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Abstract

Networks with a very large number of nodes appear in many application areas and
pose challenges to the traditional Gaussian graphical modelling approaches. In this paper
we focus on the estimation of a Gaussian graphical model when the dependence between
variables has a block-wise structure. We propose a penalised likelihood estimation of
the inverse covariance matrix, also called Graphical LASSO, applied to block averages of
observations, and derive its asymptotic properties. Monte Carlo experiments, comparing
the properties of our estimator with those of the conventional Graphical LASSO, show
that the proposed approach works well in the presence of block-wise dependence structure
and is also robust to possible model misspecification. We conclude the paper with an
empirical study on economic growth and convergence of 1,088 European small regions
in the years 1980 to 2012. While requiring a-priori information on the block structure,
for example given by the hierarchical structure of data, our approach can be adopted for
estimation and prediction using very large panel data sets. Also, it is particularly useful
when there is a problem of missing values and outliers or when the focus of the analysis
is on out-of-sample prediction.
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1 Introduction

Estimation of large covariance matrices and their inverse has several applications in various
areas, from economics and finance to health, biology, computer science and engineering. One
important technique developed by the statistical and computer science literature is the graph-
ical modelling approach, which aims at exploring the relationships among a set of random
variables through their joint distribution. Under this framework, the Gaussian distribution
is often assumed and in this case the dependence structure is completely determined by the
covariance matrix, or, equivalently, by its inverse, where the off-diagonal elements are propor-
tional to partial correlations (Lauritzen (1996)). Specifically, variables i and j are conditionally
independent given all other variables, if and only if the (i, j)th element of the inverse covariance
matrix, referred to as precision matrix, is zero. One result in the Gaussian graphical modelling
literature is that there is a one-to-one correspondence between the joint Gaussian distribution
of a vector of random variables and its conditional Gaussian distribution. Under the latter,
the distribution of a variable observed in a certain node, given values observed in all other
nodes, depends only on the observations in its neighborhood (Mardia (1988); Meinshausen and
Buhlmann (2006)). Hence, the problem of estimating the (inverse) covariance matrix is equiv-
alent to a neighbourhood selection problem. This observation has lead to effi cient nodewise
LASSO approaches for sparse high-dimensional graphs (Meinshausen and Buhlmann (2006),
Peng, Wang, Zhou, and Zhu (2009)). In contrast to these approaches, Friedman, Hastie, and
Tibshirani (2008) have developed the Graphical LASSO (GLASSO) approach, where the inverse
covariance matrix is directly estimated via penalised likelihood.
Conditional Gaussian models are known in the spatial econometrics literature as Conditional

Autoregressive Model (CAR), representing data from a given spatial location as a function of
data in neighboring locations (Cressie (1993); Anselin (2010)). In a CAR model the neigh-
bourhood structure is represented by the means of the so-called spatial weights matrix, usually
assumed to be known a-priori using information on distance between units, such as the geo-
graphic, economic, policy, or social distance. It is interesting to observe that the problem of
estimating the spatial weights matrix in a CARmodel is equivalent to a neighbourhood selection
problem in a graphical model (for more details see Section 5). Hence, the spatial weights matrix
for CAR models can be estimated by using methods from the Gaussian graphical modelling
literature for estimating inverse covariance matrices. While the spatial econometrics literature
has been largely immune to the developments in Gaussian graphical modelling, these methods
may be useful for a large number of applications in the social sciences.
In this paper, we consider the case of networks with a very large number of nodes and focus

on the estimation of Gaussian graphical models when the dependency between variables has a
block-wise structure. We assume that units can be split into a set of non-overlapping groups,
or blocks, in a way that the dependence between units only varies across blocks, instead of
individual observations. Hence, rather than estimating the links between each pair of units in
the sample, we propose to estimate the dependence (links) between groups of cross sectional
units. Our approach consists of applying the GLASSO methodology by Friedman, Hastie, and
Tibshirani (2008) to block-level averages of observations rather than to single observations.
When the size of the group is unity, our method collapses to the conventional GLASSO. A
major advantage of this method is that its computational cost is greatly reduced and hence can
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be adopted for estimation and prediction using very large, or huge, networks. Our approach
is also particularly useful when there is a problem of missing values and outliers or when the
focus of the analysis is out-of-sample prediction.
There exist several examples where it is reasonable to assume a block-wise dependence struc-

ture between units. In economics, preferences for consumer goods of individuals belonging to
the same household may react similarly in response to consumption decisions of neighbouring
households. Companies belonging to the same sector of economic activity and located within
the same geographical area (e.g., the zipcode, the region or the country) tend to behave similarly
because they have similar characteristics or face similar opportunities and constraints. Thus, it
is reasonable to assume that the way they interact with companies from other sectors and/or
geographical areas is similar. A block-wise dependence structure is also a realistic assumption
when the variable of interest displays an explicit hierarchical or group membership structure,
namely, clustering of units in an organized fashion, such as students within classrooms, mem-
bers of a household, General Practitioners in a clinic, etc. This is common for example when
dealing with large, individual-level, microeconomic or health data sets. Other examples are
in neuroscience, where the networks used to represent brain activity have a hierarchical struc-
ture, with billions of neurons connected with each other through hub nodes, called voxels, and
connected voxels forming areas which again are connected with each others (Luo (2015)). In
biology, regulatory networks are thought to have a hub-type structure, with groups of genes
having a similar dependency structure and regulated by a small number of unobserved pro-
teins (Hao, Ren, and Li (2012)). When the grouping is not fully known a priori, one could use
methods that allow to determine endogenously the optimal grouping of cross sectional units,
by employing techniques from the clustering literature (Lin and Ng (2012); Bonhomme and
Manresa (2015); and Ando and Bai (2016)).

Exploitation of a-priori information on the group structure of variables is not new in the
social interaction literature and in the statistical and graphical modelling literature. Empirical
works from the social interaction literature typically assume that an individual reacts to the av-
erage of others in a predefined group (see Durlauf and Young (2001) and Blume et al. (2013) for
a review). Such an assumption implies that the spatial weights matrix has a group-membership
structure, where the weights are identical for all units belonging to the same group, while they
are set to zero for the interaction between units belonging to different groups. Lee and Yu
(2007) considered the identification and estimation of interaction effects in the context of a spa-
tial autoregressive model where the spatial weights matrix (and associated precision matrix)
has such a block diagonal structure with equal entries. Note that this is a more restrictive
assumption to that used in this paper, as it does not allow for dependencies between groups.
Nevertheless, this model has been widely adopted in several different areas of the social sciences,
such as education (Calvó-Armengol et al. (2009)), labour market outcomes (Bayer, Ross, and
Topa (2008)), crime (Sirakaya (2006)), and welfare participation (Bertrand, Luttermer, and
Mullainathan (2000)). Similar models have been proposed by the statistical literature, where
mixed effect models are commonly used to represent variables with a hierarchical or known
group membership structure (Goldstein (2011)). When the random effects are assumed to be
correlated, these models lead to a covariance matrix that has a block-wise structure of the same
type that we use in this paper, with equal correlation within groups and equal correlation be-
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tween any two elements of two specified groups (Laird and Ware (1982)). Maximum likelihood
approaches are typically used for parameter estimation in these models. In the case of a large
number of regressors, penalised approaches based on the L1 penalty are used for estimation
and variable selection (Schelldorfer, Meier, and Bühlmann (2014)). However, these methods
typically require a small number of random effects (blocks).
A number of authors in the literature on graphical modelling have proposed sparse esti-

