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ABSTRACT 

Complement system homeostasis is important for host self-protection and anti-microbial 

immune surveillance, and recent research indicates roles in tissue development and 

remodelling. Complement also appears to have several points of interaction with the blood 

coagulation system. Deficiency and altered function due to gene mutations and 

polymorphisms in complement effectors and regulators, including Factor H, has been 

associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in 

which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid 

arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related 

macular degeneration. Such diseases are generally complex – multigenic and heterogeneous 

in their symptoms and predisposition/susceptibility. They usually need to be triggered by 

vascular trauma, drugs or infection and non-complement genetic factors also play a part. 

Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and 

B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is 

an abundant protein, synthesised in many cell types, and its reported binding to many 

different ligands, even if not of high affinity, may influence a large number of molecular 

interactions, outwith the accepted role of Factor H within the complement system. . Factor H 

is involved in mesenchymal stem cell mediated tolerance and also contributes to self-

tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent 

dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-

tolerogenic effects in the apoptotic cell context. There may be co-operation with other 

phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, 

which specifically bind phosphatidylserine expressed on the apoptotic cell surface.. Factor H 

is able to discriminate between self and nonself surfaces for self-protection and anti-microbe 

defence. Factor H, particularly as an abundant platelet protein, may also modulate blood 

coagulation, having an anti-thrombotic role. Here we review a number of interaction 

pathways in coagulation and in immunity, together with associated diseases, and indicate 

where Factor H may be expected to exert an influence, based on reports of the diversity of 

ligands for Factor H.  
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INTRODUCTION 

The complement system has a dual innate immune role. It contributes to the maintenance of 

homeostasis by disposing of cell debris. On the other hand, complement, through its 

surveillance and recognition of microbes, mounts a defensive action. Recognition of modified 

self-tissue by complement may lead to injury and disease when the tissue is unprotected by 

factor H (FH). Both classical and alternative pathways may take part in this discrimination 

between self and non-self, substantially by negative regulator FH and homologues (Kajander 

et al. 2011; Ricklin et al. 2010; Zipfel and Lauer 2013). Besides these complement system 

related effects, FH can manifest non-canonical properties. Defects and malfunction in 

complement regulation have been associated with autoimmune, infectious and thrombotic 

disease susceptibility (Botto et al. 2009; Chen et al. 2010; Zipfel and Skerka 2009). 

Complement and blood coagulation systems are evolutionarily and functionally related. 

Complement, like the coagulation cascade, is activated by successive limited proteolysis of 

serine protease zymogens and which are usually associated with non-catalytic cofactor 

proteins (Reid and Porter 1981; Tsiftsoglou and Sim 2004; Sim and Tsiftsoglou, 2004). There 

is cross-reactivity between complement and coagulation such as the action of complement C1 

inhibitor, a serpin, disabling the production of vasoreactive bradykinin by kallikrein, and 

inhibiting coagulation factors XIa and XIIa (Davis et al. 2010). The MASP proteases of the 

complement lectin pathway also activate components of the coagulation pathway 

(Kozarcanin et al. 2016). A strong common link between diseases such as atypical 

haemolytic uremic syndrome (aHUS) and systemic lupus erythematosus (SLE) is 

inflammatory and thrombotic response of vascular endothelial cells, platelets and immune 

cells. Upon their injury by trauma and subsequent abnormal complement activation on their 

surface, these cells release pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α, as 

well as pro-coagulant tissue factor (TF). TF is induced by complement anaphylatoxin C5a 

through its G-protein-coupled receptor on neutrophils, which are also chemo-attracted by C5a 

to an injury site (Ritis et al. 2006). TNF-α can also induce TF and reduce anti-thrombotic 

activated  protein C and thrombomodulin receptor, whose expression inhibits blood 

coagulation on endothelial cells and platelets (Esmon 2004; Markiewski et al. 2007; 

Oikonomopoulou et al. 2012; Ricklin et al. 2010).  

The complement system encompasses more than 40 secreted and membrane bound proteins, 

some of which recognise microbial and altered self-molecular patterns. Recognition proteins 
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include C1q of the classical pathway, and mannose binding lectin (MBL), ficolins and other 

collectins of the lectin pathway (Carroll and Sim 2011; Kemper et al. 2014; Walport 2001b). 

These recognition events trigger activation of C1r, C1s proteases and MBL associated serine 

proteases (MASPs), which initiate the catalytic cascade of C2, C4 effector proteins forming 

the C3 convertase C4bC2a. This enzyme complex cleaves C3 into active C3b moiety and C3a 

peptide, and C3b initiates formation of the alternative pathway C3 convertase, C3bBb. The 

alternative pathway is constantly maintained at a low homeostatic level through C3 

autocatalysis via a hydrolysed intermediate C3(H2O) molecule which forms a C3 convertase 

C3(H2O)Bb, which itself cleaves C3 into reactive C3b and C3a molecules. This process can 

take place in plasma and on cell and microbe surfaces. The C3 convertases C4bC2a and 

C3bBb further form C5 convertases C4bC2aC3b and C3bBbC3b, which proteolytically 

cleave C5 protein into reactive C5b and C5a peptide. C5b propagates the terminal C5b-9 

pathway culminating in cytotoxic membrane attack complex (MAC) (Law and Reid 1995; 

Walport 2001a; Walport 2001b). Cleavage products C3a and C5a are pro-inflammatory and 

chemo-attractant anaphylatoxins. Thrombin can also directly cleave C5 to produce C5a 

(Huber-Lang et al. 2006; Meri 2013). In these events, C3b is a cofactor to the serine protease 

zymogen factor B. The C3bB complex is activated by serine protease factor D; activated 

factor D cleaves factor B into the active C3bBb serine protease-complex. The classical 

pathway is also considered to undergo a constant low activation turnover, required in its dual 

role in the recognition, surveillance of bacteria and self-tolerance (Ricklin et al. 2010). In 

addition to cell and bacterial lysis by the MAC, the other immediate complement innate 

immune defence mechanism is microbe opsonisation through complement fragment 

deposition on the microbe, enhancing  phagocytic cell uptake and microbe  destruction, such 

as by macrophages and dendritic cells (DCs). This mechanism also serves for host apoptotic 

and necrotic cell clearance (Walport 2001b). 

The complement proteolytic cascade is negatively regulated by complement control protein 

(CCP) domain containing glycoproteins, such as soluble FH and  C4b binding protein 

(C4bp), and cell membrane bound complement receptor 1 (CR1/CD35), decay accelerating 

factor (DAF/CD55), and membrane cofactor protein (MCP/CD46). FH competes with factor 

B for C3b attachment, thereby limiting formation of the C3 convertase C3bBb. FH can also 

dissociate a formed C3bBb convertase complex, a process known as C3 decay acceleration 

(Figure 1) (Hourcade et al. 1989; Weiler et al. 1976). C4bp modulates C4b2a formation 

similarly to the action of FH on C3bBb. Properdin is a positive regulator of the alternative 
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pathway, which stabilises complement convertases against their decay by regulators (Fearon 

and Austen 1975).  

C3 is composed of α and β chains, cross-linked by two disulphide bridges. The α chain 

harbours the N-terminal C3a peptide, various ligand binding sites, and a thioester group. C3 

protein is activated by convertases, cleaving C3 into C3a peptide and C3b which undergoes 

conformational activation changes (Bokisch et al. 1975). C3b and C4b molecules are highly 

reactive, exposing their internal thioester through which they make ester and amide bonds at 

random, becoming covalently linked with close-by bacterial and host surfaces. C3b and C4b 

are short-lived, reacting rapidly with water if no surface is encountered (Dodds et al. 1996; 

Law and Dodds 1996; Sim et al. 1981a). The serine protease factor I cleaves C3b and C4b, 

only when they are in complex with FH or other regulators including C4bp, CR1 or MCP. 

C3b α-chain is cleaved at two sites into 68, 43 and 3 kDa components. The 68 and 43kDa 

components are still attached to the C3b β chain, by disulphide links, forming a molecule 

designated as inactivated C3b (iC3b). The iC3b can be further cleaved by FI or by trypsin-

like proteases such as plasmin or thrombin into C3dg or C3d and C3c, which dissociate from 

each other. If C3b is surface- bound, the iC3b and C3dg or C3d formed from it also remain 

surface-bound. The surface-bound C3 fragments thus covalently tag or opsonise bacterial and 

unprotected host cell surfaces for complement receptor binding and engulfment by 

phagocytic cells. C4b undergoes similar degradation by FI, but since C4 is less abundant than 

C3, surface-bound C4b or C4d are of much lesser importance than the corresponding C3 

fragments (Carroll and Sim 2011; Davis and Harrison 1982; Rodriguez de Cordoba et al. 

2004; Sim et al. 1981b). 

Phagocytic cell complement receptors differ in structure and function. Human CR1 (CD35, 

C3b/C4b receptor) is composed of 23-37 (length polymorphism) complement control protein 

(CCP) modules, also called SCRs or Sushi domains, and is expressed on a variety of non-

immune and immune cells, but largely on red blood cells capturing immune complexes 

bearing C3b/C4b for clearance by liver macrophages. By having both C3b and C4b binding 

domains, CR1 is a potent inhibitor of classical as well as alternative pathway through decay-

acceleration of their convertases (Figure 1) (Krych-Goldberg and Atkinson 2001) CR2 

(CD21), made up of 15 or 16 CCPs, is a B cell co-receptor for ligating C3dg-C3d/Ag 

complexes, for the enhancement of specific B cell receptor signalling (Heyman et al. 1990; 

Ricklin et al. 2010; van Lookeren Campagne et al. 2007; Walport 2001b). Macrophage CRIg, 
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a member of the Ig superfamily, ligates a β-chain region of C3b as well as of iC3b and C3c 

fragments, is expressed on resident liver Kupffer cells. Here, it is required for a fast and silent 

capturing and internalisation of a continuous bulk of pathogens from venous blood flow, in 

helping to maintain an anti-inflammatory-homeostasis. CRIg is a recycling phagosome traffic 

receptor, which fuses with, and separates from lysosomes (Bilzer et al. 2006; van Lookeren 

Campagne et al. 2007).  

The integrins CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are phagocytic cell signal 

transducing receptors for iC3b and its fragments. Through their αI domains, CR3 and CR4 

bind the C3dg region of iC3b, or the C3c region of iC3b, respectively (Bajic et al. 2013; Chen 

et al. 2012). Macrophage CR3-iC3b/apoptotic cell binding mediates their silent-tolerogenic 

phagocytosis, and is also engaged in B cell receptor mediated antigen presentation (Bajic et 

al. 2013). In bacterial infection, this pathway can turn pro-inflammatory, perhaps because 

bacteria lack surface PS. PS may be a leading co-stimulatory tolerogenic phagocyte ligand 

(Henson et al. 2001). Other CR3 ligands include β-glycan, ICAM and tolerogenic siglec 

CD22- BCR co-receptor (Diamond et al. 1991; Ding et al. 2013). FH has also an allotted 

binding site in iC3b thioester domain (Bajic et al. 2013) and may modulate CR3/iC3b/antigen 

phagocyte responses. FH also binds to CR3 (DiScipio et al. 1998) and to PS (Tan et al 2010), 

and so may have complex modulatory effects in this system. 

Thus, complement receptors on phagocytic cells are involved in capturing and destroying 

pathogens, as well as in regulating complement activation together with FH.  Expressed on 

antigen presenting cells (APC) such as monocytes-macrophages and DCs, they may be 

essential in antigen cross-presentation to adaptive immune cells. This issue is presented in 

more detail below.   

Complement FH in self- and non-self-discrimination 

Complement FH (155 kDa) is an abundant and versatile plasma glycoprotein of variable 

concentration (range 128–654 µg/ml) (Ansari et al. 2013) in human plasma. FH is composed 

of 20 complement control protein (CCP) modules, and is encoded within the chromosome 

1q32 Regulators of Complement Activation (RCA) gene cluster, which contains FH related 

genes (FHR1-5) and its homologues such as C4bp, MCP (CD46), DAF, CR1 and CR2 

(Ripoche et al. 1988; Rodriguez de Cordoba et al. 2004; Skerka et al. 2013) as well as plasma 

transglutaminase (Factor XIII) B chain. 
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FH N-terminal domains (CCP1-4) have mainly C3bBb decay accelerant and FI-cofactor 

regulatory function (Figure 1), whereas its CCP19-20 C-terminal domains bind to cell surface 

C3d thioester containing domain (TED) of the iC3b or C3d molecule, as well as to cellular 

anionic charge clusters, made up of, for example, of charged glycosaminoglycans (GAGs) or 

sialic acid in glycans (Aebi and Hennet 2001; Morgan et al. 2011). This direct dual C3-

fragment-charge cluster FH cell interaction such as on vascular endothelial cells is required 

for self-protection from complement.   

FH can bind surface-attached iC3b/C3d by two sites within CCP19 and 20, or GAGs with its 

CCP20 domain, and thus, bind to C3 fragment-bearing surfaces: this interaction increases the 

apparent avidity for the binding of C3b by the CCP1-5 region to hinder complement 

activation (Kajander et al. 2011). In contrast, bacterial surface molecules/antigens mainly 

lack such anionic charge clusters to bind CCP20, and so the overall avidity of FH CCP1-5 

binding to the surface C3b is not augmented, allowing complement activation and 

opsonisation for their phagocytosis, or direct killing by terminal components MAC. Thus, FH 

aids in discrimination between normal self, altered-self and non-self-molecules (Kajander et 

al. 2011; Perkins et al. 2012). However, some bacteria have evolved proteins which 

selectively bind FH, and the bound FH appears to inhibit complement attack on the bacteria. 

Thus some microrganisms can disguise themselves as “self” by binding FH and/or its 

homologue C4bp, as discussed below. FHCCP19-20/GAG/C3b-TED complexes have been 

confirmed by X-ray and NMR structural analysis (Kajander et al. 2011; Morgan et al. 2011). 

Mutations of FH in its CCP-19 and CCP-20 domains which diminish C3d/GAG attachment 

are associated with risk for aHUS, and for membrano-proliferative glomerulonephritis type-2 

(MPGN2-dense deposit disease DDD) (Figure 3) (Ferreira et al. 2009; Pickering et al. 2007).  

 Sialic acids, found on the terminal ends of glycans and linked to membrane glycoproteins, 

are widely expressed in humans and have a variety of biological functions, such as in DC 

development, antigen presentation and in regulation of B cell signalling (Crespo et al. 2013; 

Paulson et al. 2012). They engage a Siglec-like-binding site on FH CCP-20 domain, of which 

the key binding residues are conserved across mammalian species. A large number of FH 

mutations found in this sialic acid-binding site contribute to HUS susceptibility (Blaum et al. 

2015). There is evidence that FH circulates as a compact omega-shaped molecule extending 

C-terminal CCP 19-20 domains for vascular GAG binding. It is suggested that only upon 
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such surface adhesion that the molecule opens to fully expose other binding sites and epitopes 

(Oppermann et al. 2006).  

