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ABSTRACT

Granular computing facilitates dealing with information by providing a theoretical

framework to deal with information as granules at different levels of granularity

(different levels of specificity/abstraction). It aims to provide an abstract explainable

description of the data by forming granules that represent the features or the

underlying structure of corresponding subsets of the data.

In this thesis, a granular computing approach to the design of intelligent clas-

sification systems is proposed. The proposed approach is employed for different

classification systems to investigate its efficiency. Fuzzy inference systems, neural

networks, neuro-fuzzy systems and classifier ensembles are considered to evaluate

the efficiency of the proposed approach. Each of the considered systems is designed

using the proposed approach and classification performance is evaluated and com-

pared to that of the standard system.

The proposed approach is based on constructing information granules from data

at multiple levels of granularity. The granulation process is performed using a

modified fuzzy c-means algorithm that takes classification problem into account.

Clustering is followed by a coarsening process that involves merging small clusters

into large ones to form a lower granularity level. The resulted granules are used to

build each of the considered binary classifiers in different settings and approaches.

Granules produced by the proposed granulation method are used to build a

fuzzy classifier for each granulation level or set of levels. The performance of the

classifiers is evaluated using real life data sets and measured by two classification

performance measures: accuracy and area under receiver operating characteristic
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curve. Experimental results show that fuzzy systems constructed using the proposed

method achieved better classification performance.

In addition, the proposed approach is used for the design of neural network clas-

sifiers. Resulted granules from one or more granulation levels are used to train the

classifiers at different levels of specificity/abstraction. Using this approach, the classi-

fication problem is broken down into the modelling of classification rules represented

by the information granules resulting in more interpretable system. Experimental

results show that neural network classifiers trained using the proposed approach

have better classification performance for most of the data sets. In a similar manner,

the proposed approach is used for the training of neuro-fuzzy systems resulting in

similar improvement in classification performance.

Lastly, neural networks built using the proposed approach are used to construct

a classifier ensemble. Information granules are used to generate and train the base

classifiers. The final ensemble output is produced by a weighted sum combiner. Based

on the experimental results, the proposed approach has improved the classification

performance of the base classifiers for most of the data sets. Furthermore, a genetic

algorithm is used to determine the combiner weights automatically.
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1
INTRODUCTION

RESEARCH background, motivation, aim and objectives are presented in this

chapter. Research background is presented in Section 1.1 while Section 1.2

contains the motivation of this thesis. The aim and objectives of this thesis

are stated in Section 1.3 and its organisation is described in Section 1.4. Publications

are listed in Section 1.5

1.1 Background

Classification is a supervised learning method that aims to group or cluster objects

into predefined groups (classes) based on certain criteria. It has a wide range

of applications as in financial forecast [1, 2, 3], medical diagnosis [4, 5, 6], fault

diagnosis [7, 8], image classification [9, 10] and text classification [11, 12]. In most

applications, neither the classification process can be described algorithmically nor

the relationship between input and output can be derived analytically. Therefore,

in the paradigm of machine learning, classification is usually achieved by learning

the relationship that exists between a set of input (feature) variables and an output

variable (target class label). The problem of classification can be stated as follows

[13]:

1



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

“Given a set of training data points along with associated training labels, deter-

mine the class label for an unlabeled test instance.”

Thus, classification algorithms are generally comprised of two phases [13, 14]:

• Training Phase: In this phase, the construction of a classification model from

the training data set is performed. The data set consists of sample input

data with a preassigned class labels. A machine learning method is used to

extract knowledge from the labelled training data. One important desirable

characteristic of classification systems is their ability to interpret the data

structures underlying the classification model (e.g. the decision rules) [15].

• Testing Phase: In this phase, the constructed model is used to classify new

testing data relying on knowledge extracted in the training stage.

The main objective of designing a classifier is to achieve the highest classification

accuracy (the lowest error rate) in the testing phase. In other words, achieving

highest possible level of generalisation, i.e. the classifier’s ability to generalise the

classification process learnt from the training phase to classify new data in the

testing phase [16].

The task of classification is addressed by numerous methods such decision trees,

rule-based methods, neural networks, Support Vector Machine (SVM) methods, and

nearest neighbour methods. There are two types of outputs a classification algorithm

may result in [13]:

• Discrete Label: A class label is assigned to the input instance.

• Numerical Score: Numerical scores are computed to indicate the degree to

which the input instance belong to each class. A discrete label for an input

instance can be produced from its numerical scores by choosing the class with

the highest score.

In terms of the number of classes, there are two types of classification: binary

classification (grouping data into only two classes), and multi-class classification

(classifying the data into more than two classes). In this thesis, only binary classi-

fication is considered since any multi-class classification task can be divided into

2
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multiple binary classification tasks. This can be achieved by classifying data into

one class against all other classes [17].

1.2 Research Motivation

Granular Computing (GrC) is a general computation theory that imitates human

thinking and reasoning by dealing with information as a form of aggregates called

information granules. An information granule is a collection or group of elements

(usually data points) that are linked together due to the fact that they share some

degree of similarity, functionality or indistinguishablity [18]. The process of forming

information granules, information granulation, underlays most of the activities

that involve information processing, from human thinking and problem solving to

artificial intelligence and digital signal processing [18, 19]. Information granula-

tion facilitates dealing with information by providing a theoretical framework to

deal with information at different levels of granularity, that is different levels of

specificity/abstraction [18].

A lot of research on GrC in data classification has been carried out in various

settings and diverse applications. Due to its broad range of coverage in many differ-

ent frameworks and its wide spectrum of application fields, GrC research comes in

numerous approaches, objectives and points of view.

Addressing the problem of data classification, different GrC studies have been

conducted in different frameworks such as: cluster analysis, set theory [20], fuzzy

theory [20, 21], graph theory [15, 22, 23] and rough set [20, 21, 24, 25]. Concepts of

GrC have been realised in various methodologies including data clustering, image

segmentation [23], fuzzy lattice [26, 27], rough logic [20, 21, 24, 25], information

tables [28] and graphs [15, 22, 23].

One of the common technique in the GrC research in data classification is forming

larger information granules from smaller ones. This is achieved by different methods

and under different names such as: dilation [26, 27], coarsening or merging [29].

These methods are usually based on finding some relation between granules depend-

ing on the framework and approach. Examples of relations between granules are:

spatial relations [23], distance measures [29], rough inclusion and fuzzy inclusion.

3
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On the other hand, dividing large granules into smaller ones is adopted by some

studies [30].

GrC-based methods have been employed in achieving common tasks of data

classification. Two of the vital tasks are the extraction of classification rules from

data [15, 20, 25, 28, 30, 31] and the identification of classification systems [24].

Studies of GrC in data classification are aimed at various applications such as,

medical data classification [25], text classification [30, 32, 33], image classification

[15, 21, 23] and spam detection [21].

1.3 Aim and Objectives

The main aim of this thesis is to develop a GrC approach to the design of intelligent

classification systems and investigate its efficiency. Different classification systems

are considered to investigate the efficiency of the proposed approach. In particular,

the following classification systems are considered: Fuzzy inference system (FIS),

Neural Network (NN), neuro-fuzzy system and classifier ensemble.

Based on the review of concepts, methods and applications of GrC, and to achieve

the aforementioned aim, the following objectives have been identified:

1. Develop a clustering algorithm to construct granules that represent the data

for building classification systems.

2. Evaluate the effectiveness of the developed clustering algorithm in forming

information granules at various levels of granularity for classification problem.

3. Investigate how the resulted granules can be used in building classifiers of

different types.

4. Evaluate the performance of different classifiers built using the proposed

method.

4
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1.4 Thesis Organisation

This thesis consists of six chapters and is organised as follows:

• Chapter 2 introduces the fundamentals, principles, methods and applications

of GrC. A summary of the common frameworks of GrC is provided in Sec-

tion 2.2. Section 2.3 reviews the synergy between GrC and Computational

Intelligence (CI) with emphasis being laid on NNs, fuzzy systems and evolu-

tionary algorithms. Applications of GrC in data clustering and classification

are reviewed in Section 2.4.

• In chapter 3, a method of clustering-based information granulation for the

problem of data classification is presented. The proposed method is used for

the identification of fuzzy classifiers. The proposed method is described in

Section 3.3. The implementation of the proposed method and experimental

setup and results are provided in Section 3.4. Section 3.5 is dedicated to the

application of the proposed method in fuzzy system identification and the

comparison of its performance to standard Fuzzy C-Mean (FCM) based fuzzy

systems.

• A GrC approach for the design of NN classifiers is proposed in Chapter 4.

The approach is applied to NNs and Adaptive-Network-based Fuzzy Inference

Systems (ANFIS). The proposed approach is described in Section 4.2 and the

results of its application on NNs are presented in Section 4.3. In Section 4.4,

an experimental comparison of classifiers constructed using the proposed

approach and other well-known classifiers is provided.

• In Chapter 5, a GrC approach to classifier ensemble is proposed. The proposed

method is described in Section 5.2. Experimental results of the evaluation of

the proposed approach are reported in Section 5.3. Section 5.4 investigates the

use of a genetic algorithm for the weights assignment of the ensemble.

• Conclusions and future work are presented in Chapter 6.
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2
GRANULAR COMPUTING

THIS chapter introduces the fundamentals, principles, methods and applica-

tions of Granular Computing (GrC). Section 2.1 provides a brief introduction

to the fundamentals and principles of GrC. Section 2.2 summarises the

common frameworks of GrC. Section 2.3 reviews the synergy between GrC and Com-

putational Intelligence (CI) with emphasis being laid on Neural Networks (NNs),

fuzzy systems and evolutionary algorithms. Applications of GrC in data clustering

and classification are reviewed in Section 2.4. Conclusions of this chapter are given

in Section 2.5.

2.1 Introduction

While the concept of GrC was first introduced by Zadeh in 1979 [34], the term GrC

was first used in 1997 [35] and since then it drew the interest of many researchers

and witnessed a rapid development and research growth. Although the term was

recently brought to live, the concepts of GrC are believed to be applied throughout

human history, as it is a natural methodology for humans to deal with daily life

issues. The ideas and principles underlying GrC have been covered in many different
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fields under different names, such as divide and conquer, structured programming,

interval analysis, cluster analysis, etc. [36].

GrC is a general computation theory that imitates human thinking and reasoning

by dealing with information as a form of aggregates called information granules. A

granule is defined in Merriam Webster’s Dictionary as: "a small particle; especially:

one of numerous particles forming a larger unit" [37]. An information granule is a

collection or group of elements (usually data points) that are linked together due to

the fact that they share some degree of similarity, functionality or indistinguishablity

[18]. The process of forming information granules (namely, information granulation)

underlays, in a way or another, most of the activities that involve information

processing, from human thinking and problem solving to artificial intelligence and

digital signal processing [18, 19]. For example, in image processing, an image can

be processed as a group of some features (lines, regions, etc.) which in turn can be

dealt with as sets of individual pixels. GrC aims to provide an abstract explainable

description of the data by forming granules that represent, with respect to a certain

viewpoint, the features or the underlying structure of corresponding subsets of the

data.

In order to solve a problem, it may be desirable in some cases to split it into

smaller more achievable modules, or, in other cases, one may need to make generali-

sations (abstraction) of the problem, away from the burden of its details, in order to

get a better comprehension. Either way, information granulation facilitates dealing

with information by providing a theoretical framework to deal with information

at different levels of granularity, that is different levels of specificity/abstraction

[18]. Granularity is represented by the size, number and distribution of information

granules. The larger is a granule, the lower is its granularity and the higher is its

abstraction (generality) [38].

The process of forming granules is based on the relationships that exist among

them, namely: interrelationships and intrarelationships. Interrelationships reflect

the extent to which the elements within a granule are related, while intrarelation-

ships describe the relation among different granules (in the same level). Granules

are formed either by combining granules of higher granularity (usually smaller

8
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FIGURE 2.1. Granules and granulation levels [39].

in size) into granules of lower granularity (usually larger in size), or by dividing

granules of lower granularity into granules of higher granularity. The former way of

constructing granules can be represented by the intrarelationship of coarsening, i.e.

producing coarser granules (granules with lower granularity), while the latter can

be represented by the interrelationship of refinement, i.e. producing finer granules

(granules with higher granularity) [19]. Figure 2.1 illustrates the relationships

among granules and process of granulation.

GrC attempts to establish a unifying theory that integrates multiple theories,

methodologies, techniques, and tools that adopt a granulation approach for solving

complex problems [40]. Due to the application-dependent nature of the formulation

and interpretation of information granules, different terminology may be used for

description at different levels. GrC is a multidisciplinary study and can be viewed

from different perspectives. For example, Y.Y. Yao [41] presented the "granular

computing triangle" in which GrC can be studied from three different perspectives:

philosophical perspective, methodological perspective and computational perspective.

From the first perspective, GrC depicts a paradigm for the structuring and extraction

of human thinking, while from the second perspective GrC deals with methods and

techniques for structured problem solving. In the computational perspective, GrC

9
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represents an approach for information processing in the abstract level, in the brain,

and in machines. The common factor of the three perspectives is the main feature of

GrC: representing information at multiple levels of granularity.

While numeric computing is data-oriented, GrC is knowledge-oriented, thus, it

imposes many challenges and open questions. Some of the questions that still need

to be answered are: How to precisely define "Granular Computing"? How to formalise

the framework of GrC and the process of constructing granules? How to measure

the level of granularity and how to define the "size" of a granule? [18, 40]

2.2 Granular Computing Frameworks

The process of information granulation has been one of the key components of several

models and frameworks that are already developed in various domains such as: sys-

tem modelling, image processing, pattern recognition, and data compression. Some

of these frameworks are: interval computation, rough sets, fuzzy sets and cluster

analysis. This section highlights some of the attempts to information granulation

within each framework.

Methods of each framework have different approaches and perspectives on infor-

mation granulation. In fuzzy sets, for example, information granulation is performed

by the means of fuzzification using fuzzy membership function. While, in another

example, hierarchical clustering performs information granulation by clustering

data based on their proximity or distance either by merging smaller clusters or

by dividing larger ones. Although these examples are very different in their ap-

proaches, nature and perspectives, they are both considered methods of information

granulation from the perspective of the unifying theory of GrC.

2.2.1 Interval Analysis

Interval analysis is an active field of research and application that addresses the

problem of ambiguity that results from the uncertainty of numerical computation. In

interval analysis, a variable is dealt with as an interval number, represented by an

ordered pair of real numbers (endpoints), instead of a single value [42]. All elements

of an interval can be represented by a single label that stands for the interval, hence

10
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they become completely indistinguishable [43]. This way of dealing with a set of

values (interval) as an entity that embraces them all indistinguishably is one way of

performing information granulation from the viewpoint of GrC.

Several studies have adopted the approach of interval analysis to information

granulation. For example, a formal framework for information granulation is in-

troduced in [44]. The proposed framework, which is named distributed intervals,

is based on interval analysis theory and the criteria of coherency and proximity.

The framework was derived by combining the concepts and characteristics of dis-

tributed entities and intervals. Benefiting from the two paradigms of distributed

entities and intervals, the distributed interval frameworks results in a rich model

for granulation.

A type of granular classifiers, named hyperbox-driven classifiers, is developed

in [45]. The classifier relies on the interaction of interval analysis and fuzzy sets.

The development of classifiers was achieved from the viewpoint of information

granulation where a class of patterns represents an information granule in the

feature space.

Other examples of studies addressing the approach of interval analysis to infor-

mation granulation can be found in [46, 47]. In the former, the concept of knowledge

granulation based on the maximal consistent block in interval valued informa-

tion systems was proposed. While the latter developed multilevel and multi-view

granular structures using various inclusion relations and operations on interval

sets.

2.2.2 Fuzzy Sets

While interval theory addresses the the uncertainty that results from numerical

computation, fuzzy set theory addresses the uncertainty that results from the

transitional nature of entities [42], i.e. the gradual evaluation of the membership of

different elements in a set. Fuzzy set theory is based on the vital concept of partial

membership where the degree by which an object belongs to a set is represented by a

membership function that takes a value between 0 and 1. Thus, from the viewpoint

of GrC, fuzzy sets represent a naturally suited formalism to model information
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granulation [48, 49]. Figure 2.2 shows how granules are represented by fuzzy sets

for a 2-dimensional illustrative data.

A hierarchy of granules is formed by an algorithm based on fuzzy concept lattices

[50]. The concept of knowledge granularity presents in the hierarchy of fuzzy concept

lattice. This hierarchy consists of multiple levels of nodes where each node represents

a granule. Nodes at higher levels represent coarser granules while nodes at lower

levels represent finer granules. The coarsest granule (top node) is divided into

a number of children nodes (finer granules). Children nodes are further divided

into finer granules until the finest granule (bottom node) is reached. Thus, a node

includes all elements of its children nodes and the top node consists of all elements

from the universe of the fuzzy concept lattice.

Another approach for the modelling of information granules is the formation of

fuzzy descriptors as information granules [51]. Fuzzy descriptors are the main ele-

ments of fuzzy descriptive models that aim to provide with constructs that describe

experimental data at a general level of relationships. An interactive approach is

adopted for the formation of the information granules. In this interactive approach,

a structure in a data set is visualised so that it can be examined by a designer who

chooses from some visualized regions according to its level of data homogeneity. The

visualization process is implemented using self-organizing maps.

Fuzzy relations are used alongside with spectral clustering to construct word

granules that represent text in order to improve knowledge discovery [52]. As a

result of this technique, topics in a text or a set of documents are represented by

word granules containing words of sufficient significance. The technique captures

the relationships that exist among related words by combining them into granules.

Information granules are formed as a representation of numeric membership

functions of fuzzy sets [53]. As a result of the granulation of the membership func-

tions, a set of finite number of information granules is produced to provide an

abstract view at the membership concept instead of numeric membership values.
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FIGURE 2.2. Granule representation by fuzzy sets.

2.2.3 Rough Sets

First described by Pawlak in 1982 [54], rough set theory is one of the main methods

of GrC modelling. One research survey study showed that 39% of the surveyed

articles (113 articles) belongs to the rough set framework [55].

Similar to interval analysis and fuzzy sets theory, rough set theory addresses

vagueness and uncertainty. While fuzzy set theory uses fuzzy membership to address

gradualness of knowledge, rough set theory addresses granularity of knowledge

through the indiscernibility relation. The indiscernibility relation reflects the inablity

to recognise some objects due to the lack of sufficient knowledge. Therefore, instead
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of dealing with single objects, reasoning is limited to dealing with granules of

indiscernible objects which represent the amount of knowledge perceivable due to

the indiscernibility relation [56]. Thus, objects with identical attributes (indiscernible

objects) are aggregated into blocks (equivalence class) that represent elementary

granules of knowledge [57].