mation of graphs with a block structure. These methods exploit a-priori information on group
membership of observations to propose fast, sparse estimation algorithms. Guo, Levina, Michai-
lidis, and Zhu (2011) consider a heterogeneous data set where variables, while independent
across groups, have a sparse dependency structure within group. The corresponding precision
matrix has a block diagonal structure, and the authors propose joint estimation of various
blocks by maximising the corresponding penalized log-likelihood functions. A similar approach
is taken by Mazumder and Hastie (2012), who propose thresholding estimation of a sparse in-
verse covariance that is a block diagonal matrix of connected components. Wit and Abbruzzo
(2015) impose block equality constraints on the parameters of an undirected graphical model
to reduce the number of parameters to be estimated. Vinciotti et al. (2016) discuss various
forms of block structures for dynamic networks and propose estimation of the associated pre-
cision matrix under sparsity and equality constraints on parameters (also known as parameter
tying). The inclusion of equality constraints, while reducing the number of parameters, often
increases the computational complexity of the estimation procedures. For example, the general
block structures considered by Wit and Abbruzzo (2015) and Vinciotti et al. (2016) imply a
computational cost of the estimation procedure that is higher compared to the approaches by
Guo, Levina, Michailidis, and Zhu (2011) and Mazumder and Hastie (2012), where the assumed
block structure allows to split a large Graphical LASSO problem into many, smaller tractable
problems.
In this paper, we use block structures with the intent to achieve computational effi ciency,

allowing to infer networks of very large dimensions. Differently from Guo, Levina, Michailidis,
and Zhu (2011) and Mazumder and Hastie (2012), our approach does not need to impose block-
diagonality of the precision matrix. However, we assume that units can be split into groups in
a way that the covariance (and associated precision matrix) only varies across blocks, rather
than individual observations.

The rest of the paper is structured as follows. In Section 2 we describe the main features
of our graphical model with block-wise dependence structure, while in Section 3 we propose
our estimator based on GLASSO. In Section 4 we run Monte Carlo experiments to investigate
the small sample properties of the proposed estimator. In Section 5 we carry out an empirical
study on the economic growth of a set of small regions in Europe. Finally, Section 6 provides
some concluding remarks.

Notation: |λ1(A)| ≥ |λ2(A)| ≥ ... ≥ |λn(A)| are the eigenvalues of a matrix A ∈ Mn×n,
whereMn×n is the space of n×n matrices. Tr(A) is the trace of A ∈Mn×n, while its Frobenius

norm is ‖A‖F =
(∑m

i,j=1 a
2
ij

)1/2
. K is used for a fixed positive constant that does not depend

on N ; Sc is used to denote the complement of a set S.
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2 Block-wise dependence structure in huge networks

Let yit be the observed data for the ith individual, i = 1, 2, ..., N , at time t, with t = 1, 2, ..., T ,
and assume that the N -dimensional vector yt = (y1t, y2t, ..., yNt)

′ ∼ N (µ,Σ), where Σ is a
N ×N symmetric and positive definite matrix, independent of t. For ease of exposition we set
µ = 0, although this assumption can be relaxed by setting µ to a non-zero vector depending
on a set of strictly or weakly exogenous regressors, including, for example, temporal lags of
the dependent variable. Assume that the variables can be split into G non-overlapping groups,
with G ≤ N , such that the dependence between individuals belonging to different groups is the
same for all individuals belonging to the same group. Suppose for simplicity that all groups are
of the same size M = N/G, where M is an integer number. Under this assumption, Σ has the
following block-wise structure:

Σ
N×N

=


σ1 σ121M ... σ1G1M

σ211M σ2 ... σ2G1M
... ... ... ...

σG11M σG21M ... σG

 , (1)

where 1M is a M ×M matrix of ones, and

σg
M×M

=


δg σgg ... σgg
σgg δg ... σgg
... ... ... ...
σgg σgg ... δg

 , (2)

where σgg are intra-group covariances, while δg are group-specific variances, for g = 1, 2, ..., G.
Let

ΣG
G×G

=


σ11 σ21 ... σ1G
σ12 σ22 ... σ2G
... ... ... ...
σG1 ... ... σGG

 , ΓG
G×G

=


γ1 0 ... 0
0 γ2 ... 0
... ... ... ...
0 ... ... γG

 , (3)

where γg = δg − σgg ≥ 0. Then Σ can be written in compact form as follows:

Σ = (ΣG ⊗ 1M) + (ΓG ⊗ IM) , (4)

where ΣG is a G × G matrix assumed to be positive definite. If Σ has the above block-wise
structure, then also its inverse, namely the precision matrix, is block-wise. To show this, rewrite

Σ =

(
MΣG ⊗

1

M
1M

)
+

(
ΓG ⊗

1

M
1M

)
−
(

ΓG ⊗
1

M
1M

)
+ (ΓG ⊗ IM)

=

[
(MΣG + ΓG)⊗ 1

M
1M

]
+

[
ΓG ⊗

(
IM −

1

M
1M

)]
. (5)

Noting that 1
M

1M and
(
IM − 1

M
1M
)
are idempotent matrices such that their sum is the identity

matrix, we can apply Lemma 2.1 (point (iv)) in Magnus (1982) to obtain:

Θ = Σ−1 =

[
(MΣG + ΓG)−1 ⊗ 1

M
1M

]
+

[
ΓG
−1 ⊗

(
IM −

1

M
1M

)]
. (6)
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Assuming that the matrix
(
ΣG + 1

M
ΓG

)−1
has generic elements φgh, the likelihood function has

the simplified expression:

l(θ) ≈ − ln |MΣG + ΓG| − (M − 1) ln |ΓG|

− 1

MT

T∑
t=1

G∑
g=1

(
1

M

G∑
h=1

∑
i∈g:j∈h

yityjtφgh + (M − 1)
∑
i∈g

y2itγ
−1
g −

∑
i 6=j:i,j∈g

yityjtγ
−1
g

)
.(7)

See Appendix A for a proof. Below we propose a penalised maximum likelihood approach
to estimate Σ and Θ that exploits the block-wise dependence structure and is based on the
GLASSO.

3 Block-GLASSO approach

To propose our estimator, consider the group averages

ȳgt =
1

M

∑
i∈g

yit, (8)

and note that, if yt ∼ N (0,Σ), where Σ is given by (5), then also yG,t = (ȳ1t, ȳ2,, ..., ȳGt)
′ ∼

N(0,ΨG), where ΨG is a G×G, positive definite matrix with elements:

ψgh =
1

M2

∑
i∈g,j∈h

σij = σgh, for g 6= h, (9)

ψgg =
1

M2

∑
i,j∈g

σij = σgg +
1

M
γg, (10)

or, in matrix form,

ΨG = ΣG +
1

M
ΓG. (11)

It follows that we can estimate Σ by applying the GLASSO to the vector of group means, yG,t.
More specifically, consider the following two step procedure:

1. Estimate ΦG = Ψ−1G by applying the GLASSO to yG,t, t = 1, 2, ..., T . This allows to get
σ̂gh for g 6= h = 1, 2, ..., G, and ψ̂gg, g = 1, 2, ..., G.