A FH polymorphism in its CCP7 domain increases substantially the risk for age-related 

macular degeneration (AMD). This polymorphism is replacement of Tyr402 by His; Y402H, 

sometimes also written as Y384H, depending on whether residue numbering includes the 

signal sequence (Day et al 1988; Clark et al 2006). CC6-8 is another important functional 

region of FH, associated with the binding of GAGs (Clark et al 2006; 2013) and surface 

proteins of many bacteria (Parente et al 2016). 

FHR1-5 proteins had been relatively little studied up to about 8 years ago. Many potential 

roles have now been identified for them (Medjeral-Thomas and Pickering, 2016). In general 

they appear to oppose the function of FH, by promoting rather than downregulating C3 

turnover. They are composed of different numbers of CCP domains, and they contain CCP 

domains which are very similar in sequence to FH domains 6, 7, 19 and 20. All of them 

appear to form homodimers or heterodimers, which will increase their binding avidity for 

surface ligands. They can therefore be expected to compete with FH for binding to some of 

its CCP6-8 and CCP19-20 ligands. An imbalance between FH and FHR proteins and their 

polymorphism, can contribute to susceptibility of several diseases, including aHUS and AMD 

(Skerka et al. 2013; Fritsche et al. 2010) (Figure 2). 

Non-canonical roles of FH 

FH acts as an immune cell adhesion-migration molecule, recognising a range of cell ligands, 

including apoptotic cell phosphatidylserine (PS), ribonuclear antigens, extracellular matrix 

(ECM) proteins such as fibromodulin, osteoadherin and transmembrane signalling integrins 

(Kopp et al. 2012; Kouser et al. 2013). FH can mediate immune cell activation as well as 

their suppression. Complement receptor type 3 (CR3, an integrin also called CD11b-CD18, 

αMβ2, macrophage receptor-1; MAC-1) has been recognised as a FH receptor, which is 

expressed on monocytes, macrophages, dendritic cells (DCs), B cells, and neutrophils 

(Springer et al. 1979). Such FH adherence to human neutrophils via CR3 is required for their 

activation by C5a for oxidative burst and bactericidal effect (DiScipio et al. 1998). In 

addition, FH and FHR-1 mediate neutrophil adherence of Candida albicans for its 

engulfment and destruction (Losse et al. 2010). CR3 may ligate FcγRIII for the generation of 

oxidative burst in neutrophils, as activated by agonist monoclonal antibodies against both 
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receptors (Zhou and Brown 1994). FH may modulate this Fc receptor function: in lupus 

prone mice, FH had a protective role in the development of severe lupus nephritis in 

processing immune complexes in the mesangium and capillary walls, as compared with FH-

deficient mice (Bao et al. 2011). Recently, macrophage FH-CR3 interaction has been found 

to have a protective outcome in chronic immune complex-mediated glomerulonephritis in a 

mouse model of serum sickness and renal insufficiency; the protection depended on the 

presence of FH (Alexander et al. 2015). Other reported roles of CR3, presented in the next 

paragraph, may potentially be modified by FH binding, and since FH is an abundant protein, 

even low affinity binding of FH may be relevant.   

CR3 can suppress TLR-mediated inflammatory signalling in monocytes and macrophages by 

activating tyrosine kinases, Src and Syk, enhancing MyD88 and TRIF adaptor destruction by 

ubiquitin ligase Cbl-b (Han et al. 2010; Mocsai et al. 2006). As another example, CR3 is also 

highly expressed on DCs, apparently mediating through antigen cross-presentation, an 

antigen specific Th cell type tolerance of a local lymph node draining region. For example, 

mice deficient in CR3 lacked oral tolerance to an immunising antigen, and developed Th17 

inflammatory effector subset in intestinal region (Ehirchiou et al. 2007).  CR3 is a marker of 

myeloid cell lineage, and is highly expressed on mature DCs (Springer et al. 1979). As 

studied in mice, CR3 is also found abundantly on regulatory DCs (DCreg), which arise in 

lymphoid organs such as spleen, lung and liver from differentiation of resident 

haematopoietic stem cell progenitors induced by organ stromal cell microenvironment (Li et 

al. 2008; Tang et al. 2006; Xia et al. 2008; Zhang et al. 2004). Splenic or lung endothelial-

like stromal cells are also able to drive differentiation of mature or immature DCs, 

respectively, into DCreg cells (Li et al. 2008; Zhang et al. 2004). These DC effects occur on 

stromal cell contact or their secretion of TGF-β, IL-10, or M-CSF. DCreg, in turn, secrete IL-

10, nitric oxide (NO), and prostaglandin E2 (PGE2) to ameliorate innate and adaptive immune 

cell-mediated inflammation, and to contribute to maintenance of homeostatic local tolerance 

(Li et al. 2008; Tang et al. 2006; Xia et al. 2008). DCregs inhibit naïve T cell proliferation 

induced upon antigen presentation by DCs. These inhibitory effects do not seem to involve 

anergic DCs, T cells, or Tregs. However, pulmonary DCregs could induce Tregs (Tang et al. 

2006). Liver fibroblast-like stroma has been known to promote self-tolerance, and that of 

liver allografts (Xia et al. 2008). DCregs would seem to arise mainly from innate sources and 

possess a broad tolerogenic capacity on immune cells. CR3 is regarded a DCreg co-

stimulatory molecule, together with CD40, CD80 and CD106. However, its ligand for this 
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purpose has apparently not been specified (Zhang et al. 2004). Among others, it might be FH 

or iC3b. 

A SNP of CR3 alpha chain (rs1143679, at position 77 replacing Arg by His; R77H) has been 

associated with a significant risk of developing SLE in people of European and African 

descent (Nath et al. 2008). Studies with the mutated gene transfected into human and mouse 

cells, as well as with CR3 alpha knock-out mice, indicated that CR3 mediates B cell tolerance 

in controlling proliferation of self-reactive B cells (Ding et al. 2013). An allosteric defect in 

the R77H mutant variant in its propeller domain, impairing its ligand adhesion, has been 

revealed (Rosetti et al. 2015). CR3 adhesion to B cell-siglec CD22 relies on its sialylation 

(Ding et al. 2013). FH, as sialylated protein and a ligand of CR3, may potentially influence 

this receptor adhesion. 

Human FH has been shown to be a natural ligand of human leukocyte adhesion molecule L-

selectin, which is constitutively expressed on myeloid cells. FH in presence of calcium ions 

induced leukocyte TNF-α secretion. This FH function depended on its glycosylation 

(Malhotra et al. 1999). Two other selectin family members are P- and E- selectins expressed 

on activated vascular endothelial cells. Selectins are, via their cytoplasmic tail, cell signalling 

receptors (Bunting et al. 2002; Malhotra et al. 1999). Selectins together with their ligands 

strongly contribute together with β2 integrins to adhesion and migration of circulatory 

leukocytes such as polymorphs and monocytes into extra-vascular regions for surveillance 

and an inflammatory response to infection. These events entail circulatory leukocyte 

tethering, rolling, activation and adhesion on post-capillary venule endothelia for their 

extravasation (Bunting et al. 2002). Various cytokines and chemokines are involved (Bunting 

et al. 2002; Zhu et al. 2008). The importance of selectins and of β2 integrins (including CR3) 

in leukocyte trafficking became evident in rare hereditary leukocyte adhesion deficiency 

syndromes (LADs). LADI type is due to polymorphism in CD11/CD18 (leukocyte integrins, 

CR3, CR4 and LFA-1) receptor expression and structure defects (Guan et al. 2015) LADII 

results from a defective glycosylation by glycosylases of selectin ligands and other 

glycoconjugates (Becker and Lowe 1999; Bunting et al. 2002). A patient impaired in GDP-

fucose transport into Golgi lumen also exhibited LADII-like symptoms (Lubke et al. 1999) 

LADI and LADII phenotypes are similar in showing growth/mental retardation, a severe 

recurrent/persistent infection and sepsis (Bunting et al. 2002; Sperandio et al. 2009). FH may 
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potentially contribute to myeloid leukocyte response modulation in infection surveillance, 

involving L-selectins and β2 integrins.  

Human bone marrow-derived stromal progenitors, termed mesenchymal stem cells (hMSCs), 

possess pluripotent property to differentiate into various mesenchymal tissues. These include 

stromal cells in lymphatic tissues which support differentiation of haematopoietic cells 

(Majumdar et al. 1998). Besides, hMSCs have a direct broad anti-inflammatory and 

tolerogenic property in innate and adaptive immune cells by secreting corresponding 

cytokines and chemokines (Caplan 2009; Ma et al. 2014; Tu et al. 2010). Adult hMSCs 

constitutively secrete in a paracrine way a high gradient of FH which mediates the anti-

inflammatory effects by these and adjacent cells in the microenvironment. Systemic FH 

produced by liver is ineffective in this aspect. Such FH production by hMSCs may be boosted 

by INF-γ and TNF-α, and may thereby suppress complement activation (Tu et al. 2010) 

hMSC are found in most tissues including lymphoid organs and stroma (Ma et al. 2014; Tu et 

al. 2010). With human B cells, hMSCs inhibited their proliferation and differentiation as 

estimated by down-regulation of IgG and IgM and chemokine expression (Corcione et al. 

2006). In a murine model of myelin oligodendrocyte glycoprotein induced T cell-mediated 

experimental autoimmune encephalomyelitis (EAE), MSCs substantially subdued nerve 

damage (Zappia et al. 2005). Human MSCs inhibited monocyte/DC differentiation as well as 

cofactor expression and IL-12 secretion of mature DCs, which is needed in their cross-

presentation of antigens to T cells (Jiang et al. 2005). These events are reminiscent of gC1q 

receptor suppression of activation of DCs and of T cells (Waggoner et al. 2007)  hMSC 

immunosuppressive and self-tolerogenic effects appear to be pleiotropic, and requiring 

inflammatory stimuli, such as TNF-α (Ma et al. 2014; Tu et al. 2010). Suppression by an 

augmented FH of complement activation may be a component to regulate an exaggerated 

inflammation. FH may potentially engage its integrin and L-selectin receptors in conjunction 

with hMSC effects, in addition to its decay acceleration of C3 convertase.  

Maintenance of self-tolerance: potential FH modulation of the actions of apoptotic cells, 

integrins, PS-binding ligands   

It has been suggested that a steady state homeostatic apoptotic cell turnover and clearance by 

phagocytes may maintain innate and adaptive immune cell peripheral tolerance to self- 

antigens (Savill et al. 2002; Steinman et al. 2000; Steinman et al. 2003). FH interactions with 

apoptotic cells, PS, iC3b, integrins and thrombospondin-1 may modulate some of the 
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relationships described below. The wide inter-individual variation in plasma FH will 

influence the magnitude of the effects of FH. Apoptotic cells induce, in monocytes and DCs, 

production and secretion of anti-inflammatory cytokines such as IL-10 and/or TGF-β, which 

are also main tolerogenic factors of Tregs, and IL-10 in B regulatory cells (Tedder 2015). 

These effects depend on phagocyte cell type, ligand-receptor combination engaged, and cell 

microenvironment (Savill et al. 2002; Steinman et al. 2000; Steinman et al. 2003). Such 

apoptotic cell suppression of inflammation is an active process, since it can overcome nuclear 

factor-κB (NF-κB) dependent pro-inflammatory signalling. This has been demonstrated with 

human DCs and macrophages, engulfing apoptotic cells opsonised with iC3b, which is a 

major CR3 and CR4 ligand. Such stimulated macrophages produced IL-10 and suppressed 

pro-inflammatory cytokines including IL-1β and IL-6 (Amarilyo et al. 2010). A tolerogenic 

FH effect has been indicated in experiments with human monocytes engulfing apoptotic cells 

expressing PS. C1q-mediated apoptotic cell clearance via its monocytic C1qR is potentially a 

pro-inflammatory event. However, in the presence of FH, which ligated its monocyte 

receptor CR3, the C1q effects were substantially reduced (Kang et al. 2012). These 

potentially tolerogenic effects of FH on monocytes may be separate and opposing to those of 

C1q pro-inflammatorycollagen domain receptor. The C1q globular domain receptor (gC1qR) 

may transduce tolerogenic effects via Th1 cells (Chen et al. 1994). This regulatory pathway 

appears to be separate from the DC and monocyte-macrophage tolerogenic responses to their 

apoptotic cell clearance. Studies with apoptotic cells, and also with Plasmodium falciparum-

infected red blood cells cleared by human DCs showed such cells to assume an anergic state, 

failing to stimulate naïve Th cells for antigen presentation. However, in DCs, like in 

macrophages and neutrophils, this event was mediated by DC vitronectin-αVβ3 integrin 

receptor, in conjunction with scavenger thrombospondin-1(TSP1) CD36 receptor expressed 

on DCs (Urban et al. 2001; Savill et al. 1992). Later, it was  shown, that TSP-1 protein, 

expressed on apoptotic macrophages, binds to DCs through its heparin binding domain, to 

several receptors including CD47 (integrin associated protein-IAP) and  αvβ3. This receptor 

ligation induced in DCs the apoptotic cell phagocytosis, with a tolerogenic state, 

independently from apoptotic cell phosphatidylserine (PS) (Krispin et al., 2006). On the other 

hand, PS expressed on red cells binds to TSP-1 heparin- binding domain (Gayen and Setty, 

2008). IAP was identified when it was co-purified with αvβ3 from placenta as a complex 

(Brown and Frazier, 2001). Further studies showed that as a cell ligand of IAP, TSP-1 

together with its CD36 receptor signalling, can modulate through IAP, IAP-integrin complex 
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formation, such as with αvβ3 on macrophages and DCs (Gao et al., 1996a; 1996b). However, 

for an assembly of these proteins into a functional cell signalling supramolecular complex, 

IAP needs to recruit heterotrimeric Gi proteins (Frazier, et al 1999).  IAP binding to 

cholesterol is also required, found enriched together with glyco-sphingolipids in cell plasma 

membrane domains, where assembly of these complexes and cell signalling mainly takes 

place (Green et al. 1999). TSP-1 can also ligate IAP with platelet specific αIIbβ3 integrin, 

inducing activation (Chung et al. 1997).   

As an integrin counter-inhibitory receptor, there exists  the immunoinhibitory-signal 

regulatory protein-α (SIRPα), which is a receptor for IAP, exhibiting on its cytoplasmic tail 

four  immunoreceptor tyrosine- based inhibitory motifs (ITIMs). Its activation recruits 

cytosol tyrosine phosphatase src-homology (SHP-1) or SHP-2 domain. Together as a 

complex, these receptors transmit bi-directionally cell stimulatory and inhibitory signalling. 

SIRPα may prevail, and substantially contribute to a silent apoptotic cell clearance, by 

opposing TSP1/CD36 induced cell activation-inflammation (Barclay and van der Berg, 

2014). CD47 is an ubiquitous, multiply membrane spanning Ig superfamily protein.  It is a 

marker of normal cell- self. Its phagocytosis is prevented by SIRPα expressed on myeloid 

cells, through myosin type II deactivation, serving in phagocytosis as part of the cytoskeleton 

(Tsai and Discher 2008). FH is a high affinity ligand for TSP-l and is also a ligand of the 

platelet integrin αIIbβ3 (Vaziri-Sani et al., 2005; Carron et al, 1996; Parente et al., 2016).  

