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1 Introduction

In this note we deal with the liftability of vector fields over the projection onto the param-
eter space for SO(2)-equivariant universal unfoldings (under contact equivalence) of O(2)-
equivariant problems of corank 2 and the application of those results to the path formulation
for bifurcation problems with the forced symmetry breaking from O(2) to SO(2). In the non
equivariant case it is well known that vector fields are liftable over the projection if and
only if they are tangent to its discriminant and that they form a free module (cf. [14]). In
[7] we discussed equivariant cases under finite groups where the two modules are different,
although both are free. Here we have continuous Lie groups, with a simple action, but both
modules are again equal and free.

Forced symmetry breaking occurs when the symmetry of the equations changes when a
parameter is varied. In previous works we studied forced symmetry breaking in bifurcation
equation from O(2) to some of its subgroups using a modification of the standard theory
of [13] (no symmetry at all in [6], Dn in [5] and SO(2) in [8]). We use this last example to
illustrate the use of path formulation to study bifurcation problems in the case of continuous
Lie group actions. Bifurcation diagrams are identified with paths in the parameter space of
the SO(2)-universal unfolding F0 of the cores f0(z) = f(z, 0). Equivalence between paths is
given by diffeomorphisms preserving the discriminant ∆F0 of the projection π of F−1

0 (0) onto
the unfolding parameter space of F0. Without symmetry, the tangent space of the group
of those diffeomorphisms is the module of liftable vector fields. In our case this module
corresponds to the whole module of vector fields tangent to the discriminant so the group
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of liftable diffeomorphisms is the whole group of liftable diffeomorphisms preserving the
discriminant.

In [10] we have shown how path formulation follows directly from the algebra of the
parametrised contact equivalence theory, here in its version for forced symmetry breaking of
[8]. This is the object of Chapter 2. Finally, we show in Chapter 3 that we get the module
of liftable vector fields directly from the geometry of the situation. To exploit fully methods
from algebraic geometry we complexify our situation and work in the holomorphic realm. As
long as we consider real germs of finite codimension (hence finitely determined) our results
are valid for real germs viewed as real slices of the complex objects.

1.1 Notation

We consider the actions of C∗ and Z2 on the complex plane given by t : (z1, z2) 7→ (tz1, t
−1z2)

and χ : (z1, z2) 7→ (z2, z1). Together they form an action of the semi-direct product O∗ =
Z2 n C∗. This is the complexification of the usual orthogonal action of O(2) on R2∼ C by
setting z1 = z and z2 = z̄. We denote by M2(C) the set of 2×2-matrices with complex
coefficients and by GL2(C) the subset of invertible 2×2-matrices. The identity in GL2(C) is
denoted by I2.

The derivatives are denoted by subscripts, fz for ∂f
∂z

. . . , and the superscript o denotes the
value of any function at the origin, f o = f(0), f o

z = fz(0) . . . . When clear from the context
we still use z for (z1, z2) ∈ C2. For any variable, or set of variables, a ∈ Cn, we denote by Oa

the ring of analytic germs f : (Cn, 0) → C and by Ma its maximal ideal. For b ∈ Cm, let ~Oa,b

denote the Oa-module of analytic germs g : (Cn, 0) → Cm, and ~Ma,b its submodule of germs

vanishing at the origin. When b is clear from the context, we denote ~Oa,b by ~Oa and ~Ma,b

by ~Ma. In the real case we denote by Ea and by ~Ea,b the corresponding ring and modules of
smooth germs. We use the superscript Γ to indicate the rings of Γ-invariant or the module of
Γ-equivariant germs. Let R be a ring, we denote by <m1 . . . mk >R the R-module generated
by the mi’s over R.

2 Path Formulation for (O(2), SO(2))-Forced Symmetry

Breaking Bifurcation

Following from the broad outline of [11] and the general framework of [3], we presented in
[8] a general theory of unfoldings, finite determinacy and the recognition problem for forced
symmetry breaking bifurcation problems of the type f : (R2×R2, 0) → (R2, 0) where

f(z, λ) = f1(z, λ) + µf2(z, λ, µ) (2.1)

with f1, f2, O(2), SO(2)-equivariant, respectively, for their orthogonal actions on R2. We
identify (as real vector spaces) C with R2 given by z = x + iy. We denote the bifurcation
parameters by Λ = (λ, µ). In complex notation, the set of smooth equivariant bifurcation

problems of type (2.1) is the module ~E O(2),SO(2)
(z,Λ) =<z>E(u,λ)

+ <z, iz>E(u,Λ) where u = zz̄ is

the unique generator of the ring of SO(2)-invariant germs.
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2.1 Contact equivalence

Let f, g ∈ ~E O(2),SO(2)
(z,Λ) be two bifurcation maps like in (2.1), f is contact equivalent to g if

f(z, Λ) = T (z, Λ) g(X(z, Λ), L(Λ)) (2.2)

where T is an equivariant matrix and (X,L) is an equivariant local change of coordinates
around the origin in the (z, Λ)-space such that det T (0, 0) > 0, X(0, 0) = 0 = L(0),
det Xz(0, 0) > 0, det LΛ(0) > 0, L2(λ, 0) = 0 and (T,X, L) are O(2)-equivariant when
µ = 0 and SO(2)-equivariant when µ 6= 0. The change of coordinates (2.2) means that the
zero-sets f−1(0) and g−1(0) are diffeomorphic under the local diffeomorphism (X,L) which
preserves the orientation of the (x, Λ)-space, the (λ, µ)-slice structure of the zero-set and its
symmetries.