2. Estimate γg by exploiting identity (4) and (11). Noting that E
(

1
MT

∑
i∈g
∑T

t=1 y
2
it

)
=

σgg + γg, while E
(

1
MT

∑
i∈g
∑T

t=1 ȳ
2
gt

)
= σgg + 1

M
γg, we can consider the following esti-

mator for γ̂g:

γ̂g =
M

M − 1

(
1

MT

∑
i∈g

T∑
t=1

y2it − ψ̂gg

)
, g = 1, 2, ..., G. (12)
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Hence, use (6) to recover Θ̂:

Θ̂ =

[
1

M
Φ̂G ⊗

1

M
1M

]
+

[
Γ̂−1G ⊗

(
IM −

1

M
1M

)]
. (13)

In step 1 the estimator that maximises the penalised likelihood for yG,t is:

Φ̂G = max
ΦG�0

{
ln |ΦG| − Tr (SGΦG)− ρG

G∑
g,h=1,g 6=h

∣∣φgh∣∣
}
, (14)

where the maximisation is taken over symmetric positive definite matrices, SG is the sample
covariance matrix, and ρG is the tuning parameter controlling the degree of the sparsity in the
estimated inverse covariance matrix.
The following theorems derive the asymptotic properties of estimator (13) when both N

and T go to infinity.

Theorem 1 (Consistency) Let yt ∼ N (0,Σ) where Σ has the block structure in (5), with
ΣG given by (3) being a symmetric, positive definite matrix such that λ1 (ΣG) < K < ∞.
Let

∑G
g,h=1,g 6=h 1{φgh 6=0} = sG, where φgh are the elements of ΦG. Let Θ̂ be an estimate of Θ

following steps 1-2 above, where ρG = O
(√

lnG
T

)
, with ρG being the tuning parameter in (14).

Then we have: ∥∥∥Θ̂−Θ
∥∥∥
F

= Op

(
1

M

√
(G+ sG) lnG

T

)
. (15)

Theorem 2 (Sparsistency) Suppose all conditions in Theorem 1 hold, and that
∥∥∥Φ̂G −ΦG

∥∥∥2 =

O (ηG) where ηG is such that ρG = O
(√

lnG
T

+ ηG

)
, with ρG being the tuning parameter in (14).

Let S = {(i, j) : i 6= j, θij = 0} be the set of indices of all nonzero off-diagonal elements in Θ.
Then with probability tending to 1 we have θ̂ij = 0 for all i, j ∈ Sc.

See the Appendix for a proof of Theorem 1, while Theorem 2 is a straightforward conse-
quence of the sparsistency theorem by Lam and Fan (2009) applied to Φ̂G (see also Rothman,
Bickel, Levina, and Zhu (2008) and Guo, Levina, Michailidis, and Zhu (2011)).

Hence, for Θ̂ to be a good proxy of Θ, G needs to be small (or, equivalently, M large) and
ΦG be a sparse matrix, as measured by sG. Note, however, that, from (6), the off-diagonal
elements of Θ are proportional to 1

M2 . Hence, for fixed G, asM increases the (relative) effect of
each individual neighbour on each unit would disappear and in the limit the precision matrix
would become a diagonal matrix. A similar result has been obtained by Lee (2002) in the
context of a Spatial Autoregressive model where each spatial unit is influenced aggregately by a
significant portion of other spatial units in the sample. The author showed that if each spatial
unit in the limit has infinitely many neighbours (which would happen in our case for G fixed
and M increasing), then Ordinary Least Squares estimator for a SAR model would be still
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consistent and even asymptotically effi cient. In Section 4 we investigate the properties of our
estimator for different values of G relative to N .

A major advantage of our proposed estimation procedure is that it is considerably faster
than the conventional GLASSO for estimating a N ×N precision matrix. Using the algorithm
proposed by Friedman, Hastie, and Tibshirani (2008), the computational cost associated to
a coordinate descendent update would decrease from O(N2) to O(G2). This could decrease
further to O(G) using faster algorithms, such as QUIC (Hsieh, Sustik, Dhillon, and Ravikumar
(2014)). Another advantage of our approach is that using block averages rather than single
observations greatly helps in the presence of missing values, a common problem in statistical
analysis. Exploiting group membership information is also very useful for prediction purposes
on a hold-out sample of units, for which the position in the (individual-level) network is usually
unknown. It is important however to remark that our approach requires a-priori information
on the block structure. If this is not available, one could exploit methods from the clustering
literature that allow to determine endogenously the optimal grouping of cross sectional units,
such as the k-means algorithm (Forgy (1965)) extended to allow for covariates in the model
(see, in particular, Lin and Ng (2012) and Bonhomme and Manresa (2015), and also Ando and
Bai (2016)). Our approach has also potential application in the area of spatial econometrics.
Given the equivalence between CAR models and the joint Gaussian distribution emphasised
by many authors (see, among others, Mardia (1988); Meinshausen and Buhlmann (2006)), this
method provides a means for estimating spatial weights matrices in the context of very large
panel data. Later in the paper we will offer a small empirical exercise using CAR models.

Finally, it is important to remark that our approach does not allow to estimate consistently
the precision matrix when this arises from one or more common, pervasive factors. Unobserved
common factors occur in time series as a result of global shocks, namely unexpected events
that may hit all statistical units, although with different intensities (Stock and Watson (2010)).
These large scale perturbations impact micro level population units and are often responsible
for observable co-movements of a large number of time series. We observe that our model is
more parsimonious than the common factor specification and may be useful in situations where
T is too short to allow for fully unrestricted common effects. However, in a large T setting,
in the presence of unobserved common factors, our approach can be applied to de-factored
residuals, after estimating common factors using methods such as principal components (Bai
(2003)) or the Common Correlated Effects methodology (Pesaran (2006)).

3.1 Case of blocks with unequal size

Suppose now we have blocks with unequal size, so that group g has sizeMg, with g = 1, 2, ..., G.
In this case group averages in (8) are based on Mg observations. By applying recursively the
theorem for block matrix inversion (see Bernstein (2005)), it is easy to see that in the case of
blocks of unequal size, a block-wise structure for Σ still implies a block-wise Θ. In the case
of blocks with unequal size a convenient representation of Σ can be obtained using selection
matrices. Let Mmax = max

g=1,2,...,G
{Mg} and consider:

ΣMmax = (ΣG ⊗ 1Mmax) + (ΓG ⊗ IMmax) . (16)
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Then Σ can be extracted as follows:

Σ = SΣMmaxS
′, (17)

where S is a N ×GMmax matrix of 0s and 1s, selecting the correct number of rows and columns
for each block in ΣMmax, depending on the group size. Note that SS′= INT , and rewrite:

Σ = (SΣMmaxS
′ + INT )− INT = S (ΣMmax + IGMmax) S′ − INT . (18)

where IGMmax is a GMmax × GMmax identity matrix. Using the matrix inversion lemma we
obtain1

Θ = Σ−1 = −S
[
(ΣMmax + IGMmax)

−1 − S′S
]−1

S′ − INT , (19)

where

(ΣMmax + IGMmax)
−1 =

[
(MmaxΣG + ΓG + IG)−1 ⊗ 1

Mmax

1Mmax

]
+

[
(ΓG + IG)−1 ⊗

(
IMmax −

1

Mmax

1Mmax

)]
(20)

and S′S is a diagonal GMmax-dimensional matrix of zeros and ones. Steps 1-2 outlined above
can still be carried to get Φ̂G and Γ̂G, where now TMg observations will be used to calculate
γ̂g. The resulting Σ̂G can then be plugged into (19)-(20). From equations (19)-(20), it can be
seen that consistency and sparsistency of the resulting estimator continue to hold with rates
that now will depend on N , G and Mmax.