FH is a major contributor to apoptotic cell iC3b opsonisation for the CR3-mediated 

tolerogenic-silent phagocyte uptake. As a cofactor to the serine protease FI, it augments   

conversion of C3b into iC3b on apoptotic cell surfaces (Amarilyo et al. 2010; Bajic et al. 

2013). In these processes, complement regulators and receptors may engage other regulators 

such as the innate cell immunosuppressive TAM-tyrosine kinases Tyro3, Ax1 and MerTK. 

MerTK has been studied in a silent clearance of apoptotic cells by macrophages.  In this task, 

MerTK relies on its co-receptor-ligands Protein S and growth arrest specific gene 6 (GAS6). 

TAM receptors function as an inhibitory feed-back to pro-inflammatory TLRs by inducing in 

phagocytes type-1 IFN-α production and the transcription factor STAT1. TAM receptors are 

vital in adult homeostasis, but not in embryos (Lemke and Rothlin 2008; Rothlin et al. 2007; 

van der Meer et al. 2014). Further systems involved are the PS specific T cell 

immunoglobulin variable (IgV) and mucin domain containing (TIM) family receptors. These 

are human Tim-1, Tim-3 and Tim-4 (mice also have Tim-2) (Freeman et al. 2010). The key 



   15 

 

tolerogenic ligand is apparently PS expressed on early phase apoptotic cell outer membrane 

leaflet, which is specifically recognised by the Tim family, and is also a ligand of FH. Tim 

glycoproteins are type-1 transmembrane receptors, with extracellular IgV and mucin domains 

and cytoplasmic tails, which bear protein tyrosine phosphorylation signalling motifs. Tim-4 

lacks this motif, but it is a ligand of Tim-1 (Freeman et al. 2010; Kobayashi et al. 2007; 

Miyanishi et al. 2007). Tim receptors are differentially expressed on innate and adaptive 

immune cells, involved in allergies, autoimmunity, self-tolerance and in transplantation 

allograft sensitivity (Freeman et al. 2010; Kuchroo et al. 2003; Kuchroo et al. 2008; Meyers 

et al. 2005b). 

Tim-1 regulates Th2 cell responses to extracellular parasites by producing cytokines such as 

IL-4 and IL-13. Tim-1 is a well-known susceptibility gene for asthma, where it appears as a 

negative regulator (Meyers et al. 2005b). For example, a gain of normal function mutation of 

Tim-1 protected people from asthma (Sinha et al. 2015) whereas a loss of function 

polymorphism of Tim-1was associated with allergic rhinitis (Mou et al. 2010). Allergy and 

asthma associated with Tim-1 may in some patients be mitigated by a concomitant hepatitis 

A virus (HAV) infection, which is a ligand for this receptor (Freeman et al. 2010). Tim-1 has 

also been associated with regulation of autoimmune disease such as multiple sclerosis (MS) 

and rheumatoid arthritis (RA). In RA patients, a correlation with Tim-1 gene polymorphism 

has been found (Freeman et al. 2010; Meyers et al. 2005a). Tim-1/Kim-1(kidney injury 

molecule 1) is involved in proximal tubular epithelial cell uptake of apoptotic cells, and in 

their homeostasis (Ichimura et al. 1998). In B cells, Tim-1 is essential for regulatory B cells 

(Bregs) induction and maintenance in the context of apoptotic cells, which can then promote 

their tolerogenic effects also in Th2 cells (Ding et al. 2011; Xiao et al. 2015). However, in a 

B cell subset, Tim-1, expressed together with Tim-4, induces an inflammatory response 

against allografts and tumours (Mohib et al., 2014). 

It has been shown that Tim-1 receptor on Th1 cells, interacting with Tim-4, can invoke a 

proliferative inflammatory response, producing a large amount of IFN-γ and much less of IL-

4 and IL-10. In Th2 cells, these cytokine amounts were inverted (Meyers et al., 2005a). Tim- 

4 is expressed on macrophages and DC (Meyers et al. 2005a). Such a cognate contact may 

occur at immunological synapse upon specific antigen cross-presentation by DCs to naïve T 

cells (Echbarthi et al., 2015). It has been demonstrated that Tim-4 can differentially ligate PS 

on apoptotic cell outer lipid bilayer, such as on functional activated Th1 cells, thus regulating 
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their number by elimination (Tietjen et al. 2014). This Th1 cell phenotype suppressed self- 

antigen pulmonary tolerance (Umetsu et al. 2005). As a counter-balanced loop response to 

spare the host, Tim-3 becomes activated on Th1 cells. Tim-3 is a major negative regulator of 

inflammation, promoting peripheral self-antigen tolerance, together with its soluble isoform 

ligand. This protein consists of only the Ig variant region of the full Tim-3 molecule (Sabatos 

et al. 2003; Sanchez-Fueyo et al. 2003). Recently, it has been indicated that such Th1/Tim-3 

tolerance is itself regulated through heterodimerization with the carcinoembryonic antigen 

cell adhesion molecule-1 (CEACAM-1) (Huang et al. 2015). Tim-3 is also expressed on 

myeloid cells, such as circulating monocytes, peritoneal exudate macrophages, and 

CD8
+
DCs, co-expressed with CD11c/CD18 (CR4). It is involved in their apoptotic cell 

phagocytosis and in the self-antigen cross-presentation to T cells, resulting in their death as a 

way of self-reactive T cell negative selection (Nakayama et al. 2009).  

Tim-4 can be co-expressed on peritoneal resident macrophages (pRMs), together with the FH 

receptor CR3 and with MerTK (Meyers et al. 2005a; Nishi et al. 2014) suggesting a co-

operation in a silent apoptotic cell clearance.  MerTK may be the tolerogenic component in 

these receptor combinations. In DC-mediated apoptotic cell clearance, MerTK inhibited pro-

inflammatory NF-κB signalling for their tolerogenic phenotype (Sen et al. 2007). Engulfment 

by murine peritoneal resident macrophages of apoptotic cells proceeded in two steps. Firstly, 

Tim-4 binds apoptotic cell PS for adherence to the cells, followed by their MerTK mediated 

phagocytosis (Nishi et al. 2014). Most likely, MerTK also inhibited the macrophage pro-

inflammatory cytokine production. It was reported previously that apoptotic cells induce in 

macrophages such effects (Cvetanovic and Ucker 2004). Human blood macrophage apoptotic 

cell clearance through CR3 inhibited NF-κB signalling induced by zymosan (Amarilyo et al. 

2010). Apoptotic cell TSP-1 heparin binding domain induced in DCs a tolerogenic state 

(Krispin et al. 2006). Potentially, a MSC paracrine FH may mediate its tolerogenic effects 

through the receptor, CR3 or by ligating TSP-1 of macrophages and DCs.  

There are further apoptotic cell/PS binding receptors in macrophages and DCs such as MFG-

E8 (milk fat globule EGF factor VIII), which is able to synergistically work with Tim-4, to 

induce immunosuppressive effects (Miyanishi et al. 2012). In mice, blockade of Tim-4 as 

well as of Tim-3 by monoclonal antibodies resulted in delayed apoptotic cell phagocyte 

uptake and in appearance of anti-cardiolipin and anti-dsDNA autoantibodies (Kobayashi et al. 

2007; Miyanishi et al. 2007; Nakayama et al. 2009; Nishi et al. 2014). 
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Tim-3 appears to co-operate with the gC1qR, which is also expressed on Th1 cells. gC1qR 

inhibits Th1 proliferation, similarly to that by Tim-3 (Carroll 2004; Chen et al. 1994; 

Ghebrehiwet et al. 2014; Yao et al. 2008). gC1qR may contribute to self- tolerance as a co-

ligand to Th1 cells, regulated by CEACAM1/Tim-3 complex adhesion, by inhibing Th1 cell 

differentiation through suppressing IL-12 production by DCs (Huang et al. 2015; Waggoner 

et al. 2007). Viruses, including hepatitis C (HCV) and HIV, exploit this gC1qR negative 

pathway for their disease chronicity (Waggoner et al. 2007; Yao et al. 2008). 

Early phase PS recognition is important for a prompt and silent clearance of apoptotic cells, 

before they release apoptotic blebs containing inflammatory-immunogenic molecules or 

undergo  secondary necrosis. In vivo studies found that macrophages, through engulfing 

apoptotic cells in a PS-dependent manner, secrete TGF-β1 which promoted wound healing 

(Huynh et al. 2002). PS, an anionic phospholipid, is an integral part of cell membrane lipid 

structure, expressed in their inner leaflet. On an injury, infection, apoptosis or 

physiologically, this asymmetry is perturbed by scramblase, distributing PS also on the outer 

membrane of the lipid bilayer (Zwaal et al. 2005). 

Tim-1 is a marker of regulatory B cells (Bregs) (Tim-1
+
 B cells), but is also expressed 

temporarily on other B cell types.  As studied in mice, activated through its ligation by a 

natural specific antibody, Tim-1 may promote peripheral tolerance (Ding et al. 2011). Tim-1 

was found to be paramount in sustained production by Bregs of IL-10 in constraining 

inflammatory processes. It binds apoptotic cells to Bregs, which is needed for their IL-10 

production (Xiao et al. 2015). Tim-1 mucin domain defective mutant mice exhibited a 

massive mononuclear cell infiltration in various organs. Their B cells produced inflammatory 

IL-1β and IL-6 cytokines, instead of normal IL-10. They induced Th1 and Th17 type 

expression, while inhibiting Foxp3
+
 Tregs. Such B cells aggravated murine EAE, in contrast 

to normal Bregs, which ameliorate this brain pathology (Xiao et al. 2015). Such Tim-1- Breg-

EAE suppressive effects might be similar to those of MSCs in anergic T-cells, expressing FH 

(Zappia et al. 2005). CR3 is also involved in B cell receptor (BCR) mediated tolerance 

maintenance (Ding et al. 2013). 

Tim-3 has divergent functions expressed on Th1 cells, and possibly on B cells, it suppresses 

inflammation. On innate immune cells, where it can be constitutively expressed, including 

monocytes, microglial cells, DCs, it promotes inflammation, e.g. in microglial border region 

with experimental autoimmune encephalomyelitis (EAE) lesions (Anderson et al. 2007; 
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Monney et al. 2002; Sanchez-Fueyo et al. 2003). In these effects, its suppression or activation 

is aided by its cellular ligand galectin-9. For example, in antigen presenting DC-CD11b
+
, it 

cooperates with TLRs, inducing NF-κB transcription and pro-inflammatory cytokines 

(Anderson et al. 2007). Such inflammatory burst is needed for their maturation, but can be 

afterwards suppressed by engulfed apoptotic cells, which induce IL-10 production in DCs 

(Urban et al. 2001). Tim-3  was the first family member to be discovered on Th1 cells in 

which it down-regulates IL-2, IFN-γ, TNF-α and lymphotoxin production, associated with 

intracellular pathogens and with organ-specific autoimmune diseases. It promotes Tregs 

mediated self-immune tolerance (Meyers et al. 2005b; Monney et al. 2002). 

In vivo studies demonstrated that Tim-3 as well as Tim-4 are vital in a steady state clearing of 

apoptotic cells by ligating their PS. Blockade by monoclonal antibodies against Tim-3, but 

also against Tim-4, induced in mice dsDNA autoantibodies (Nakayama et al. 2009). These 

studies also revealed that Tim-3 is important in antigen cross-presentation. Apoptotic cell 

antigens captured by splenic lymphoid CD8
+
CD11c

+
 DCs are presented at immunological 

synapses to naïve Th cells together with MHC class I molecules for induction of specific 

cytotoxic CD8
+
 T cells. However, such self-reactive cell production can be abortive, followed 

by their destruction in lymphatic tissues, which is a way of self-tolerance maintenance. 

Monoclonal anti-Tim-3 antibodies reduced such cross presentation (Nakayama et al. 2009). 

Similarly, a specific T-cell tolerance was induced upon DC-CD11c
+
 presentation to an 

antigen, coupled to apoptotic cells (Ferguson et al. 2002). Interestingly, PS was transiently 

expressed on human CD8
+
 T cells upon antigen stimulation, which may serve in their 

adhesion in immunological synapse (Fischer et al. 2006). Such cell-cell cognate 

immunological synapses are organised and regulated by tetraspanin CD81 (Rocha-Perugini et 

al. 2013).  

Another PS receptor for an enhanced clearing of apoptotic cells is the brain-specific 

angiogenesis inhibitor-1 (BAI1) which is also expressed in spleen, bone marrow, and 

constitutively in monocytes. BAI1, an adhesion type G-protein-coupled 7 transmembrane 

receptor, ligates PS through its extracellular five thrombospondin type 1 repeats. Apart from 

PS recognition, BAI1 also mobilizes Rac protein for cytoskeleton actin-mediated 

internalization of apoptotic cells by human monocytes-macrophages (Park et al. 2007). There 

seems to be only indirect evidence for a connection of Tim receptors with FH, because FH 

may interact in an inhibitory fashion with CR3 which is co-expressed on macrophages with 



   19 

 

Tim-4. Experiments on this possible connection- signalling complex formation appear to be 

lacking. Similarly, FH may potentially interact on B cells with CR3 and influence this 

integrin ligation with inhibitory CD22 receptor (Ding et al. 2013). A possible link with Tim-

1-B cell regulation has apparently not been studied (Xiao et al. 2015). 

FH-PS binding may act as an apoptotic cell bridging reaction, provided via the integrin CR3, 

an anti-inflammatory phagocytic component, in conjunction with iC3b-CR2 ligation. This 

potential FH binding may be enhanced by TSP-1 binding. FH additionally binds late phase 

apoptotic cell nuclear proteins and lipids mainly through their attached-adducted neo-epitopes 

such as malondialdehydes (MDAs), which are apoptotic bleb peroxidation products 

(Weismann et al. 2011). 

 Potential Factor H roles in innate-adaptive B cell immunity  

Immunological studies have been concerned with T cell and B cell self-antigen responses 

such as tolerance, anergy, and negative selection of auto-reactive B cells, versus positive B 

cell selection against pathogen antigens, in which DCs play a prominent role (Steinman et al. 

2000). B cells are mainly regulated through their antigen specific membrane IgM-, IgG or 

IgD-B cell receptors (mIg-BCRs), and through BCR positive and negative co-receptors, these 

interactions taking place in lymphatic organs. These include CR1 (CD35), CR2 (CD21) and 

CR3 (CD11b/CD18) involved in antigen presentation to mIg-BCR by DCs, or directly by 

macrophages (Bajic et al. 2013). Further stimulatory co-receptors are CD19, and Bruton 

tyrosine kinase (Btk). These are opposed by negative Siglec-CD22 co-receptor of mIg-BCRs, 

associated with CR3 ligation (Ding et al. 2013). These co-receptors are, or involve mainly 

tyrosine kinases, and protein tyrosine phosphatases, respectively, and inhibitory tyrosine 

motif harbouring molecules (Carter and Fearon 1992; Dempsey et al. 1996; Sinclair 2000). B 

cell progenitors undergo several differentiation stages in bone marrow, and following on their 

migration to peripheral lymphatic organs, from immature to mature stages with plasma cell 

differentiation, or becoming antigen memory cells. Early human precursors abound with self-

reactive B cells, most of them are being BCR edited, or negatively selected though their 

apoptosis (Tiegs et al. 1993; Wardemann et al. 2003). Even so, 30-40 % of such self-antigen 

reactive B-cells escape these mechanisms, and their activation signalling has to be constantly 

kept at bay by negative mIg-BCR co-receptors such as CD22 in conjunction with CR3, or by 

B-regulatory cells by inducing their anergy as part of peripheral tolerance (Ding et al. 2013). 