Rough sets are defined by approximation or rough membership function. In

rough set theory, a set S is characterized by three factors: lower approximation,

upper approximation and boundary region, as shown in Figure 2.3. The lower

approximation L of S is the union of all sets that are subsets of S. In other words, the

lower approximation is the set of all objects that are certainly classified as S. The

upper approximation U is the union of all sets that have a non-empty intersection

with S, i.e. the set of all objects that are possibly classified as S. The boundary region

of S is the set-theoretic difference of U and L, that is the set of all objects that are

possibly but not certainly classified as S. A rough set is a set that has a non-empty

boundary region. On the other hand, a set with empty boundary region is crisp [57].

Unlike interval analysis, rough set approximations are approximation of known sets

in an approximation space defined by an underlying indiscernibility relation [58]. In

contrast to membership function in the fuzzy set theory, rough set theory does not

require prior knowledge about the system [59, 60].

Alternatively, rough sets can be defined by rough membership functions that

express conditional probability that an object belongs to S given an indiscernibility

relation (as illustrated in Figure 2.4) [61].

Rough inclusion for information granulation. Based on the concept of

rough membership function, rough inclusion can be defined as the partial inclusion

of a rough set in a rough set (i.e. partial inclusion of an information granule in an

information granule) and reads "an object x is a part of an object y to degree at

least r" [62, 63]. Therefore, several attempts have been made to model information

granulation based on rough inclusion [63, 64, 65, 66].

Multi-granulation rough sets. In rough set theory, the equivalence classes

produce a partition of the universe where an object belongs to a single class only.

The inflexible nature of the binary equivalence relation imposes limitations on the
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FIGURE 2.3. Rough set approximation [57].

development and application of rough sets as it results in single (fixed) granulation.

To overcome these limitations, some extensions of rough set are proposed. One of

the extensions of rough set is multi-granulation rough sets which employ multiple

binary relations to describe a concept [67, 68].

Variable precision rough sets. Another extension of rough set is variable pre-

cision rough sets which uses partial classification to classify objects into equivalence

classes. As a result, there is an admissible error, within a predefined boundary, in

the inclusion relation. Based on variable precision rough sets, information multi-

granulation can be achieved [69, 70, 71, 72].

Covering-based rough sets. Covering-based rough sets is another extension

of rough set that is based on a covering instead of a partition of the universe. Like
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FIGURE 2.4. Rough membership function µR
X (x) of the element x to the set

X given the equivalence class R [57].
(a) µR

X (x)= 0. (b) 0<µR
X (x)< 1. (c) µR

X (x)= 1.

other rough set extensions, covering-based rough sets provide a framework for

multi-granulation of information [73, 74, 75].

2.2.4 Cluster Analysis

Clustering is the process of grouping a set of objects into a number of groups (clusters)

so that objects belonging to the same group have a higher level of similarity to each

other than to those in other groups [76]. It plays a major role in some research

fields, such as pattern recognition, data mining, machine learning, etc. Clustering

is a useful tool for identifying the underlying relationship and structure of data.

Clustering is a competent candidate for modelling information granulation due to
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the fact that it has a far less time and space complexity compared to other models of

information granulation [77].

Constructing information granules. Various clustering algorithms are used

to form information granules such as hierarchical clustering, K-means clustering and

Fuzzy C-Mean (FCM) clustering. In [78], either hierarchical clustering or K-means

clustering is used in the first phase of the proposed method to form information

granules. In the second phase, a parametric refinement of information granules is

performed using the principle of justifiable granularity. Thus, the proposed method

combines the unsupervised (clustering) and supervised (justifiable granularity)

approaches.

Data-driven information granulation. As an unsupervised approach, clus-

tering allows the construction of information granules in a data-driven environment.

Such environment is discussed in [79] for fuzzy clustering algorithms highlighting

their advantage of producing fuzzy granules that can be described linguistically.

Refinement of coarser information granules. Clustering is also used in the

refinement of coarser information granules. The process of forming finer granules

from coarser ones is discussed in [80] where the refinement process is addressed as

an optimisation task in which a general partition requirement has to be satisfied. In

this study, the conditional FCM clustering algorithm is used.

A multi-level view of information granulation. Clustering is an efficient

method for the extraction of information granules in a multi-level view of information

granulation which plays an important role in problem solving. From the viewpoint

of GrC, granularity level is determined by cluster size (or total number of clusters).

Bigger clusters (fewer clusters) indicate coarser granularity level, while smaller

clusters (more clusters) represent finer granularity level. Different granularity levels

can be achieved by varying the similarity threshold used by the clustering method

which results in varying the size and number of clusters.

One approach based on double clustering framework is proposed in [81] to address

the extraction of fuzzy information granules from numerical data. The proposed

approach, which is called multi-level double clustering, is a double-clustering ap-
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proach where conditional FCM clustering algorithm is used in the multi-dimensional

clustering and hierarchical clustering algorithm is used in the one-dimensional

clustering.

Dynamic data granulation. Clustering is used to identify structures that

present in data in a dynamic manner. In [82], an algorithm is proposed for the

dynamic data granulation by performing conditional FCM clustering for each data

snapshots. The constructed granules evolves dynamically from one data snapshot

to another by adjusting the number of clusters depending on the structure and

complexity of patterns in each data snapshot.

2.3 Granular Computing and Computational Intelligence

CI is a sub-field of artificial intelligence that is concerned with adaptive techniques

that aim to enable or facilitate intelligent behaviour in complex and changing

systems. The paradigms of CI are charactrised by their ability to learn, generalise,

discover and adapt to new situations [83]. Some of CI paradigms are: artificial neural

networks, evolutionary computation, swarm intelligence, artificial immune systems,

and fuzzy systems.

One shortcoming of CI techniques is the lack of efficient knowledge acquisition,

representation and retrieval structures. Thus, there is a demanding need to develop

more efficient tools for the representation and retrieval of knowledge [84]. As a

framework for knowledge acquisition and representation, GrC serves as a paradigm

to overcome this shortcoming. There have been many studies that incorporate GrC

with various CI techniques. In this section, the integration of GrC methods with

fuzzy systems and NNs is discussed.

2.3.1 Fuzzy Systems

Generally, the integration of GrC methods in fuzzy system design aims to provide

more interpretable fuzzy rule base. As a result, complexity of the fuzzy system is re-

duced. In such granular fuzzy systems, antecedents of the fuzzy rules are represented

by granular extensions of the original fuzzy sets [85]. Particle swarm optimization is

used to find the optimal distribution of information granulation in order to achieve a
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balance between the complexity and performance of the constructed granular fuzzy

rule-based system.

GrC methods are used to describe data clusters automatically. A cluster is

described by a fuzzy IF-THEN rule providing knowledge that is more understandable

by human. In this case, each sample is given a fuzzy description then clustering is

guided by selected exemplar fuzzy descriptions [86].

Using GrC approaches, the rules of rule-based fuzzy systems are automatically

generated. Rough sets constructed by a genetic algorithm are used to generate

the fuzzy rules. Fuzzy rules generated using rough sets have a reduced number of

antecedent terms and a high coverage rate [87].

2.3.2 Neural Networks

NNs are a powerful tool for solving non-linear mapping problems due to their strong

fault tolerance, self-organization and massive parallel processing. NNs are widely

used in many fields of science and many areas of application [88]. However, due

to the distributed style of NNs, they are regarded as black boxes, i.e. they are

difficult to interpret. In addition, traditional NNs have some disadvantages like

long training time and the high computational complexity when dealing with high

dimensional problems. One way to address the problem of computational complexity

is to decompose the problem into a set of simpler and easier to handle subtasks. GrC

is a suitable framework to achieve this modular approach.

Due to the architecture of traditional NNs, they are primarily used to process

numeric data. However, there are many cases where processing of non-numeric data

(e.g. linguistic data) is desired. Incorporating concepts and methods of GrC allows

NNs to deal with data of low granularity (i.e. non-numeric data) as information

granules [89]. Based on the granularity of data and architecture of NNs, four classes

of NNs [43]:

• Networks where both input data and structures (connections) are of high

granularity. Standard numerically-driven NNs and their training methods

belong to this class. Generalisation in networks of this class is represented by

their ability to predict outputs of new numeric entries.
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• Networks trained using numeric data (data of high granularity) but used

with input data of low granularity (granulated input). Networks of this class

have to be able to process non-numeric data (data of low granularity), usually

through a preprocessing input layer. Outputs of theses networks tend to be

of low granularity and their generalization includes the ability to deal with

inputs of varying granularity.

• Networks with granular connections (architecture of low granularity ) but

used with input data of high granularity. The outputs of such networks may

be of low granularity as a result of their granular connections.

• Networks where both input data and structures (connections) are of low gran-

ularity.

The fusion of GrC and NNs results in Granular Neural Networks (GNNs) that

belong to the last three classes of the above classes. The development of GNNs

comprises of two key stages [43]:

• The first stage is information granulation where information granules are

formed from the numeric data.

• Then, NNs are trained by the information granules resulted from the first

stage. That is, the NN does not deal with the numeric data, instead, it deals

with information granules of lower granularity.

One approach to construct a GNN is to build a NN based on fuzzy IF ... THEN

rules [90]. Each rule is represented by a hidden layer node and the weights of

connections are fuzzy sets of the rule instead of numerical values. Fuzzy sets used by

the fuzzy rules represent knowledge that can be extracted from the NN architecture.

An illustrative example is shown in Figure 2.5.

Fuzzy rule based GNNs are used in many applications like performing land use

classification of satellite images [90, 91]. A fuzzy rule based evolving GNN is used

for the modelling of evolving fuzzy system from fuzzy data streams of non-stationary

environments [92]. In this system, granular fuzzy models are constructed using

trapezoidal membership function representation.
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FIGURE 2.5. An illustrative example of a fuzzy NN built from two fuzzy
rules [90]: IF rainfall is heavy AND altitude is low THEN yield is
good, IF rainfall is light AND altitude is high THEN yield is bad

A NN whose connection weights are represented by fuzzy sets (linguistic terms)

is used to determine the natural granularity of a dataset [93]. The GNN is based

on multilayer perceptron architecture and the back-propagation learning algorithm

with momentum. Linguistic arithmetic operations based on fuzzy sets are used in

training the granular connection weights.

Another method to the realisations of GNNs is the interval-valued NN. In the

approach of interval-valued NNs, the connections of standard (numeric) NNs are

augmented by granular connections (intervals) formed from granulating a data set

[89].

In addition to fuzzy and interval approaches, many studies that aim to develop

GNNs adopt approaches based on rough sets. For example, a NN is developed

from a set of rough rules extracted from data in a framework named rough rule

granular extreme learning machine [94]. The rough rules are extracted by a process

of data reduction using the algorithms of attributes reduction and attributes values

reduction in rough set theory.
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Hybrid methods that involve the combination of rough set and fuzzy set are em-

ployed in the development of GNNs. A fuzzy rough GNN that is based on multilayer

perceptron and back-propagation algorithm is used for pattern classification [95, 96].

Initial weights of the GNN are derived from knowledge extracted from data using

fuzzy rough set theoretic techniques. Input and target vectors are represented by

fuzzy granules and membership values.

2.4 Granular Computing Applications

GrC has a wide spectrum of applications like decision making [97, 98, 99], pattern

recognition [100, 101, 102], image segmentation [103, 104, 105] and data mining

[106, 107, 108]. In this section, applications of GrC in data clustering and classifica-

tion are presented.

2.4.1 Data Clustering

As discussed in Section 2.2.4, cluster analysis is one of many fields that provide

frameworks for the concepts and approaches of GrC. Conventional clustering meth-

ods are unsupervised, i.e. there is no prior knowledge about the training data

set nor the desired clustering output. However, some clustering methods, namely

semi-supervised clustering methods, make use of information or constraints on the

clusters or desired output for a subset of the training data set [109]. While both

unsupervised and semi-supervised clustering methods aim to group data into clus-

ters, GrC aims to use the resulted granules (clusters) as information entities that

represent the data at a certain level of abstraction. On the other hand, the approach

and concepts of GrC are widely adopted for the task of clustering. For example,

GrC concepts in fuzzy sets and rough sets are employed to develop soft clustering

methods.

Conventional clustering uses hard partitioning that assign each object into only

one cluster. However, for many practical applications, there is incompleteness and

uncertainty in data. Clustering based on GrC allows for soft partitioning. That is,

allowing partial inclusion and overlap of clusters. In addition, the multi-level gran-

ularity approach of GrC facilitates processing high-dimensional data or providing
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abstract (general) view of finely-detailed data. Other advantages of granularity clus-

tering include enabling the integration of different clustering methods and reducing

processing time and storage [77]. Clustering based on two main frameworks of GrC,

namely fuzzy granular clustering and rough granular clustering, are addressed here.

2.4.1.1 Fuzzy Granular Clustering

Fuzzy clustering methods are frequently used for granular clustering. One of the

widely used fuzzy clustering algorithms is FCM [110, 111, 112, 113]. For example,

FCM is used to create meaningful profiles of a social network of phone users. The

profiles are created by repeated applications of FCM to form granules that are de-

scribed by fuzzy cluster memberships [112]. Clustering guided by domain knowledge

is achieved by using FCM. The domain knowledge is represented by information

granules that portray user’s point of view at the data [113]. In this case, information

granules represent the viewpoints that serve as prototypes for the clustering process.

A fuzzy clustering algorithm called multi-step maxmin and merging algorithm is

used alongside with a clustering validity measure called granularity-dissimilarity

to find prototypes with optimal granularity [114]. The validity measure uses fuzzy

membership functions to calculate granularity. The algorithm involves merging the

worst granule (the granule with largest granularity and least dissimilarity) into

other granules until granulation criteria is reached.

Fuzzy granular gravitational clustering algorithm is based on Newton’s law of

universal gravitation and GrC [115]. In this algorithm, two user-set variables control

the granularity of the final resulted clusters. Clusters with low gravitational density

are merged into clusters with high gravitational density if the distance between

them is less than the radius, i.e. the first user-set variable. The algorithm continues

iteratively until no distance between two clusters is shorter than the user set radius.

The radius is changed each iteration according to the second user set variable to

control the number and size of clusters. The radius of influence of each cluster is

represented by a fuzzy membership function.

A rapid fuzzy rule clustering algorithm based on granular computing is used

to describe clusters [86]. The algorithm comprises of an unsupervised feature se-
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lection method and data granulation. Data granulation is based on exemplar fuzzy

descriptions selected from descriptions created by the feature selection method for

all samples. A single fuzzy rule is extracted from each granule to make it under-

standable for humans.

2.4.1.2 Rough Granular Clustering

As a framework of GrC, rough sets are used in many studies in data clustering

[116, 117, 118, 119]. The rough inclusion and rough membership function allow for

an object to partially belong to more than one cluster.

One application of rough granular clustering is document clustering and its

application in search engine technology and the problem of Web search result

clustering [120]. The approach is based on tolerance rough set that is used to provide

approximation of concepts in documents and to enhance the vector representation

of text snippets. As a result, clusters of documents of similar concepts are formed

followed by cluster labelling that is derived from tolerance classes.

Another application of rough granular clustering is the development of ordered

ranking of objects [117]. Daily price patterns are grouped based on volatility using

an ensemble of two rough ordered clustering scheme.

2.4.2 Classification

Classification is a supervised learning method that aims to group or cluster objects

into predefined groups (classes) based on certain criteria. One important desirable

characteristic of classification systems is their ability to interpret the data structures

underlying the classification model (e.g. the decision rules). That is, the system

should be able to extract knowledge related to the classification task regardless of

data complexity [15]. In this regard, GrC is an appropriate approach that allow for

the automatic extraction and representation of knowledge, hence, there has been

many studies that have adopted this approach to address classification problem.

GrC approach to classification is adopted in various applications. For example,

GrC helps in improving the classification of photographic images [15] and remote

sensing images [90, 121]. GrC provides an effective framework for text classifica-
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tion and categorisation [32, 33] and pattern classification [122, 123]. In addition,

relational data classification is addressed through GrC approach [31]. Another

application of GrC in classification is medical and biomedical data classification

[124, 125, 126]. Numerical data classification [127] and financial data classification

[128] are also addressed through GrC.

In general, a classification system based on GrC is realised in two stages:

• First, information granulation is performed by partitioning, covering or other

methods. The resulted granules provide a knowledge base that describes

features, semantics and/or structures of data.

• Based on information granules, the next stage involves categorising data into

predefined classes according to some measure of similarity.

The construction of information granules is achieved by any of granule modelling

methods. Data clustering algorithms are widely used to construct information gran-

ules [22, 33, 127, 129]. Another method for the formation of granules that is used

in image classification problems is image segmentation [15, 121]. Also, a method

that relies on fuzzy inclusion relation to perform granulation is presented in [26].

Divide-and-conquer principle is used in [124] to form granules through partitioning.

The next stage involves a classification technique that is based on machine learn-

ing, computational intelligence, statistical analysis, etc. A set of rules that is induced

from the granules constructed in the first stage, is used to perform the classification

[28, 31, 121]. Alternatively, fuzzy sets are employed for the classification task [129].

SVMs are frequently used for classification in this stage too [124, 125, 126].

GrC helps solving the imbalanced data challenge where most of the data samples

are labelled as one class and far few samples are labelled as the other class. With

imbalanced data, traditional machine learning algorithms usually achieve high accu-

racy for the majority class but poor accuracy for the minority class. A method based

on GrC is proposed in [130] to solve this problem. The method, called "knowledge

acquisition via information granulation", uses information granulation to eliminate

some unnecessary details by representing data by granules at a selected level of

granularity. As a result, the minority examples in imbalanced learning tasks are
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better identified. The level of granularity is determined using two proposed indices:

the homogeneity index (H-index) and the undistinguishable ratio (U-ratio).

2.5 Conclusions

Fundamentals, principles, methods and applications of GrC were introduced in this

chapter. GrC is a general computation theory that imitates human thinking and

reasoning by dealing with information as a form of aggregates (i.e. information

granules). An information granule is a collection or group of elements (usually data

points) that are linked together due to the fact that they share some degree of simi-

larity, functionality or indistinguishablity. GrC facilitates dealing with information

by providing a theoretical framework to deal with information at different levels of

granularity, that is different levels of specificity/abstraction.

The process of information granulation has been one of the key components

of several models and frameworks that are developed in various domains. Some

of these frameworks are: interval computation, rough sets, fuzzy sets and cluster

analysis. One of the main aims of interval analysis, fuzzy sets theory and rough set

theory is to address vagueness and uncertainty. Interval theory addresses the the

uncertainty that results from numerical computation by approximation (interval

number). While fuzzy set theory uses fuzzy membership to address gradualness

of knowledge, rough set theory addresses granularity of knowledge through rough

approximation and rough membership (based on indiscernibility relation).

As a framework for knowledge acquisition and representation, GrC serves as

a paradigm to overcome some shortcomings of CI, specifically, the lack of efficient

knowledge acquisition of CI techniques. There have been many studies that in-

corporate GrC with various CI techniques in order to develop more efficient tools

for the representation and retrieval of knowledge. GrC methods are employed in

fuzzy system design to provide more interpretable fuzzy rule base and reduce its

complexity.