3.2 Allowing for general intra-block correlation structure

The approach outlined in Section 3 can be extended to allow for a general, intra-block correlation
matrix at the expense of reducing the computational effi ciency. Suppose that:

σij = σgg + πij, for all i, j ∈ g = 1, 2, ..., G, (21)

σij = σgh, for all i ∈ g, j ∈ h, with g 6= h = 1, 2, ..., G. (22)

Under this framework, while the covariance between variables of different blocks is constant for
all variables belonging to the same block, the intra-block covariance is allowed to vary across
variables. In this case, the covariance matrix can be written as

Σ = (ΣG ⊗ 1M) + Π,

with Π being a block-diagonal matrix.

1The matrix inversion lemma states that (Bernstein (2005)):

(A + BDC)
−1

= A−1 −A−1B
(
D−1 + CA−1B

)−1
CA−1
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One can show that, under the condition that 1
M

∑
k∈g πik ≈ 0 for all i, the Π matrix can

be estimated by the covariance matrix of yit − ȳgt for each block. This results in a relatively
easy implementation, whereby one first calculates ȳgt and applies the block-GLASSO outlined
in Section 3 to compute Σ̂G. Hence, one calculates the deviations of each value yit from its
corresponding group-level average, namely yit − ȳgt, and applies the conventional GLASSO to
all yit − ȳgt for each block, separately. This approach requires that πij, namely the deviations
of σij from σgg, are not too large, so that the ȳgt can be used to consistently estimate σgg.
The computational complexity of this procedure rises to O(G2) +O(GM2), since one needs to
estimate G blocks of size M . In the rest of the paper, we will refer to this approach as the
Flexible Block-GLASSO.

4 Monte Carlo experiments

This section provides Monte Carlo evidence on the properties of the above estimation procedure.
We consider the following data generating process:

yit = αi + βxit + eit, i = 1, 2, ..., N ; t = 1, 2, ...T, (23)

where
xit = 0.4xi,t−1 + vit, t = −19,−18, ...,−1, 0, 1, 2, ..., T (24)

with αi ∼ IIDN(0, 0.5), eit ∼ N(0,Σ), vit ∼ N(0,ΣX). In generating xit we set xi,−20 = 0
and discard the first 20 observations to reduce the effect on estimates of initial values of xit.
To generate Σ, we start from ΘG = Σ−1G and assume that its elements, θgh,G ∼ Bin

(
1, 3

G

)
for

g, h = 1, ..., G. We obtainΘ and Σ by applying formula (6), where we assume γG ∼ U(0.2, 0.5).
Letting D be the Choleski decomposition of Σ, namely Σ = DD′, we generate et = Dεt, where
εt = (ε1t, ε2t, ..., εNt)

′, with εit ∼ IDN(0, 1). We generate ΣX following the same procedure. As
for β, in a first set of experiments we set β = 0, and apply our methodology to yit, to test our
procedure when there is no uncertainty regarding the mean of yit. We then set β = 1 and apply
our methodology to regression residuals after estimating β by Ordinary Least Squares. As a
robustness check we carry an additional experiment where errors are non-normally distributed.
In this case, when generating eit, we set εit = (uit − 1) /

√
2, with uit ∼ χ21. Model (23)-(24) has

strictly exogenous regressors, an assumption that may not hold in practise. In a further set of
experiments we also consider a dynamic set up, where we assume that yit is generated by the
first-order autoregressive model:

yit = αi + λyi,t−1 + eit, i = 1, 2, ..., N ; t = 1, 2, ...T, (25)

where all elements are generated as above, and λ = 0.4.
Finally, we examine the performance of the more general Flexible Block-GLASSO approach

outlined in Section 3.2 when Σ has a general intra-block correlation structure. Under this
experiment, all parameters are the same as in (23)-(24), with β = 1 and:

σij = σgg + πij, for all i, j ∈ g = 1, 2, ..., G, (26)

σij = σgh, for all i ∈ g; j ∈ h, with g 6= h = 1, 2, ..., G. (27)
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We generate each block inΠ by assuming that its inverse has elements distributed as Bin
(
1, 3

M

)
.

In each experiment we compute the Block-GLASSO and the conventional GLASSO, for
all pairs of N and T with N = 50, 100 and T = 10, 50, 200. As for the choice of G, we try
G = N/2, and N/5. Each experiment is replicated R = 250 times. We also carry out another
set of experiments with N much larger than T , and set N = 500, 1, 000, 2, 000 and T = 20. In
this set of experiments, given the computational diffi culties and poor performance in computing
conventional GLASSO for such large networks, we only provide results for the Block-GLASSO.
Under the dynamic set up (25) we only run experiments for large T (i.e., T = 50, 200) to avoid
incurring in the bias of the OLS estimator for short panels.2

A number of statistics are used to assess the performance of our graph estimators. In terms
of recovery of the network structure (provided by the non-zero coeffi cients inΘ), we consider the
Receiver Operating Characteristic (ROC) curve which plots the true positive rate (percentage of
non-zeros, i.e. links, correctly estimated as non-zero) versus the false positive rate (percentage
of zeros incorrectly estimated as non-zeros), as the tuning parameter, ρG, varies. We summarise
ROC curves by providing the maximum F1 score and the Area under the Curve (AUC), both

averaged across the R replications. The F1 score is defined by
2TP

2TP + FN + FP
, with TP, FP

and FN being the true positive, the false positive and the false negatives (number of non-zeros
incorrectly detected as zeros), respectively. In terms of estimation of the precision matrix, we
report the average Entropy Loss (EL), and the average Frobenius Loss (FL), defined by:

EL = Tr
(
Θ−1Θ̂

)
− ln

∣∣∣Θ−1Θ̂∣∣∣−N, (28)

FL =

∥∥∥Θ− Θ̂
∥∥∥2
F

‖Θ‖2F
. (29)

When computing EL and FL we use the Rotation Information Criterion (RIC) (see Lysen
(2009)) to select the optimal regularization parameter (and associated optimal precision ma-
trix). Only for selected combinations of N and T we also provide graphs with the ROC curves.
As for β, we report bias, Root Mean Square Error (RMSE), empirical size and power of Or-
dinary Least Squares (OLS) estimator of β and the Feasible Generalised Least Squares (GLS)
estimator implemented using Θ̂ as estimate of Θ. In computing the empirical size, we set the
nominal size to 5 per cent, while in calculating the power we assume as alternative hypothesis
H1 : β = 0.95.