Induction of tolerogenic IL-10 is found in a B cell subset with tolerogenic property, and in 
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Bregs (Tedder 2015). An early broad antigen reactive B cell subset, designated B1, is an 

important immediate first line bacterial defence (Hutzler et al. 2014). Conventional B2 cells 

at their transition stages, changing antigen IgH
- 
IgM

hi
 -BCR to IgH

+
IgM/IgG- BCR type, is 

critical for their survival.  Newly described membrane molecule Dickkopf-3 modulates B cell 

differentiation, antibody production and antigen specific recall of memory B cells. It can also 

inhibit CD8 T cells (Ludwig et al. 2015). Upon their stimulation through cross-linking mIg-

BCR receptors by their specific antigens, immature B cells are prone to apoptosis, whereas 

mature type B cells respond with their activation of differentiation markers and proliferation. 

There is a plasticity in such intrinsic developmental dichotomy, influenced by outside factors 

such T cell dependence (King and Monroe 2000; Petro et al. 2002). 

In antigen presentation to mIg-BCRs in draining lymph nodes, both follicular DCs (FDCs) 

and resident macrophages may be engaged. FDCs, upon their tissue migration antigen 

sampling and their processing, present antigen/C3dg covalent complexes. This process occurs 

on a close contact-interaction with B cell surface co-receptor CR2 (CD21), together with 

antigen specific mIg-BCRs. CD21 captures the C3dg moiety of the complex, thus facilitating 

antigen binding to its specific mIgM/IgG-BCR, which appears in up to hundred copies on a B 

cell membrane. For an effective B cell proliferation, a cross-ligation of several mIg-BCR 

copies is required. An avidity excess 3/1 C3dg/antigen ratio may be optimal. This is 

especially valid in response to a primary infection, where mIg-BCR activation threshold can 

be lowered up to 10,000 times by such cross-linking (Carroll 2004; Carter and Fearon 1992; 

Dempsey et al. 1996). In addition, lymph node sub-capsular sinus macrophages express 

CR3/iC3b-C3dg TED/antigen complexes which may be presented directly via CD21 ligation 

to specific mIg-BCRs. These complexes have been visualized by crystallography. The 

resident macrophages store a variety of antigens which can be presented by FDCs to B cells, 

utilising CR1 and CR2 (Bajic et al. 2013; Carroll 2004; Fang et al. 1998). This may be a way 

to present the CR3αI-iC3b linkage of an antigen complex to B cells, which may be 

tolerogenic to self-antigens (Bajic et al. 2013). 

Upon antigen binding and cross-linking, a mIgM/IgG-BCR complex becomes activated by 

phosphorylation of its two cytoplasmic co-receptors CD79 A and B via signalling molecules 

Src–family protein tyrosine kinases (PTKs), including Lyn, Vav, and Syk (p72
Syk

). This 

stimulation is reciprocal with that of co-receptor CD19 tyrosine molecules on its cytoplasmic 

domain, which ligates PTKs, and thus, augments mIg-BCR signalling for T cell-dependent 
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antigens (Fujimoto et al. 1999; O'Rourke et al. 1998). For these positive antigen/C3d effects, 

a cognate ligation of CD19 by CD21 and BCR is needed, but which may become signal 

suppressive with a higher concentration of C3d/specific antigen complexes (Lee et al. 2005). 

Antigen mIg-BCR activation of tyrosine kinases is also required in the stimulation of 

Burton’s tyrosine kinase (Btk), as well as of negative co-receptors CD22, IgG-FcRII and 

CD72. In addition, CD19/Vav complex can also activate phosphatidylinositol-3 kinase and 

phospholipase-C for intracellular Ca
2+

 release, as well as ERK2 and MARK pathways for 

antigen-specific B cell proliferation and differentiation (Li and Carter 2000; O'Rourke et al. 

1998; Rickert et al. 1995). mIg-BCR inhibitory co-receptors possess on their cytoplasmic 

tails conserved tyrosine pattern, termed immune receptor tyrosine-based inhibitory motifs 

(ITIMs). mIg-BCR Lyn phosphorylated-ITIMs recruit protein tyrosine phosphatases SHP-1 

and Grb2 which dephosphorylate tyrosine kinases from their substrates (Fujimoto and Sato 

2007; Otipoby et al. 1996). CD22 glycoprotein belongs to the sialic-acid-binding 

immunoglobulin-type lectin (Siglecs) family, which together with Siglec-G in mice (human 

ortholog Siglec-10), control B-cell tolerance against self-reactive B cells producing anti-

dsDNA and other autoantibodies (Muller and Nitschke 2014). CD22 is expressed on mature 

mIgD
+
 mIgM

+ 
BCR cells. CD22 substrates are sialylated glycans and are thymus-independent 

(Otipoby et al. 1996). CD19 co-receptor is directly linked with Lyn-BCR-SHP-1 pathway by 

the SHP-1 negative loop, opposing BCR protein tyrosine kinases A and B activation, and that 

of CD19. In this way, these factors may maintain a B cell activation threshold (Fujimoto et al. 

2000; Fujimoto and Sato 2007). 

CR3 subunit CD11b has been recognized as a tolerogenic co-receptor, in conjunction with 

CD22, in subduing autoreactive B cells (Ding et al. 2013). CR3 adheres, owing to its 

sialylated glycans, to BCRs and to its negative co-receptors and signalling factors such as 

CD22, while stabilising their mutual ligation. This CR3-CD11b glycan function is lost due to 

the SNP exchange of arginine for histidine residue 77 (R77H). This CD11b mutation is found 

in European, African, Asian, and South American people, conferring a risk to develop SLE 

(Nath et al. 2008). On the other hand, Btk following activation by mIg-BCRs sets a threshold 

for B cell survival. Btk over-expressing transgenic mice develop autoreactive B cells and 

SLE-like pathology, exhibiting anti-nuclear antibodies and resistance to FAS apoptosis (Kil 

et al. 2012). Btk deficiency can result in X-linked agammaglobulinaemia (XLA) (Kil et al. 

2012).   
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In aspects of antigen presentation and mIgBCR cross-linking, it has been proposed that such 

mIg-BCR signalling amplification mechanisms distinguish between harmful bacterial and 

innocuous self-antigens (Carter and Fearon 1992). FH unprotected microbial antigens are 

much more likely to be tagged by C3dg fragment in order to engage their specific B cells for 

their proliferation, antibody production and memory recall (Rickert 2005). In contrast, B cells 

may respond to self-antigens via their negative CD22-CD11b/CD18 co-receptors, inducing a 

tolerogenic B cell state (Ding et al. 2013). A distinction in tolerogenic PS expression on host 

cells, and not on bacteria, may also come into play (Henson and Bratton, 2001). FH also 

binds to sialylated glycans, PS, iC3b-C3dg-TED, and to CR3, and may thus modulate B cell 

responses to antigens (Bajic et al. 2013; Tan et al. 2010). B cell subsets, like other immune 

cells, can assume a tolerogenic phenotype for their balance in B cell responses (Tedder 2015). 

FH has been shown to inhibit poke weed mitogen or Epstein-Barr virus -activated human B 

cells in their differentiation and Ig secretion, but not for their proliferation (Tsokos et al. 

1985). By an analysis of tonsil B cell FH ligation, a possible receptor for FH on these and 

Raji cells has been characterized (Erdei and Sim 1987). FH interactions with GAGs and ECM 

proteins in self- protection and in cell receptor ligation may be fortified by coagulation factor 

FXIII transglutaminase, making covalent cross-links between such molecules. 

Complement FH crosslinking by coagulation factor XIII 

Blood coagulation factor XIII (FXIII), a circulating transglutaminase zymogen, was firstly 

found in stabilizing blood clots (Laki and Lorand 1948). FXIII and tissue transglutaminase 

(TG) family members 1-7 are generally involved in organ growth and homeostasis via 

modifying protein and other molecules containing primary amines such as serotonin. It is also 

involved in blood pressure regulation (Richardson et al. 2013). FXIII catalyses glutamine 

residue (γ-glutamyl)-lysine residue (ε-lysyl) amide-bond formation within and between 

proteins (Richardson et al. 2013). FH has been found to be a good substrate of FXIII, and FH 

can be cross-linked to fibrinogen (Sim et al. 2008; Ferluga et al. 2014). It is thus likely that 

FXIII may bond FH with its ECM protein substrates such as fibrinogen, fibronectin, 

thrombospondin, collagen and integrins in various tissues and on platelets. FXIII cross-

bonding may stabilise FH cell protective function afforded by its interaction with GAGs, 

proteoglycans with cell surface C3d and with its integrin receptors. Such putative fortified FH 

protection may be particularly relevant in vascular injury, exposing collagen and basement 

membrane (Richardson et al. 2013). Collagen is also an anchorage for pro-thrombotic vWF, a 
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FXIII substrate (Richardson et al 2013). vWF captures activated platelets which release their 

thrombin, initiating platelet rich thrombi formation (de Groot et al. 2012). Damaged vascular 

tissue may also release pro-thrombotic TF.  

FXIII is a hetero-tetramer of 2 zymogen A protein subunits, which are protected by its 2-B 

sub-units, each of which consists of 10 CCP domains, which are homologues of FH (Souri et 

al. 2008). A subunit zymogen undergoes conformational-activation changes on separation 

from B subunits, brought about by thrombin and Ca
2+

 ions. FXIII is also found abundantly in 

its dimeric A-form in cytoplasm such as of platelets, which contain about half of circulating 

FXIII, monocytes, vascular endothelial cells and of placenta (Yee et al. 1994). A low 

stabilised level of platelet-thrombin-XIII activation on vascular endothelia is part of 

haemostasis (de Groot et al. 2012; Lorand and Graham 2003). FH has also a potential 

protective role in blood coagulation system and in thrombosis, by masking cell membrane 

anionic phospholipids such as PS, required in coagulation factor activation, a role which 

might be fortified by FXIII. 

Complement FH as potential anti-coagulant glycoprotein  

 A homologue of FH, β2-glycoprotein-1 (β2-GP-1) (Steinkasserer et al, 1991) has been 

studied in anti-phospholipid syndrome (APS), which is partly mediated by autoantibodies 

against this glycoprotein (Guerin et al. 1997). β2-GP-1 and FH have been found to have 

common anti-coagulant properties (Ferluga et al. 2014). Both glycoproteins bind to 

membrane negatively charged pro-coagulant phospholipids such as PS, and thereby 

competitively inhibit Hageman factor (FXII) system contact activation by PS (Ferluga et al. 

2014; Schousboe 1988). Generally, coagulation factors require anchorage on a PS or 

cardiolipin (CL) platform such as on activated platelet membrane for their complex assembly 

and activation (de Groot et al. 2012; Meri 2013). For example, β2-GP-1 inhibits in this way 

activation of platelet pro-thrombinase (aFX-aFV-Ca
2+

) complex for its prothrombin-thrombin 

conversion (Nimpf et al. 1986). FH may have a similar effect on this pro-enzyme. PS 

becomes expressed e.g. on activated platelet outer plasma membrane leaflet by inner leaf 

inversion upon their activation. FH, like its homologue β2-GP1, likely binds to anionic 

phospholipids through its cationic amino acid motif on its 19-20 CCP domains. An extended 

anti-inflammatory and possible anti-coagulant property of FH is its binding to oxidized lipid 

neo-epitopes such as on apoptotic blebs for their clearance and protection.  
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Complement FH as an oxidative stress protector in cellular debris clearance 

Mitochondrial oxidative phosphorylation drives body processes such as development, cell 

signalling and energy metabolism in homeostasis via ATP production, and via its by-product 

reactive oxygen species (ROS) as in cardiogenesis (Chung et al. 2007). However, ROS is also 

needed in defence against microbes via its production by macrophages and neutrophils. It is 

modulated by cell and plasma redox systems, including reducing agent glutathione, and by 

enzymes superoxide dismutases, hydrogen peroxide catalase and glutathione peroxidase 

(Baud et al. 2004). It can be exaggerated as oxidative stress, which could be chronic in a 

tissue environment, e.g., in atherosclerotic plaques, and in AMD, which are strongly 

associated with oxidised cell debris (Handa 2012; Weismann et al. 2011). Apoptotic cell 

blebs and unsaturated lipids are constantly subjected to ROS peroxidation, which have to be 

subdued and removed in a non-inflammatory manner by phagocytes as part of homeostasis 

(Weismann et al. 2011).  

FH can contribute substantially to clearing of such inflammatory cell debris. FH can ligate 

specifically a major oxidation marker, malondialdehyde (MDA) assisted by 

malonacetaldehyde (MAA), which covalently bond-tag cell debris proteins and lipids though 

their primary amines, i.e. ε-lysyl residues in proteins (Weismann et al. 2011). MDA is one of 

such markers termed oxidation-specific epitopes (OSEs) (Weismann and Binder 2012). FH 

ligates MDAs via its CCP7 and CCP20 domains, by specific molecular pattern recognition, 

which is Ca
2+

 independent. Further OSEs include carboxyethylpyrrole (CEP), 

phosphocholine (PC), oxidised PS (OxPS), oxidised cardiolipin (OxCL) and oxidised low 

density lipoprotein (OxLDLs). OSEs are predominant neo-epitopes in apoptotic cell debris 

(Weismann and Binder 2012). Besides FH, MDA is ligated by macrophage scavenger 

receptor SR-A, while PC-OSEs are recognised by SR- CD36 and SR-B1 (Weismann and 

Binder 2012).  Since CD36 is foremost a receptor for TSP-1, FH might ligate TSP-1 in this 

process. 

MDA-tagged apoptotic and necrotic cell ligation by FH may protect such tissue sites from 

complement-induced inflammation and from endothelial cell oxidative stress. FH can 

augment iC3b production and deposition on their surface for their opsonisation in CR3- 

mediated silent engulfment by phagocytes, similarly as suggested for early phase PS tagged 

apoptotic cells. It may well be that both MDAs-SR-A receptor engagement, and that of FH-

iC3b are required in macrophage phagocytosis for a firm cell adhesion and a silent removal 
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of cellular debris, respectively (Kang et al. 2012; Weismann et al. 2011). This is consistent 

with findings that iC3b opsonised apoptotic human thymocytes induced in macrophages upon 

their phagocytosis a blockade of pro-inflammatory NF-κB signal ligand via IL-10 secretion. 

Both CR3 and CR4 could be engaged (Amarilyo et al. 2010). 