The set of contact equivalences (T,X, L) has a group structure of semi-direct product

by composition. We denote by KO(2),SO(2)
Λ the group of contact equivalences (T,X, L) act-

ing on ~E O(2),SO(2)
(z,Λ) consisting of (T, X, L) that are O(2)-equivariant when µ = 0, but only

SO(2)-equivariant when µ 6= 0. Nevertheless, KO(2),SO(2)
Λ is a geometric subgroup of contact

equivalences, hence it satisfies the abstract theorems of the general theory of [3]. We get
thus the theories for universal unfoldings and determinacy with estimates of the higher order
terms P(f), terms we can discard in each contact class of the normal forms. The following
questions have been dealt with in [8].

1. To classify the bifurcation germs of topological codimension less or equal to 2 in relation
to the change of coordinates (2.2).

2. To solve the recognition problem for these normal forms.

3. To describe the different bifurcation diagrams obtained by perturbing the normal form,
that is, to study the universal unfolding of each normal form.

2.2 Path equivalence

Another approach is to associate with a bifurcation map f , a “path” in the space of defor-
mation parameters of the core f0 of f where f0(z) = f(z, 0).

2.2.1 Paths

Consider the bifurcation map f as an unfolding of f0 with parameter Λ. When Λ = 0, the
group of contact equivalences KO(2),SO(2)

Λ simplifies into KO(2), the classical group of O(2)-
equivariant contact equivalences without distinguished parameters. A germ f is said to be
of finite core if f0 is of finite KO(2)-codimension. It is straightforward to see that, for each
n ≥ 1, there are exactly two cores of codimension n, namely f0(z) = εnunz where ε2

n = 1.
We look at the SO(2)-equivariant universal unfolding of f0 because of the forced symmetry
breaking problem. Compared with the other (finite) subgroups of O(2), a finite core is also
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of finite KSO(2)-codimension, equal to m = 2n. We choose the basis of the KSO(2)-normal
space so that F (z, α, 0) is the KO(2)-universal unfolding of f0. Explicitly, the KSO(2)-universal
unfolding of f0 with parameters γ = (α, β) ∈ R2n is F0(z, α β) = εnunz +

∑n−1
i=0 (αi + iβi) uiz.

From the KSO(2)-theory of unfoldings, there exists a mapping of unfoldings such that

f(z, Λ) = T (z, Λ) F0(X(z, Λ), γ̄(Λ)) (2.3)

where γ̄ : (R2, 0) → (Rm, 0) (that is, γ̄(0) = 0) is the path associated with f . Note that T
and X are invertible like in (2.2) but γ̄ is usually obviously not. On the other hand, (2.3)
means that f and γ̄∗F0 are contact equivalent with equivalence (T,X, I2). In [9] we show that

we can construct the path γ̄ so that γ̄(λ, 0) = (ᾱ(λ), 0). The space of paths ~Pm is defined

as the set of paths (p, 0) + µq where p ∈ ~Eλ and q ∈ ~EΛ. To be more precise, it is a finitely

generated module over the system of rings {Eλ, EΛ}, ~Pm =< (1, 0) >Eλ
+ < (1, 0), (0, 1) >EΛ

so
γ̄(Λ) = (ᾱ(1)(λ) + µᾱ(2)(Λ), µβ̄(Λ)).

2.2.2 Path equivalence

We can now define an equivalence between two paths with the same core. That is, r̄, s̄ :
(R2, 0) → (Rm, 0) are path equivalent if

r̄(Λ) = H(Λ, s̄(L(Λ))) (2.4)

where L : (R2, 0) → (R2, 0) and the Λ-parametrised family H : (R2+m, 0) → (Rm, 0) are
orientation preserving local diffeomorphisms on (Rm, 0). Moreover, we ask that H preserves
the discriminant ∆F0 of F0 in the sense that H(Λ, ∆F0) ⊂ ∆F0 for all Λ ∈ (R2, 0) and lifts
to diffeomorphisms of (R2+m, 0) that preserves F−1

0 (0). The discriminant ∆F0 of F0 is the
set of values of γ where F0 is singular. Because O(2) is continuous, this set corresponds to
the whole of the projection of the zero set so ∆F0 = { γ | ∃z, F0(z, γ) = 0 }. For forced
symmetry breaking we have to assume also that path equivalence preserve the section β = 0
of the discriminant.