4.1 Results

The results are summarised in Table 1-6 and Figures 1-2. Results from Table 1 show that, when
data have block-wise dependence structure, our method greatly outperforms the conventional
GLASSO for all combinations of N , T and G. In particular, the F1 score and AUC show that

2When T is short our approach can be used in combination with methods for estimating short dynamic
panels, such as the Generalised Method of Moments by Arellano and Bond (1991).
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Block-GLASSO has higher true positive rates and substantially lower false positive rates, while
the Entropy Loss and Frobenius Loss are always lower for Block-GLASSO, indicating that the
latter provides a better estimation of the precision matrix. However, it is interesting to note that
when T = 10 and G = N/2 the Block-GLASSO does not perform well relative to other cases,
and its properties are much worse than the case T = 10 and G = N/5. More generally, Table 1
and 2 show that for the same pair of N and T , the properties of block-GLASSO deteriorate as G
rises, thus confirming our theoretical results that, holding N and T fixed, the estimation error
is higher when G is large, or, equivalently, M small. This result is also confirmed by Figure 1,
showing the ROC curves for the Block-GLASSO for varying N , T , and G. As expected, the
performance of the estimator improves as N increases (and hence M) for fixed T and G, and
as T increases for fixed N and G, while it deteriorates as G rises, holding N and T constant.
Table 3 reports the small sample properties of OLS and GLS estimators as well as of the

Block-GLASSO. As expected in the case of cross sectionally correlated regression errors, the
OLS estimator, while having a bias comparable to that of the GLS, has higher RMSE and is
oversized for all combinations of N , T and G. Hence, ignoring the network leads to severe
over-rejection of the null hypothesis. Looking at the GLS estimator, its empirical size is close
to the nominal size of 5 per cent in most cases, although some size distortions can be observed
when T = 10 and G = N/2, namely, for short panels characterised by the presence of many,
small groups. In fact, under this case the Block-GLASSO does not perform well, having small
F1 and AUC and large EL and FL, thus confirming our asymptotic results reported in Section
3. Similar results can be observed in Table 4 for the case where the dependent variable is
generated by the first-order autoregressive model (25). Under non-normal errors (Table 5),
the Block-GLASSO still performs well in detecting the network, as confirmed by F1 and AUC
values similar to those reported in Table 1, although its EL and FL are much higher than in
the normal counterpart.
Table 6 shows results when the error covariance matrix displays general intra-block variation

(see formula (26)-(27)). It is interesting to observe that the empirical size of the GLS estimator
of β when ignoring the intra-block variation (Block-GLASSO) is in some cases still close to the
nominal value of 5 per cent. The GLS estimator based on the more general procedure (Flexible
Block-GLASSO) shows a good performance only for smaller values of G, perhaps because under
small G (and hence largeM) the covariance of ȳgt better approximates the part of the covariance
that is block-wise. We also remark that the more flexible procedure is computationally much
slower than the Block-GLASSO. Figure 2 shows the ROC for the Flexible Block-GLASSO, the
conventional GLASSO as well as the Group LASSO by Yuan and Lin (2006). The use of a
group penalty in the Group LASSO encourages the recovery of the block structure, although it
does not impose it as in the Block-GLASSO. Since the Group LASSO has been developed in the
context of regression analysis, we apply it to our model as a neighbourhood selection problem
for each node of the network. It is interesting to see from Figure 2 that the Group LASSO
approach performs less well than the Block-GLASSO, but slightly better than the conventional
GLASSO, as the latter does not use any a-priori information about the blocks.
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Table 1: Properties of Block-GLASSO and conventional GLASSO in model (23)-(24), case
β = 0 known.

Block-GLASSO Conventional GLASSO

N T G F1 AUC EL FL F1 AUC EL FL

50 200 25 0.929 0.881 2.894 0.015 0.869 0.551 15.063 0.491

50 200 10 0.923 0.906 0.800 0.003 0.638 0.285 19.694 0.472

50 50 25 0.828 0.818 6.099 0.056 0.719 0.509 27.918 0.679

50 50 10 0.817 0.786 1.562 0.010 0.670 0.457 27.650 0.678

50 10 25 0.665 0.400 13.167 0.571 0.578 0.172 43.232 0.829

50 10 10 0.707 0.640 3.668 0.063 0.548 0.147 65.296 0.827

100 200 50 0.948 0.894 6.458 0.015 0.863 0.529 35.085 0.538

100 200 20 0.944 0.912 1.970 0.003 0.668 0.303 45.417 0.531

100 50 50 0.819 0.772 12.855 0.053 0.689 0.415 61.453 0.717

100 50 20 0.801 0.812 3.821 0.010 0.597 0.281 84.888 0.710

100 10 50 0.620 0.207 26.570 0.601 0.523 0.079 86.485 0.827

100 10 20 0.675 0.475 8.299 0.064 0.498 0.071 135.156 0.838

Notes: F1 is the F1 score; AUC is the area under the ROC; EL is the average Entropy loss in (28);

and FL is the average Frobenius Loss in (29).

Table 2: Properties of Block-GLASSO with very large N in model (23)-(24), case β = 0.
N T G F1 AUC EL FL

500 20 50 0.657 0.421 13.757 0.011

500 20 100 0.656 0.248 33.660 0.029

500 20 250 0.616 0.092 94.290 0.168

1,000 20 50 0.649 0.402 12.306 0.005

1,000 20 100 0.631 0.232 30.079 0.011

1,000 20 250 0.613 0.094 90.020 0.040

2,000 20 50 0.641 0.388 11.429 0.003

2,000 20 100 0.624 0.228 28.523 0.010

2,000 20 250 0.609 0.090 87.742 0.009

Notes: F1 is the F1 score; AUC is the area under the ROC; EL is the average Entropy loss in (28);

and FL is the average Frobenius Loss in (29).
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Table 3: Properties of OLS and GLS estimators of β in model (23)-(24), with β = 1, and
properties of Block-GLASSO applied to regression residuals.

OLS GLS Block-GLASSO

Bias RMSE Size Power Bias RMSE Size Power

N T G (%) (%) (%) (%) F1 AUC EL FL

50 200 25 0.000 0.013 14.80 100.0 0.000 0.008 4.80 100.0 0.928 0.881 2.915 0.015

50 200 10 0.000 0.016 22.00 99.60 0.001 0.008 4.60 100.0 0.918 0.898 0.794 0.003

50 50 25 0.000 0.030 19.60 82.00 0.000 0.019 4.40 92.40 0.828 0.818 6.137 0.059

50 50 10 -0.003 0.036 23.60 76.80 0.002 0.016 4.40 96.00 0.811 0.829 1.654 0.012

50 10 25 0.005 0.056 13.60 47.20 0.000 0.048 10.40 43.60 0.667 0.401 14.332 0.924

50 10 10 -0.020 0.083 25.20 47.20 0.002 0.038 4.40 46.40 0.703 0.633 4.173 0.113

100 200 50 0.000 0.009 15.60 100.0 -0.001 0.005 4.90 100.0 0.948 0.895 6.520 0.015

100 200 20 0.000 0.011 23.60 100.0 0.000 0.006 4.50 100.0 0.937 0.912 1.990 0.002

100 50 50 -0.001 0.017 18.40 97.20 -0.001 0.012 6.00 99.20 0.818 0.774 12.809 0.060

100 50 20 0.002 0.026 24.80 91.20 0.000 0.011 5.40 100.0 0.798 0.806 3.925 0.012

100 10 50 0.002 0.044 16.80 57.20 -0.001 0.034 8.00 55.60 0.623 0.207 29.313 0.983

100 10 20 0.001 0.064 22.40 59.20 0.001 0.033 5.20 66.40 0.672 0.470 9.252 0.111

Notes: In calculating the empirical size the nominal size is set to 5 per cent, while in calculating

the power we assume as alternative hypothesis H1: β = 0.95. F1 is the F1 score; AUC
is the area under the ROC; EL is the average Entropy loss in (28); and FL is

the average Frobenius Loss in (29).