Phagocyte scavenger receptor inflammatory responses may be obligatory in microbe 

clearance and killing, but may be actively inhibited by engaging CR3 as well as in apoptotic 

cell removal (Urban et al. 2001). This observation apparently applies also to OSE-tagged cell 

debris. There may be subsets of phagocytes in this aspect (Amarilyo et al. 2010). As recently 

found, FH C-terminal MDA recognition site appears to be ionic, as is the one associated with 

aHUS related polymorphism, impairing FH binding to GAGs on cell surface for their 

protection (Hyvarinen et al. 2014). 

OSEs are immunogenic and are targets of autoantibodies, such as of specific natural IgM 

autoantibodies produced by B1 cell subset, which are of relatively low affinity (Wardemann 

et al. 2003). OSEs are natural predominant targets wof autoantibodies which are mainly of 

MDAs-LDLs and OxLDL specificities, as examined in human cord blood (Chou et al. 2009; 

Wardemann et al. 2003). FH may also ligate other apoptotic cell recognition molecules such 

as acute phase C-reactive protein (CRP). Monomeric CRP is a ligand of FH. Such mCRP/FH 

complexes bind  to phosphocholine OSEs protein-lipid tags, protect injured or apoptotic 

vascular endothelial cells from complement attack, inhibit pro-inflammatory cytokines, and 

augment FI-C3b inactivation into iC3b production and surface deposition (Mihlan et al. 

2009). FH protective property (against complement attack) has been studied in AMD where 

cell debris membrane deposits, termed drusen, have been found to contain oxidised lipid 

products including MDA and carboxy-ethylpyrrole (CEP) (Zipfel and Skerka 2009). Such 

OSEs are ligands for FH CCP7 domain. FH by binding to and clearing OSE adducts protects 

the tissue cell environment from oxidative stress and inflammation (Weismann et al. 2011). A 

SNP mutation in FH CCP7 domain, replacing tyrosine with histidine at position 402, confers 

a strong risk for AMD development. Mutated FH-His-form binds more weakly to cell debris 

affecting their clearance (Clark et al. 2013)   

Complement Factor H in platelet regulation and protection  

Platelet precursors are major producers of FH, and FH released from platelets may contribute 

to vascular cell protection and their apoptotic cell clearance. Platelets represent a border area 
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between coagulation and innate immune systems. They have a major regulatory and effector 

role in haemostasis and thrombotic events, by interacting via their receptors with vascular 

endothelial cells and immune cell ligands, as evident in their inherited disorders (Nurden and 

Nurden 2015; Vieira-de-Abreu et al. 2012; Yip et al. 2005). They provide a platform for 

surface complement and coagulation reactions by expressing PS and ECM proteins, as 

common binding anchors and activators for coagulation factor assembly (Bergmeier and 

Hynes 2012; de Groot et al. 2012). Platelets produce via their precursors-megakaryocytes, or 

acquire and store in their granules most of complement and coagulation proteins, including α-

granule FH, vWF, TSP-1, and TGF-β. These proteins are released upon platelet activation by 

collagen, adenosine diphosphate (ADP), and thrombin at the site of vascular injury 

(Markiewski et al. 2007). Platelet involvement in complement deficiency disorders is 

indicated by accompanying thrombocytopenia, such as in aHUS and TTP. Activated platelets 

release a concentrated amount of FH, as compared with plasma FH level, which may be more 

efficient in inhibiting platelet pro-thrombotic effects, by masking their PS (Devine and Rosse 

1987). FH is a ligand of platelet specific pro-thrombotic αIIbβ3 integrin, as it is also of TSP-

1. FH strongly binds to TSP-1, and both ligands together strengthen their binding to and 

stimulation of this integrin receptor (Vaziri-Sani et al. 2005).  Additional ligands of αIIbβ3 

include fibrinogen, vW factor A1 domain (vWF-A1), and CD40L. Their ligation to αIIbβ3 

stabilises platelet aggregation by fibrinogen and platelet vascular endothelial-ECM ligation in 

thrombus formation. Fibrinogen also binds to endothelial cell αVβ3 (vitronectin receptor) 

(Andre et al. 2002; Bergmeier and Hynes 2012; Sanchez-Cortes and Mrksich 2009). FH/TSP 

ligation of αIIbβ3 may competitively inhibit binding of such pro-thrombotic proteins, in 

contribution to thrombosis regulation. It has been proposed that pro-inflammatory cytokines 

such as IL-1β, IL-6 and TNF-α induced by complement or bacterial LPS on monocytes and 

vascular endothelial cells can stimulate TF expression on these cell membranes (Drake et al. 

1989). This effect is augmented by activated platelet and endothelial cell P-selectin (Shebuski 

and Kilgore 2002). TF, as a cofactor, may in combination with FVII zymogen, initiate 

through FX activation of the extrinsic and common coagulation pathways, resulting in 

prothrombinase activation, thrombin production and fibrin clot formation. The complement 

C5b-9 complex induces, in platelet membrane, PS expression (Esmon 2004; Markiewski et 

al. 2007). Platelets appear to be resilient to MAC lysis (Devine and Rosse 1987). Platelet α-

granules and their microparticles contain P-selectin, FH, FD, TF and other coagulation 

components to trigger the coagulation cascade, as well as complement cascade propagation 

on the platelet surface (Del Conde et al. 2005; Noris et al. 2012; Peerschke et al. 2008). P-
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selectin harbours a consensus binding motif able to interact with various complement 

components (Peerschke et al. 2008).   

Autoimmune diseases 

Systemic inflammatory thrombotic autoimmune diseases (Fig. 2) appear to be mainly due to 

defects in the classical/lectin complement pathway components C1/MBL, C2 and C4 , and in 

their regulator C1 inhibitor associated with hereditary angioedema (Botto et al. 2009). On the 

other hand, diseases such as aHUS and MPGN-2 have been linked mainly with mutations of 

the alternative pathway components and regulators. These defects arise from over-activation 

of complement with resulting inflammation and thrombosis on damaged vascular endothelia 

(Botto et al. 2009; Meri 2013; Noris and Remuzzi 2009). Such autoimmune diseases may, to 

various extents, be inherited or be acquired by development of autoantibodies, which 

simulate mutation defects on their targets. On the whole, these diseases arise on a polygenic 

and polymorphic background and are triggered by environmental factors.  

The aHUS pathology includes glomerular arteriole and capillary thrombosis, termed 

thrombotic microangiopathy (TMA), which often leads to renal failure (Noris and Remuzzi 

2009) aHUS, and tHUS (the latter associated with E. coli infection), thrombotic 

thrombocytopenic purpura (TTP), MPGN-type 2 and DDD share microvascular thrombotic 

lesions in renal and other organs such as brain and heart. Albeit arising from  different causes, 

TMA lesions appear to spring from endothelial vWF-exaggerated platelet adhesion and 

activation (Benz and Amann 2009; Reininger et al. 2006; Skerka et al. 2009). 

Defects of several known and unknown gene factors contribute to disease susceptibility. 

There is a strong redundancy, deduced from disease rarity (Kavanagh et al. 2013). 

Approximately, 50% of aHUS patients carry quantitative loss-of-function mutations such as 

of complement regulators FH, MCP (CD46), and of thrombomodulin as cofactors of FI, 

which itself may be mutated (Noris and Remuzzi 2009). Effectors C3 and FB may carry gain-

of-function mutations, resulting in over-stabilization of  C3bBb convertase, resisting its decay 

by regulators, which also leads to pathogenic over-activation of complement (Goicoechea de 

Jorge et al. 2007; Roumenina et al. 2009). Autoantibodies to FH contribute to the disease 

susceptibility by preventing its adhesion to anionic GAGs for self-protection (Kavanagh and 

Goodship 2011; Kavanagh et al. 2013). 
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Thrombomodulin expressed on endothelial cells protects these cells from inflammation and 

thrombosis. Its missense mutations may contribute to inflammation and thrombosis via its 

disabled facilitation of thrombin-catalysed activation of pro-carboxypeptidase, which 

inactivates C3a and C5a anaphylatoxins. Thrombomodulin also enhances activation of 

protein-C by thrombin, taking place on vascular endothelial cells, which is a major negative 

regulator of blood coagulation (Kavanagh et al. 2013). Thrombomodulin also enhances the 

degradation of C3b into iC3b by FI and FH (Tateishi et al. 2016). 

It has been suggested that FH mutation-polymorphism especially in its C-terminal CCP19/20 

domains (Kavanagh et al. 2013), may contribute differentially to the development of aHUS, 

DDD, and other disorders including AMD, albeit also depending on other genetic and 

environmental factors (Botto et al. 2009; Dragon-Durey et al. 2004; Pickering et al. 2007; 

Ruggenenti et al. 2001; Skerka et al. 2009; Zipfel et al. 2011; Zipfel and Lauer 2013). For a 

thrombotic aHUS phenotype, presence of C5 is required, suggesting a C5a induced TF 

expression on vascular endothelia and platelets (Goicoechea de Jorge et al. 2011). 

Primary anti-phospholipid syndrome (APS) is largely mediated by pathogenic IgG/IgM 

autoantibodies to β2-GP1-cryptic epitopes. APS can be secondary to SLE, displaying lupus 

anticoagulants (LA), anti-phospholipid antibodies (aPL), and susceptibility to arterial and 

venous thrombosis. In both disorders, C4 and C3 fragment vascular deposition, and their 

consumption has been detected, suggesting complement activation (Oku et al. 2009). Renal 

disease of various forms, including TMA and immune complex deposit-associated 

glomerulonephritis, is a frequent complication in these syndromes, together with 

thrombocytopenia (Benz and Amann 2009; Meri 2013; Ricklin and Cines 2013). In addition 

to aHUS, anti-FH autoantibodies have been found in APS, SLE and RA (Zadura et al. 2012; 

Guerin et al. 1997; Kavanagh and Goodship 2011). Anti-neutrophil cytoplasmic antigen 

(ANCA) autoantibodies are found in patients suffering with systemic and renal vasculitides, 

including Wegener’s granulomatosis, engaging inflammatory C5a product of complement 

activation (Chen et al. 2010). An impairment of inflammatory TNF-α signalling regulation 

has been correlated with thrombosis in several autoimmune disorders including SLE and 

APS, and in experimental mice model of sepsis (Namjou et al. 2012; Ochoa et al. 2013; Xu et 

al. 2014). Mutation defects in FH-FI-iC3b-CR3 anti-inflammatory and tolerogenic pathway, 

which normally can withstand inflammatory cytokines, may be part of susceptibility to these 
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diseases. Renal deposition of C3 and C4 fragments may be due to an insufficiency in CR1 as 

well as insufficiency in the protective role of FH. 

Systemic lupus erythematosus (SLE) 

SLE is a complex multigenic autoimmune inflammatory disease-syndrome of various tissues 

and organs such as kidney, brain, joints and blood cells. SLE is clinically heterogeneous and 

variable, seemingly exhibiting various disease symptoms as a syndrome, at alternate phases 

and remissions, and a range of autoantibodies. Neuropsychiatric signs can also occur 

(Agmon-Levin et al. 2011; Morrison et al. 2014). Symptoms include acute flairs, skin rashes, 

photosensitivity, facial erythema, oral ulcers, synovitis, serositis, vasculitis, meningitis, brain 

damage, lupus nephritis, arthralgia, haemolytic anaemia, leukopenia, thrombocytopenia, 

features which may also persist in chronic phase (Walport et al. 1998). Major autoantibodies 

include anti-nuclear-antibodies (histones) (ANA), dsDNA, anti-cytoplasmic auto antigens, 

lupus anti-coagulant (LA), and anti-phospholipid antibodies (aPL) (Pons-Estel et al. 2014). 

Further, there are anti-C1q and anti-FH autoantibodies, contributing to the autoimmune 

disease. 

SLE heterogeneity is reflected in the associated gene polymorph-variants, found in wide 

population studies, some targeting particular phenotypes, rather than the disease. These 

include those of complement receptor CR3 (CD11b/CD18) and of FH and the FHR1-3 

glycoproteins. The extensive multi-population study on CR3 polymorphism in B cells found 

certain variants to be associated with SLE (Nath et al. 2008). A study with European- 

American and African- American people, confined to FH/FHR gene haplotype polymorphism 

in chromosome 1q32 region, revealed an increased risk for SLE with FHR1-3 deletion 

mutation in this haptotype. Symptoms included serositis and not anti-dsDNA autoantibodies 

(Zhao et al. 2011). FHR1 is a negative regulator of C5 convertase, including complement 

terminal pathway and inflammatory- chemo attractant C5a production (Heinen et al., 2009).  

C5a is a major prerequisite in inflammatory diseases (Zhao et al. 2011). A FH deficiency 

might be additive, i.e. contributing to renal glomerulonephritis, as suggested by a FH
- 

deficient mice model prone to SLE, in which the fatal disease was accelerated (Bao et al. 

2011). On the other hand, lack of FHR1-3 competition with FH may augment FH efficiency, 

which benefits AMD resistance in people prone to this disease, the susceptibility of which is 

apparently inherited but without an autoimmune component (Zhao et al. 2011). 
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Anti-dsDNA antibody phenotype component in SLE risk is associated with polymorphism in 

STAT4, CR3, interferon regulatory factor 5 (IRF5) and in MHC proteins (Chung et al. 2011). 

A previous study with Caucasian and Chinese SLE patients revealed a link with CR2 (CD21) 

polymorphism in the disease (Wu et al. 2007). SNP in the TNF receptor associated factor 6 

(TRAF6) encoded on chromosome 11p12 has been assessed for linkage with SLE in a large 

population study, corroborating a risk for thrombocytopenia and rheumatoid arthritis. TRAF6 

encompasses also TLR-signalling via NF-κB and activator protein 1, including MAPKs for 

immune cell proliferation and survival.  A strong association of SLE was found in a SNP of 

protein tyrosine phosphatase, non-receptor type 22 (PTPN22). These signalling protein 

variants are also associated with several systemic and organ specific diseases including type-

1 diabetes and myasthenia gravis (Namjou et al. 2012; 2013). A further study was concerned 

with a tendency of familial clustering of autoimmune diseases on genetic overlap basis. SLE 

loci were compared with a range of other autoimmune diseases including RA, type 1 diabetes 

and Crohn’s disease. There seems to be no general common susceptibly genetic locus, but 

appearance of distinct pleiotropic disease loci. MHC genes were excluded from the study 

(Ramos et al. 2011). aPLs and C1q autoantibodies often occur in SLE patients, aPLs 

representing a link with secondary APS, associated with arterial thrombosis in SLE 

(Peerschke et al. 2009; Walport 2002). 

Complement is prominently involved in SLE development (Walport 2002). Earlier studies 

focused on classical C1, C2 and C4 proteins, since their genetic deficiency phenotype in 

familial SLE patient is highly penetrant. For example, in people with homozygous C1q and 

C4 deficiency, the frequency risk for SLE is up to 90% and 80%, respectively, but these are 

very rarely found in the population. Perhaps most homozygous early embryos are lost 

prenatally. C1q is known to be required in developmental cell migration in lower vertebrates 

(Nayak et al., 2010; 2012). However, in heterozygous-recessive and sporadic SLE cases, 

other complement quantitative and qualitative abnormalities came more to light, such as in 

C3, C5, their regulators and receptors, such as FH and its receptor CR3 (Amarilyo et al. 2010; 

Manderson et al. 2004; Walport et al. 1998; Walport 2002).  These studies were concerned 

with apoptotic cell recognition, phagocytic clearance and complement regulation of 

inflammation and self-tolerance (Amarilyo et al. 2010). 

