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Abstract—In this paper, the statistical characterizations of the
sum and the maximum of independent and non-identically dis-
tributed (i.n.d) composite η−µ/gamma variates are derived using
a mixture gamma (MG) distribution. The statistical properties,
namely, probability density function (PDF), cumulative distribu-
tion function (CDF), and moment generating function (MGF) are
obtained in general unified exact analytic expressions. These sta-
tistical results are then used to analyse outage probability (OP),
average bit error rate probability (ABEP), and average channel
capacity (C) of maximal ratio combining (MRC) and selection
combining (SC) schemes over i.n.d composite η−µ/gamma fading
channels. The validation of our derived expressions is verified by
comparing the numerical and simulation results.

Index Terms—Mixture gamma distribution, independent and
non-identically distributed, outage probability, average bit error
rate probability, average channel capacity.

I. INTRODUCTION

The so-called η − µ distribution has been widely used to
model the non-line-of-sight (NLoS) propagation environment
[1]-[6]. This is because it gives results closer to the practical
measurements than the conventional fading distributions such
as Nakagami-m [2]. Moreover, the η−µ distribution includes
the most well-known distributions as special cases [1].

Several efforts have been devoted to study the performance
of wireless communications systems with diversity receptions
over η − µ fading channels. For example, in [3], the average
symbol error probability (ASEP) for different digital modula-
tion schemes over independent and non-identically distributed
(i.n.d) η − µ fading channels with maximal ratio combining
(MRC) receivers is derived by using the moment generating
function (MGF) approach. The average channel capacity for
different transmission policies of MRC over η − µ fading
channels with independent but arbitrarily distributed branches
is analysed by [4]. Simple closed-form expressions for both
the probability density function (PDF) and the cumulative
distribution function (CDF) of the sum of squared η − µ
random variables (RVs) are presented in [5] and employed
to evaluate the outage probability (OP) and the average bit
error probability (ABEP) for MRC scheme. On the other
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hand, the performance of communications systems over η−µ
fading channels with selection combining (SC) system has
been investigated by very few works. For instance, the ABEP
for different modulation formats and average channel capacity
for number of transmission scenarios of a SC diversity with
i.n.d receivers in η − µ fading channels are derived in [6].

The wireless channels may undergo multipath fading and
shadowing simultaneously. Although many studies have been
dedicated to analyse the behaviour of communications systems
over composite η−µ/gamma fading channels [7]-[10], all these
efforts are restricted for single diversity receiver. Hence, there
is no work dealing with the performance of MRC and SC over
composite η − µ/gamma fading channels.

Motivated by the above, this paper analyses the performance
of MRC and SC over i.n.d composite η − µ/gamma fading
channels using a mixture gamma (MG) distribution. This
distribution is proposed by [11] as approximate general distri-
bution that can be utilised to model a variety of distributions
with high accuracy. Although the MG distribution is employed
by [12] to derive the ASEP and the average ergodic channel
capacity over independent and identically distributed (i.i.d)
KG fading channels with MRC and SC, there are still some
issues that are not addressed by the aforementioned reference.

The main contributions of this paper that fill the gaps of
[12] are summarized as follows:
• This paper provides general exact analytic expressions

for the statistical characterizations of the sum and the
maximum of MG RVs. These statistical results can be
employed for a variety of distributions (e.g., composite
η − µ/gamma fading) after substituting the equivalent
parameters of a MG distribution. On contrary, the derived
results in [12] can only be utilised to KG fading channels.

• The variates of MG are assumed to be independent
but not necessarily identically distributed. Accordingly,
the performance of MRC and SC with i.n.d diversity
receivers can be analysed. In [12], the derived expressions
are for the KG fading channels with i.i.d branches for
MRC (please refer to [12, eq. (9)]) and SC (please see
[12, eq. (14)]) diversity schemes. Furthermore, one case
which is SC with dual branches over i.n.d KG fading
channels is investigated by [12, eq. (19)].

• In contrast to [12] in which the results are restricted by
the integer value of fading parameters, i.e., m should be
an integer number, our derived statistics are not limited
by the values of fading and shadowing parameters.

• In [12], the expressions of the ABEP are given in integral
form whereas this work provides them in closed-form.
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II. STATISTICAL PROPERTIES OF MG DISTRIBUTION

The PDF of the instantaneous SNR γ, fγ(γ), using the MG
distribution is expressed by [11, eq. (1)]

fγ(γ) =
N∑
i=1

αiγ
βi−1e−ζiγ . (1)

where N and αi, βi and ζi are the number of terms and the
parameters of ith gamma component, respectively. The main
problem in utilising the MG distribution is how to determine
N . In [11], some methods are proposed to compute a minimum
N that achieves good approximation with high accuracy. One
of these methods is based on evaluating the mean square error
(MSE) between the PDF of the exact distribution and the PDF
of the approximate distribution using the MG distribution.

