 are chosen as Uy = Uy = I,
S = 2I and {Y(k)}o<k<nt1 = diag{1.5,2.5}, respec-

tively. The event-triggered transmission threshold is cho-

sen as 6 = 0.04.
In the simulation, the initial value of the state is

2(0) = [—0.7 0.6]%. The simulation results are shown

Az(k):[




Table 2
The average event-triggered ratio with different threshold §

The event-triggered 6=0
threshold ¢

0 =0.08

6=0.8

The event-triggered law | 100%

68.2% 51.6% | 46.7% 43.3%

o
Motor Py Feed
|/
e N
[ ]
| | Cooling jacket
Baffle
P -1
el ’7\“ ,“v‘ ~
': \ i | //Stirrer

Mixed product

Fig. 1. Cross-sectional diagram of continuous flow stirred—

tank reactor
M otor I

M ixture of A and Bw ith Cp

PureA with Cp;

Colling m edium
w ith tem perature T

Stiner
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Fig. 4. The input control signal u(k).

in Figs. 3-6, where Fig. 3 depicts the state evolution
z(k) and Fig. 4 plots the input control signal wu(k).
Fig. 5 shows the measurement y(k) and the measure-
ment y(k;) for event-triggered instants, and the variance
upper bound and actual variance are given in Fig. 6.

Furthermore, by conducting 200 independent simula-
tion trials, the average event-triggered ratio (number
of event-triggered updates over total number of time
points) is displayed in Table 2, which shows that the
number of event-triggered updates is quite small and
the communication burden is effectively reduced. All the
simulation results confirm that the approach addressed
in this paper provides a desired finite-horizon perfor-
mance and the proposed EVCCD algorithm is indeed
effective.

6 Conclusion

In this paper, a novel event-triggered multiobjective
controller has been designed for a class of discrete time-
varying stochastic systems with randomly occurring
saturations, stochastic nonlinearities and multiplicative



The measurement $y(k)$ and the measurement $y(k‘)$ for event-triggered instants
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Fig. 5. The measurement y(k) and the measurement y(k;)
for event-triggered instants.

The variance upper bound and actual variance
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Appendix I

Proof of Theorem 2

Proof: We know that the Lyapunov-type equation gov-
erning the evolution of state covariance X(k) is given by
X(k+1) < d(X(k)). (34)

We now complete the proof by induction. Obviously,
Q(0) = X(0). Letting Q(k) > X(k), we arrive at

Qk+1) > 2(Q(k) > 2(X(k)) 2 X(k+1), (35)
and therefore the proof is finished.
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