Two mutually inclusive views have been expressed. SLE would develop due to lack of C1q-

dependent apoptotic cell clearance, and subsequent accumulation of altered-self 
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immunogenic nuclear and other cellular debris (Manderson et al. 2007). In a recent study, 

C1q was shown to recognize exclusively the late phase apoptotic cells, termed secondary 

necrosis, when processed by serum-bound DNase I, for their efferocytosis by professional 

and non-professional phagocytes, such as epithelial and endothelial cells and fibroblasts 

(Liang et al. 2014). Alternatively, the apparent C1q self-tolerogenic property would be lost. 

Such deficiency would allow for natural self-reactive B cell anti-dsDNA autoantibody 

production and complement activation of phagocytes, producing pro-inflammatory cytokines. 

Nuclear proteins and DNA are highly conserved across animal species and bacteria, and there 

is cross-reactivity (Carroll 1998; Carroll 2004). This notion is compatible with C1q/gC1qR – 

Th1/Tim-3 and B cell anti-inflammatory and tolerogenic pathway (Chen et al. 1994; 

Ghebrehiwet et al. 2014; Yao et al. 2008). However, alternative C3 tolerogenic pathway 

employing FH-iC3b-CR3 expressed on monocytes, DCs and B cells, is also a good candidate 

for maintenance of tolerance. This notion is supported by genetic SLE population studies 

(Nath et al. 2008). A decline in CD4
+
 Foxp6

 high
Tregs (Valencia et al. 2007) may be pegged 

to defects in peripheral innate immune cell tolerance, such as of monocytes and DCs. In 

contrast to altered-self antigen tolerance, in viral infections, CR3 promotes TLR3 pro-

inflammatory signalling by recognizing extracellular dsRNA and triggers independently 

oxidative burst in infected macrophages (Zhou et al. 2013).  

A strong susceptibility to SLE, owing to C1q and C4 insufficiency, is suggestive of a 

constant homeostatic need for classical and lectin pathway activation in self-tolerance 

maintenance. In comparison, C3 deficiency confers a lower risk for SLE development 

(Carroll 2004). In addition to FH effects on C3, C4-C2 proteins contribute to C3 convertase 

amplification cycle, to C5 convertase formation and C5a production, as regulated by C4b 

binding protein (C4bp) (Walport 2001a). C4bp, as a cofactor of FI, may contribute to 

iC4b/C4d covalent opsonisation of apoptotic cells for their silent monocyte and DC uptake, 

similarly to their iC3b opsonisation. In these events, both leukocyte CR3 and CR4 

(CD11c/CD18) integrins as well as macrophage CR1 and CR2 proteins may be involved 

(Ahearn and Fearon 1989; Bajic et al. 2013; Chen et al. 2012).  

Recently, it has been revealed that iC3b interacts differentially with CR3 and CR4 integrin αI 

domains via their thioester containing (TED) C3d (for CR3) and C3c domains (for CR4). 

They are expressed on macrophages and DCs with similar apoptotic cell/PS clearance 

function, in which CR3 is more prominent. However, they differ in macrophage and DC 
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antigen presentation. In addition to its associated SLE susceptibility, CR3 is a known anti-

inflammatory-tolerogenic receptor in iC3b mediated phagocytosis of apoptotic cells 

(Amarilyo et al. 2010). In contrast to CR4, CR3 is upregulated in stromal tissue DCs in their 

tolerogenic effects, potentially mediated by their secreted paracrine FH together with MSCs 

(Corcione et al. 2006). This finding may suggest that such potent broad tolerogenic effects of 

paracrine FH may be mediated via its receptor CR3, a marker of myeloid cell lineage. The 

innate cell immunosuppressive TAM receptor tyrosine kinases and apoptotic cell/PS specific 

Tim receptors may be recruited, all associated with SLE, may co-operate in these events 

(Ding et al. 2013; Nakayama et al. 2009). MSC paracrine FH operates in various tissue 

microenvironment including lymph nodes, in presence of ubiquitous apoptotic cell turnover 

(Corcione et al. 2006).  

In lymph organ B cell antigen presentation, CR3 and B cell co-receptor CR2 ligate iC3b, 

capturing self and pathogen antigens as complexes (CR3-CR2-iC3b-antigen), which they 

present to antigen specific mIg-BCRs (Bajic et al. 2013). Lymph node resident macrophages 

and FDCs may secrete these receptors and are platforms for their assembly and captured 

antigens (Bajic et al. 2013) CR3  may at the same time negatively regulate B cell 

proliferation signalling via ligating inhibitory CD22 receptor, involved in self-reactive B cell 

tolerance, averting a risk for SLE. CR3 R77H mutation is linked to SLE susceptibility (Ding 

et al. 2013; Nath et al. 2008). 

C4 comes in two isoforms, C4A (acidic) and C4B (basic), encoded by linked genes, which 

are both highly polymorphic and have copy number variants, and ineffective null alleles 

(Carroll 2004; Yang et al. 2004). C4 allele structure such as gene size, long and short, 

function, and plasma level varies in ethnic populations. As studied with European American 

patients and healthy people, a C4 partial deficiency, such as a low copy number confers a risk 

for SLE. In contrast, people with a higher allele number from that of normal range, were 

protected from SLE (Wu et al. 2008; Yang and Xu 2007). C4A isoform deficiency conferred 

a SLE risk in all ethnic groups worldwide, while deficiency in C4B was prevalent in Spanish, 

Mexican and Australian Aborigines (Yang et al. 2004). 

SLE inflammatory organ-tissue lesions are associated with complement C1, C4 and C3 

activation and deposition, and deposition of immune complexes (Walport 2002). These 

include autoantibodies binding dsDNA and anti-C1q autoantibodies. Anti-C1q autoantibodies 

are associated with lupus nephritis, a severe renal disease with high morbidity and mortality 
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rate, found in 25-50 % of SLE patients. It has been shown using a murine model that anti-

C1q autoantibody mediated lupus nephritis develops in two steps. Complement activation- 

glomerular injury-inflammation is elicited by anti-basement membrane protein 

autoantibodies, which per se are not sufficient to fully develop lupus nephritis. This feature is 

augmented by C1q/Ab complexes formed on basement membrane and anchored by C1q-

collagen domain-ligation. Pathogenic anti-C1q autoantibodies then ligate specifically C1q of 

this complex to develop the disease (Holers 2008; Trouw et al. 2004). C1q autoantibodies 

have been found to be of diverse specificities, also ligating globular C1q domain epitopes, in 

addition to those binding to its collagen domain epitopes. These autoantibodies may 

potentially inhibit activation of gC1qR, expressed on Th1 cells, mediating a C1q regulatory 

pathway (Ghebrehiwet et al. 2014; Nayak et al. 2010; Radanova et al. 2012; Tsacheva et al. 

2007; Walport 2002). 

A recent study revealed that SLE can appear like a glycolipid lysosomal storage disease, 

accumulating in CD4
+
 T cells glycosphingolipids (GSLs), a metabolic defect which may be a 

further facet of SLE syndrome (McDonald et al. 2014). Such a process distorted T cell lipid 

metabolism, trafficking and lipid raft signalling. It was accompanied by an unhealthy serum 

lipoprotein fraction shift, i.e. toward low density lipoprotein LDLs. The T cell lipid increment 

was partially due to an enhanced GSL synthesis, recycling, and internalisation. The patients’ 

T cells exhibited an accelerated proliferation, and in homologue B cells an overproduction of 

anti-dsDNA autoantibodies. The metabolic changes were linked to an over-expression of the 

liver nuclear X receptor β (LXRβ), regulating lipid metabolism. It is thought that the 

dyslipidaemia occurring in the SLE patients may have largely distorted T-cell GSLs 

production and trafficking. The cell lysosome function in lipid degradation was normal, but 

was seemingly overwhelmed by the GSL quantum, even though vesicle number was 

increased. GSLs overproduction can be normalised by an inhibitor of its biosynthesis 

(McDonald et al. 2014). 

In such SLE like-disorders, lipoproteins and LDL may be subjected to oxidative processes 

generating oxidation-specific epitopes (OSEs) such as LDL-MDAs. These neo-epitopes ligate 

FH, which may thus mitigate tissue cell oxidative stress. This process is in addition to 

apoptotic and necrotic cell debris modified by MDAs. It has been shown that surface MDA- 

bound FH enhances iC3b production for cellular debris clearance. This mechanism has been 

suggested in protection against retinal membrane drusen accumulation and oxidative damage 
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of retinal cells, as it occurs in AMD development (Benz and Amann 2009; Weismann et al. 

2011; Zipfel and Skerka 2009). C3NeF, an autoantibody which stabilises C3bBb and 

promotes C3 turnover, can be also detected in SLE patients enhancing complement activation 

and inflammation, but the FH may partially counteract this mechanism (Devine and Rosse 

1987; Zipfel and Skerka 2009). 

In RA, FH and its alternative splicing product FHL1 were found to protect synovial cells 

from complement damage. FHL1 consists of FH CCP modules 1-7, is produced by synovial 

cells (and many other cell types) and has a spreading surface property (Friese et al. 2003). An 

international study with patients suffering with SLE, RA, lupus LA+ thrombosis, in 

comparison with aHUS patients, revealed a significant increase in anti-FH autoantibodies 

associated with rheumatic diseases. In FH autoantibody positive patients, there was a 

substantial elevation in frequency of homozygous deletion of the FHR-1 gene. FH 

autoantibodies in SLE, RA and LA+ targeted many FH-CCP domains, in contrast to its 

known CCP 19-20 C-terminal domains in aHUS syndrome (Zadura et al. 2012). Anti-FH 

autoantibodies were also detected in APS patients (Guerin et al. 1997).  

Thus, SLE syndrome appears to be a variable composite of many diseases, based on multiple 

gene polymorphism risks, and environmental factors. In common are complement activation, 

tissue inflammation, cellular debris accumulation, and a reduction of peripheral tolerance 

(Goodnow et al. 2005). FH may overall contribute to regulation of inflammation and to a 

broad tolerance via its signalling CR3 receptor, in conjunction with PS recognition by PS 

specific Tim receptors, and by immunosuppressive TAM receptors, expressed on 

macrophages and dendritic cells. 

Anti-phospholipid syndrome (APS) 

Primary APS, also called Hughes syndrome, is a thrombophilia condition associated with 

recurrent arterial-venous thrombosis and foetal loss (Hughes 1983). APS has been 

characterised by anti-phospholipid autoantibodies such as to cardiolipin (CL) and by lupus 

anticoagulant (LAs), termed anti-phospholipids (aPLs). Lately, it has been revealed that in 

APS, the main pathogenic autoantibodies are targeting β2-GP1 glycoprotein, which adheres 

to CL and PS exposed on damaged cell surfaces, including on vascular endothelial cells and 

platelets, a feature which is specific for primary APS (Kertesz et al, 1995; Guerin et al. 1997; 

Pierangeli et al. 2005; Willis and Pierangeli 2013). FH and β2-GP1 are homologues, and have 
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very similar binding specificity for anionic phospholipids. Since FH is more abundant in 

plasma, it would be expected that it would significantly modulate the binding of β2-GP1 to 

cardiolipin and PS (Kertesz et al. 1995; Tan et al. 2010). Anti-β2-GP1 autoantibodies are the 

main effectors in SLE thrombotic events, such as deep venous thrombosis, pulmonary 

embolism, and arterial cardiac or cerebral infarction. APS can be associated with 

thrombocytopenia (de Groot and Urbanus 2012; Hughes 1983; Tripodi et al. 2011). aPL can 

also be found secondarily in SLE, and in other thrombotic disorders. Other autoantibodies 

include anti-coagulation factors such as anti-prothrombin (de Groot and Urbanus 2012) aPLs, 

targeting CL, are also associated with certain viral and bacterial infections such as of skin, 

HIV-1 infection, pneumonia and urinary infections, found in around 15% of such patients.  

aPL may also arise by pathogen molecular mimicry to an amino acid motif in β2-GP1-5
th

 

CCP domain (Guerin et al. 1997; Willis and Pierangeli 2013). Lately, a global APS score 

(GAPSS) has been introduced to assess its thrombotic risk. By point value these are anti-

cardiolipin IgG/IgM, 5, anti-β2-GP1, IgG/IgM, 4, lupus anticoagulant, 4, anti-

prothrombin/phosphatidyl serine complex (aPS/PT) IgG/IgM, 3, hyperlipidaemia, 3 and 

arterial hypertension, 1 (Sciascia and Bertolaccini 2014).  

Physiological function of β2-GP1, and that of FH, appears to be a protection from thrombosis 

associated with anionic phospholipids (Nimpf et al. 1986). Anti-β2-GP1 and anti-FH 

autoantibodies may impair this protection. Phospholipids are required for coagulation factor 

complex assembly (de Groot and Urbanus 2012). 

β2-GP1 is composed of 5 CCP modules of which the CCP5 module with an extended loop 

has cationic regions for anionic phospholipid interaction, such as a cluster of lysyl residues 

(Guerin et al. 1997; Sheng et al. 1996; Steinkasserer et al. 1991). Damaged vascular 

endothelial cells, platelets and monocytes expose PS on the outer membrane leaflet, a surface 

which is inflammatory and pro-coagulant. According to a model, β2-GP1 circulates as closed 

rings which have been visualised. It is only upon its attachment to PS or CL that the ring 

assumes a stretched lipid bound conformation. This glycoprotein form exposes cryptic 

immunogenic epitopes mainly on CCP-1 domain which are targets for β2-GP1 

autoantibodies. Upon binding, autoantibodies  to β2-GP1 form dimeric complexes, and can 

attach via its 5th domain, to vascular endothelial cell, monocyte and platelet  adhesion 

molecules such as annexin A2, apolipoprotein endothelial receptor 2 (ApoER2), Toll-like 

receptor , platelet factor 4, and glycoprotein Ib-V-IX (GPIb-V-IX). Such receptors may 
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mediate cell binding, inflammatory and thrombotic effects (de Groot and Urbanus 2012; 

Guerin et al. 1997; Tripodi et al. 2011; Willis and Pierangeli 2013). β2-GP1- 

autoantibody_binding immunogenic epitopes, located on its domain 1, are heterogeneous 

across different animal species β2-GP1, and of recognition by sera from APS patients 

(Guerin et al. 2000). 

Anti-FH autoantibodies have also been found in 14 out of 19 APS patients examined, as well 

as autoantibodies against C4bp in 8 patients, which may contribute to the disease episodes 

(Guerin et al. 1997). FH appears to have anti-complement activation and anti-coagulant 

properties when interacting with anionic phospholipid surfaces, including PS (Ferluga et al. 