GrC is a suitable framework to achieve a modular approach to address the

problem of computational complexity of NNs by decomposing the problem into a set

of simpler and easier to handle subtasks. Incorporating concepts and methods of
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GrC allows NNs to deal with data of low granularity (i.e. non-numeric data) that

exist in many applications.

GrC has a wide spectrum of applications like decision making, pattern recogni-

tion, image segmentation and data mining. Applications of GrC in data clustering

and classification were presented in this chapter. Due to the intrinsic relationship be-

tween clustering and GrC, the approach and concepts of GrC are widely adopted for

the task of clustering. From the viewpoint of GrC, granularity level is determined by

cluster size (or total number of clusters). Different granularity levels can be achieved

by varying the similarity threshold used by the clustering method which results in

varying the size and number of clusters. Clustering based on frameworks of GrC,

such as fuzzy sets and rough sets, allows for soft partitioning (partial inclusion

and overlap of clusters). In addition, the multi-level granularity approach of GrC

facilitates processing high-dimensional data or providing abstract (general) view of

finely-detailed data.

GrC is an appropriate approach that allow for the automatic extraction and

representation of knowledge, hence, there has been many studies that have adopted

this approach to address classification problem. GrC provides classification systems

with the ability to interpret the data structures underlying the classification model

(e.g. the decision rules).
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CLUSTERING-BASED GRANULATION

FOR DATA CLASSIFICATION

AMETHOD of clustering-based information granulation for the problem of data

classification is presented in this chapter. The proposed method is used for

the identification of fuzzy classifiers. Section 3.1 provides a brief introduction

followed by Section 3.2 that introduces the FCM method used in the proposed

method. The proposed method is described in Section 3.3. The implementation of the

proposed method and experimental setup and results are provided in Section 3.4.

Section 3.5 is dedicated to the application of the proposed method in fuzzy system

identification and the comparison of its performance to standard FCM-based fuzzy

systems. Conclusions of this chapter are provided in Section 3.6.

3.1 Introduction

Data clustering is an unsupervised learning method that aims to group or cluster

objects into groups (clusters) based on the similarities among the feature variables.

Data clustering is one of the most widely studied in the data mining and machine

learning paradigms. It has a wide range of applications such as handwriting recogni-
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tion [131], document clustering [132], gene expression analysis [133, 134, 135] and

content-based image retrieval [136, 137].

The basic problem of clustering may be stated as follows [138]

“Given a set of data points, partition them into a set of groups which are as

similar as possible.”

Clustering provide a concise model of the data which can be interpreted in the

sense of either a summary or a generative model. There is a wide spectrum of data

clustering algorithms depending on data type and the nature of of the problem. Some

of the widely used clustering algorithms are: Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [139], k-means algorithm [140] (centre-based

algorithm), the global k-means algorithm [141] (search-based algorithm) and FCM

algorithm [142, 143].

The task of data clustering is similar to data classification in the sense that

it segments the input (feature) space into segments. However, in classification,

segmentation is based on knowledge of the structure of the class groups that is

extracted from the training data set in the training phase while in clustering the

segmentation is based on the similarities among the feature variables without

any knowledge of the structure of the class groups [14]. Data clustering serves as

an intermediate step in many types of classification methods, such as rule-based

clustering methods where the resulted clustering is used to construct classification

rules.

In this chapter, a method of information granulation is proposed to produce

information granules from training data set at multiple levels of granularity. The

granulation process is performed using a modified FCM clustering method followed

by a coarsening process, i.e. merging the clusters of higher granularity level into

larger clusters of lower granularity level. The resulted granules are to be used to

build binary classifiers of various types using various methods. In particular, the

identification of fuzzy classifier systems using the granulated data is investigated in

this chapter.
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3.2 Fuzzy C-means Clustering Method

3.2.1 Soft Clustering

In terms of how clusters are formed, there are two main types of clustering algo-

rithms: hierarchical and partitioning clustering. While in hierarchical clustering

input data are clustered in a nested hierarchy way, partitioning clustering uses

objective function to segment the input space into a number of clusters.

A clustering algorithm may assign an object to one and only one cluster. Such clus-

tering algorithm is referred to as hard clustering algorithm where the partitioning

is described by the matrix [144]:

U =



u11 u12 · · · u1n

u21 u22 · · · u2n

...
... . . . ...

uc1 uc2 · · · ucn


(3.1)

where n is the number of objects in the data set and c is the number of clusters.

In hard clustering, the partitioning matrix U has the following properties [144]:

• The association of an object to a cluster is either 1 or 0 (the object either

belongs to the cluster or not):

u ji ∈ {0,1}, 1≤ j ≤ c,1≤ i ≤ n (3.2)

• An object belongs to only one cluster:

c∑
j=1

u ji = 1, 1≤ i ≤ n (3.3)

• A cluster is associated with at least one object:

n∑
i=1

u ji > 0, 1≤ j ≤ c (3.4)
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In many cases, it is necessary for the clustering algorithm to be able to express

uncertainty in the association of objects to clusters. That is, the clustering algorithm

is required to allow for the overlapping of clusters. To meet this requirement, soft

clustering is used. In soft clustering, an object can belong to more than one cluster

with partial inclusion, namely, a fuzzy membership function as illustrated in Fig-

ure 3.1. In soft clustering, the partitioning matrix U has the following properties

[144]:

• The association of an object to a cluster is a fuzzy membership function that

takes a value between 0 and 1 (the object i belongs to the cluster j by a degree

of uji):

u ji ∈ [0,1], 1≤ j ≤ c,1≤ i ≤ n (3.5)

• The sum of degree of association of an object to all the clusters is equal to 1:

c∑
j=1

u ji = 1, 1≤ i ≤ n (3.6)

• A cluster is associated with at least one object by a degree greater than 0:

n∑
i=1

u ji > 0, 1≤ j ≤ c (3.7)

3.2.2 Fuzzy C-means Algorithm

FCM is one of the most popular clustering methods that has been used in a broad

spectrum of applications and has provided efficient solutions for several problems

[145]. FCM was developed by Dunn [142] and was then improved by Bezdek [143].

FCM results in a fuzzy partitioning of the input space into C clusters depending on

their means (centroid), hence the name.

The FCM algorithm attempts to find a solution for the minimisation of the

objective function [146]:

Jm(U ,V )=
n∑

i=1

c∑
j=1

um
jid

2(xi,v j) (3.8)

where:
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FIGURE 3.1. Illustrative example of fuzzy clustering. (a) Overlapping clus-
ters. (b) Fuzzy membership function of a sample point P0

X = {x1, x2 . . . xn} is the data,

c is the number of clusters; 2≤ c < n,

m is a weighting exponent that controls the "fuzziness" of the resulting clusters;

1≤ m <∞,

U is the fuzzy c-partition of X,

V = {v1,v2 . . .vc} is the vector of clusters centres,

d(., .) is an inner product metric, e.g. Euclidean distance.

The FCM algorithm can be formalised by the following iterative procedure:

1. Starting with fixed c and m, choose an initial (usually, random) matrix U0.

2. For step k,k = 1,2, . . . I trmax, perform the following:

3. Compute new clusters centres V k, j = 1,2, . . . c using the equation:
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v j =

n∑
i=1

um
jixi

n∑
i=1

um
ji

(3.9)

4. Compute the updated fuzzy c-partition matrix Uk using the equation:

u ji = 1
c∑

k=1

( d(xi,v j)
d(xi,vk)

) 2
m−1

(3.10)

5. If k = 1 return to step 2. Otherwise, compare Uk to Uk−1. If ‖Uk −Uk−1‖ < ε

stop. Otherwise, set Uk−1 =Uk and return to step 2.

The output of the algorithm is the fuzzy c-partition matrix Uk and the clusters

centres V k . An alternative termination criteria is to compare the value of the

objective function Jk
m to Jk

m −1 [147], i.e. the last step of the above algorithm is

replaced by:

5. Compute Jk
m(Uk,V k) using equation 3.8.

6. If k = 1 return to step 2. Otherwise, compare Jk
m to Jk−1

m . If |Jk
m−Jk−1

m | < ε stop.

Otherwise, set Uk−1 =Uk, Jk−1
m = Jk

m, and return to step 2.

3.3 Granulation using FCM

Information granulation is the process of forming information granules at a certain

level of granularity. The main aim of information granulation is to facilitate dealing

with information by providing a theoretical framework to deal with information

at different levels of granularity. One of the frameworks of forming information

granules is data clustering. In this section, a method of granulation using a modified

FCM algorithm, namely FCM-based Granulation (FCMGr), is proposed for the task

of binary data classification. FCMGr uses an iterative sequence of a modified FCM

data clustering followed by a set of cluster merging steps to generate granules for

the lower granularity level in each iteration.
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3.3.1 The proposed FCM clustering algorithm

To use the FCM algorithm for generating data granules for binary data classification,

it is desirable to differentiate data points belonging to different classes. In general,

there are two approaches to achieve this differentiation: clustering data belonging to

each class separately or including class labels as an additional input which increases

the distance between two data points belonging to different classes.

While the second approach increases the dimensionality of the input data (hence

increases the computational time of the clustering process), it has the advantage

of reducing the effect of outliers points on the size of the clusters, especially in

regions of overlap of classes in the input space of high dimensional data at lower

granularity levels. This is illustrated in Figure 3.2 where two-dimensional two-class

data (Figure 3.2-a) are clustered by the two different approaches. Figure 3.2-c shows

the clusters resulted from clustering data points belonging to each class separately

while Figure 3.2-d shows the clusters resulted from clustering data with class labels

included as an additional input as shown in Figure 3.2-b. The outlier point at (5,2)

(blue circle) has a greater influence on clusters of the same class in the first approach

than the second approach. This influence is manifested by the wider clusters in the

first approach (Figure 3.2-c) resulting in more overlap between clusters of different

classes which suggest less efficient classification. FCMGr uses the second approach.

The data points and cluster centres combined with their corresponding class labels

are denoted by X̂ and V̂ respectively while the data points and cluster centres

without class labels are denoted by X and V respectively.

To use FCM in the proposed method of granulation, some modifications to the

algorithm are made. Firstly, the order of computing Û and V̂ is reversed. That

is, the modified FCM starts by choosing initial clusters centres V̂ 0 then computes

the new fuzzy partition matrix Ûk using equation 3.10 and the updated clusters

centres V̂ k+1 using equation 3.9. For the first granulation level (the level with the

highest granularity), the initial clusters centres V̂ 0 are chosen to be the points of the

input data after adding some small random noise (δ) to avoid singularity problem of

making d(x̂i, v̂k)= 0 in equation 3.10.
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FIGURE 3.2. Illustrative example of labelled data fuzzy clustering. (a) La-
belled data. (b) Labelled data with label as input. (c) Clustering each
class separately. (d) Clustering labelled data with label as input.

The second modification is that the fuzziness factor m is chosen dynamically for

each granularity level rather than being fixed prior the algorithm start. To determine

m, an objective function is proposed. For each granularity level, m is varied and the

value that minimises the objective function is used. The proposed objective function

is given by:

Fg(m)= A
c∑

j=1

n∑
i=1

Ci=L j

d(xi,v j)um
ji −B

c∑
j=1

n∑
i=1

Ci 6=L j

d(xi,v j)um
ji (3.11)

35



CHAPTER 3. CLUSTERING-BASED GRANULATION 3.3. GRANULATION USING FCM

where c is the number of clusters, Ci and L j are the class labels of xi and v j

respectively, and A and B are scaling factors. Initially, the number of clusters c is the

number of training samples. Then, for each granularity level, the merging process

determines c.

The first term of the objective function Fg is the sum of weighted distances of

each data point to clusters of similar class label (Ds) while the second term is the

sum of weighted distances of each data point to clusters of opposite class label (Do).

Minimising the objective function Fg with respect to m results in the best trade-off

between minimising Ds and maximising Do, i.e. maximising the inclusion of data

points to clusters of similar class label and the separation of data points from clusters

of opposite class label.

For imbalanced data (where data samples belonging to a class are significantly

more than the data samples belonging to the other class), the minimisation of Fg

usually leads to the domination of minimising the first term over maximising the

second term resulting in wide clusters with high values of inclusion (high values

of u ji for xi and v j of similar class labels) but with low separation values (high

values of u ji for xi and v j of opposite class labels). To overcome this issue, the scaling

factors A and B are introduced. Let PC equals the ratio of number of data points of

the class with less data samples to the number of data points of the class with more

data samples, then A is chosen to equal 1−PC and B equals PC.

It should be noticed that both d(xi,v j) and um
ji are computed for input data and

cluster centres without class labels (X and V respectively).

3.3.2 Cluster Merging Algorithm

After generating granules at a granularity level using the modified FCM, initial

clusters for the generation of granules at a lower granularity level are produced by

merging clusters of similar class labels that have weighted distance less than Rg

between them. The value Rg controls the granularity of level g, the higher its value

the lower the granularity of the level. The weighted distance between two merging

clusters of similar class is computed using the following proposed equation:
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D jk(v j,vk)= d(v j,vk)

1+

n∑
i=1

Ci 6=L j

u jiuki −
n∑

i=1
Ci=L j

u jiuki

2
n∑

i=1
Ci=L j

u ji ∗
n∑

i=1
Ci=L j

uki

 (3.12)

where Ci and L j are the class labels of the data point xi and cluster v j respectively.

Equation 3.12 means that the more points that belong to both v j and vk the

less the weighted distance D jk is and the higher granularity level that they will be

merged at. On the other hand, the more points of opposite class that are located

between v j and vk the more the weighted distance D jk is and the lower granularity

level that they will be merged at.

The merging of v j and vk is done by updating v j with the centre of the new

cluster using the equation:

v j = ṽ j + (vk − ṽ j)∗

n∑
i=1

uki

n∑
i=1

u ji

(3.13)

where ṽ j is the old value of v j.

After updating v j, v̂k and its corresponding ûki values are deleted. The merging

process is performed iteratively until no two clusters of the same class (v j, vk) have

D jk(v j,vk)< Rg for a certain granularity level g.

3.3.3 Complete proposed algorithm

The complete FCMGr algorithm can be stated as follows:

1. Set the initial clusters centres V̂ 0 = X̂ +δ and the granularity level index

Rg = 0.01.

2. For granularity level g = 1,2, . . ., set the initial fuzziness factor m = 1.1 and do

steps 3-11.
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3. For fuzziness factor m, set FMIN =∞ and do steps 4-8.

4. For step k,k = 1, . . . I trMAX , perform the following:

5. Compute new fuzzy c-partition matrix Ûk
g,m using the equation:

û ji = 1
c∑

h=1

( d(x̂i, v̂ j)
d(x̂i, v̂h)

) 2
m−1

(3.14)

6. Compute the updated clusters centres V̂ k
g,m using the equation:

v̂ j =

n∑
i=1

ûm
ji x̂i

n∑
i=1

ûm
ji

(3.15)

7. Compute Jk
g,m(Ûk, V̂ k) using the equation:

Jk
g,m(Ûk, V̂ k)=

n∑
i=1

c∑
j=1

ûm
jid

2(x̂i, v̂ j) (3.16)

8. If k = 1 return to step 4. Otherwise, compare Jk
g,m to Jk−1

g,m . If |Jk
g,m − Jk−1

g,m | < ε
continue to next step. Otherwise, set Ûk−1 = Ûk, Jk−1

g,m = Jk
g,m, and return to

step 4.

9. Compute Fg(m) using equation 3.11.

10. If Fg(m)< Fmin set Fmin = Fg(m), Ûbest
g = Ûk

g,m, V̂ best
g = V̂ k

g,m,mbest = m.

11. If m < mmax increase m by ∆m and return to step 3. Otherwise, continue to

the next step.

12. Compute Ug for input data and cluster centres without class labels (X and V
respectively) using equation 3.10 after setting m = mbest.

13. For each cluster v j in V best
g do steps 14-16.

14. For each cluster vk in V best
g ,k 6= j,Lk = L j do steps 15-16.
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15. Compute D jk(v j,vk) using equation 3.12.

16. If D jk(v j,vk)< Rg merge v j and vk by setting ṽ j = v j and using equation 3.13

then deleting v̂k and its corresponding ûki values.

17. If the number of clusters NC is more than two, increase Rg by ∆R and return

to step 2. Otherwise, stop.

The output of the algorithm is a set of granulation levels each of which consists

of a set of clusters centres V̂ best
g and a fuzzy partition matrix Ûbest

g . If no clusters are

merged at a certain Rg value, the resulted granulation level is deleted so that there

are only distinct granulation levels in the output. Figure 3.3 shows the flowchart of

the FCMGr algorithm.

3.4 Implementation

3.4.1 Data Sets

To test and evaluate the performance of FCMGr, benchmark data sets are used in

the rest of this chapter and throughout the next chapters. All of the data sets except

the last two are available from the UCI Machine Learning Repository [148]. The

data sets of the UCI Machine Learning Repository are widely used in classification,

regression and decision making research [149, 150, 151]. The selected data sets are

all associated with the task of binary classification and have various dimensionality

(number of attributes), size (number of samples) and class distribution. Table 3.1

summarises these properties of the selected data sets. To use these data sets in

training and testing classifier performance, the data are partitioned into training

and testing data, 80% and 20% respectively. Choosing different part of the data for

testing results in different training/testing partitioning of the data. Since the testing

data partition is 20% of the data, there are 5 training/testing partitionings (5-fold

cross validation): P1, P2 ... P5. Following is the description of each of the selected

data sets:

1. Pima Indian Diabetes Data Set: This data set contains records of Pima Indian

patients from the United States tested for diabetes. All patients are females
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Initialise
V̂ 0 = X̂ + δ,Rg = 0.01

For granularity level g = 1,2, . . .
initialise m = 1.1

For stepk,k = 1, . . . I trMAX

Set FMIN = ∞

Compute new fuzzy c-partition
matrix Ûk

g,m using Eq. 3.14

Compute V̂ k
g,m, j = 1,2, . . . c

using Eq. 3.15

Compute Jk
g,m(Ûk, V̂ k)

using Eq. 3.16

k = 1?

|Jk
g,m − Jk−1

g,m | < ε?

Set Ûk−1 = Ûk, Jk−1
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g,m

Compute Fg(m)
using Eq. 3.11.

Fg(m)< Fmin ?

Set Fmin = Fg(m), Ûbest
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m < mmax ?

m = m + ∆m

Set m = mbest and compute Ug

using Eq. 3.10.

For each cluster v j in V best
g

For each cluster vk in
V best
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Compute D jk(v j,vk)
using Eq. 3.12.

D jk(v j,vk)< Rg ?
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FIGURE 3.3. Flowchart of the FCMGr algorithm.
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at least 21 years old. The attributes of the data set are: number of times

pregnant, plasma glucose concentration (a 2 hours in an oral glucose tolerance

test), diastolic blood pressure (mm Hg), triceps skin fold thickness (mm), 2-

hour serum insulin (mu U/ml), body mass index (weight in kg / (height in m)2),

diabetes pedigree function, age (years), class variable (0 or 1).