Table 4: Dynamic case. Properties of OLS and GLS estimators of λ in model (25), with λ = 0.4,
and properties of Block-GLASSO applied to regression residuals.

OLS GLS Block-GLASSO

Bias RMSE Size Power Bias RMSE Size Power

N T G (%) (%) (%) (%) F1 AUC EL FL

50 200 25 -0.006 0.017 33.20 98.00 -0.001 0.010 6.40 100.0 0.930 0.882 2.860 0.015

50 200 10 -0.008 0.022 31.10 92.00 0.001 0.011 5.60 100.0 0.912 0.896 0.803 0.003

50 50 25 -0.022 0.037 39.20 49.00 -0.003 0.021 10.00 82.30 0.828 0.818 6.042 0.057

50 50 10 -0.019 0.046 35.40 56.00 0.003 0.020 5.20 89.20 0.808 0.825 1.596 0.011

100 200 50 -0.004 0.011 27.10 100.0 0.000 0.007 5.00 100.0 0.949 0.895 6.519 0.015

100 200 20 -0.005 0.014 35.20 100.0 0.002 0.006 4.60 100.0 0.937 0.913 1.998 0.003

100 50 50 -0.020 0.027 49.50 69.0 0.000 0.014 5.80 98.10 0.809 0.768 12.727 0.058

100 50 20 -0.021 0.035 45.10 67.0 0.008 0.014 4.20 100.0 0.800 0.814 3.850 0.011

Notes: In calculating the empirical size the nominal size is set to 5 per cent, while in calculating

the power we assume as alternative hypothesis H1: β = 0.95. F1 is the F1 score; AUC
is the area under the ROC; EL is the average Entropy loss in (28); and FL is

the average Frobenius Loss in (29).
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Table 5: Properties of Block-GLASSO and conventional GLASSO in model (23)-(24) under
non-normality of errors. Case β = 0.

Block-GLASSO Conventional GLASSO

N T G F1 AUC EL FL F1 AUC EL FL

50 200 25 0.930 0.881 26.885 0.604 0.639 0.280 66.760 0.832

50 200 10 0.919 0.903 34.697 0.636 0.639 0.280 66.760 0.832

50 50 25 0.829 0.814 26.803 0.576 0.726 0.508 43.637 0.823

50 50 10 0.819 0.830 34.572 0.627 0.621 0.347 67.244 0.835

50 10 25 0.681 0.413 26.492 0.515 0.596 0.183 44.165 0.827

50 10 10 0.712 0.653 33.972 0.590 0.551 0.147 67.892 0.839

100 200 50 0.945 0.890 51.858 0.605 0.860 0.522 84.741 0.822

100 200 20 0.936 0.913 69.041 0.636 0.614 0.262 133.373 0.832

100 50 50 0.818 0.769 51.977 0.578 0.699 0.417 85.726 0.825

100 50 20 0.800 0.810 68.965 0.628 0.594 0.274 134.467 0.836

100 10 50 0.639 0.216 51.495 0.526 0.541 0.083 86.977 0.829

100 10 20 0.682 0.486 67.671 0.588 0.500 0.071 135.553 0.839

Notes: In calculating the empirical size the nominal size is set to 5 per cent, while in calculating

the power we assume as alternative hypothesis H1: β = 0.95. F1 is the F1 score; AUC
is the area under the ROC; EL is the average Entropy loss in (28); and FL is

the average Frobenius Loss in (29).
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Table 6: Case of intra-block within variation. Small sample properties of GLS estimators of
β in model (23)-(24) and (26)-(27), with β = 1, and properties of Flexible Block-GLASSO
applied to regression residuals.

GLS (Flexible Block-GLASSO) GLS (Block-GLASSO) Flexible Block-GLASSO

Bias RMSE Size Power Bias RMSE Size Power

N T G (%) (%) (%) (%) F1 AUC EL FL

50 200 25 0.002 0.015 10.05 98.49 0.002 0.015 10.55 98.50 0.902 0.885 2.451 0.060

50 200 10 0.000 0.016 4.55 95.48 0.000 0.017 5.52 95.50 0.907 0.902 2.382 0.081

50 50 25 0.000 0.033 10.05 66.83 0.000 0.033 11.05 67.35 0.772 0.766 4.072 0.126

50 50 10 -0.001 0.034 5.05 50.25 0.000 0.034 6.50 52.80 0.797 0.806 3.844 0.111

50 10 25 -0.008 0.080 7.65 21.43 -0.008 0.080 8.20 22.95 0.648 0.373 8.739 0.492

50 10 10 -0.015 0.090 5.00 16.58 -0.014 0.087 6.60 15.05 0.702 0.630 13.762 1.180

100 200 50 0.002 0.012 20.83 100.00 0.002 0.012 20.85 100.00 0.919 0.895 5.316 0.065

100 200 20 0.000 0.012 5.25 100.00 0.000 0.012 9.05 100.00 0.922 0.910 5.127 0.082

100 50 50 0.001 0.023 11.11 88.89 0.001 0.023 11.10 88.90 0.763 0.726 7.379 0.118

100 50 20 -0.001 0.022 5.35 72.97 -0.001 0.023 6.80 68.90 0.784 0.799 7.914 0.108

100 10 50 0.009 0.069 9.00 52.95 0.009 0.070 8.80 52.90 0.598 0.192 17.022 0.549

100 10 20 -0.005 0.061 5.05 20.60 -0.003 0.063 5.50 22.60 0.668 0.461 27.672 1.128

Notes: In calculating the empirical size the nominal size is set to 5 per cent, while in calculating

the power we assume as alternative hypothesis H1: β = 0.95. F1 is the F1 score; AUC
is the area under the ROC; EL is the average Entropy loss in (28); and FL is

the average Frobenius Loss in (29).

Figure 1: ROC curves of block GLASSO for varying values of N (panel (a)), G (panel (b)),
and T (panel (c)).
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Figure 2: Flexible Block-GLASSO vs Group LASSO and conventional GLASSO in the case of
within-block variation, for N = 100, T = 200 and G = 50 (left) and G = 25 (right).

5 An empirical example: spatial spillovers in regional
growth and convergence in Europe

We use Block-GLASSO for estimating a growth equation in per-capita Gross Value Added and
testing for economic convergence of European regions. The debate on whether there exists
convergence in per-capita input and income across nations is still open, with results obtained
that differ depending on the sample period, the regions included as well as the estimation
methods adopted. A number of authors have highlighted the importance of incorporating
spatial effects when studying economic growth and regional convergence and have proposed the
use of spatial econometric techniques (see, among others, Rey and Montouri (1999); Ertur and
Koch (2007); and Cuaresma and Feldkircher (2013)). Spatial dependence in regional economic
growth is likely to arise from technology spillover across neighbouring regions, factor mobility
as well as the presence of spatial heterogeneity (Rey and Montouri (1999)). In the presence
of spatial dependence in economic growth data, if ignored, estimates of the speed of income
convergence across geographical regions will be biased.