2014; Ricklin et al. 2010; Tan et al. 2010). FH/autoantibody immune complexes might 

remove such FH protection. Their deposition on vascular endothelial cells or on platelets may 

contribute to inflammatory responses and thrombosis, similarly to those mediated by anti-β2-

GP1/complex receptors, though this possibility seems to be unexplored. Apparently, FH upon 

phospholipid binding also exposes cryptic immune epitopes, since fluid phase FH does not 

bind auto-IgG antibodies (Guerin et al. 1997). This finding may be in agreement with a 

compact FH form in plasma (Oppermann et al. 2006). 

In a recent study, APS patients with thrombotic disease history were screened for the disease 

associated loci. A SNP and a gene copy number variation (CNV) of the TNF receptor adaptor 

SH2B3 protein regulating endothelial cell cytokine signalling, was strongly associated with 

this disease. SH2B3 gene is located on chromosome 12q24.12 and its polymorphism together 

with that of an adjacent gene, inherited as a haplotype, conferred this pathology risk.  In aPL 

carriers and in general population, these gene defects are also present, but their copy number 

variation may apparently not be a significant susceptibility risk for thrombotic phenotype 

(Ochoa et al. 2013). A significant reduction in plasma CD4
+
CD25

+
Foxp3

+
Tregs and CD3

-

CD19
+
 B cells was detected, suggesting a decline in peripheral self-tolerance (Dal Ben et al. 

2013). Thus, susceptibility to primary APS inflammatory and thrombotic phenotype appears 

to be multigenic, including the complement system. It may overlap with SLE and other 

disorders. APS is dominated by autoantibodies against β2-GP1, a homologue of FH, with a 

common anti-coagulant function (de Laat et al. 2009; Guerin et al. 1997; Pierangeli et al. 

2005). 
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Atypical haemolytic uremic syndrome (aHUS) 

Atypical haemolytic uremic syndrome (aHUS) is a rare heterogeneous disease, defined by 

alternative pathway dysregulation with complement hyperactivation, inflammation, 

thrombosis and C3 consumption. aHUS is characterised by non-immune haemolytic anaemia 

due to abnormal red cell fragmentation, thrombocytopenia, and renal impairment (Kavanagh 

and Goodship 2011; Kavanagh et al. 2013; Noris and Remuzzi 2009). It may be accompanied 

by anti-FH autoantibodies (Noris and Remuzzi 2009). Typically, glomerular arterioles and 

capillaries exhibit complement C3 fragment deposits and platelet rich thrombi formation 

designated thrombotic microangiopathy (TMA), and ensuing ischaemia lesions (Ruggenenti 

et al. 2001). Other organs such as brain and heart can be affected (Hofer et al. 2014). aHUS 

susceptibility may be inherited as a familial trait, or be sporadic. Its acute episodes can be 

precipitated by glomeruli endothelial cell damage, such as in pregnancy, by trauma, drugs 

and infection. Pregnancy aHUS susceptibility is associated with mutation of FH and/or of 

MCP in over half the number of aHUS cases, but in other aHUS patients, complement 

genetic background appears to be unknown. Even in some people carrying alternative 

complement pathway defects, aHUS may not develop, suggesting complexity and 

redundancy in the genes (Kavanagh and Goodship 2011; Kavanagh et al. 2013; Noris and 

Remuzzi 2009; Noris et al. 2010; Richards et al 2003). aHUS pathology may be due to 

genetic deficiency of expression, or structural defects of C3 regulators such FH, MCP and of 

the protease FI, all of which normally modulate complement activation on cell surfaces for 

self-protection (Caprioli et al. 2006). On the other hand, gain-of-function mutations of C3 or 

zymogen FB may also over-activate complement by stabilizing C3bBb convertase in resisting 

its decay by negative regulators (Meri 2013; Roumenina et al. 2009). 

A familial homozygous FH deficiency in aHUS was first studied with two infant brothers. 

The 8-month old suffered from an acute aHUS episode, and the 3-year old remained 

symptomless, but both having very low FH, and low C3 plasma level, suggesting its 

consumption (Thompson and Winterborn 1981). However, most of genetic HUS cases are 

heterozygous for FH pathogenic mutations, conferring a low risk for the disease. In 

hereditary aHUS, up to 45% of patient’s cases are associated with FH loss-of-function 

mutations, and around 10% of such patients develop the autoimmune aHUS form with anti-

FH autoantibodies (Blanc et al. 2012; Maga et al. 2011; Meri 2013; Noris and Remuzzi 2009; 

Pickering et al. 2007; Roumenina et al. 2009). 
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Patient genomic and pedigree studies also revealed that variants of complement regulators FH 

and MCP inherited together as haplotypes, or of FI gene mutation variants, were significantly 

linked with severity of aHUS disease. Mutation of other regulators such as CR1, DAF and 

C4bp included in haplotypes, spanning their encoded region in RCA locus, were less 

influential. Thus normally, acombination of fully functional FH-MCP cofactors for 

adequately expressed and fully functional FI, appears to be required for protection of 

endothelial cells, such as glomeruli from complement damage (Esparza-Gordillo et al. 2006). 

aHUS associated complement protein mutants may have altered function or impaired  

expression. Patients relating to MCP mutation had a milder form of the disease, as compared 

with those associated with FH defects (Caprioli et al. 2006). Certain mutations of FH-CCP 

19-20 domains can disable its dual attachment to GAGs on  cell surfaces as well as to 

C3b/C3d deposits and increase the risk for aHUS development (Ferreira et al. 2009; 

Manuelian et al. 2003; Noris and Remuzzi 2009; Pickering et al. 2007). Anti-FH IgG 

autoantibodies in aHUS patients, specific to CCP19-20 domains also prevented normal FH 

binding to endothelial cells (Blanc et al. 2012; Jozsi et al. 2007). In 10% of children suffering 

with acute aHUS, anti-FH autoantibodies can be a diagnostic marker (Dragon-Durey et al. 

2013). 

Large comparative studies with aHUS patients relating to FH, MCP and FI mutation, found 

their frequency to be of around 30%, 13% and 5%, respectively. Mutations impaired their 

C3b binding, C3 convertase decay, and for FI, secretion. About half of aHUS patients showed 

no connection with these complement factors. On the other hand, half of people with a 

penetrant FH mutation never developed aHUS (Caprioli et al. 2006). In an extended study, 

familial and sporadic aHUS patients were examined for disease treatment, kidney 

transplantation and outcome. C3 and thrombomodulin abnormalities as well as anti-FH 

autoantibodies were included (Noris et al. 2010). Most patients were heterozygous for FH 

mutations, which are located on the CCP20 domain. Children with mutation in FH, 

Thrombomodulin or with anti-FH autoantibodies tended to have the earliest onset of aHUS, 

from birth to one year, and the worst prognosis. In a few patients, aHUS was associated with 

membrano proliferative glomerulonephritis (MPGN). In approximately 70% of patients, the 

disease was precipitated by viral or bacterial infection. Combined factor deficiencies are also 

presented (Noris et al. 2010). Familial HUS patients have an unfavourable prognosis, as 

compared with sporadic cases, with 25 % mortality due to renal failure (Noris and Remuzzi 
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2009; Noris et al. 2012). Other studies have revealed that anti-FH autoantibodies occurred in 

4 to 13% of aHUS cases (Kavanagh and Goodship 2011). In some children suffering with 

aHUS, anti-FH autoantibodies were found to coincide with CFHR1/CFHR3 deletion. Such 

autoantibodies interacted with FH C-terminal recognition sites (Jozsi et al. 2008). 

C5a and its receptor are mediators of inflammatory leukocyte attraction to an injury, but also 

a pro-thrombotic stimulator via tissue factor activation. Monoclonal antibody Eculizumab has 

been highly successful in treatment of aHUS patients, but to some degree also in other 

thrombotic diseases including SLE. It prevents C5 convertase splitting C5 into C5b and C5a. 

(Wong et al. 2013). FH and MCP are important in protection of glomerular endothelia against 

aHUS development, in C3 convertase regulation, and in FI-mediated C3b and C4b 

processing. They have anti-inflammatory and tolerogenic properties of their own, engaging 

the CR3 integrin tolerogenic pathway, and Treg-1, respectively. By being a transmembrane 

molecule, MCP may also transmit anti-inflammatory signals. This has been indicated by its 

cytoplasmic domain tyrosine phosphorylation by src kinases, and by their cross-linking with 

MV (measles virus) haemagglutinin in human monocytes, down- regulating IL-12 production 

(Wang et al. 2000). 

Typical HUS (tHUS) can appear as a secondary feature to gastroenteritis caused by 

Escherichia coli 0175:H7 Shiga-like toxin (Stx) (STEC-HUS), or to other bacterial toxins. 

aHUS is, thus, regarded as the same renal phenotype appearing in the absence of such toxins. 

tHUS is about 10 times more common than aHUS and prevails in children under 5 years, 

with incidence of  6 cases per 100,000  children (Noris et al. 2012). tHUS is an acute 

gastroenteritis disease which can be haemorrhagic. However, in most cases, such symptoms 

are cleared spontaneously or with drug treatment. A familial trait in tHUS appears to be 

unknown. Acute tHUS disease, which combines complement activation with renal vascular 

thrombosis, has been studied using a mouse STEC-HUS model that is induced upon Stx and 

LPS injection. Stx binds to its receptor Gb3 on glomerular vascular endothelial cells (Morigi 

et al. 2011). Such treated mice exhibited in their glomerular blood vessels occlusive platelet-

fibrin thrombosis.  

In STEC-HUS patients, as in mice, FB product Bb was increased, and thrombomodulin was 

decreased in their blood, indicating complement activation. Thrombomodulin as a cofactor 

enhances FH/FI-C3b degradation, and accelerates C3a and C5a inactivation via 

carboxypeptidase B (Delvaeye et al. 2009). There have been sporadic outbreaks of tHUS, 
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such as caused by E. coli serotype 0104:H4 Shiga toxin in Germany in May 2011, transmitted 

by contaminated fruit (Muniesa et al. 2012).  

Conditions related to aHUS, TTP, MPGN, AMD pathogenesis and a possible FH 

protective role 

It has been suggested that aHUS, TTP and MPGN are a spectrum of the same disease 

regarding their microvascular complement over-activation and thrombosis (Noris et al. 2012; 

Pickering and Cook 2008; Skerka et al. 2009). Their development entails glomerular micro-

vascular endothelial cell damage, complement activation and adherence of activated platelets 

to such cells in thrombus formation. All can be associated with variant FH polymorphism 

(Zipfel and Lauer 2013). TTP shares TMA lesions with aHUS and tHUS, although its 

pathogenesis entails an inherited or acquired deficiency of metalloproteinase-13 

(ADAMTS13). This suggested a common thrombotic mechanism for TMA formation under 

fast blood flow conditions (Noris et al. 2012; Reininger et al. 2006; Ruggenenti et al. 2001; 

Skerka et al. 2009; Tsai 2009). 

aHUS glomerular histological findings, which are indistinguishable from those of tHUS and 

TTP, show TMA lesion with swelling and thickening of arteriolar and capillary walls, and 

their partial and occlusive platelet rich thrombosis. Endothelial cells recede from basement 

membrane, with the space filled with fragmented cell debris material. There can be ischemic 

tissue damage with necrosis. Other organs such as brain, lungs, and gastro-enteric tract may 

be affected (Hofer et al. 2014). Red blood cell damage and haemolysis, as well as that of 

platelets results from their very fast shear flow through narrowing arteriole and capillary 

lumen, partially obstructed by thrombi. In such conditions, platelet arrest depends on vWF 

adhesion (Savage et al. 1996). Platelets can become activated by shear stress, and may release 

their thrombin, and membrane micro particles (PMPs) involved in TTP-TMA pathogenesis 

(Benz and Amann 2009; Noris and Remuzzi 2009; Reininger et al. 2006). Microvascular 

endothelial cells seem to be highly vulnerable to toxins such as E. coli Stx, immune complex 

deposits, to complement activation fragments and other triggers, not the least by being 

fenestrated for a vast volume/rate of plasma filtration. Normally, endothelia are protected 

against complement activation by membrane regulators such as cell-bound MCP and cell-

adherent FH (Jozsi et al. 2004). However, basement membrane lacks MCP molecules, where 

there is only the complement FH protection available (Clark et al. 2006; Jozsi et al. 2004). 

This fragile status can be perturbed by a local injury and complement over-reaction (de Groot 
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et al. 2012). In such conditions complement becomes over-activated on endothelial cell 

membranes and on platelets, damaging cells and precipitating TMA lesion formation in 

various organs (Noris et al. 2012). Since C5-C5a strongly contributes to microvascular 

thrombosis, monoclonal anti-C5 Eculizumab has been used to ameliorate pathology in these 

syndromes. In aHUS patients it can resolve thrombocytopenia, normalizing anaemia with 

improvement of renal function in 15 of 17 cases (Noris et al. 2012; Tsai and Kuo 2014)  

Thrombotic Thrombocytopenic Purpura (TTP) 

The role of vWF in microvascular platelet adhesion in haemostasis, and in TMA formation, is 

more evident in TTP. vWF exhibits its pathogenic ultra large multimer over-expression on 

damaged endothelia and on ECM, able to capture activated platelets in their thrombus 

formation. This vWF-size and function shift is due to deficiency of its negative regulator 

plasma metalloproteinase-13 (ADAMTS13) (Sadler 2008). Normally, the enzyme cleaves 

such hyper-adhesive large vWF multimeres, in keeping a thrombotic balance. Its deficiency 

may be hereditary, associated with a severe TTP form. In most cases, mainly in adult 

patients, susceptibility to TTP is acquired by their production of inhibitory autoantibodies to 

ADAMTS13. Approximately 80% of such patients respond to plasma exchange therapy (de 

Groot and Urbanus 2012; Noris et al. 2012; Sadler 2008; Tsai 2009). As compared with 

aHUS, TTP-TMA lesions are more disseminated in various organs and primarily in brain 

microvasculature, causing its damage and mental symptoms. Consequently, 

thrombocytopenia and haemolysis-anaemia are more pronounced. Purpura appears from 

shortcomings in platelet haemostasis maintenance, in plugging small vessel constant leakage 

(Noris et al. 2012; Ruggenenti et al. 2001; Sadler 2008). 

As indicated in their adhesion studies, ADAMTS13 may only cleave large vWF multimers 

under microvascular fast flow shear stress, which causes their conformational activation, 

stretching and unfolding the proteinase substrate residues, as well as various platelet binding 

regions. It may thus limit vWF-mediated haemostatic thrombosis function, and that in 

pathogenic thrombosis, to microvascular structures such as in glomeruli, brain and of other 

organs in TTP, aHUS and MPGN (Sadler 2008; Savage et al. 1996; Tsai 2009). In these  

conditions, e.g. at shear rate 1500 s
-1

, vWF, as bound to ECM type 1 collagen, can promptly 

initiate platelet tethering and rolling on damaged microvascular endothelial cells. This is 

achieved through its A1 domain interaction with its platelet ligand GPIbα of GPIb-V-IX 

receptor complex (Bergmeier and Hynes 2012; Savage et al. 1996). This high dissociation 
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reversible binding can be stabilized by vWF ligation of its specific platelet αIIbβ3 integrin 

receptor, concomitantly with that of platelet α2β1 integrin receptor, under high flow shear rate 

conditions (Savage et al. 1998). At lower shear rates, below 600 s
-1

 as occurring in wider 

vessels, thrombin activated platelets may directly firmly bind to vascular, or ECM fibrinogen, 

through their αIIbβ3 integrin in thrombus formation, a condition which is not permissive for 

vWF–αIIβ3 receptor interaction (Savage et al. 1998). 