2. BUPA Liver Disorders Data Set: This data set contains records of liver pa-

tients from USA. The first 5 attributes are all blood test results which are

likely to be related to liver disorders that might result from excessive alcohol

consumption. Each data sample constitutes the record of a single male indi-

vidual. The attributes of the data set are: MCV (mean corpuscular volume),

Alkphos (alkaline phosphotase), SGPT (serum glutamic-pyruvic transaminase,

alamine aminotransferase), SGOT (serum glutamic-oxaloacetic transaminase,

aspartate aminotransferase), GAMMAGT (gamma-glutamyl transpeptidase),

drinks (number of half-pint equivalents of alcoholic beverages drunk per day),

selector field (class labels).

3. ILPD (Indian Liver Patient Dataset): ILPD contains records of liver patient

and non liver patient. This data set contains 441 male patient records and

142 female patient records collected from north east of Andhra Pradesh, India.

Selector is a class label used to divide into groups(liver patient or not). The

attributes of the data set are: age of the patient, gender of the patient, total

Bilirubin, direct Bilirubin, Alkaline Phosphotase, SGPT (Alamine Aminotrans-

TABLE 3.1. Properties of the selected data sets [148].

Data set No. of samples No. of attributes Class distribution

Pima Indian 768 9 268/500 (1/0)

BUPA liver disorders 345 7 145/200 (0/1)

ILPD 583 11 167/416 (0/1)

Wisconsin breast cancer 699 8 241/458 (1/0)

Statlog heart disease 270 14 120/150 (1/0)

Focality of prostate cancer 500 10 91/409 (0/1)

Bladder cancer 234 8 97/137 (1/0)
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ferase), SGOT (Aspartate Aminotransferase), total protiens, Albumin, Albumin

and Globulin Ratio, selector field (class labels labelled by the experts).

4. Wisconsin Breast Cancer Data Set: This data set contains instances taken

from fine needle aspirates of human breast tissue. The data set was obtained

from the University of Wisconsin Hospitals, Madison, United States. There are

16 instances that contain a single missing attribute value. The first attribute

(sample code number) is discarded. The attributes of the data set are: sample

code number, clump thickness, uniformity of cell size, uniformity of cell shape,

marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, mitoses, class labels (2 for benign, 4 for malignant).

5. Statlog Heart Disease Data Set: This database contains 13 (excluding the class

labels) attributes extracted from a larger set of 75. The attributes of the data

set are: age, sex, chest pain type (4 values), resting blood pressure, serum

cholestoral in mg/dl, fasting blood sugar > 120 mg/dl, resting electrocardio-

graphic results (values 0,1,2), maximum heart rate achieved, exercise induced

angina, oldpeak (ST depression induced by exercise relative to rest), the slope

of the peak exercise ST segment, number of major vessels (0-3) colored by

flourosopy, thal (3 = normal; 6 = fixed defect; 7 = reversible defect), class labels

(absence (1) or presence (2) of heart disease).

6. Focality of Prostate Cancer Data Set: The attributes of the data set are: PSA

(Prostate-Specific Antigen), PSA density, Bx (Gleason score), Bilateral, total

cores invaded, total cores, total length of tumour, total length, total length of

benign tissue, class labels (multifocal, 1 or 0).

7. Bladder Cancer Data Set: Bladder cancer data set comprises of progression in-

formation of patients who had undergone surgical tumour removal for bladder

cancer. The attributes of the data set are: age of patient, sex of patient, grade

of tumour, stage of tumour, location of tumour (upper or lower half of urinary

tract), ever smoked, methylation percentage, class labels (progression, 1 or 0).
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3.4.2 Classification Measures

Several performance measures can be used to evaluate the performance of a classifier.

When the output of a classifier is compared to the target class labels, there can be

four types of outcome:

• True Positive (TP): when a positive class sample is correctly predicted.

• True Negative (TN): when a negative class sample is correctly predicted.

• False Positive (FP): when a negative class sample is incorrectly predicted as

positive class.

• False Negative (FN): when a positive class sample is incorrectly predicted as

negative class.

Where the positive and negative classes are chosen conventionally to be the minority

and majority classes respectively. The number of samples that belong to each of the

above outcomes can be summarised in a Confusion Matrix, as in Table 3.2. Several

measures are calculated based on some or all of these numbers aiming to provide

an accurate measure from a particular perspective. The simplest and widely used

measure is the over all accuracy defined as the ratio of the number of correctly

classified samples to the number of all samples:

Accuracy= TP +TN
TP +FP +TN +FN

(3.17)

Another measure is the Sensitivity (or True Positive Rate) which is the ratio of

the number of (TP) samples to the number of all positive samples:

Sensitivity= TP
TP +FN

(3.18)

TABLE 3.2. Confusion Matrix.

Actual Class Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN
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Similarly, the ratio of the number of (TN) samples to the number of all negative

samples is the Specificity (or True Negative Rate):

Speci f icity= TN
TN +FP

(3.19)

It can be noticed that for balanced data (number of positive samples ≈ number of

positive samples) accuracy measure reflects the measures of specificity and sensitiv-

ity as well. However, it is not the case with imbalanced data where high accuracy

can be achieved at the price of low specificity or sensitivity. For example, a classifier

whose output is always 1 can achieve 90% accuracy for data with 90% samples of

class 1, however, the sensitivity in this case is 0%. Another issue with calculating

the accuracy is the choice of the threshold value that separate the output values into

output class labels. The threshold value has a direct influence on accuracy and its

data dependant.

A performance measure that aims to overcome the above issues is Receiver

Operating Characteristic (ROC). ROC is a plot of the true positive rate (sensitivity)

versus false positive rate (1- specificity) while varying the threshold value. Higher

value of the sensitivity (y axis of the ROC) along with lower value of false positive

rate (x axis of ROC) means better classification performance. Thus, the Area Under

Curve (AUC) of the ROC is an indicator of the performance of the classifier in terms

of sensitivity and specificity for the full range of threshold values. Larger values

of AUC indicate better classification performance. Figure 3.4 shows an example

ROC with the red circle marking the optimal operation point. The optimal operation

point is chosen as the first intersection point of the ROC curve with a straight line

with slope S moving from from the upper-left corner of the ROC plot towards the

bottom-right corner. The slope S is given by:

S = N
P

(3.20)

where N = TN +FP and P = TP +FN.

To evaluate classification performance of the classifiers in this chapter and the

next chapters, the ROC is computed using training data to find the optimal threshold
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FIGURE 3.4. Receiver operating characteristic curve.

which is used to compute the output class labels of the test data. Then, both accuracy

and AUC are computed to measure classification performance.

3.4.3 Granulation Results

Table 3.3 shows the results of granulation of the selected data sets using FCMGr.

These results are for training/testing partition P1 of each data set. The number of

granulation levels can be controlled by the variable ∆R. Increasing ∆R increases

the number of merged clusters, hence reduces the number of granulation levels, and

vice versa. To produce granulation levels that have significant change in number

of clusters, a suitable ∆R has to be chosen. For example, referring to Table 3.3, a

suitable ∆R for Pima data set is found to be 0.05 while the suitable ∆R for Bladder

cancer data set is found to be 0.1. The suitable value of ∆R can be found by varying

it until a desired number of granularity levels is achieved.

45



CHAPTER 3. CLUSTERING-BASED GRANULATION 3.5. FUZZY CLASSIFIER DESIGN

In addition, it should be noticed that the number of granulation levels and the

size and number of clusters in each granulation level depend on the data samples

being granulated, that is using different data samples (e.g. different training/testing

partitioning) may result in different number of granulation levels and/or different

size and number of clusters in each granulation level. Table 3.4 shows the results

of granulation of the selected data sets using training/testing partitioning P2. For

instance, Pima data set has 11 granulation levels in Table 3.3 versus 12 granulation

levels in Table 3.4 for the same value of ∆R. The results shown in Tables 3.3 and 3.4

include the selected value of the fuzziness factor m for each granulation level.

3.5 Fuzzy Classifier Design

To evaluate the proposed clustering algorithm, the resulted clusters at each gran-

ulation level are used to build a fuzzy classifier. The performance of the classifiers

is evaluated using the selected data sets and two classification performance mea-

sures: accuracy and AUC. Following is a brief introduction to the fuzzy classification

systems followed by the experimental results.

3.5.1 Fuzzy Inference System

FISs are widely used in many applications, from system modelling, simulation and

control to classification and decision support. FIS is a computational technique that

relies on fuzzy logic for performing input-output mapping. It inherits, from fuzzy

logic, the ability to deal with vagueness and incompleteness of knowledge and the

ability of describing non-linear relationships between input and output.

A FIS consists of three components (as shown in Figure 3.5): a set of fuzzy if-then

rules, a database that defines the fuzzy membership functions used in these rules and

a reasoning mechanism that performs the inference process. Inputs are transformed

to fuzzy sets using the membership functions defined in the database of the FIS

and the output is computed from the fuzzy rules using the reasoning mechanism.

The consequent parts of the rules of the FIS can be fuzzy values (Mamdani model

[152]), a crisp value (type II), or a function of linear combination of input variables
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TABLE 3.3. Granulation results for the selected data sets (P1 partitioning).

Pima Indian diabetes data set

No of levels = 11, ∆R = 0.05

c 614 351 211 131 79 47 27 14 7 4 2

m 4.00 1.70 1.75 1.75 1.70 1.70 1.65 1.60 1.60 1.60 1.80

BUPA liver disorders data set

No of levels = 11, ∆R = 0.05

c 273 146 86 54 37 25 15 9 6 4 2

m 4.00 1.80 1.90 1.95 1.80 1.85 2.10 1.90 1.80 1.80 1.45

ILPD data set

No of levels = 11, ∆R = 0.1

c 463 255 140 80 44 27 15 9 5 3 2

m 4.00 1.70 1.65 1.60 1.55 1.40 1.40 1.40 1.50 1.50 1.30

Wisconsin breast cancer data set

No of levels = 13, ∆R = 0.1

c 546 367 257 178 125 85 51 29 16 9 5 3 2

m 4.00 4.00 1.70 1.70 1.65 1.65 1.60 1.60 1.55 1.75 2.15 2.20 2.30

Statlog heart disease data set

No of levels = 13, ∆R = 0.15

c 216 191 162 130 105 77 58 37 21 11 6 4 2

m 2.95 1.75 1.50 1.50 1.45 1.40 1.35 1.35 1.30 1.30 1.30 1.30 1.40

Focality of prostate cancer data set

No of levels = 12, ∆R = 0.1

c 400 217 121 70 39 22 13 8 6 4 3 2

m 4.00 2.55 2.25 1.95 1.75 1.50 1.45 1.40 1.45 1.30 2.20 4.00

Bladder cancer data set

No of levels = 13, ∆R = 0.1

c 187 132 97 77 54 39 35 32 22 14 8 4 2

m 1.30 2.10 1.95 1.85 1.75 1.70 1.55 1.60 1.45 1.35 1.55 1.40 1.75
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TABLE 3.4. Granulation results for the selected data sets (P2 partitioning).

Pima Indian diabetes data set

No of levels = 12, ∆R = 0.05

c 614 348 208 126 76 45 27 15 9 5 3 2

m 4.00 1.70 1.70 1.70 1.70 1.60 1.60 1.55 1.55 1.50 1.50 1.75

BUPA liver disorders data set

No of levels = 12, ∆R = 0.05

c 273 146 84 53 36 25 17 13 8 6 4 2

m 4.00 1.65 1.65 1.70 1.60 1.60 1.45 1.45 1.50 1.45 1.45 1.35

ILPD data set

No of levels = 10, ∆R = 0.1

c 463 254 138 76 39 22 11 6 3 2

m 4.00 1.80 1.70 1.60 1.60 1.40 1.30 1.40 1.50 1.30

Wisconsin breast cancer data set

No of levels = 13, ∆R = 0.1

c 546 370 269 188 131 89 52 29 17 10 5 3 2

m 1.30 1.65 1.60 1.55 1.50 1.45 1.35 1.30 1.30 1.30 1.55 1.80 2.05

Statlog heart disease data set

No of levels = 13, ∆R = 0.15

c 216 193 165 130 102 75 53 36 20 11 6 4 2

m 2.95 1.75 1.55 1.55 1.40 1.45 1.30 1.35 1.30 1.30 1.30 1.30 1.40

Focality of prostate cancer data set

No of levels = 12, ∆R = 0.1

c 400 222 125 73 44 28 17 10 7 4 3 2

m 4.00 4.00 4.00 2.80 2.30 1.75 1.65 1.50 1.50 1.30 2.35 4.00

Bladder cancer data set

No of levels = 14, ∆R = 0.1

c 187 128 94 75 54 39 32 31 22 15 9 5 3 2

m 1.30 2.30 2.10 2.00 1.90 1.80 1.75 1.75 1.40 1.60 1.55 1.45 1.60 1.95
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FIGURE 3.5. Block Diagram of a Fuzzy Inference System.

(TSK model [153]). In the case of Mamdani model, the process of defuzzification is

required to produce the final crisp value of the output.

Information required to design FIS and construct its rules can be obtained from

the knowledge of human experts. However, with increasing the complexity of the

system, the number of inputs and the number of fuzzy variables for each input, it

becomes more difficult for human experts to generate these rules. Instead, some

computational methods (e.g. data clustering) can be used to generate fuzzy rules

from data automatically.

The central problem of fuzzy modelling is the generation of fuzzy rules that fit the

data to the highest possible extent. The task of generating and learning fuzzy rules

from numerical data has been addressed by different approaches, some examples are:

clustering methods [154], particle swarm optimisation [155], fuzzy genetic algorithm

[156], rough sets model with genetic algorithms [157] and data mining methods

[158].

Data clustering is one of the most widely used approaches for rule base generation.

Fuzzy sets of an input variable can be obtained from data clusters by projecting each

cluster to the dimension that corresponds to the input as shown in Figure 2.2.
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3.5.2 Fuzzy System Identification

For each granulation level, a fuzzy system is constructed from the clusters centres

V̂g, the fuzzy partition matrix Ûg and the training data samples. A fuzzy rule is

constructed from each cluster with the number of antecedent fuzzy variables equals

to the dimensionality of the cluster (number of inputs) and the consequent fuzzy

variable corresponds to the class label of the cluster. For an antecedent fuzzy variable

at dimension d, a fuzzy membership function is defined for each cluster using the

cluster centre at the corresponding dimension v̂ j(d), the corresponding values of the

fuzzy partition matrix û ji and and the training data samples at the corresponding

dimension X̂ (d). Gaussian membership functions are used to represent the fuzzy

variables. A Gaussian function has a symmetric bell curve shape and is defined as

follows:

f (x)= ae−x−µ2/2σ2
(3.21)

where the parameter a determines the peak of the curve, µ is the centre of the curve

and the parameter σ controls the width of curve. So, a Gaussian function of peak

of 1 is defined by the two parameters µ and σ. A Gaussian membership function is

defined using the cluster centre v̂ j(d), the fuzzy c-partition matrix û ji and and the

training data samples X̂ (d) by setting µ= v̂ j(d) and computing σd j as follows:

σd j =
1
n

n∑
i=1

√
− (x̂i(d)− v̂ j(d))2

2log(û ji)
(3.22)

For data samples X̂ of dimensionality D, σD j and v̂ j(D) define the Gaussian

membership function of the consequent fuzzy variable.

3.5.3 Classification Results

The FCMGr algorithm is implemented using MATLAB R2016a. Using FCMGr, a

FIS is built from each granulation level of the selected data sets and compared to

standard FCM with various values of fuzziness factor m. Since standard FCM use

random initial fuzzy c-partition U, each FCM classifier is trained and tested for
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10 times and the mean result is calculated. Detailed results for 4 sample data sets

are given in Tables 3.5-3.8 and a summary of the results for all the data sets is

given in Table 3.9. Table 3.5 shows the test results for the bladder cancer data set

at various granulation levels. The values of fuzziness factor m are chosen from the

range (1.3-2.8) in steps of 0.25. The table shows the accuracy (%) and AUC (between

parentheses) with results in bold indicates the highest (best) result. The results

shown in the table are for granulation levels with number of clusters less than 50.

From the table, it can be noticed that fuzzy classifiers built from the granules of

FCMGr have better results at most of the granulation levels. Similar results can

be seen in Table 3.7 for the Wisconsin breast cancer data set, although the AUC of

FCMGr is lower than the standard FCM at most of the granulation levels which

suggests that the improvement in accuracy is a result of correctly classifying more

samples of the majority class at the price of misclassifying more samples of the

minority class.

However, the results of FCMGr are higher in only about half the granulation

levels of the heart disease data set, as shown in Table 3.6, and less than half the

granulation levels of the BUPA liver disorders data set, as shown in Table 3.8.

To summarise the results for all data sets, the results of the granulation level

that has best combined accuracy and AUC over the selected range of granulation

levels are compared to the results of standard FCM classifiers with number of

clusters that results in best combined accuracy and AUC. These results are shown in

Table 3.9. The results show that FCMGr achieved better classification performance

in terms of accuracy and AUC. However, for each set of training data, best results are

achieved from a different granulation level. Therefore, it is necessary to find a method

of automatically selecting granulation levels that results in better classification

performance. This task is equivalent to a crucial task in the identification of a

FIS, that is, selecting the number of fuzzy rules of a FIS that results in better

classification performance.

3.5.4 Automatic Selection of Granulation Level

To select the granulation level that results in highest classification quality, three

measures are considered for each level:
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TABLE 3.5. Accuracy (%) and AUC (%) for bladder cancer data set.

NC FCMGr FCM
m=1.30

FCM
m=1.55

FCM
m=1.80

FCM
m=2.05

FCM
m=2.30

FCM
m=2.55

FCM
m=2.80

39 65.96
(72.07)

54.68
(50.79)

55.53
(57.96)

58.51
(58.90)

54.68
(48.44)

55.53
(46.95)

54.89
(46.74)

56.38
(45.93)

35 65.96
(63.83)

53.62
(50.04)

56.81
(59.81)

58.51
(60.96)

55.32
(48.03)

54.47
(46.77)

58.09
(48.10)

54.47
(46.91)

32 63.83
(64.84)

52.98
(55.56)

58.72
(62.07)

60.21
(62.09)

54.47
(47.52)

54.26
(46.13)

55.96
(44.75)

56.60
(48.37)

22 61.70
(67.58)

58.51
(62.92)

58.94
(64.84)

60.21
(63.69)

54.89
(47.11)

55.96
(47.77)

54.68
(46.44)

55.74
(49.51)

14 63.83
(72.44)

62.34
(63.74)

64.04
(69.94)

62.34
(64.54)

55.96
(53.81)

55.96
(48.64)

55.96
(44.07)

56.81
(44.01)

8 68.09
(70.60)

63.19
(63.99)

64.47
(67.39)

65.74
(66.08)

55.53
(52.01)

53.83
(49.82)

54.89
(47.29)

57.87
(47.25)

4 57.45
(61.63)

58.51
(63.77)

62.77
(62.10)

63.83
(64.95)

54.89
(51.98)

55.53
(52.05)

54.68
(44.84)

55.53
(47.02)

2 61.70
(60.99)

62.98
(62.25)

65.96
(64.52)

62.77
(61.36)

57.23
(58.58)

58.51
(54.39)

54.89
(41.38)

57.45
(47.00)

TABLE 3.6. Accuracy (%) and AUC (%) for Statlog heart disease data set.