We contribute to this literature by estimating a growth equation with spatial spillovers and
use the Block-GLASSO procedure to estimate the spatial weights matrix. We use data on
Gross Value Added per worker (GVA) for 1,088 NUTS3 observed over the period 1980 to 2012
in 14 European countries3. The NUTS classification is a hierarchical system for dividing up
the economic territory of the European Union for the purpose of socio-economic analysis of the
regions and design of EU regional policies. It subdivides the EU territory into regions at the
three different levels, NUTS1, NUTS2 and NUTS3, moving from larger to smaller geographical

3The countries included in the analysis are: Austria, Belgium, Germany, Denmark, Spain, Finland, France,
Ireland, Italy, Netherland, Norway, Portugal, Sweden, United Kingdom.
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units.

Standard neo-classical growth models state that countries will converge to the same level of
per-capita income in the long-run, independently of initial conditions, as long as there are dimin-
ishing returns to capital and labour and perfect diffusion of technology. Under this framework,
poorer countries and regions grow faster than richer ones and a negative relationship between
average growth rates and initial income levels is expected. Let yi,t+k = ln

(
GV Ai,t+k
GV Ait

)
be the

growth in per-capita Gross Value Added (expressed in Euro at 2005 prices) for NUTS3 region
i over a set of non-overlapping time intervals of length k. Our empirical model is the Gaussian
Conditional Autoregressive model for yit:

E (yi,t+k| yj,t+k, j = 1, 2, ..., N, j 6= i) = α + β ln (GV Ait) +
N∑
j=1

wij (yj,t+k − α− β ln (GV Ajt)) ,

(30)

V ar (yi,t+k| yj,t+k, j = 1, 2, ..., N, j 6= i) = σ2i , (31)

where we set k = 3. Hence, a negative coeffi cient attached to the variable ln (GV Ait) indicate
that NUTS3 regions with a low initial level of income grow faster than regions with higher
initial levels of income, supporting the hypothesis of absolute convergence. The use of non-
overlapping time intervals is common practise in the cross-country growth literature, as this
would decrease the influence of short-term shocks and business cycles on economic activity,
while revealing long-run relationships. Compared to longer time intervals, the use of three-
year non-overlapping intervals allows to keep a suffi cient number of observations to exploit
the time dimension of panel data. Following existing studies on spatial interaction effects in
regional economic growth models, the inclusion of the spatial lag of the dependent variable
(growth rate) amongst the regressors in (30) aims at capturing the effect of inter-regional flows
of labour, capital and technology on growth and convergence (Rey and Montouri (1999); Ertur
and Koch (2007); and Cuaresma and Feldkircher (2013)).

In (30), wij is the (i, j)th element of a N × N matrix, W, known as the spatial weights
matrix, such that wii = 0. In spatial econometrics, W is often assumed to be known using
a-priori information (e.g., from economic theory) on how statistical units potentially interact.
Spatial weights based on geographical or travel distance, or contiguity have been used for
modelling spatial spillovers in economic growth equation, although this has been pointed as
being unrealistic (Cuaresma and Feldkircher (2013)). In this application we will keep W as
unknown and estimate it using our Block-GLASSO approach. While the unit of analysis is the
NUTS3 region, we take as groups larger geographical areas, given by 80 NUTS1 and then 211
NUTS2 European regions. Other grouping criteria may undoubtedly be suggested, for example
by looking at the literature on club convergence (see, among others, Corrado, Martin, and
Weeks (2005)), or using methods for identifying communities in social networks from the graph
modelling literature (Freeman (1979)).

It is interesting to observe that equations (30)-(31) for the conditional distribution imply
the joint normal distribution (Besag (1974))

yt ∼ N (µt,Σ) , (32)
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where Σ = (IN −W)−1 Λ,with Λ = diag(σ21, σ
2
2, ..., σ

2
N) and µ =α + β ln (GVAt), provided

that (IN −W) is invertible and (IN −W)−1 Λ is symmetric and positive-definite. The reverse
is also true, namely, if yt ∼ N (µt,Σ), where Σ is a N ×N positive definite matrix, then also
(30)-(31) hold, with (see Mardia (1988); Meinshausen and Buhlmann (2006))

wij = −θij
θii
, (33)

V ar (yit|yjt, j = 1, 2, ..., n, j 6= i) = θ−1ii . (34)

It follows that the problem of estimating wij in the CAR model (30)-(31) is equivalent to
determining whether yit and yjt are conditionally independent, i.e., θij = 0. Hence, in this
application we estimate W via Θ by imposing a block structure on Σ (and hence on Θ and
W).

Table 7 offers some descriptive statistics on the variable under study, at the NUTS3 level.
It is interesting to observe that the region with the highest level of per-capita GVA (Euro
159,936) is the London area, while the region with the lowest per-capita GVA (Euro 1,842) is
North Portugal, which is also the region with the highest growth in per-capita GVA (47.183
per cent) over the three-year time interval.
Table 8 reports estimates of growth equations (30)-(31). Column (I) provides OLS estimates

ignoring the spatial structure of data, while column (II) and (III) show GLS estimates where
contemporaneous correlation is incorporated and estimated by Block-GLASSO. The value of
the coeffi cient of the initial per-capita GVA of NUTS 3 provinces is negative and significant,
showing the presence of (absolute) convergence in all regressions. However, when adopting the
GLS approach based on the Block-GLASSO procedure, the coeffi cient is smaller, leading to
lower speed of convergence towards the steady state, and longer time necessary for the regional
economies to cover half of the initial lag from their steady states, when compared to traditional
OLS estimation. Goodness of fit for all regressions are low, ranging between 12-13 per cent
pointing out that some important factors have not been included in the models.
The lower panel of the table reports the percentage of links, the average path length and

a set of centrality measures proposed by graph theory (Borgatti and Everett (2006); Freeman
(1979)) that are widely used to characterise the compactness of graphs. The average path
length is given by the average length of all the shortest paths from or to the vertices in the
network, giving an indication of how dense the network is. The graph-level centrality measures
are based on three node-level centrality indicators, namely degree, closeness, and betweenness,
which characterise different aspects of the relative importance of each node and are commonly
used in the applied literature.4 All graph-level measures vary between zero and one, and assume
their highest value when the graph has a star or wheel shape. Looking at the percentage of
links, it emerges that, as expected, the estimated networks are quite dense and connected when
using either NUTS1 or NUTS2 as blocks. This is confirmed by the average path length, which
is very low, being around 1.6-1.8. On the other hand, the graph centrality measures are close to

4Degree is the number of links for each unit; closeness is the inverse of the average length
of the shortest paths to/from all the other vertices in the graph; betweenness is the number of
times a node acts as a bridge between other nodes.
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Table 7: Descriptive statistics for NUTS3 regions
Average Std. Dev. Min Max

Per-capita GVA (Euro) 19,818.3 8,817.7 1,842.0 159,936.1

Growth in per-capita GVA (%) 5.005 7.611 -63.661 47.183

zero, indicating that there is no single region dominating all other regions. This is also evident
from Figure 3, showing the adjacency graph resulting from the estimation of model (30)-(31)
via Block-GLASSO where NUTS1 regions are taken as blocks. We do not report the graph
when using NUTS2 regions as blocks as these are too many. It is interesting to observe that the
most connected NUTS1 are also the regions with the highest per-capita GVA, namely Greater
London, Norway and South Netherlands, while the areas with a smaller number of connections
are Northern Ireland, and northern areas of England, which are also geographically isolated
from the other regions. Also, in most cases regions from the same country are connected, thus
supporting previous studies using geographical contiguity or geographical distance as metric of
distance.