Potentially, FH together with TSP-1, may partially inhibit these prothrombotic ligands by 

competition for αIIbβ3 binding, perhaps in both shear rate conditions. FH has a high affinity 

for this integrin (Vaziri-Sani et al. 2005). ADAMTS13 activity has been studied in patients 

with various connective tissue diseases containing TMA lesion. Its autoantibodies were 

associated with RA and SLE (Matsuyama et al. 2009). FH S890I mutation was found in a 

patient with chronic renal failure, in a family associated with V88M and G1238V mutations 

of ADAMTS13 deficiency and with TTP cerebral disease, suggesting an aHUS disease 

combination (Noris et al. 2005). To distinguish clinically between these two diseases, a 

normal or 10% higher ADAMTS13 plasma level in renal disease patients has been 

recommended to exclude genetic and acquired TTP (Tsai and Kuo, 2014). 

Membranoproliferative glomerulonephritis type 2 (MPGN type 2) 

MPGN type- 2 (DDD) represent a heterogeneous and complex inflammatory renal disease 

often of unknown causes.  In children and in adults, DDD frequency is approximately 4% and 

7 %, respectively, of general glomerular kidney disease (Appel et al. 2005; Benz and Amann 

2009). It is characterized by hyperplasia of mesangial cells, thickening of basement 

membrane, and by electron-dense deposits. Deposition of C3, C9 and vascular clots are also 

seen (Appel et al. 2005; Sethi et al. 2009). These lesions may impair glomerular plasma 

filtration as detected by albuminuria. Approximately in 10% of DDD patients, electron dense 

deposits are also found in their eye Bruch’s membrane with drusen, causing visual 

impairment. There is a cell-tissue structural similarity between glomerular and retinal 

accessory cells and membranes (Appel et al. 2005). MPGN type 2 lacks immune complex 

glomerular depositions, in contrast to MPGN types-1 and 3 (Benz and Amann 2009). 

Prognosis is poor, as in half of patients the disease progresses to terminal stage (Appel et al. 

2005).  
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DDD is associated with complement alternative pathway and with terminal pathway over-

activation (Appel et al. 2007). Most DDD cases appear to be acquired, i.e., mediated by C3- 

nephritic factor (C3NeF) autoantibodies, which bind to a neoepitope formed when C3 and FB 

form the C3bBb complex. Similarly to FB gain-of-function mutation (Roumenina et al. 2009) 

C3NeF stabilizes C3bBb convertase, and thus hyper-activating the alternative pathway. A 

lower number of DDD patients are associated with inherited FH mutation, impairing its C3 

convertase decay acceleration, self-protection, and its FI cofactor capacity. These FH 

dysfunctions may also contribute to the alternative pathway over-activation on injured 

glomerular endothelial cells and on ECM basement membrane (Botto et al. 2009; Noris and 

Remuzzi 2009). In the renal microvascular thrombotic environment, the platelet granule FH, 

stored at a high concentration, may upon its degranulation overcome the C3NeF stabilization 

of C3bBb convertase complex formed on glomerular endothelia (Devine and Rosse 1987; 

Weiler et al. 1976). 

MPGN type 2 phenotype, as seen in a large kidney biopsy registry, is more common in 

African and Eastern European populations. Its frequency can reach 30% of kidney disease, 

although nephrotic pathology cases prevail. In Western Europe MPGN frequency varies 

between 4-7%, and in USA can be less than 1% in young adults (Benz and Amann 2009). 

DDD pathogenesis, like aHUS, may in susceptible people, be precipitated by an injury to 

basement membrane, which may not be sufficiently protected against complement by a 

defective FH adherence (Botto et al. 2009). FH is the only complement protector on such 

ECM structures (Clark et al. 2013; Jozsi et al. 2004).  

Age related macular degeneration (AMD) and FH in the clearance of apoptotic cellular 

debris 

FH, apart from its cell membrane protective function, is capable of functioning in the removal 

of oxidised apoptotic cell debris such as drusen in AMD (Weismann et al. 2011). AMD is a 

major cause of blindness in the western world, and a FH susceptibility gene variant is a 

strong risk factor for AMD  (Klein et al. 2005, Clark et al. 2006). It is characterised by 

deposition of cellular debris (drusen) on retinal pigmented epithelial cells and their Bruch’s 

membrane (Figure 3), and by degeneration of macular retinal cells. These cells produce 

FH/FHL-1 proteins.  In FH CCP7 and  FHL-1 CCP7 domain a point mutation results in 

replacement of Tyr by His at residue 402, designated as Y402H (Day et al. 1988, Klein et al. 

2005; Clark et al. 2006; Skerka et al. 2007; Zipfel and Lauer 2013) and this replacement 
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substantially increases the risk of AMD. A large cohort genetic haplotype analysis of AMD 

patients found several additional common FH susceptibility SNPs (Hageman et al. 2005). 

Retinal Bruch’s membrane differs from renal glomerular basement membrane in its GAGs: 

heparin, heparan sulphate, and dermatan sulphate, which interact with FH via its CCP7 and 

CCP20 domains (Clark et al., 2013). Such FH differential GAG binding, and that of FH-

FHL-1 interaction with Y402H residue and other polymorphism sites together suggest, FH to 

be vital in retinal epithelia protection (Clark et al. 2013). AMD and aHUS associated amino 

acid polymorphisms  have been compared, positioned on FH CCP7 and CCP20 domains, 

respectively (Rodriguez et al. 2014; Zipfel and Lauer 2013). FHR1-3 negatively regulate FH 

and FHL-1 effects. Their loss may enhance FH eye protection and decrease the risk for AMD 

development (Fritsche et al. 2010). 

Retinal environment is strongly exposed to light and lipid peroxidation, and prone to produce 

pathogenic amounts of reactive oxygen species (ROS) (Weismann et al. 2011). It would 

appear that FH has a dual role in protecting retinal membranes and cells from complement 

attack, and from oxidative damage-stress, by binding such debris, tagged by OSEs or GAGs 

for their clearance (Clark et al. 2013; Handa 2012; Weismann et al. 2011). 

Immune thrombocytopenia Purpura (ITP) 

ITP is a heterogeneous and diverse disease associated with autoantibodies to various platelet 

antigens, with platelet destruction, their reduced production, and with tendency for bleeding. 

Most cases of ITP are idiopathic, but can be secondary to diverse causes, including infections 

and autoimmune conditions. ITP can be complicated with venous and arterial thrombosis 

(Cines et al. 2009). When activated upon vascular injury, e.g. with ECM collagen, thrombin, 

adenosine diphosphate (ADP), or shear stress, platelets seem to have an intrinsic propensity 

to stage complement activation on their surface. They may thus through their adherence 

largely contribute to a local vascular inflammation, and in haemostatic and pathogenic 

thrombosis (Peerschke et al. 2006; Peerschke et al. 2008). Clinical ITP studies showed that 

patients’ sera (complement) enhanced C1q, C4d, C3b and of C5b-C9 component deposition 

on platelets, which correlated with a decrease of immature platelets in their blood, and with 

thrombocytopenia. Such features suggested an activated complement cascade participation in 

this disease (Peerschke et al. 2009). Moreover, such platelet complement pattern was found in 

blood of patients suffering from SLE and APS. These include anti-phospholipid antibodies 

(aPL), anti-β2-GP1 autoantibodies, and a risk for arterial thrombosis. C1q may induce pro-
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inflammatory signalling and cytokines in platelets via its globular C1q receptor (gC1qR) 

(Peerschke et al. 2006; Peerschke et al. 2008; Peerschke et al. 2009). 

Conclusions 

Systemic autoimmune diseases such as SLE and APS, associated with complement 

component dysfunction, are complex, heterogeneous and variable in symptoms, including 

variability in autoantibody production. However, such diseases have in common pathogenic 

features in tissue inflammation, thrombosis and decline of peripheral tolerance to self-

antigens. FH contributes substantially to regulation of these events. These include C3 and C5 

convertase decay acceleration. FH may also potentially influence a silent apoptotic cell 

clearance by phagocytes. This event has been suggested by tests in which C1q mediated 

apoptotic cell engulfment by human monocytes was modulated by FH via CR3 (Kang et al. 

2012). 

Apoptotic cell turnover process is vital for development and homeostasis. It is thought to be 

conserved in innate immune cells, providing a broad peripheral self-tolerance. There appear 

to be several partially redundant pathways. One is apoptotic cell-iC3b opsonisation for their 

phagocyte CR3/CR4 integrin ligation (Amarilyo et al. 2010). Complement protein FH can 

also recognise PS, a marker of apoptotic cells to be engulfed via various scavenger receptors, 

and by PS specific Tim receptors. Apoptotic cells (ACs) also present TSP-1, a ligand of FH, 

capable of interacting with several receptors, including its own CD36 receptor, beta-1,-3 

integrins and CD47 (integrin associated protein, IAP) expressed on dendritic cells (DCs) and 

macrophages. This TSP-1 receptor binding was PS independent. TSP-1 thus induced in DCs 

their apoptotic cell phagocytosis, as well as their self-tolerogenic state (Krispin et al. 2006). 

IAP may recruit on the cell membrane its immuno-inhibitory receptor SIRPα. In this way IAP 

can assemble, in cell plasma membrane glycosphingolipid and cholesterol enriched domains, 

the signalling supra-molecular complex, comprising TSP-1/CD36/αvβ3/ISP/SIRPα receptors. 

Such a receptor complex is apparently involved in a silent apoptotic cell clearance by 

phagocytes, due to the presence of activated SIRPα, mediating tolerogenic cell responses 

(Green et al. 1999). FH is a strong ligand of TSP-1, and may influence apoptotic cell 

clearance in this way, in addition to acting via the complement integrins for which FH is also 

a ligand.  
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A paracrine, high-gradient FH produced constitutively by pluripotent MSCs has been shown 

to mediate immunosuppressive and self-tolerogenic response in DCs and macrophages. 

MSCs are found in various local tissue microenvironments, including lymph nodes, 

conditions where systemic liver produced FH is at low concentration (Tu et al. 2010). CR3, 

upregulated in DCs in stromal organ tissues of spleen, lungs and liver, has also been 

associated with self-tolerance (Zhang et al. 2004). A paracrine FH may potentially, through 

its receptor CR3, engage Mer-tyrosine kinases TAM as an immunosuppressive component. 

Tim-receptor family, specific for PS ligation, may also be engaged. Such a suggested model 

would be compatible with findings in peritoneal resident macrophages, which co-express 

Tim-4, MerTK, and CR3, in a silent apoptotic cell clearance, comparable to that by DCs, 

which is dependent on MerTK activation (Nishi et al. 2014; Sen et al. 2007). A further 

complement connection is a co-expression of the negative regulator gC1qR, together with 

tolerogenic Tim-3 expressed on Th1 cells, both inhibiting Th1 cell proliferation (Ghebrehiwet 

et al. 2014).  

Deficiency and polymorphism of FH increase a risk for developing aHUS in susceptible 

people, and of MPGN type II. Often accompanied by anti-FH autoantibodies, aggravating the 

disease, aHUS may partially arise due to a decline of broad tolerogenic effects. FH 

autoantibodies have been detected in patients suffering with APS, and in those with RA. FH 

Tyr402His mutation variant confers susceptibility for AMD. On the other hand, the inherited 

CR3 variant (Arg77His) is a risk factor for SLE in ethnic populations. 

FH discriminates between self and pathogen response of immune cells by protecting mainly 

self-antigens from complement attack. This includes joint synovial cell covering, as indicated 

in RA patients. In addition, pathogens lack a surface PS and become bound to induce 

inflammatory responses in phagocytic cells. FH inhibits PS-contact activation of the pro-

coagulant Hageman factor system, the initial part of the intrinsic blood coagulation pathway. 

FH is also a ligand of platelet αIIbβ3 integrin, potentially reducing its pro-thrombotic effects. 

Thus, FH may be part of innate immune cell regulatory balance, with its anti-inflammatory 

and self-tolerogenic effects. 
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Figure legends. 

Figure 1:  Factor H as an essential Regulator of the Alternative pathway. (A) A general 

structure of Complement Factor H (FH) and the CCP binding sites. CCP1-4 are involved in 

the interaction of C3b and TED for the cleavage of C3b. CCP 10-13 are positively charged 

and so may interact with negative groups. The CCP 19-20 are involved in binding to GAGs 

or C3b/d (B) FH binds to C3b on the cell surface and the membrane of host cells is equipped 

with complement receptors, including CR3 and CR4 which are integrin receptors for FH. 

CR3 and CR4 can also bind iC3b, C3c, C3dg and C3d and mediate phagocytosis of iC3b-

opsonized cells. FH blocks the formation of C3 convertase and C5 convertase, thus inhibiting 

the formation of MAC and cell lysis. 

Figure 2: Regulation of Alternative pathway. (A) Domain Alignment and Mechanism of 

Complement Factor H- Related (CFHR) Proteins. CFHR1, CFHR2, and CFHR5 share high 

homology in their two N-terminal domains, forming homo- and heterodimers. These CFHR 

proteins, most particularly CFHR1 act in opposition to Factor H, where they compete with 

Factor H for C3b binding on the target cell surface, resulting in the formation of C3 

convertase and MAC. (B) Factor H can bind to C3b and GAGs found on the cell surface and 

the level of complement activation depends on architecture of the complex and the density of 

C3b deposited. FH can bind to C3b via CCP1-4, and if subsidiary interactions can be formed 

with GAGs or C3d via CCP6-8 or 19-20, this increases the apparent avidity of FH for C3b, 

thereby preventing FB binding and resulting in breakdown by FI of C3b in the C3b-FH 

complex, to form iC3b.  FH is also thought to regulate the complement classical pathway by 

competing with C1q for binding to some targets (Tan et al, 2010; 2011). (Figure adapted 

from Merle et al, 2015) 

Figure 3: An overview of Factor H functions and their implication in pathological 

conditions. (A) Factor H can control complement activation on target cell surfaces, and 

prevent host cells from undergoing complement attack. Factor H may bind to target cells and 

basement membranes by interacting with deposited C3b and glycosaminoglycans. Pentraxins 

CRP and PTX3, have a role in mediating the binding of factor H to some targets. Factor H 

may also interact with specific receptors, and modulate cellular functions, such as cell 

adhesion and phagocytosis. (B) Mutations and SNPs in factor H, and anti-FH autoantibodies, 

are associated with numerous diseases, including Dense Deposit Disease (DDD), Atypical 

hemolytic-uremic syndrome (aHUS) and Age-related macular degeneration (AMD) 
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