NC FCMGr FCM
m=1.30

FCM
m=1.55

FCM
m=1.80

FCM
m=2.05

FCM
m=2.30

FCM
m=2.55

FCM
m=2.80

37 57.41
(63.96)

72.78
(77.64)

62.78
(68.05)

66.48
(74.83)

62.96
(69.90)

61.48
(65.51)

55.37
(59.42)

57.41
(56.71)

21 79.63
(81.32)

72.59
(79.40)

62.96
(68.06)

62.59
(69.21)

62.41
(69.34)

60.37
(64.03)

58.33
(61.13)

58.15
(55.09)

11 77.78
(81.11)

70.56
(76.13)

64.26
(74.12)

59.26
(63.95)

61.48
(68.90)

60.56
(62.45)

58.52
(64.36)

53.70
(55.38)

6 64.81
(77.85)

68.89
(78.23)

65.74
(75.75)

61.30
(68.56)

63.52
(69.33)

60.00
(64.10)

60.37
(62.96)

57.41
(55.15)

4 72.22
(76.81)

66.67
(76.38)

63.33
(71.78)

63.52
(70.69)

57.78
(64.28)

61.11
(68.12)

60.00
(61.01)

56.48
(54.00)

2 70.37
(76.60)

70.37
(76.67)

62.04
(72.13)

60.56
(69.23)

64.26
(71.06)

61.30
(68.11)

56.48
(57.26)

53.89
(54.23)
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TABLE 3.7. Accuracy (%) and AUC (%) for Wisconsin breast cancer data set.

NC FCMGr FCM
m=1.30

FCM
m=1.55

FCM
m=1.80

FCM
m=2.05

FCM
m=2.30

FCM
m=2.55

FCM
m=2.80

29 94.89
(97.17)

92.55
(97.51)

92.85
(97.58)

92.04
(97.42)

93.72
(96.35)

92.99
(95.56)

92.99
(95.73)

92.70
(95.29)

16 96.35
(98.40)

91.82
(98.20)

93.28
(97.74)

92.48
(97.72)

92.77
(96.10)

92.85
(95.45)

92.85
(95.60)

92.85
(95.69)

9 91.97
(98.00)

91.09
(97.99)

95.77
(98.31)

93.65
(97.58)

93.43
(96.28)

92.85
(95.51)

92.77
(95.33)

92.92
(95.74)

5 95.62
(96.89)

92.63
(97.81)

94.01
(97.70)

93.87
(96.73)

93.43
(96.47)

92.92
(95.93)

92.70
(95.62)

92.70
(95.50)

3 94.16
(97.40)

91.82
(96.30)

91.24
(97.43)

91.53
(97.16)

93.43
(97.25)

94.16
(97.30)

94.16
(96.18)

94.16
(96.20)

2 93.43
(97.01)

91.24
(96.21)

92.70
(97.29)

90.51
(97.17)

92.70
(96.99)

93.43
(97.01)

92.70
(96.62)

92.70
(95.85)

TABLE 3.8. Accuracy (%) and AUC (%) for BUPA liver disorders data set.

NC FCMGr FCM
m=1.30

FCM
m=1.55

FCM
m=1.80

FCM
m=2.05

FCM
m=2.30

FCM
m=2.55

FCM
m=2.80

37 67.65
(61.64)

56.76
(47.14)

54.85
(55.54)

56.47
(54.41)

63.68
(56.15)

57.79
(48.62)

59.12
(49.24)

60.74
(51.13)

25 64.71
(58.45)

54.12
(44.64)

58.38
(52.89)

58.97
(55.93)

63.38
(56.43)

60.44
(49.24)

59.71
(50.53)

59.12
(49.51)

15 58.82
(51.01)

55.59
(48.46)

57.79
(55.35)

64.41
(55.43)

65.15
(59.58)

57.79
(48.95)

58.97
(49.30)

60.88
(49.27)

9 66.18
(53.24)

58.97
(54.41)

65.15
(51.35)

62.50
(52.23)

61.32
(53.77)

59.71
(46.42)

54.12
(48.46)

61.18
(49.78)

6 64.71
(53.29)

61.18
(53.82)

62.50
(52.91)

58.24
(41.67)

57.50
(45.71)

59.12
(45.77)

56.18
(47.89)

57.94
(49.09)

4 60.29
(38.50)

59.26
(55.93)

56.76
(59.89)

60.44
(40.18)

58.38
(42.66)

57.06
(45.21)

58.97
(48.09)

62.06
(49.71)

2 61.76
(48.12)

57.35
(48.99)

60.29
(47.73)

63.24
(49.61)

64.71
(49.61)

64.71
(50.70)

66.18
(52.32)

66.18
(53.91)
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TABLE 3.9. Maximum values of accuracy (%) and AUC (%) for all the data
sets.

Data set FCMGr FCM
m=1.30

FCM
m=1.55

FCM
m=1.80

FCM
m=2.05

FCM
m=2.30

FCM
m=2.55

FCM
m=2.80

Pima 79.22
(84.32)

74.68
(80.99)

75.84
(82.00)

75.00
(80.82)

68.83
(79.58)

68.64
(75.39)

70.13
(77.92)

69.61
(78.89)

BUPA 67.65
(61.64)

61.62
(55.47)

56.76
(59.89)

59.26
(61.37)

65.15
(59.58)

64.71
(50.70)

66.18
(52.32)

66.18
(53.91)

ILPD 68.10
(66.91)

70.17
(60.46)

69.83
(58.68)

66.38
(57.06)

67.50
(56.73)

68.45
(58.85)

67.67
(60.96)

69.05
(60.43)

Wisconsin 96.35
(98.40)

92.63
(97.81)

95.77
(98.31)

93.65
(97.58)

93.43
(97.25)

94.16
(97.30)

94.16
(96.18)

94.16
(96.20)

Statlog 79.63
(81.32)

72.59
(79.40)

73.33
(81.23)

67.78
(77.62)

64.26
(73.44)

63.33
(71.29)

60.00
(66.10)

57.41
(56.71)

Focality 84.00
(70.12)

85.00
(69.25)

85.80
(69.89)

85.00
(67.91)

83.90
(68.99)

83.30
(72.70)

85.00
(71.31)

85.00
(72.96)

Bladder
cancer

68.09
(70.60)

63.19
(63.99)

64.04
(69.94)

65.74
(66.08)

57.23
(58.58)

58.51
(54.39)

56.81
(49.58)

56.60
(48.99)

• The minimum value of Fg(m) defined by Equation 3.11 that is obtained in

generating level g.

• The minimum value of the objective function Jk
g,m(Ûk, V̂ k) defined by Equa-

tion 3.16 that is obtained in generating level g at m = mbest.

• Number of granules NC.
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The three measures are combined in the following equation:

Tg = AFg(m)+BJk
g,m(Ûk, V̂ k)+CNC,m (3.23)

where A, B and C are scaling variables chosen so that the three measures are

normalised. That is:

A = 1/max(Fg(m)) (3.24)

B = 1/max(Jk
g,m(Ûk, V̂ k)) (3.25)

C = 1/max(NC,m) (3.26)

The granulation level that minimises Tg is selected to build the fuzzy classifier.

The classification results of the automatically selected granulation level for each

selected data set are shown in Table 3.10. The results are compared to the highest

results of FCM fuzzy classifiers with same values of fuzziness factor m selected

in Section 3.5.3. The highest results for each value of m are chosen from 7 FCM

fuzzy classifiers with number of clusters equal to 2, 3, 5, 10, 15, 25, 35. The number

of clusters for the FCM classifiers are fixed because the experiment is conducted

5 times with different training/testing partitioning each time (P1-P5). Therefore,

number of clusters of each granulation level of the FCMGr is different for each

training/testing partitioning. The FCM fuzzy classifiers are trained and tested 10

times and the mean result is used.

It should be noticed that this approach of automatically selecting the granularity

level uses only training data since the desired outputs of testing data are unknown

in practical cases. As a result, the selected granularity level using the proposed

approach may not be the optimal granularity level for test data.

Results in Table 3.10 show that the granulation levels selected using the above

equation resulted in better accuracy than the selected FCM classifiers for all the

data sets over a wide range of number of clusters (NC and fuzziness factor m. In

addition, the AUC of FCMGr is higher for 4 out of 7 data sets.
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The automatically selected granulation level is different for each training/testing

partitioning. This can be seen in Figures 3.6 and 3.7 for Pima data set. Figure 3.6

shows the accuracy of 3 FCM classifiers with various number of clusters compared

to the accuracy of FCMGr at various granulation levels for training/testing parti-

tioning P1. Since the number of clusters in FCMGr is determined automatically, it

is not necessarily equal to the fixed number of clusters of the FCM classifiers. The

automatically selected granulation level, marked by a blue circle, has 7 clusters.

Figure 3.7 shows the results for training/testing partitioning P2 of the same data

set (Pima). In this case, the automatically selected granulation level has 9 clusters.

Figure 3.8 shows the mean accuracy for the 5 training/testing partitioning (P1-P5).

In this case, the accuracy of FCMGr is the mean of accuracies of 5 granulation levels

with different number of clusters.

TABLE 3.10. Accuracy (%) and AUC (%) of automatic selection of granulation
level.

Data set FCMGr FCM
m=1.30

FCM
m=1.55

FCM
m=1.80

FCM
m=2.05

FCM
m=2.30

FCM
m=2.55

FCM
m=2.80

Pima 73.16
(78.17)

74.68
(80.99)

75.84
(82.00)

75.00
(80.82)

68.83
(79.58)

68.64
(75.39)

70.13
(77.92)

69.61
(78.89)

BUPA 64.22
(63.84)

61.62
(55.47)

56.76
(59.89)

59.26
(61.37)

65.15
(59.58)

64.71
(50.70)

66.18
(52.32)

66.18
(53.91)

ILPD 72.03
(64.03)

70.17
(60.46)

69.83
(58.68)

66.38
(57.06)

67.50
(56.73)

68.45
(58.85)

67.67
(60.96)

69.05
(60.43)

Wisconsin 95.91
(98.43)

92.63
(97.81)

95.77
(98.31)

93.65
(97.58)

93.43
(97.25)

94.16
(97.30)

94.16
(96.18)

94.16
(96.20)

Statlog 78.15
(85.82)

72.59
(79.40)

73.33
(81.23)

67.78
(77.62)

64.26
(73.44)

63.33
(71.29)

60.00
(66.10)

57.41
(56.71)

Focality 81.60
(59.87)

85.00
(69.25)

85.80
(69.89)

85.00
(67.91)

83.90
(68.99)

83.30
(72.70)

85.00
(71.31)

85.00
(72.96)

Bladder
cancer

71.01
(68.11)

63.19
(63.99)

64.04
(69.94)

65.74
(66.08)

57.23
(58.58)

58.51
(54.39)

56.81
(49.58)

56.60
(48.99)

3.5.5 Multi-Level FCMGr

Instead of using one granulation level to construct a FIS, multi-levels of the FCMGr

can be used in the same way to produce a FIS. The set of all clusters of the selected
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FIGURE 3.6. Accuracy of automatic selection of best granulation levels for
Pima cancer data set (P1)

FIGURE 3.7. Accuracy of automatic selection of best granulation levels for
Pima cancer data set (P2).
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FIGURE 3.8. Mean accuracy of automatic selection of best granulation levels
for Pima cancer data set (P1-P5).

levels and the concatenation of all the fuzzy c-partition matrices of the selected levels

are used to construct the FIS. The constructed FIS consists of rules of different levels

of abstraction/specificity, thus it may provide better results than FIS generated

using single-level FCMGr for data sets where useful knowledge can be gained from

different levels of abstraction/specificity.

Table 3.11 shows the test accuracy and AUC results of fuzzy classifiers con-

structed using multi-level FCMGr (ML FCMGr) compared to fuzzy classifiers con-

structed using single-level FCMGr (SL FCMGr) and 3 FCM-based fuzzy classifiers.

Multi-level FCMGr has better accuracy than single-level FCMGr for three data sets,

which suggests that, for these data sets, useful knowledge can be gained from differ-

ent levels of abstraction/specificity. In addition, Table 3.11 shows the granulation

levels selected for each data set. It should be noticed that the granulation levels are

selected experimentally by evaluating various levels and selecting the level with

highest results.
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TABLE 3.11. Accuracy (%) and AUC (%) for multi-level FCMGr, single-level
FCMGr and FCM with different values of m.

Data set FCM
m=1.30

FCM
m=1.55

FCM
m=2.80

SL FCMGr ML
FCMGr

Levels

Pima 74.68
(80.99)

75.84
(82.00)

69.61
(78.89)

79.22
(84.32)

74.99
(77.94)

7,9

BUPA 61.62
(55.47)

56.76
(59.89)

66.18
(53.91)

67.65
(61.64)

68.33
(65.53)

6,7,10

ILPD 70.17
(60.46)

69.83
(58.68)

69.05
(60.43)

68.10
(66.91)

72.20
(67.92)

8,9

Wisconsin 92.63
(97.81)

95.77
(98.31)

94.16
(96.20)

96.35
(98.40)

96.05
(97.53)

8,11

Statlog 72.59
(79.40)

73.33
(81.23)

57.41
(56.71)

79.63
(81.32)

79.26
(84.49)

8,13,10,9

Focality 85.00
(69.25)

85.80
(69.89)

85.00
(72.96)

84.00
(70.12)

81.80
(60.69)

11,8

Bladder
cancer

63.19
(63.99)

64.04
(69.94)

56.60
(48.99)

68.09
(70.60)

69.71
(65.15)

4,6,11

3.5.6 Discussion

Three experiments were conducted in this chapter. Firstly, classification performance

of FCMGr in terms of accuracy and AUC was compared to 7 FCM-based fuzzy

classifiers with different values of fuzziness factor m and a number of clusters that

results in best accuracy and AUC. The granularity level that results in best accuracy

and AUC was chosen for FCMGr. In this experiment, FCMGr outperformed the

FCM-based fuzzy classifiers for 5 out of 7 data sets with margin of 3.7%-7% for

accuracy (and 6.6%-0.59% for AUC) approximately.

While the granularity level was chosen experimentally in the first experiment,

it was selected automatically in the second experiment. Although the automatic

selection did not produce optimal results for most of the data sets, it resulted in

better classification performance than the FCM-based fuzzy classifiers for 4 data

sets with margin of 5.27%-0.14% for accuracy and 4.59%-0.12% approximately. In

addition, the automatic selection resulted in better accuracy than experimental

selection for 2 data sets (and better AUC for 3 data sets) due to the fact that the
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proposed selection method is dynamic. That is, it selects the best granularity level

for each training partition independently rather than using fixed granularity level

for all training partitions as with the experimental method.

The third experiment involved evaluating multi-level FCMGr-based fuzzy clas-

sifiers. Compared to single level FCMGr, multi-level FCMGr resulted in better

accuracy in only 2 data sets (and better AUC in 4 data sets).

Results of the three experiments of this chapter show that performance of FCMGr-

based fuzzy classifiers depends on the data used. However, based on these results, it

can be concluded that FCMGr is effective for the purpose of building fuzzy classifiers

for most of the data sets used in this chapter.

3.6 Conclusions

In this chapter, a method of information granulation (FCMGr) was proposed to

produce information granules from data at multiple levels of granularity. The re-

sulted granules were used in the identification of fuzzy classifier systems using the

granulated data. The granulation process was performed using a modified FCM

clustering method followed by a coarsening process, i.e. merging higher granularity

clusters into lower granularity ones.

FCM is soft clustering method in which an object can belong to more than one

cluster with partial inclusion, namely, a fuzzy membership function. The modified

FCM starts by choosing initial clusters centres then computes the new fuzzy partition

matrix and the updated clusters centres. In addition, the fuzziness factor m is

chosen dynamically for each granularity level rather than being fixed prior the

algorithm start. Initial clusters for generating granules at a lower granularity level

are produced by merging clusters of similar class labels that have weighted distance

less than Rg between them.

To evaluate the proposed clustering algorithm, the resulted clusters were used

to build a fuzzy classifier for each granulation level. A fuzzy rule was constructed

from each cluster where Gaussian membership functions were used to represent the

fuzzy variables.
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The performance of the classifiers was evaluated using the selected data sets

and measured using two classification performance measures: accuracy and AUC.

Various data sets were used to train and test the performance of FCMGr. Data

were partitioned into training and testing data, 80% and 20% respectively, in 5

training/testing partitionings (P1, P2 ... P5). To evaluate classification performance

of the classifiers, both accuracy and AUC were used. Results show that fuzzy systems

constructed using FCMGr achieved better accuracy in 5 data sets and better AUC in

6 data sets.

Furthermore, a method of automatically selecting the granulation level that

results in better classification performance was proposed. Results show that the

automatically selected granulation levels resulted in better accuracy and AUC than

the selected FCM classifiers for 4 data sets over a range of number of clusters (NC

and fuzziness factor m.

In addition to using one granulation level for the construction of a FIS, multi-

levels of the FCMGr were used. The set of all clusters of the selected levels and the

concatenation of all the fuzzy c-partition matrices of the selected levels were used to

construct the FIS. Results show that multi-level FCMGr has better accuracy than

single-level FCMGr for three data sets.
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4
GRANULAR COMPUTING APPROACH

FOR NEURAL NETWORK CLASSIFIER

DESIGN

IN this chapter, a GrC approach for the design of NN classifiers is proposed.

The approach is applied to NNs and Adaptive-Network-based Fuzzy Inference

Systems (ANFIS). An introduction to NNs is provided in Section 4.1. The

proposed approach is described in Section 4.2 and the results of its application on

NNs are presented in Section 4.3. In Section 4.4, an experimental comparison of

classifiers constructed using the proposed approach and other well-known classifiers

is provided. A summary of this chapter is provided in Section 4.5.

4.1 Introduction

Neural Networks (NNs) are machine learning models that have the ability to learn

complex relationships between input and output. NNs are inspired by the biological

structure of human brain and the process of human learning. NNs mimics how brain
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works by processing data in a network of computational units, called neurons, that

perform non-linear transformations on input data.

A neuron consists of a transfer function whose input is the sum of weighted

inputs of the neuron. The output z of such a neuron is given by:

z = f

(
n∑

i=1
wixi

)
(4.1)

where:

n is the number of inputs,

xi is the ith input,

and wi is the weight associated with the ith input xi

Neurons are connected together by weighted connections and are arranged into

layers. Neurons that are connected directly to the inputs belong to the input layer,

while neurons connected directly to the outputs belong to the output layer. Layers

located between input and output layers are hidden layers. A NN consists of one

input layer, one output layer, and one or more hidden layers.