Table 8: Regression results for economic convergence among NUTS3 regions in Europe

OLS(+)
GLS

Blocks: NUTS1

GLS

Blocks: NUTS2

Par. Std.Err. Par. Std.Err. Par. Std.Err.

ln (GV Ait) -0.273∗ 0.008 -0.227∗ 0.009 -0.221∗ 0.011

Speed of convergence 0.106 0.086 0.083

Half-life 7.273 8.789 9.045

R2 0.121 0.133 0.134

G - 80 211

% of links - 36.22 17.23

Average path length - 1.629 1.845

Graph centrality measures:

Degree - 0.126 0.065

Closeness - 0.101 0.052

Betweenness - 0.010 0.006

Notes: NUTS3 regional dummies and time dummies have been included in all regressions. (∗): Significant at
the 5 per cent significance level. (+) Standard errors robust to unknown heteroskedasticity have been adopted.

6 Concluding remarks

In the last few years several methods for reducing the dimensionality problem when estimating
graphical models have been proposed. These methods usually exploit a-priori information on
possible independence between groups of observations. In this paper we focus on estimation
of a Gaussian graphical model with a large number of variables, where dependence between
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Figure 3: Adjacency graph of per-capita GVA growth, 1980-2012 estimated via Block-GLASSO,
taking the NUTS1 regions as blocks.

variables is block-wise due for example to a hierarchical or group membership structure. We
propose an estimation strategy based on the graphical LASSO methodology applied to group
averages of observations, and derive the large sample properties of the proposed estimator. Our
Monte Carlo experiments show that our proposed estimator greatly outperforms the conven-
tional GLASSO when data have block-wise dependence. These experiments also show that
our procedure is quite robust to various deviations from block-wise dependence. For example,
the method still delivers valid inference when there is some within-group variation, or under
non-normal errors. We have shown the usefulness of this procedure on an empirical study on
economic convergence of European regions, showing that accounting for block-wise dependence
helps better estimation of convergence parameters. Although there are many examples in eco-
nomics where the membership is given, in many others this is not true, making the assumption
that the block structure is known a-priori too restrictive. One interesting extension of this
work would be to determine endogenously the inclusion of a unit in a group as well as the size
and number of the groups, following the work by Lin and Ng (2012), Bonhomme and Manresa
(2015) and Ando and Bai (2016). Future work should also consider a block-wise structure
for the covariance matrix of a Vector Autoregressive model, within the setting proposed by
Barigozzi and Brownlees (2016) and Abegaz and Wit (2013). Finally, while our approach does
not allow to estimate the covariance matrix arising from one or more common pervasive factors,
it would be interesting to study the properties of an estimation procedure that first controls for
common pervasive factors and then estimates the network structure using de-factored residuals.
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Appendix

A Log-likelihood function for networks with block-wise
dependence structure

Let S be the N ×N sample covariance matrix based on a sample of size T from the random vector, y:

S =
1

T

T∑
t=1


y21t y1ty2t ... y1tyNt
y2ty1t y22t ... y2tyNt
... ... ...

yNty1t .... ... y2Nt

 .

To obtain the log-likelihood function, we first compute simplified expressions for ln |Θ| and Tr (SΘ),
with Θ = Σ−1 and Σ given by expression (4). Using results in Magnus (1982) we have:

ln |Θ| = ln

∣∣∣∣[(MΣG + ΓG)−1 ⊗ 1

M
1M

]
+

[
ΓG
−1 ⊗

(
IM −

1

M
1M

)]∣∣∣∣ (A.1)

= − ln |MΣG + ΓG| − (M − 1) ln |ΓG| . (A.2)
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Let ΨG = ΣG + 1
MΓG and φgh be the generic element of ΦG = Ψ−1G , we have:

Tr (SΘ) =

N∑
i,j=1

sijθji

=
N∑
i=1

siiθii +
∑

i,j∈g,i6=j

G∑
g=1

sijθji +
G∑

g,h=1:g 6=h

∑
i∈g:j∈h

sijθji

=
G∑
g=1

∑
i∈g

sii

(
1

M2
φgg +

M − 1

M
γ−1g

)
+

G∑
g=1

∑
i,j∈g:i 6=j

sij

(
1

M2
φgg −

1

M
γ−1g

)

+
1

M2

G∑
g,h=1

∑
i∈g:j∈h:g 6=h

sijφhg

=
1

M2

G∑
g,h=1

∑
i∈g,j∈h

sijφgh +
M − 1

M

G∑
g=1

∑
i∈g

siiγ
−1
g −

1

M

G∑
g=1

∑
i,j∈g:i 6=j

sijγ
−1
g .

Replacing the expressions for sij we obtain:

Tr (SΘ) =
1

T

1

M2

T∑
t=1

G∑
g,h=1

∑
i∈g:j∈h

yityjtφgh+
M − 1

M

1

T

T∑
t=1

G∑
g=1

∑
i∈g

y2itγ
−1
g −

1

M

1

T

T∑
t=1

G∑
g=1

∑
i 6=j:i,j∈g

yityjtγ
−1
g .

It follows that the likelihood function is:

l(θ) ≈ − ln |MΣG + ΓG| − (M − 1) ln |ΓG|

− 1

MT

T∑
t=1

 1

M

G∑
g,h=1

∑
i∈g:j∈h

yityjtφgh + (M − 1)

G∑
g=1

∑
i∈g

y2itγ
−1
g −

G∑
g=1

∑
i 6=j:i,j∈g

yityjtγ
−1
g

 .

B Proof of Theorem 1
Note that, from (6), and using (11), we have:

Θ =

[
1

M
ΦG ⊗

1

M
1M

]
+

[
ΓG
−1 ⊗

(
IM −

1

M
1M

)]
.

Hence, it follows that

Θ̂−Θ =

[
1

M

(
Φ̂G −ΦG

)
⊗ 1

M
1M

]
+

[(
Γ̂−1G − Γ−1G

)
⊗
(

IM −
1

M
1M

)]
.

Noting that, given two matrices A and B, ‖A⊗B‖F = ‖A‖F ‖B‖F (see, for example, Bernstein
(2005), p.676), and since

∥∥ 1
M 1M

∥∥
F

= 1
M ‖1M‖F = 1 and

∥∥IM − 1
M 1M

∥∥
F

=
√
M − 1, we have:∥∥∥Θ̂−Θ

∥∥∥
F
≤ 1

M

∥∥∥Φ̂G −ΦG

∥∥∥
F

+
√
M − 1

∥∥∥Γ̂−1G − Γ−1G

∥∥∥
F
.

By Theorem 1 in Rothman, Bickel, Levina, and Zhu (2008) we have (see also Theorem 1 in Lam and
Fan (2009)): ∥∥∥Φ̂G −ΦG

∥∥∥
F

= Op

(√
(G+ sG) lnG

T

)
.
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Further, using the properties of moments of quadratic forms it is easy to show that γ̂g − γg =

Op

(
1√
MT

)
, so that ∥∥∥Γ̂−1G − Γ−1G

∥∥∥
F

= Op

(√
G

MT

)
. (B.1)

It follows that ∥∥∥Θ̂−Θ
∥∥∥
F

= Op

(
1

M

√
(G+ sG) lnG

T

)
+Op

(√
1

MT

)

= Op

(
1

M

√
(G+ sG) lnG

T

)
.
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