The CDF of the MG distribution is given by [11, eq. (2)]

Fγ(γ) =
N∑
i=1

αiζ
−βi
i G(βi, ζiγ). (2)

where G(., .) is the incomplete lower gamma function that is
evaluated by G(a, b) =

∫ b
0
xa−1e−xdx.

The MGF of the MG distribution, Mγ(s), which is the
Laplace transform of fγ(γ), i.e., Mγ(s) = L[fγ(γ); s] =∫∞

0
e−sγfγ(γ)dγ is expressed by [11, eq. (3)]

Mγ(s) =
N∑
i=1

αiΓ(βi)

(s+ ζi)βi
. (3)

where Γ(x) =
∫∞

0
zx−1e−zdz is the gamma function.

In this paper, the validation of our analysis is checked by
using η− µ fading channel shadowed by gamma distribution.
In η − µ fading [2], µ represents the real extension of the
number of multipath clusters whereas the definition of η
depends on the type of format. In format 1, η represents the
power ratio between the in-phase and quadrature scattered
components in each multipath cluster with 0 < η < ∞.
The respective H and h are expressed by H = (η−1 − η)/4
and h = (2 + η−1 + η)/4, respectively. In format 2, η
stands for the correlation coefficient between the in-phase
and quadrature scattered components in each multipath cluster
with −1 < η < 1. The respective H and h are given by
H = η/(1− η2) and h = 1/(1− η2), respectively.

The PDF of γ over composite η−µ/gamma fading channel
can be evaluated by integrating the η − µ fading channel [2,
eq. (26)] over gamma distribution as follows [7, eq. (6)],

fγ(γ) =
2
√
πhµµµ+ 1

2 γµ−
1
2

Γ(µ)Γ(k)ΩkHµ− 1
2

×
∫ ∞

0

yk−µ−
3
2 e−

2µhγ
y −

y
Ω Iµ− 1

2

(
2µHγ

y

)
dy. (4)

where k, Ω, and Ia(.) are the shaping parameter, the mean
power and the modified Bessel function of the first kind and
ath order [13, pp. 919, eq. (8.445)], respectively.

By substituting x = 2µhγ
y in (4), this yields

fγ(γ) =

√
π2k−µ+ 1

2hk−
1
2

(
µ
Ω

)k
γk−1

Γ(µ)Γ(k)Hµ− 1
2

∫ ∞
0

e−xg(x)dx. (5)

where g(x) = xµ−k−
1
2 e−

2µhγ
Ωx Iµ− 1

2

(
H
h x
)

. The integration in

(5), S =
∫∞

0
e−xg(x)dx, can be approximated as a Gaussian-

Laguerre quadrature sum as S ≈
∑N
i=1 wig(xi) where xi

and wi are the abscissas and weight factors for the Gaussian-
Laguerre integration [14]. Therefore, (5) can be expressed by
the MG distribution with parameters

αi =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
2µh

Ωxi
,

θi =

√
π2k−µ+ 1

2hk−
1
2

(
µ
Ω

)k
Γ(µ)Γ(k)Hµ− 1

2

wix
µ−k− 1

2
i Iµ− 1

2

(H
h
xi

)
. (6)

III. STATISTICAL CHARACTERIZATIONS OF MG
DISTRIBUTION WITH I.N.D RANDOM VARIABLES

A. Statistical Characterizations of the Sum of i.n.d MG Ran-
dom Variables

The statistical characterizations of the sum of SNRs in a fad-
ing channel are very important in analysing the performance
of wireless communications systems with MRC scheme.

Assume γj be a MG variate with average γ̄j and shaping
parameters αij , βij and ζij for j = 1, · · · , L, where L is the
number of independent but arbitrarily distributed RVs. The
MGF of γSum =

∑L
j=1γj , MγSum(s), can be evaluated by

MγSum(s) =
L∏
j=1

Mγj (s) =
L∏
j=1

[ Nj∑
ij=1

αijΓ(βij )

(s+ ζij )
βij

]
. (7)

The right hand side expression in (7) can be rewritten in
multiple summations as follows

MγSum(s) =

N1∑
i1=1

· · ·
NL∑
iL=1

L∏
j=1

αijΓ(βij )

(s+ ζij )
βij

. (8)

By plugging (8) into fγSum(γ) = L−1
[
MγSum(s); γ

]
1

where fγSum(γ) is the PDF of γSum, this yields

fγSum(γ) =

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αijΓ(βij )