In terms of how neurons are connected, there are two main types of NNs: feed-

forward NNs and recurrent NNs. In feed-forward NNs connections of neurons of a

layer are always directed towards a next layer, starting from input layer to output

layer. That is, there is no feedback connection in feed-forward NNs. On the other

hand, a recurrent NN contains at least one feedback connection connecting a neuron

in a layer to a neuron in previous layer. Recurrent NNs are widely used in time

series prediction problems. Feed-forward NNs are considered in this chapter.

Figure 4.1 shows the structure of a 4-5-3-2 feed-forward NN, i.e. a NN with 4

neurons in the input layer, 5 neurons in the first hidden layer, 3 neurons in the

second hidden layer and 2 neurons in the output layer. In this network, every neuron

in a layer is connected to every neuron in the next layer. It should be noticed that the

connections in Figure 4.1 are weighted connection, i.e. they involve weight variables

that multiply the output of the connected neuron.
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FIGURE 4.1. Multilayer feedforward neural network.

4.1.1 Neural Network Learning

NNs have the ability to adapt to its environment by learning, i.e. gaining knowledge

from data. This is achieved by adjusting the free parameters (usually the weight

variables) of the NN based on stimulation by the environment, e.g. the error of

comparing the output of the NN to the desired output. A learning algorithm defines a

set of rules that aims to guide this learning process to achieve the desired adaptation.

NNs can be trained by either supervised or unsupervised learning algorithms. In

supervised training, desired output is presented to the NN and is used to determine

the desired response to a given stimulus. Unlike the supervised-training method,

the unsupervised method does not require the desired output. Instead, the learning

process is controlled by a set of adaptation rules. One of the popular unsupervised-

learning techniques is the self-organizing map (SOM) which is widely used in data

visualising.
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There are several types of learning algorithms like [159]: error-correction learn-

ing and memory-based learning (supervised learning), Hebbian learning and com-

petitive learning (unsupervised learning), and Boltzmann learning (recurrent NNs).

In this chapter, an error-correction algorithm, namely back-propagation algorithm,

is considered.

In back-propagation algorithm, input is propagated forward through the network

to produce the output of the network. Then, the error is calculated by comparing the

output of the network with the desired output. The weights are then adjusted by

back-propagating the error through the network in order to decrease the error each

training cycle [159].

To ensure that the weight adjustments result in decreasing the error, back-

propagation algorithm uses the gradient descent method where the adjustment of

weights is made in the direction of decrease of the error function. In the gradient

descent method, the derivative of the squared error function with respect to the

weights of the network is calculated to determine the amount and direction of change

of the weights.

The squared error function E is given by:

E = 1
2

NO∑
j=1

(
t j − yj

)2 (4.2)

where t j is the target value of output neuron j, yj is the output of output neuron

j and NO is the number of output neurons. Using the chain rule, the derivative of

the error function with respect to the weights of the network is given by:

∂E
∂wi j

= ∂E
∂o j

∂o j

∂net j

∂net j

∂wi j
= δ joi (4.3)

where wi j is the weight of connection going from neuron i to neuron j, o j is the

output of neuron j, net j is the weighted sum of all inputs of neuron j and:

δ j = ∂E
∂o j

∂o j

∂net j
=


(
o j − t j

)
f ′

(
net j

)
if j is an output neuron(∑

l∈Lδlw jl
)

f ′
(
net j

)
if j is an inner neuron

(4.4)
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where f ′ (.) is the derivative of the transfer function of the neuron and L is the set

of neurons that receive input from neuron j. So, the weights are updated by the

following:

∆wi j =−η ∂E
∂wi j

=


−ηoi

(
o j − t j

)
f ′

(
net j

)
if j is an output neuron

−ηoi
(∑

l∈Lδlw jl
)

f ′
(
net j

)
if j is an inner neuron

(4.5)

where η is the learning rate which is a scale factor that determines the step size

of updating the weights. Increasing the value of η increases the learning speed but

may result in missing the optimal solution (i.e. the local minimum).

Two widely used transfer functions are the logistic function (sigmoid function)

and hyperbolic tangent function given by (respectively):

sig
(
net j

)= 1
1+ e−net j

(4.6)

tanh
(
net j

)= enet j − e−net j

enet j + e−net j
(4.7)

The derivatives of these two functions are given by (respectively):

sig′ (net j
)= sig

(
net j

)(
1− sig

(
net j

))= o j
(
1− o j

)
(4.8)

tanh′ (net j
)= (

1− tanh2 (
net j

))= (
1− o2

j

)
(4.9)

Equation 4.5 clearly shows the back-propagation process: to update the weight

wi j of a layer other than the output layer, δl has to be computed for all the neurons

receiving input from neuron i, i.e. neurons in the next layer. Thus, starting from the

output layer, δ j is computed using equation 4.4 then δ j of neurons in previous layers

can be computed, and so on.

Weights can be updated in two different ways: incremental (or online) and batch

learning. In incremental learning, weights are updated after each training sample is
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presented to the network while in batch learning the weights are updated after all

training samples have been presented.

An epoch of training is completed when all training sample are used to update

the weights of the NN in either online or batch mode. Then, the training process is

repeated until maximum number of epochs is reached or minimum error is achieved.

The gradient descent method is easy to implement but it has some drawbacks

such as slow learning and getting stuck in local minima. Thus, there have been sev-

eral methods to provide more efficient solutions to the problem of error minimization.

In Newton’s method, the second derivative of the objective function is calculated

providing a more efficient solution with faster convergence [160]. In this method,

the weights adjustment is given by:

∆wi j =−H−1 ∂E
∂wi j

(4.10)

where H is the Hessian matrix of the second-order partial derivatives of the error

function E. However, computing H in every iteration is computationally expensive

as the computational complexity and memory requirements are proportional to the

square of the number of weights. Therefore, some algorithms, namely Quasi-Newton

algorithms, propose different ways to approximate H by less computationally expen-

sive methods. In Levenberg-Marquardt method, which is often used for regression

applications, the performance function is assumed to have a quadratic form in a re-

gion around the current search point, called trusted region. Thus, H is approximated

by the Jacobian matrix J that contains all first-order partial derivatives of the error

function with respect to the weights and the weight updates are given by [161]:

∆wi j =−
[
JT J+λI

]−1
JT e (4.11)

where e is a vector of network errors, and λ is a constant that is increased when

the performance function increases and decreased when the performance function

decreases.
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Another alternative to the gradient descent method is the conjugate gradient

method where weights are updated in the conjugate directions, which provides more

efficient convergence without the need to compute the Hessian matrix. The new

search direction pk is determined by combining the new gradient descent direction

with the previous search direction pk−1 [161]:

pk =− ∂E
∂wi j +βpk−1

(4.12)

Scaled conjugate gradient method combines the trust region approach (similar to

Levenberg-Marquardt method) with the conjugate gradient algorithm.

4.1.2 Generalisation and Overfitting

The performance of a NN is measured by its ability to generalise, i.e. how well it per-

form on test data that is not used during training. Thus, the aim of training is to find

the training parameters that result in best generalisation. However, overtraining

the NN may results in memorising the training data rather than generalising for

new data. Therefore, training data is usually divided into two sets: training data set

that is used to train the NN and validation data set to monitor the generalisation

performance of the NN. Using one of the learning methods described in 4.1.1, the

error of the NN decreases monotonically during training. However, its generalisation

ability stops to increase at some point of training, i.e. when the NN starts to be over-

trained. Validation data set is used to stop the learning at this point by monitoring

the performance of the NN with the validation data. Once the validation error starts

to increase, training is stopped as illustrated in Figure 4.2.

Thus, a given data set is divided into three sets: training set, validation set, and

test set.

4.1.3 Number of Layers and Neurons

Although there are no formal rules for determining the number of neurons in the

hidden layers of a NN, there are some rules of thumb that are drawn from practice.

Some of these rules of thumb are [162]:
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FIGURE 4.2. Training set and validation set error as a function of epoch
[160].

• The number of hidden neurons should be between the number of input vari-

ables and the number of outputs.

• The number of hidden neurons should be 2/3 the number of input variables

plus the number of outputs.

• The number of hidden neurons should be less than twice the number of input

variables.

The first and second rules mean that, for single output NNs, the number of

hidden neurons is less than the number of input variables. In general, the number

of hidden neurons should be minimised so that the number of learning variables

(weights) is minimised and, as a result, training time and computational cost are

minimised. Therefore, it is suggested that the ratio of hidden neurons to number of

inputs is decreased for number of inputs larger than 5 [160].

In addition, it is suggested that a single hidden layer is sufficient for most

applications [160, 163].
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4.2 Proposed Granular Computing Approach

In this section, a GrC approach for the design of NN classifiers is presented. The

proposed approach, named GrC approach for NN Classifier design (GrCNNC), is

based on two principles of GrC:

1. In GrC paradigm, a given task can be split into smaller and easier subtasks to

achieve a more efficient solution.

2. Different levels of granularity provide different levels of information speci-

ficity/abstraction.

The first principle suggests that training a NN for each granule (cluster) may

results in better performance than training a single NN for all data samples. Since

the aim of training is to achieve best generalisation rather than memorising, using

training data at a a certain level of abstraction may results in better performance

than using high-granularity training data, according to the second principle.

To employ these principles, the following approach is proposed. Firstly, training

data is granulated using the granulation method presented in Section 3.3, namely

FCMGr. The result of the granulation is a set of granulation levels each consists of a

fuzzy partitioning comprised of number of granules (clusters). The fuzzy partitioning

is represented by the cluster centres vector V̂ and the fuzzy c-partition matrix Û.

Secondly, a granulation level is selected and a NN is constructed and trained for

each granule. Thus, the overall classification task is divided into smaller subtasks

of predicting the inclusion of a data sample to different granules. The granulation

level that results in best classification performance is the level that provides the

best abstraction level and it depends on the data.

Training data at a given level is represented by the distance d(., .) of each

data sample to each of the granules at that level. So, the classification problem is

transformed from mapping input space to class space to mapping distance space to

inclusion space (Û). The final output is computed from the inclusion score results

and the class of each granule. Target values for training the NNs are the fuzzy

c-partition matrix values ûi j corresponding to the training samples and the granules.
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It should be noticed that all the NNs share the same inputs, so, to reduce complexity

and computational cost, they can be combined in a single NN with number of outputs

equal to the number of granules.

To classify new data (test data), the distances of the data sample to each of the

granules are computed first. Then inclusion scores are computed using the NN and

used with granules class labels to compute the final output. Thus, the cluster centres

vector V̂ of training data is part of the classifier since it is used to compute the

distance and final output while the fuzzy c-partition matrix Û is used in training

phase only.

Following is the algorithm of the GrCNNC training phase:

1. Perform granulation using FCMGr with the training and validation data sets.

2. Select a granulation level.

3. For each training sample xt
i, i = 1,2, . . .n and granule v j, j = 1,2, . . . c, compute

training distance matrix D t where dt
i j = d(xt

i,v j)

4. For each validation sample xl
i, i = 1,2, . . .m and granule v j, j = 1,2, . . . c, com-

pute validation distance matrix D l where dl
i j = d(xl

i,v j)

5. Construct a NN with c inputs and c outputs and train it with D t as input and

Û as the target output, where xi ∈ training set.

6. Monitor the performance of the NN with D l as input and Û as target output,

where xi ∈ validation set.

For the testing phase, the following steps are performed:

1. For the selected granulation level, compute the distance vector Ds where

ds
i j = d(xs

i ,v j) for the test samplexs
i and granule v j, j = 1,2, . . . c.

2. Using the trained NNs evaluate the inclusion scores vector Û s
i using Ds as

input.
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3. Compute the final output Zi (class label) using the equation:

Zi(Û s
i , V̂ )= 1

c

c∑
j=1

ûs
i j v̂ j(dim) (4.13)

where dim is the dimension of V̂ , i.e. v̂ j(dim) is the class label of the cluster

v̂ j.

Block diagrams of the GrCNNC for training phase, validation and test phase are

shown in Figures 4.3-4.5 where Ev is the error calculated for the validation data set

using Equation 4.2.

Since both the number of inputs and the number of outputs of the NN equal

to the number of granules in the selected granulation level, the complexity and

computational cost of GrCNNC depends on the number of granules. Choosing a

granulation level with number of granules more than the number of input variables

means that GrCNNC results in more complex and more computationally expensive

system than standard NN. On the other hand, if the number of granules is less than

the number of input variables significantly, the GrCNNC will result in less complex

and less computationally expensive system than standard NN.

So far, the GrCNNC algorithm assumes using a single granulation level in

training, validating and testing the NN. However, multiple levels can be used in the

same algorithm. When more than one granulation level are used, cluster centres

vector V̂ and fuzzy c-partition matrix Û used in the algorithm comprise of the

corresponding vectors and matrices of all the selected levels.

4.2.1 Interpretability of GrCNNC

One desired property of a classifier is the ability to provide knowledge about the

classification process and its reasoning in order to provide better understanding of

the problem and allow for more straightforward generalisation based on the provided

knowledge. However, it is difficult to extract this knowledge from NNs because of

its distributive nature where a problem is modelled by large number of variables

(weights and transfer functions). Therefore, a NN is considered to be a black box.
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Training
Data

FCMGr

d(., .)

NN
V

Û

FIGURE 4.3. Block diagram of the GrCNNC for training phase.

Validation
Data

FCMGr

d(., .)

NN Ev

Û

FIGURE 4.4. Block diagram of the GrCNNC for validation.

Test Data d(., .) NN Zi(U s
i ,V̂ )

V̂

Zi

FIGURE 4.5. Block diagram of the GrCNNC for test phase.
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There have been several attempts to address the issue of the interpretability of

NNs. One of these attempts is to extract rules form NNs [164, 165, 166].

Although GrCNNC dose not change the structure of NN, GrCNNC increases the

interpretability of the NN by training it using information granules rather than raw

data. Information granules can be viewed as classification rules, thus, training the

NN using information granules can be viewed as training the NN to learn these

rules. In other words, in GrCNNC, the classification problem is broken down into

the modelling of classification rules represented by the information granules. The

number of granules in the selected granulation level(s) represent the number of the

rules, and the centre of each granule determine the rule while a fuzzy c-partition

value represent the degree to which a rule is applicable to a data sample.

4.2.2 Application of GrCNNC in ANFIS

Adaptive-Network-based Fuzzy Inference Systems (ANFIS) is a structure that

combines the learning ability of NNs and the soft reasoning of FISs. In ANFIS,

the parameters of both the antecedent and consequent parts of the fuzzy rules are

adjusted or tuned using adaptive network learning [167]. ANFIS is restricted to

the Sugeno-type FIS where the parameters of the membership functions in the

antecedent part and the crisp functions of the consequent part are adjusted using

back-propagation algorithm or a combination of back-propagation and least squares

estimate algorithms.

GrCNNC can be applied in training the ANFISin a way similar to that of the

NN. However, ANFIS computes the final output (class label) directly, therefore, the

last step of the GrCNNC algorithm is not performed. Thus, ANFIS is trained using

the distance matrix D t and the target class labels instead of the inclusion scores. As

with NN, the number of ANFIS inputs using GrCNNC is the number of granules of

the selected levels. It should be noticed that the number of fuzzy rules of ANFIS is

independent of the selected granulation level (or number of granules) allowing for

less complex system even with higher granularity levels. As with most applications,

there are no rules for determining the number of fuzzy rules of ANFIS, instead, it is

determined experimentally by choosing the number that results in best results for a

specific data.
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4.3 Experimental Results

4.3.1 Single Level GrCNNC

The GrCNNC is implemented using MATLAB R2016a. Since the outputs of the

NN of the GrCNNC are scores (between 0-1) rather than class labels, the learning

algorithm used is the Levenberg-Marquardt (discussed in 4.1.1) because its widely

use in regression applications. The transfer function of the neurons is hyperbolic

tangent function given by Equation 4.7. The granulation level that results in best

performance is empirically selected for each data set.

The data sets presented in 3.4.1 are used to evaluate the GrCNNC. Each data

set is divided into 3 parts: training (60%), validation (20%) and test (20%). 5-fold

cross validation is used, therefore, each classifier is tested 5 times with different

test partition each time. Each of the 5 fold tests is run 10 times and the mean and

Standard Deviation (STD) of the accuracy and mean of AUC are calculated. The

test partition is fixed for all the 10 runs, however, training/validation sampling is

changed randomly.

The classification results of the data sets using GrCNNC compared to those of

standard NN are shown in Table 4.1. By referring to the rules of thumb in 4.1.3, and

for the range of number of inputs of the data sets used, single hidden layer with 8

neurons is found to result in best performance for both the standard NNs and the

GrCNNC. Referring to Table 3.1, the range of number of inputs for the data sets is 6

to 13, thus, for 8 hidden neurons, the range of the ratio of hidden neurons to number

of inputs is approximately 4
3 to 2

3 .

The results of Table 4.1 (where highest results are in bold) show that GrCNNC

has higher accuracy for all the data sets. The improvement in accuracy is accom-

panied by higher AUC for all datasets except ILPD, which indicates that the im-

provement in accuracy does not come at the cost of lower specificity or sensitivity.

However, significant improvements (i.e. improvements that are higher than the STD

values of the accuracy of the NNs) achieved in only four data sets, namely: BUPA,

ILPD, Statlog and Bladder cancer.
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In addition, the results show that GrCNNC has lower STD for all data sets except

one (ILPD) which indicates that GrCNNC is more invariant to the change in initial

weights and training samples.

Similarly, training accuracy and AUC are obtained, as shown in Table 4.2. From

the table, GrCNNC has better training accuracy for 5 data sets and higher AUC for

4 data sets. As with test results, STD of training accuracy is lower for GrCNNC than

standard NN.

TABLE 4.1. Test Accuracy (%), STD and AUC (%) of NN and GrCNNC.

Data sets
Neural Network GrCNNC Improvement

Acc. STD AUC Acc. STD AUC Level Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

75.42 0.76 82.97 76.18 0.62 83.43 8 0.76 0.45

64.70 2.15 67.27 69.28 1.36 72.26 8 4.58 4.99

69.85 0.63 66.80 71.90 0.88 63.43 10 2.05 -3.37

95.98 0.62 99.32 96.11 0.25 99.36 9 0.13 0.04

80.89 2.22 88.83 83.37 0.41 89.01 13 2.48 0.18

80.96 0.51 59.15 81.12 0.33 59.80 10 0.16 0.65

59.87 2.16 62.85 63.70 1.66 66.73 11 3.83 3.88

TABLE 4.2. Training Accuracy (%), STD and AUC (%) of NN and GrCNNC.