)
L−1

[
(s+ ζi1)−βi1 (s+ ζi2)−βi2 · · · (s+ ζiL)−βiL ; γ

]
. (9)

The inverse Laplace transform in (9) can be computed by
[15, pp. 290, eq. (9.4.55)]. Thus, we have

fγSum(γ) =

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αijΓ(βij )

)
γΞ−1

Γ(Ξ)

× Φ
(L)
2

(
βi1 , · · · , βiL ; Ξ;−ζi1γ, · · · ,−ζiLγ

)
. (10)

where Ξ =
∑L
j=1 βij and Φ

(L)
2 (.) is the confluent multivariate

hypergeometric function defined in [15, pp. 34, eq. (1.4.8)].
One can see that Φ

(L)
2 (.) is not yet available in Matlab and

Mathematica software packages. However, an efficient method
to calculate this function is given in [16, Appendix V].

The CDF of γSum can be computed by using FγSum(γ) =
L−1

[
MγSum(s)/s; γ

]
and [15, pp. 290, eq. (9.4.55)]. Accord-

1Here L−1[.] stands for inverse Laplace transform operation.
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ingly, this yields

Fγsum(γ) =

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αijΓ(βij )

)
γΞ

Γ(1 + Ξ)

×Φ
(L)
2

(
βi1 , · · · , βiL ; 1 + Ξ;−ζi1γ, · · · ,−ζiLγ

)
. (11)

B. Statistical Characterizations of the Maximum of i.n.d MG
Random Variables

The statistical characterizations of the maximum of SNRs
in a fading channel are utilized in studying the behaviour of
wireless communications systems with SC technique.

By using the same assumptions in III.A, the CDF of
γMax = max{γ1, γ2, · · · , γL} of independent but not neces-
sarily identically distributed MG variates, FγMax(γ), is given
by

FγMax(γ) =
L∏
j=1

Fγj (γ) =
L∏
j=1

[ Nj∑
ij=1

αijζ
−βij
ij
G(βij , ζijγ)

]
.

(12)

Using [14, pp. 262, eq. (6.5.12)] with some mathematical
manipulations, FγMax(γ) in (12) becomes

FγMax(γ) =

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αij
βij

)

×
( L∏
j=1

γβij 1F1(βij ; 1 + βij ;−ζijγ)

)
. (13)

The MGF of γMax, MγMax(s), can be calculated by
invoking MγMax(s) = sL[FγMax(γ); s] with the aid of [15,
pp. 285, eq. (9.4.35)]. Accordingly, the desired result is

MγMax(s) =

N1∑
i1=1

...

NL∑
iL=1

( L∏
j=1

αij
βij

)
Γ(1 + Ξ)

sΞ
F

(L)
A

(
1 + Ξ;

βi1 , · · · , βiL ; 1 + βi1 , · · · , 1 + βiL ;−ζi1
s
, · · · ,−ζiL

s

)
. (14)

where F
(L)
A (.) is the multivariate Lauricella hypergeometric

function defined in [15, pp. 33, eq. (1.4.1)]. It can be noted that
F

(L)
A (.) is not yet implemented in Matlab and Mathematica

software packages. Thus, the accurate method that is proposed
by [17] is used to compute this function in this paper.

Using fγMax(γ) = L−1
[
MγMax(s); γ

]
and [15, pp. 33,

eq. (1.4.1)] with the help of the identity L−1
[
1/s1+ν ; γ

]
=

γν/Γ(1 + ν) [12, eq. (12)], the following exact expression of
the PDF of γMax, fγMax(γ), is obtained

fγMax(γ) =

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αij
βij

)
Ξ

γ1−Ξ

F 1:

L︷ ︸︸ ︷
1; · · · ; 1

1:1; . . . ; 1

[
1 + Ξ : βi1 ; ...; βiL ;

−ζi1γ, ...,−ζiLγ
Ξ : 1 + βi1 ; ...; 1 + βiL ;

]
.

(15)

where F 1:1;··· ;1
1:1;··· ;1[.] is the Kampé de Fériet function defined in

[15, pp. 38, eq. (1.4.24)].

IV. PERFORMANCE ANALYSIS OF DIVERSITY RECEPTION
USING MG CHANNEL MODEL

A. Outage Probability
The outage probability, Po, that is defined as the probability

of crossing the output SNR, γ, for a certain predefined
threshold, Υ, can be evaluated as Po = Fγ(Υ) [18].

1) MRC: In MRC reception, each diversity branch is
weighted via multiplying it by a factor. This factor is relative
to the complex fading coefficient of the branch. Thus, the
instantaneous SNR at the output of the MRC combiner is
γMRC =

∑L
j=1γj [18] where L and γj are the total number

of diversity branches and the instantaneous SNR at the ith
branch, respectively. Accordingly, the outage probability for
MRC can be calculated by (11).

The asymptotic expression of the Po for MRC, PoMRC ,
when γj → 0 for all j = 1, · · · , L can be computed by using
Φ

(L)
2 (βi1 , · · · , βiL ; 1 + Ξ; 0, · · · , 0) = 1 [16] as follows

PoMRC ∼
N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αijΓ(βij )

)
ΥΞ

Γ(1 + Ξ)
. (16)

2) SC: In SC, the receiver with maximum SNR among
all diversity receivers is chosen by the combiner. Hence,
the instantaneous SNR at the output of the SC combiner is
given by γSC = max{γ1, γ2, · · · , γL} [18]. Consequently, the
outage probability for SC reception can be evaluated by (12).

The asymptotic behaviour of the PoSC can be deduced from
(13) with the aid of 1F1(βij ; 1 + βij ; 0) = 1, as follows

PoSC ∼
N1∑
i1=1

· · ·
NL∑
iL=1

L∏
j=1

αij
βij

Υβij . (17)

B. Average Bit Error Probability
The ABEP, Pe, can be expressed as [19, eq. (12)],

Pe =
qp

2Γ(p)

∫ ∞
0

γp−1e−qγFγ(γ)dγ. (18)

The parameters p and q represent the modulation dependent
constants. Specifically, p = 0.5 and q = 1 for coherent binary
phase-shift keying (BPSK).

1) MRC: The ABEP for MRC, PeMRC , can be evaluated
by substituting (11) into (18) to give

PeMRC =
qp

2Γ(p)

N1∑
i1=1

· · ·
NL∑
iL=1

(∏L
j=1 αijΓ(βij )

)
Γ
(
1 + Ξ

)
×
∫ ∞

0

γp+Ξ−1e−qγΦ
(L)
2

(
βi1 , · · · , βiL ; 1 + Ξ;

−ζi1γ, · · · ,−ζiLγ
)
dγ. (19)

The integral in (19) is available in [15, pp. 286, eq. (9.4.43)].
Thus, after some mathematical manipulations, this yields

PeMRC =
1

2Γ(p)

N1∑
i1=1

· · ·
NL∑
iL=1

(∏L
j=1 αijΓ(βij )

)
Γ
(
p+ Ξ

)
Γ
(
1 + Ξ

)
qΞ

×F (L)
D

(
p+ Ξ;βi1 , · · · , βiL ; 1 + Ξ;−ζi1

q
, · · · ,−ζiL

q

)
.

(20)
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where F (L)
D (.) is another model of the multivariate Lauricella

hypergeometric function defined in [15, pp. 33, eq. (1.4.4)].
Although F

(L)
D (.) is not yet performed in Matlab and Math-

ematica software packages, it can be accurately evaluated by
doing the same steps that are given in [16, Appendix V].

By following a similar procedure for [16, eq. (22)], the
asymptotic behaviour of PeMRC is given by

PeMRC ∼
1

2Γ(p)

N1∑
i1=1

· · ·
NL∑
iL=1

(∏L
j=1 αijΓ(βij )

)
Γ
(
p+ Ξ

)
Γ
(
1 + Ξ

)
qΞ

.

(21)

2) SC: The ABEP of SC, PeSC , can be calculated by
plugging (13) in (18) as follows

PeSC =
qp

2Γ(p)

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αij
βij

)

×
∫ ∞

0

γp+Ξ−1e−qγ
L∏
j=1

1F1(βij ; 1 + βij ;−ζijγ)dγ. (22)

Using [15, pp. 285, eq. (9.4.35)] to evaluate (22), this yields

PeSC =
1

2Γ(p)

N1∑
i1=1

...

NL∑
iL=1

( L∏
j=1

αij
βij

)
Γ(p+ Ξ)

qΞ
F

(L)
A

(
p+ Ξ;

βi1 , · · · , βiL ; 1 + βi1 , · · · , 1 + βiL ;−ζi1
q
, · · · ,−ζiL

q

)
. (23)

With the aid of the identity
F

(L)
A (p+ Ξ;βi1 , · · · , βiL ; 1 + βi1 , · · · , 1 + βiL ; 0, · · · , 0) =

1, the asymptotic expression for PeSC is given by

PeSC ∼
1

2Γ(p)

N1∑
i1=1

· · ·
NL∑
iL=1

( L∏
j=1

αij
βij

)
Γ(p+ Ξ)

qΞ
. (24)

C. Average Channel Capacity

According to Shannon’s theorem, the average ergodic chan-
nel capacity, C, is given by [18]

C = B

∫ ∞
0

log2(1 + γ)fγ(γ)dγ. (25)

where B is the channel bandwidth.
It is observed that (25) can not be utilised in evaluating C

for both the MRC and the SC diversity receptions. This is
because the expressions of the PDFs in (10) and (15) are not
included an exponential function that gives the possibility to
calculate the integral in (25) analytically. Therefore, in this
paper, we employ an approximation method in computing C.