Data sets
Neural Network GrCNNC Improvement

Acc. STD AUC Acc. STD AUC Level Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

78.83 0.32 84.58 79.63 0.23 85.78 8 0.80 1.20

73.89 1.96 76.47 75.98 0.70 79.90 8 2.09 3.43

73.40 0.35 74.44 72.67 0.35 68.58 10 -0.73 -5.86

97.95 0.23 99.65 97.99 0.09 99.46 9 0.03 -0.19

86.59 0.79 92.48 84.82 0.27 89.81 13 -1.77 -2.67

81.97 0.09 61.83 82.05 0.15 63.98 10 0.08 2.14

72.51 1.39 76.83 72.67 0.64 77.98 11 0.16 1.15
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The selected granulation level for each data set is shown in the table where

higher levels have lower granularity (less number of granules). The number and

centres of granules used in the GrCNNC for a data set can be known from the

selected granulation level, hence, the rules that describe the classification process

can be determined as discussed in 4.2.1. For instance, Table 4.1 shows that the

selected granulation level for BUPA data set is the 8th level. The number of granules

in level 8 for BUPA data set (P1) is 9 (Table 3.3), thus, the classification process can

be described by 9 rules. The centre of first granule is:

v̂1 = (0.64,0.34,0.12,0.22,0.07,0.07,1.00)

Therefore, the first rule that describe the classification process for BUPA data

set is (refer to 3.4.1 for the description of the attributes of BUPA data set):

IF MCV = 0.64 AND Alkphos = 0.34 AND SGPT = 0.12 AND SGOT = 0.22

AND GAMMAGT = 0.07 AND drinks = 0.07 THEN class = 1

4.3.2 Multi-level GrCNNC

In this section, the results of using more than one granulation level is reported.

Table 4.3 shows the classification results for the multi-level GrCNNC compared to

those of NN with highest results in bold. As with single level GrCNNC, multi-level

GrCNNC has better accuracy than NN for all data sets with higher AUC for all data

sets except Wisconsin data set. Significant improvement is obtained for BUPA and

bladder cancer data sets. However, compared to the accuracy improvement of single

level GrCNNC, multi-level GrCNNC has better improvement in only five data sets,

as shown in Figure 4.6.

In addition, Table 4.4 shows the training accuracy and AUC where multi-level

GrCNNC has better classification results for most of the data sets.

As compared to the single level GrCNNC, the multi-level GrCNNC has higher

AUC improvement over NN for all the data sets except Wisconsin, as shown in

Figure 4.7.
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Figures 4.8-4.14 show the ROC curves of the single level GrCNNC, multi-level

GrCNNC and NN for all the data sets. The curves are drawn for a single run of one

of the 5 test partitions. From the figures, noticeable improvement of the ROC curves

of both single level GrCNNC and multi-level GrCNNC can be seen, especially for

the BUPA, Statlog and bladder cancer data sets.

TABLE 4.3. Test Accuracy (%), STD and AUC (%) of NN and multi-level
GrCNNC.

Data sets
Neural Network Multi-GrCNNC Improvement

Acc. STD AUC Acc. STD AUC Level Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

75.42 0.75 82.97 76.58 0.71 83.60 8,9 1.16 0.63

64.70 2.15 67.27 70.51 1.59 73.53 7,8 5.81 6.26

69.85 0.63 66.80 70.00 1.01 67.60 8,10 0.15 0.8

95.98 0.62 99.32 96.51 0.51 99.16 9,10 0.53 -0.16

80.89 2.22 88.83 82.59 0.99 89.80 11,13 1.70 0.97

80.96 0.51 59.15 81.34 0.47 60.45 10,11 0.38 1.30

59.87 2.16 62.85 64.93 1.75 67.04 11,12,13 5.06 4.19

TABLE 4.4. Training Accuracy (%), STD and AUC (%) of NN and multi-level
GrCNNC.

Data sets
Neural Network Multi-GrCNNC Improvement

Acc. STD AUC Acc. STD AUC Level Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

78.83 0.32 84.58 79.99 0.24 86.26 8,9 1.16 1.68

73.89 1.96 76.47 76.94 0.71 80.96 7,8 3.06 4.50

73.40 0.35 74.44 73.80 0.37 74.65 8,10 0.40 0.21

97.95 0.23 99.65 98.09 0.07 99.47 9,10 0.13 -0.18

86.59 0.79 92.48 85.31 0.32 91.47 11,13 -1.28 -1.01

81.97 0.09 61.83 82.01 0.14 64.20 10,11 0.04 2.36

72.51 1.39 76.83 72.92 0.56 78.33 11,12,13 0.40 1.49
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FIGURE 4.6. Accuracy improvement of single level GrCNNC vs. accuracy
improvement of multi-level GrCNNC vs. standard deviation of NN
accuracy.

FIGURE 4.7. AUC improvement of single level GrCNNC vs. AUC improve-
ment of multi-level GrCNNC.
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FIGURE 4.8. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for Pima data set.

FIGURE 4.9. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for BUPA data set.
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FIGURE 4.10. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for ILPD data set.

FIGURE 4.11. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for Wisconsin data set.
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FIGURE 4.12. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for Statlog data set.

FIGURE 4.13. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for focality data set.
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FIGURE 4.14. ROC curve of NN, single level GrCNNC and multi-level
GrCNNC for bladder cancer data set.

4.3.3 ANFIS with GrCNNC

Test results of using multi-level GrCNNC with ANFIS are shown in Table 4.5. The

results are compared to standard ANFIS. Accuracy and AUC of training and test

are shown in the table with best results in bold. As mentioned in Section 4.2.2, the

number of fuzzy rules of an ANFIS system is independent of the selected number of

granules. So, both models are based on FISs which are generated using FCM with

2 clusters to decrease complexity, as there are no rules that specify the number of

fuzzy rules. The GrCNNC model is trained using the granulated data, while the

standard ANFIS is trained using the original training data. As with the previous

experiments, each data set is divided into 3 parts: training (60%), validation (20%)

and test (20%). Each classifier is tested 5 times with different test partition each

time (5-fold cross validation).

As shown in the table, GrCNNC has improved the test accuracy of ANFIS for

5 out of 7 data sets with improved AUC with the highest improvement for bladder
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cancer data set. In addition, test AUC is improved for 6 data sets with significant

improvement for focality and bladder cancer data sets.

Table 4.6 shows the training results. High improvements in training results are

obtained for BUPA, focality and bladder cancer data sets.

TABLE 4.5. Test Accuracy (%) and AUC (%) of ANFIS and multi-level
GrCNNC ANFIS.

Data sets
ANFIS ML GrCNNC ANFIS Improvement

Acc. AUC Acc. AUC Levels Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

75.01 81.96 77.21 82.92 1,3 2.2 0.96

71.25 75.63 72.05 75.73 4,5 0.8 0.10

70.00 70.58 70.64 71.48 1,2 0.64 0.90

95.05 99.31 96.20 99.59 1,2,5 1.15 0.28

82.96 89.64 81.11 88.33 1,2 -1.85 -1.31

81.86 50.23 81.00 59.49 1,2 -0.86 9.26

57.33 58.76 63.50 63.25 4,10 6.17 4.49

TABLE 4.6. Training Accuracy (%) and AUC (%) of ANFIS and multi-level
GrCNNC ANFIS.

Data sets
ANFIS ML GrCNNC ANFIS Improvement

Acc. AUC Acc. AUC Levels Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

79.99 85.26 80.03 85.46 1,3 0.04 0.20

77.32 82.24 82.51 87.23 4,5 5.19 4.99

75.07 77.76 73.63 75.21 1,2 -1.43 -2.55

97.76 99.62 98.83 99.89 1,2,5 1.07 0.27

88.89 95.26 85.31 91.89 1,2 -3.58 -3.37

81.93 51.16 82.00 67.02 1,2 0.07 15.86

77.35 81.76 93.09 98.01 4,10 15.74 16.25

4.3.4 Results Summary

So far in this chapter, three experiments were conducted. The first two experiments

investigated the performance of single level GrCNNC and multi-level GrCNNC
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respectively. Single level GrCNNC resulted in better accuracy and AUC than NN for

6 data sets with accuracy improvement not less than STD for 4 of them. Improvement

in training performance is less than that in test performance which suggests that the

improvement in test performance is due to increased generalisation of single level

GrCNNC. In addition, the results of the first experiment are used to demonstrate

the interpretability of the GrCNNC.

Results of the second experiment show that using multi-level GrCNNC had

improved AUC and accuracy over single level GrCNNC for 5 and 6 data sets res-

pectively. The third experiment was conducted to evaluate the use of multi-level

GrCNNC with ANFIS. Multi-level GrCNNC resulted in improved accuracy and AUC

of ANFIS for 5 data sets in both test and training.

To sum up, based on the results of these experiments, it can be concluded that

GrCNNC has performed relatively well compared to standard NNs.

4.4 Experimental Comparison

To compare the performance of GrCNNC-based NN and ANFIS to other classifiers,

the classification results obtained in previous section are compared to those of 9

classifiers. The classifiers are implemented using MATLAB R2016a and the same

data sets and experimental set-up (5-fold cross validation) of the previous section

are used. Validation partition is used wherever validation is applicable (i.e. NN and

ANFIS). In addition to the standard NN and ANFIS used in previous section, 7

classifiers are used: Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA), Naive Bayes Classifier (NBC), Decision Tree (Dtree), SVM with

linear kernel function (SVM Linear), SVM with Gaussian Radial Basis Function

(RBF) kernel (SVM RBF) and SVM with polynomial kernel (SVM polynomial).

Test accuracy results of the selected classifiers are show in Table 4.7 with highest

results in bold. The last 3 classifiers are the single-level and multi-level GrCNNC-

based NN (SL GrCNNC and ML GrCNNC) classifier and multi-level GrCNNC-based

ANFIS (GrCNNC ANFIS) classifier. In 5 out of 7 data sets, one of the 3 GrCNNC-

based classifiers has the best results. GrCNNC ANFIS has the best results in 3 data

sets while SL GrCNNC has the best results in 2 data sets. SVM Linear has the best

85



CHAPTER 4. GRC APPROACH FOR NN DESIGN 4.4. EXPERIMENTAL COMPARISON

result for bladder cancer data set while standard ANFIS has the highest result for

Focality data set. However, in terms of AUC, GrCNNC ANFIS and ML GrCNNC

have the best results in only 5 data sets while SVM linear has the best results for

the remaining 2 data sets, as shown in Table 4.8.

To visualise the relative performance difference between the classifiers, Fig-

ures 4.15 and 4.16 show the rank of each classifier for each data set in terms of

accuracy and AUC respectively, with rank 1 being the best classifier and rank 12

is the worst. The size of the bubbles reflect the relative normalised difference in

performance compared to the worst performance for each data set. For example, the

3 GrCNNC-based classifiers have ranks 1 to 3 for Pima data set with high relative

difference compared to the 4th classifier (LDA). On the other hand, SL GrCNNC has

rank 1 for Statlog data set but with small relative difference to the 2nd classifier

(SVM Linear).
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Table 4.7: Test accuracy of the compared classifiers.

Dataset Pima BUPA ILPD Wisconsin Statlog Focality Bladder

NN 75.42 64.70 69.85 95.98 80.89 80.96 59.87

ANFIS 75.01 71.25 70.00 95.05 82.96 81.86 57.33

LDA 75.92 68.61 71.51 95.91 82.59 81.40 67.98

QDA 74.74 62.48 57.70 94.89 79.26 80.80 66.69

NBC 74.61 55.72 57.19 95.91 82.59 81.80 69.71

Dtree 69.78 63.96 65.12 95.47 75.93 69.60 58.13

SVM Linear 73.57 59.80 69.44 96.20 83.33 66.40 70.98

SVM RBF 75.01 63.29 59.44 95.62 80.74 67.00 62.80

SVM Polynomial 72.93 52.80 57.54 95.32 65.19 77.40 64.99

SL GrCNNC 76.18 69.28 71.90 96.11 83.37 81.12 63.70

ML GrCNNC 76.58 70.51 70.00 96.51 82.59 81.34 64.93

GrCNNC ANFIS 77.21 72.05 70.64 96.20 81.11 81.00 63.50

Table 4.8: Test AUC of the compared classifiers.

Dataset Pima BUPA ILPD Wisconsin Statlog Focality Bladder

NN 82.98 67.27 66.80 99.32 88.83 59.15 62.85

ANFIS 81.96 75.63 70.58 99.31 89.64 50.23 58.76

LDA 71.31 66.17 52.96 95.06 82.04 49.76 63.04

QDA 70.91 63.07 67.15 95.42 78.87 53.82 62.33

NBC 70.95 56.43 67.55 96.22 82.31 56.42 66.44

Dtree 67.68 62.65 57.71 94.77 75.64 49.69 53.31

SVM Linear 82.67 68.20 69.90 99.53 90.58 47.76 73.35

SVM RBF 83.49 73.34 62.42 98.92 87.51 58.93 58.23

SVM Polynomial 83.35 74.44 65.45 98.81 83.77 55.26 65.11

SL GrCNNC 83.43 72.26 63.43 99.36 89.01 59.80 66.73

ML GrCNNC 83.60 73.53 67.60 99.16 89.80 60.45 67.04

GrCNNC ANFIS 82.92 75.73 71.48 99.59 88.33 59.49 63.25
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FIGURE 4.15. Relative improvement of accuracy and rank of classifiers in
terms of accuracy for each data set.
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FIGURE 4.16. Relative improvement of AUC and rank of classifiers in terms
of AUC for each data set.
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4.5 Conclusions

A GrC approach for the design of NN classifiers was proposed in this chapter. In the

proposed approach, GrCNNC, the overall classification task is divided into smaller

subtasks of predicting the inclusion of a data sample to different granules. The

GrCNNC uses the FCMGr granulation method to train the NN using information

granules. Training data at a given granulation level is represented by the distance

of each data sample to each of the granules at that level with the fuzzy c-partition

matrix as the target output. The final output is computed from the inclusion score

results and the class of each granule. The GrCNNC can use one or more granulation

level to train the NN (single level and multi-level GrCNNC).

Systems based on NNs trained using GrCNNC are more interpretable than

standard NNs due to the fact that GrCNNC uses information granules to train the

NN rather than raw data. Information granules can be viewed as classification rules,

thus, training the NN using information granules can be viewed as training the

NN to learn these rules. Hence, the classification problem is broken down into the

modelling of classification rules represented by the information granules. The size

(complexity) of the NN trained using GrCNNC depends on the number of granules

rather than data dimensionality, which allow dealing with high-dimensional data

using systems with less complexity.

The GrCNNC was implemented and its performance is compared to that of a

NN. Results show that GrCNNC has higher accuracy for all the data sets used. The

improvement in accuracy is accompanied by higher AUC for 6 out of 7 datasets,

which indicates that the improvement in accuracy does not come at the cost of lower

specificity or sensitivity. In addition, the results show that GrCNNC has lower STD

for all data sets except one which indicates that GrCNNC is more invariant to the

change in initial weights and training samples.

In addition, results show that multi-level GrCNNC multi-level GrCNNC has

higher accuracy improvement in 5 data sets and higher AUC improvement over NN

for 6 out of 7 data sets. Also, this chapter contained an experimental comparison of

GrCNNC-based NNs and ANFIS to 9 other classifiers.
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5
GRANULAR COMPUTING APPROACH

FOR CLASSIFIER ENSEMBLE

AGRANULAR computing approach to classifier ensemble is proposed in this

chapter. Section 5.1 provides a brief introduction to ensemble learning.

The proposed method is described in Section 5.2. Experimental results of

the evaluation of the proposed approach are reported in Section 5.3. Section 5.4

investigates the use of a genetic algorithm for automatic weights assignment of the

ensemble combiner. Summary of this chapter is given in Section 5.5.

5.1 Introduction

Aiming at increasing the classification performance, ensemble learning adopts the

idea of combining several classifiers to provide improved generalisation ability. This

improvement, however, comes at the price of increased complexity and computational

cost. Ensemble learning was first introduced in the late 1970’s [168, 169], and

since then, it has gained the interest of many researchers and has witnessed great

improvements. Nowadays, ensemble learning has been widely used in a wide range

of classification and pattern recognition applications [170, 171, 172, 173].
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An ensemble system consists of two main components: an ensemble of base

classifiers and an output combination mechanism to combines the outputs of the

base classifiers. The idea of ensemble learning is based on building a system of

diverse classifiers, since combining classifiers with similar outputs is not expected to

result in any improvement [174].

There are two main types of ensemble output combiners: algebraic combiners and

voting-based combiners. Algebraic combiners use continuous outputs (scores) of base

classifiers to produce the overall ensemble output. On the other hand, voting-based

combiners use class labels resulted from the base classifiers to produce the overall

ensemble output. In addition, some ensemble learning algorithms use different

methods to combine the outputs, such as a second layer classifier. Some algebraic

and voting-based combiners are fixed combiners, i.e. they do not involve learning.

However, other combiners require some training. Examples of fixed combiners are

mean combiner (algebraic) and majority vote combiner (voting-based). Weighted sum

(algebraic) and weighted vote (voting-based) are examples of trainable combiners

[14].

The construction of base classifiers can be done in two different methods: de-

pendent and independent. In dependent method, the construction (or training) of

a base classifier is influenced by the output of one or more of the other classifiers

in the ensemble. On the other hand, in independent method, base classifiers are

constructed separately.

The diversity of the base classifiers is achieved by two main approaches: using

different partition of the training data or using different types or parameters of base

classifiers. The first approach can be achieved by choosing different training samples

or different sets of input features (input variables) for each base classifier.

Four of well-known ensemble algorithms are:

1. Bagging

Bagging (short for Bootstrap Aggregating) algorithm is one of the earliest and

simplest ensemble-based algorithms. In bagging, C base classifiers are trained

using C different replica’s of the training data set using bootstrap sampling,
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i.e. sampling with replacement [175]. With bootstrap, some training instances

may be used more than once in some of the training sets while some instances

may not be used at all. Thus, the diversity of the base classifiers is achieved

by the variation of the training data sets of the classifiers. Also, using this

approach, the base classifiers can be independently trained in parallel which is

one of the main advantages of bagging algorithm since it reduces the training

time.

2. Boosting: Boosting is similar to bagging considering that both it relies on using

different set of training data to produce diversity. However, instead of randomly

sampling the training data, boosting assign weights to training samples to

indicate usefulness of a training sample. Each time a base classifier is trained,

the weights the training data are updated such that weights of correctly

classified samples are decreased while weights of incorrectly classified samples

are increased. In this way, the training of the next classifier is is focused on

misclassified data [176]. The final ensemble output is computed using majority

voting method. Unlike bagging, base classifiers in boosting algorithm can not

be trained independently because the training of a classifier depends on the

classification results if the previous base classifier.

3. Stacking: In stacking (or stacked generalisation), the ensemble consists of

two levels of classifiers. The first level is a set of base classifiers trained

using bootstrap method. The outputs of first-level classifiers, along with the

actual class labels, are used to train a meta-classifier in the second level [177].

Stacking is based on the idea that the meta-classifier is trained so that it can

learn, from the training data, where first-level classifiers fail and overcome

their failure. To classify a new test sample, classification is first performed by

first-level classifiers. Then, output scores of these classifiers are used by the

meta-classifier to produce the final output. Stacking can be used to combine

classifiers trained using a single data set with different learning methods

(heterogeneous ensemble) [14].

4. Mixture of experts: In mixture of experts, a complex classification task is

divided into a set of subtasks and base classifiers (experts) are trained for
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different subtasks. The output of the expert is combined by a gating network.