It can be noted that C can be expressed as [20, eq. (8)],

C =
B

ln2

∫ ∞
0

1−Mγ(z)

z
e−zdz. (26)

The integral in (26) can be approximately calculated by
using the Gauss Legendre quadrature approach [14] as follows

C ≈ B

ln2

M∑
l=1

wl
1−Mγ(xl)

xl
. (27)
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Fig. 1. OP comparison between no-diversity, MRC and SC schemes against
γ̄ with Υ = 5 dB.

V. NUMERICAL AND SIMULATION RESULTS

In this section, the validation of our derived expressions
is verified by the numerical and simulation results over i.n.d
composite η − µ/gamma fading channels2. These results are
given for single, dual and triple diversity branches. Monte
Carlo simulations with 106 iterations are utilized to compare
with the numerical results. In all figures, the simulation results
are represented by solid lines whereas the numerical results
and the asymptotic behaviours are shown by marks and dashed
lines, respectively. The simulation parameters for each branch
are (η1, µ1, k1, N1) = (0.1, 0.5, 1.5, 8), (η2, µ2, k2, N2) =
(0.3, 1.5, 1.5, 11), and (η3, µ3, k3, N3) = (0.9, 2.5, 1.5, 14).
The number of terms for each branch, namely, N1, N2, and
N3, is chosen to achieve MSE ≤ 10−6 between the exact PDF
and the approximate PDF using the MG distribution.

Fig. 1 shows the OP for single, MRC and SC diversity
receptions with Υ = 5 dB over i.n.d composite η−µ/gamma
fading channels. As expected, the OP of the MRC is less than
the OP of the SC and no-diversity cases. This is because the
total received SNR in MRC scheme is based on summing of
the SNR of all branches while in SC, the total received SNR
is the largest SNR among all receivers. For example, in Fig.
1, when γ̄ = 15 dB (fixed), the Po of the MRC with L = 2 is
nearly 73% and 99% lower than the SC with L = 2 and L = 1,
respectively. Furthermore, one can see that the value of the OP
reduces when the number of diversity branches increases.

Fig. 2 illustrates the ABEP for single, MRC and SC diver-
sity receptions with BPSK modulation over i.n.d composite
η−µ/gamma fading channels. This figure confirms our results
that are presented in Fig. 1. For instance, in Fig. 2 at γ̄ = 10
dB (fixed), the ABEP for the MRC with double branches is
approximately 48% and 95% less than the corresponding case
of the SC and L = 1, respectively.

2In this paper, Format 1 of the η−µ is employed. The results for Format 2
can be easily obtained from Format 1 by applying the bilinear transformation
as described in [2].
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Fig. 2. ABEP comparison between no-diversity, MRC and SC schemes
against γ̄ with BPSK.

Fig. 3 explains the normalized average channel capacity for
single, MRC and SC diversity receptions over i.n.d composite
η − µ/gamma fading channels. The number of terms, M , in
(27) is chosen to be 15. The results in this figure show the
superiority of the MRC on the SC and no-diversity schemes
and for the same reasons that are mentioned for Fig. 1. In Fig.
3, when γ̄ = 0 dB (fixed), the C for the MRC with L = 3 is
roughly 1.805 b/s/Hz whereas the C for the SC and L = 1 are
nearly 1.433 b/s/Hz and 0.6762 b/s/Hz, respectively.

In all provided figures, it is clear that the numerical results
match well with their Monte Carlo simulation counterparts,
proving the high accuracy of the analysis using the MG
distribution.

VI. CONCLUSIONS

In this paper, a MG distribution was employed to derive
the statistical properties of the sum and the maximum of
i.n.d composite η−µ/gamma variates in general unified exact
analytic expressions. These expressions were used to analyse
the performance of MRC and SC over composite η−µ/gamma
fading channels with independent but not necessarily identi-
cally distributed branches. In particular, the outage probability,
the average bit error probability and the average channel
capacity of MRC and SC schemes were derived. The results
of this paper can be employed to study the behaviour of MRC
and SC diversity receivers over a variety of composite fading
channels that have mathematically intractable statistics.
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