Input training samples are used to train both the experts and the gating

network. Due to this approach, diversity is already achieved by using different

subtasks for training [178].

In this chapter, a GrC approach for classifier ensemble is proposed. The proposed

approach employs GrCNNC for the generation and training of the base classifiers.

Weighted sum combiner is used in the proposed approach and a Genetic Algorithm

(GA) is used to assign the weights automatically.

5.2 Proposed Granular Computing Approach

In this section, a GrC approach for classifier ensemble is proposed. The main aim

of the proposed method is to produce diversity in the constructed base classifiers.

Since the result of FCMGr is a set of granules at different granulation levels, it is

expected that different granularity levels produce different classifiers. Therefore,

like bagging and boosting, the proposed approach relies on varying the training data

to produce diversity. However, instead of sampling with replacement that results in

using a subset of the original training data, all the training data are used to train

all base classifiers, each at different level (or levels) of granularity.

Thus, the construction of a classifier ensemble using the proposed approach

consists of three main stages:

• Information granulation stage: In this stage, FCMGr is used to construct

information granules at different levels of granularity.

• Classifier training stage: For each base classifier, a granularity level (or set

of levels) is selected and its granules are used for training using GrCNNC

approach.

• Ensemble combination stage: A combiner is designed to combine the outputs

of the base classifiers.
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To classify new data, the output of each base classifier is first computed using

GrCNNC. Then, the final output is produced by the combiner. The combiner used in

the proposed approach is the weighted sum combiner whose output is given by:

µ j(x)=
T∑

t=1
wtdt, j(x) (5.1)

where:

µ j(x) is the final ensemble score of class j for data sample x,

T is the number of base classifiers,

wt is a weight associated with base classifier t,

and dt, j(x) is the score of class j for data sample x using classifier t.

Since GrCNNC is used, the complexity of a base classifier (number of inputs

and outputs) is determined by the granularity level or levels used to train it. Thus,

using different granularity levels results in variation in classifier parameters which

contributes to the diversity of the ensemble.

To focus on investigating the effectiveness of GrCNNC in providing diversity

for the construction of classifier ensembles, the problem of determining combiner

weights automatically is left to Section 5.4. Instead, the weights are determined

experimentally by searching for the weights that produce best classification perfor-

mance.

5.3 Experimental Results

The data sets presented in 3.4.1 are used to evaluate the proposed approach. Each

data set is divided into 3 parts: training (60%), validation (20%) and test (20%). 5-fold

cross validation is used, therefore, each classifier is tested 5 times with different test

partition each time and the mean accuracy and AUC are computed.

The proposed approach is used to build classifier ensembles for each data set.

Each ensemble consists of five classifiers trained with granules at five different
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granularity levels. Granularity levels are selected of relatively low granularity to

avoid higher complexity and increase generalisation. It should be noticed that granu-

larity levels used in this experiment are the resulted levels from experiment in 3.4.3

where the number of granularity levels is between 11-13 for all data sets. Therefore,

constructing larger ensembles may require granulation with more granularity levels.

This can be achieved by decreasing the granulation variable Rg in the FCMGr

algorithm in section 3.3.3.

To test the diversity of the base classifiers, training outputs of the base classifiers

are compared and the percentage of samples that are classified differently by each

two classifiers is computed. Table 5.1 shows classification disagreement percentage

results for Pima data set. Each value in the table represent the disagreement

percentage between the corresponding classifiers. When there is a large number of

granularity levels, this measure can be used to select the most diverse levels.

TABLE 5.1. Classification disagreement (%) of the five base classifiers for
Pima data set.

Classifier 1 2 3 4 5

1 0.00

2 15.80 0.00

3 13.36 7.98 0.00

4 15.15 9.45 5.37 0.00

5 15.80 9.77 7.33 5.54 0.00

The proposed approach is implemented using MATLAB R2016a. Test accuracy

and AUC of the proposed ensemble approach compared to those of GrCNNC are

shown in Table 5.2. The ensemble has higher accuracy for 5 out of 7 data sets with

high improvement for BUPA and bladder cancer data sets. AUC of the proposed

approach is higher for 6 data sets with high improvement for BUPA, ILPD and

bladder cancer data sets.

Similarly, training accuracy and AUC are shown in Table 5.3. The proposed

approach has higher accuracy in 6 data sets and higher AUC for all the data sets

with improvement margin of 0.16%-4.19%.
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ROC curves of the proposed ensemble approach and single level GrCNNC for

all the data sets are shown in Figures 5.1-5.7. These curves are drawn for 1 of the

5 test partitions. From the figures, noticeable improvement of the ROC curves of

the proposed ensemble approach can be noticed, especially for the BUPA, ILPD

and bladder cancer data sets. While these curves provide a way to compare the

performance of the classifier at hand, it should be noticed that they reflect the

performance for only one fold of the 5-fold cross validation used. The overall mean

AUC may provide more accurate robust measure.

TABLE 5.2. Test Accuracy (%) and AUC (%) of SL GrCNNC and SL ensemble.

Data sets
GrCNNC Ensemble Improvement

Acc. AUC Acc. AUC Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

76.18 83.43 76.62 83.32 0.44 -0.12

69.28 72.26 71.01 74.52 1.73 2.26

71.90 63.43 71.25 67.43 -0.65 4.00

96.11 99.36 96.51 99.43 0.40 0.07

83.37 89.01 83.30 89.80 -0.07 0.78

81.12 59.80 81.52 60.29 0.40 0.50

63.70 66.73 65.45 69.09 1.75 2.37

TABLE 5.3. Training Accuracy (%) and AUC (%) of SL GrCNNC and SL
ensemble.

Data sets
GrCNNC Ensemble Improvement

Acc. AUC Acc. AUC Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

79.63 85.78 80.24 86.36 0.61 0.58

75.98 79.90 77.13 81.02 1.15 1.12

72.67 68.58 73.14 72.77 0.47 4.19

97.99 99.46 98.13 99.62 0.14 0.16

84.82 89.81 85.25 91.63 0.43 1.82

82.05 63.98 81.93 64.58 -0.12 0.60

72.67 77.98 73.23 78.84 0.56 0.86
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FIGURE 5.1. ROC curve of SL GrCNNC and SL Ensemble for Pima data
set.

FIGURE 5.2. ROC curve of SL GrCNNC and SL Ensemble for BUPA data
set.
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FIGURE 5.3. ROC curve of SL GrCNNC and SL Ensemble for ILPD data
set.

FIGURE 5.4. ROC curve of SL GrCNNC and SL Ensemble for Wisconsin
data set.
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FIGURE 5.5. ROC curve of SL GrCNNC and SL Ensemble for Statlog data
set.

FIGURE 5.6. ROC curve of SL GrCNNC and SL Ensemble for Focality data
set.
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FIGURE 5.7. ROC curve of SL GrCNNC and SL Ensemble for bladder cancer
data set.

5.3.1 Ensemble with Multi-level GrCNNC

One or more multi-level GrCNNC classifiers can be included in the ensemble using

the proposed method. Test and training results of such ensembles are shown in

Tables 5.4 and 5.5. Compared to GrCNNC, higher accuracy is obtained for all the data

sets in test and training. Improvement in accuracy is accompanied by improvement of

AUC for 4 data sets in test and training. However, compared to single level GrCNNC

ensembles, multi-level GrCNNC ensemble (ML ensemble) results in higher test

accuracy and AUC for only 4 data sets with highest improvement for BUPA data set

as shown in Figures 5.8 and 5.9.

Similarly, improvement in training accuracy and AUC are compared in Fig-

ures 5.10 and 5.11.

Improvement values in these figures are computed relative to the performance of

single level GrCNNC. As shown in the figures, training accuracy and AUC of ML

ensemble are higher than SL ensemble for 6 data sets.
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TABLE 5.4. Test Accuracy (%) and AUC (%) of ML GrCNNC and ML ensem-
ble.

Data sets
GrCNNC Ensemble Improvement

Acc. AUC Acc. AUC Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

76.58 83.60 76.80 83.36 0.22 -0.25

70.51 73.53 71.53 74.85 1.02 1.32

70.00 67.60 70.42 68.25 0.42 0.65

96.51 99.16 96.55 99.40 0.04 0.23

82.59 89.80 82.81 89.94 0.22 0.14

81.34 60.45 81.40 60.38 0.06 -0.08

64.93 67.04 65.49 66.77 0.56 -0.27

TABLE 5.5. Training Accuracy (%) and AUC (%) of ML GrCNNC and ML
ensemble.

Data sets
GrCNNC Ensemble Improvement

Acc. AUC Acc. AUC Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

76.58 83.60 76.80 83.36 0.22 -0.25

70.51 73.53 71.53 74.85 1.02 1.32

70.00 67.60 70.42 68.25 0.42 0.65

96.51 99.16 96.55 99.40 0.04 0.23

82.59 89.80 82.81 89.94 0.22 0.14

81.34 60.45 81.40 60.38 0.06 -0.08

64.93 67.04 65.49 66.77 0.56 -0.27
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FIGURE 5.8. Improvement in test accuracy of multi-level GrCNNC NN, SL
ensemble and ML ensemble.

FIGURE 5.9. Improvement in test AUC of multi-level GrCNNC NN, SL
ensemble and ML ensemble.
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FIGURE 5.10. Improvement in training accuracy of multi-level GrCNNC
NN, SL ensemble and ML ensemble.

FIGURE 5.11. Improvement in training AUC of multi-level GrCNNC NN,
SL ensemble and ML ensemble.
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5.4 Genetic Algorithm for Weights Assignment

So far, the weights of the ensemble combiner were determined experimentally by

searching for the weights that produce best classification performance. However, it is

desirable to develop an approach for automatic weights assignment. In this section,

GA is used to achieve this task.

GA is a stochastic optimization algorithm that imitates natural evolution. Like

natural evolution, genetic algorithms generate populations of different possible

solutions successively. Each generation consists of a number of individual solutions,

or chromosomes, which compete with each other. The fittest chromosomes with

respect to some criteria get higher probabilities of being selected to reproduce the

next generation. A chromosome comprises a set of coded properties, or genes, which

describe the solution. Genes are either binary coded or real coded. The next genera-

tion of chromosomes is produced from selected chromosomes, called parents, by a

reproduction method. New parents are selected for each new child to be generated

[179].

There are various procedures to select the parents like: roulette wheel, linear

ranking and geometric ranking. The reproduction of a new generation from parents

is usually done using two main operators: crossover and mutation. In crossover,

chromosomes of one child or more are produced from genes of two or more parent

chromosomes using a crossover technique. On the other hand, mutation produces

one new chromosome by altering one or more genes in a single chromosome [180].

To use GA in determining the weights of the ensemble combiner, a fitness must

be first defined. GA use this function to evaluate the chromosomes. Aiming for

optimising the classification performance, training AUC is used as a fitness function.

In other words, the error function F(x) that the GA tries to minimise is given by:

F(x)= 1− AUC (5.2)

Using this fitness function, a GA is used to determine the five combiner weights of

the proposed ensemble. Maximum number of generations is set to 50 and population
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size is set to 40. Plots of fitness function values for each generation for two example

data sets (BUPA and Statlog) are shown in Figures 5.12 and 5.13.

Determining combiner weights using GA uses training data only as opposed

to the experimental method where the weights that result in best test results are

selected. Therefore, GA may not result in optimum test results, but it provides a

practical method since the desired test outputs are not available in practice.

Table 5.6 shows classification performance results for the ensemble tuned by GA.

The results are compared to single level GrCNNC and SL ensemble whose weights

are determined experimentally. Although optimal results have not been achieved by

the GA, ensemble tuned by the GA achieved higher accuracy and AUC than single

level GrCNNC for 5 and 6 data sets respectively. This is shown in Figures 5.14

and 5.15. In these figures, improvement is computed relative to the performance of

single level GrCNNC.

TABLE 5.6. Accuracy (%) and AUC (%) of SL GrCNNC, SL ensemble and
ensemble tuned by GA.

Data sets
SL GrCNNC SL Ensemble GA Ensemble

Acc. AUC Acc. AUC Acc. AUC

Pima

BUPA

ILPD

Wisconsin

Statlog

Focality

Bladder Cancer

76.18 83.43 76.62 83.32 76.10 83.21

69.28 72.26 71.01 74.52 70.86 74.60

71.90 63.43 71.25 67.43 69.35 67.94

96.11 99.36 96.51 99.43 96.50 99.42

83.37 89.01 83.30 89.80 82.56 89.89

81.12 59.80 81.52 60.29 81.20 60.59

63.70 66.73 65.45 69.09 64.59 68.93
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FIGURE 5.12. Best score value and mean score of GA for Bupa data set.

FIGURE 5.13. Best score value and mean score of GA for Statlog data set.
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FIGURE 5.14. Improvement in accuracy of SL ensemble and GA ensemble.

FIGURE 5.15. Improvement in AUC of SL ensemble and GA ensemble.
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5.5 Conclusions

In this chapter, a GrC approach for classifier ensemble was proposed. The proposed

approach relies on using different granularity levels to produce diversity in the

constructed base classifiers. GrCNNC was used for the generation and training of

the base classifiers and a weighted sum combiner was used to produce the final

ensemble output.

The proposed approach was implemented and used to build classifier ensembles

for each data set. Each ensemble consists of five classifiers trained with granules at

five different granularity levels. Granularity levels were selected of relatively low

granularity to avoid higher complexity and increase generalisation.

To investigates the effectiveness of the proposed method in generating divers base

classifiers, the weights of the ensemble combiner were determined experimentally

by searching for the weights that produce best classification performance. Based

on the experimental results, the proposed approach has improved the classification

performance of the base classifiers for most of the data sets in terms of both accuracy

and AUC.

To address the problem of automatic weights assignment, a GA was used to tune

the combiner weights. Although optimal results have not been achieved by the GA,

ensemble tuned by the GA achieved higher accuracy and AUC than single level

GrCNNC for most of the data sets.
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CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis was focused on adopting, implementing and evaluating a GrC approach

for the design of classification systems. In the proposed approach, granulation is

performed by using a data clustering method and the resulted granules are used

to build classifiers of different types. One or more granulation levels are used

to construct the classifiers and their performance is evaluated and compared to

standard classifiers. Classification systems used to investigate the proposed approach

are FIS, NN, ANFIS and classifier ensemble.

This thesis is made up of four main chapters:

• Chapter 2: In this chapter, an introduction to the fundamentals and princi-

ples of GrC was provided. In addition, it included a review of the methods,

frameworks and applications of GrC focusing on the synergy of GrC and com-

putational methods, including data clustering and fuzzy theory. The aim of

the review was to provide a theoretical background of information granulation

methods and their applications.
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• Chapter 3: In this chapter, a method for information granulation was proposed.

The proposed method, FCMGr, aims to produce information granules from

data at multiple levels of granularity. The granulation process is performed

using a modified FCM clustering method followed by a coarsening process

achieved by merging smaller clusters into larger clusters to form the next

lower granularity level. The modified FCM starts by choosing initial clusters

centres then computes the new fuzzy partition matrix and the updated clusters

centres. In addition, the fuzziness factor m is chosen dynamically for each

granularity level rather than being fixed prior the algorithm start.

FCMGr was used to build a fuzzy classifier for each granulation level. A fuzzy

rule is constructed from each cluster where Gaussian membership functions

are used to represent the fuzzy variables. The performance of the classifiers was

evaluated using the selected data sets and measured using two classification

performance measures: accuracy and AUC. Results show that fuzzy systems

constructed using FCMGr achieved better classification performance.

Furthermore, a method of automatically selecting the granulation level that

results in better classification performance was proposed. Results show that

the automatically selected granulation levels resulted in better accuracy than

the selected FCM classifiers for all the data sets over a wide range of number

of clusters (NC and fuzziness factor m.

In addition to using one granulation level for the construction of a FIS, multi-

levels of the FCMGr were used. Results show that multi-level FCMGr has

better accuracy than single-level FCMGr for three data sets.

• Chapter 4: In this chapter, FCMGr was used in an approach for the design of

NN classifiers. In the proposed approach, GrCNNC, the overall classification

task is divided into smaller subtasks of predicting the inclusion of a data

sample to different granules. Granules resulted from FCMGr were used to

train the NN. The GrCNNC can use one or more granulation level to train the

NN (single level and multi-level GrCNNC).

NNs trained using GrCNNC are more interpretable than standard NNs due

to the fact that GrCNNC uses information granules to train the NN rather
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than raw data. As a result, the classification problem is broken down into the

modelling of classification rules represented by the information granules.

Results of comparing GrCNNC to standard NNs show that GrCNNC has

higher accuracy for all the data sets used. The improvement in accuracy is

accompanied by higher AUC for most of the datasets, which indicates that

the improvement in accuracy does not come at the cost of lower specificity or

sensitivity. In addition, the results show that GrCNNC has lower STD for all

data sets except one which indicates that GrCNNC is more invariant to the

change in initial weights and training samples. In addition, results show that

multi-level GrCNNC multi-level GrCNNC has higher accuracy improvement

in five data sets and higher AUC improvement over NN for most of the data

sets.

• Chapter 5: In this chapter, a GrC approach for classifier ensemble was proposed.

The proposed approach uses different granularity levels to produce diversity

in the constructed base classifiers. GrCNNC was used for the generation and

training of the base classifiers and a weighted sum combiner was used to

produce the final ensemble output. Each ensemble consists of a number of

classifiers trained with granules at different granularity levels. Based on the

experimental results, the proposed approach has improved the classification

performance of the base classifiers for most of the data sets in terms of both

accuracy and AUC for test and training. In addition, a GA was used to tune the

combiner weights to assign combiner weights automatically. Although optimal

results have not been achieved by the GA, ensemble tuned by the GA achieved

higher accuracy and AUC than single level GrCNNC for most of the data sets.

6.2 Future Work

As a future work direction, the following is suggested:

• While information granulation was performed through data clustering in this

thesis, other methods of information granulation can be used. In particular,

the use of rough sets can be investigated.
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• One of the central problems of GrC is determining the most useful granularity

level automatically. Although an attempt was proposed in this thesis for the

case of fuzzy systems, the selection of the best granularity level for NN, ANFIS

and classifier ensemble was made experimentally. Therefore, more general and

robust methods are needed. For example, the use of entropy-based measures

can be investigated.

• The proposed approach for classifier ensemble can be used with different learn-

ing/combining methods. In addition, the effect of ensemble size and granularity

levels can be investigated.

• In addition to GA used in this thesis, other optimisation methods, like particle

swarm optimisation, can be used for the tuning of ensemble combiner weights.

• Although the proposed approach is a supervised learning approach that uses

target output in the learning process, it can be adopted to address semi-

supervised learning tasks where only partial knowledge of the target output is

available. Once granules are generated from data, knowledge represented by

these granules may allow for better performance.

• The performance of the proposed approach on large high-dimensional data sets

can be studied to investigate the advantage of data granulation in dealing with

large number of data samples and reducing complexity and/or dimensionality.
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