For a fixed core f0, the group of path equivalences is denoted by K∆F0. This group is
a geometric subgroup which acts on the space of paths, hence the general theory of [3]
applies. Remark that we cannot in general simplify H in (2.4) as a Λ-parametrised matrix
like with the usual contact equivalence. An explicit description of the diffeomorphisms H
is in general very hard, if not impossible. Nevertheless, the tangent space of γ̄ can be
determined explicitly. It involves the module Derlog(∆F0) of vector fields tangent to the
discriminant ∆F0 and respecting the section β = 0. More explicitly it is the submodule of
{ ξ ∈ ~Em | ξ(h) ∈ I(∆F0), ∀h ∈ ∆F0 } respecting the section β = 0 of ∆F0. Therefore the
extended tangent space to γ̄ = (p, 0) + µq is

TeK∆(γ̄) = γ̄∗Derlog(∆F0){Eλ,EΛ}+ <(pλ, 0)>Eλ
+ <µ(pλ, 0), q + µqµ >EΛ .

The following results follow from [10].
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Theorem 2.1. (a) If f ∈ ~E O(2),SO(2)
(z,Λ) has a core of finite KO(2)-codimension, there exists a

path γ̄ such that f is KO(2),SO(2)
Λ -equivalent to γ̄∗F0.

(b) codK
∆F0

γ̄ < ∞ if and only if codKO(2),SO(2)
Λ

γ̄∗F0 < ∞. In that case, a map G is a K∆F0-

universal unfolding of γ̄ if and only if G∗F0 is a KO(2),SO(2)
Λ -universal unfolding for γ̄∗F0.

(c) Let γ̄1, γ̄2 be two smooth paths in ~Pm. Then, γ̄1 is K∆F0-equivalent to γ̄2 if and only if

γ̄1∗F0 is KO(2),SO(2)
Λ -equivalent to γ̄2∗F0 for finite codimension problems.

In general, the group KO(2),SO(2)
Λ induces an equivalence of theory for paths of finite codi-

mension with the subgroup of K∆F0 of diffeomorphisms that are ‘liftable‘ over the projection
πF0 from the zero-set of F0 onto the the space of parameters Rm. It Section 3 we show that,
as in many other cases, like the non equivariant case, this subgroup is actually the whole of
K∆F0 .

2.3 Explicit Derlogs in Real Form

In this section we discuss the real form of Derlog(∆F0) for the three cores we need for the
classification of Theorem 2.2. In its liftable form, a vector field ξ : (Rm, 0) → (Rm, 0) is in
Derlog(∆F0) if there exist germs X and T such that

(F0)z X(z, γ) + (F0)γ ξ(γ) = T (z, γ) F (z, γ),

(F0)z(z, α, 0) X(z, α, 0) + (F0)γ(z, α, 0) ξ(α, 0) = T (z, α, 0) F (z, α, 0).

Note that, because of the SO(2)-equivariance, the lifts are not unique, they are given modulo
(−y, x, 0, 0) which is in the kernel of (F0)z modulo TF.

The generic case is f0(z) = εuz (core I). Its SO(2)-unfolding is (εu + α)z + iβz and
Derlog(∆F0) is freely generated by

ξ1 =

(
α
β

)
, ξ2 =

( −β2

αβ

)
(2.5)

where ∆F0 is β(α2 + β2) = 0. The lifts are (z, 2ξ1) and (−(εu + α)z, 2ξ2), respectively.
For the next case, f0(z) = ε2u

2z (case II), of SO(2)-unfolding (ε2u
2 +α1 +α2u, β1 +β2u),

the discriminant is given by

β2(α
2
1 + β2

1)(ε2β
2
1 + α1β2 − α2β1β2) = 0,

with Derlog(∆F0) freely generated by

ξ1 =




2α1

α2

2β1

β2


 , ξ2 =




α1α2

2εα1

α2β1

ε2β1


 , ξ3 =




β1β2

β2
2

−α1β2

ε2β1 − α2β2


 , ξ4 =




α1β2

ε2β1

β1β2

0


 .

The lifts are (z, 2ξ1), ((ε2u + α2)z, 2ξ2), (0, ξ3) and (β2z, 2ξ4), respectively.
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Finally, we shall need f0(z) = ε3u
3z (case III), of SO(2)-unfolding (ε2u

2 + α1 + α2u +
α3u

2, β1 + β2u + β3u
2). Its Derlog is freely generated by

ξ1(α, β) = (3α1, 2α2, α3, 3β1, 2β2, β3),

ξ2(α, β) = (3ε3α1α3, 3α1 + ε3α2α3, 3α2, 2ε3α3β1, 2β1 + ε3α3β2, β2),

ξ3(α, β) = (ε3α1α2 + α1α
2
3 − α1β

2
3 + 2ε3β1β2,−ε3β1β3 + 2ε3α1α3 + 2α2α

2
3 + 2ε3β

2
2 , 3α1 + ε3α2α3 + α3β

2
3 ,

ε3α2β1 − 2ε3α1β2 − β1β
2
3 , 3ε3α3β1 − ε3α1β3 − 2ε3α2β2, 3β1 − 2ε3α2β3 + β3

3),

ξ4(α, β) = (2α1β3, ε3β1 + α2β3, ε3β2, 2β1β3, β2β3, 0),

ξ5(α, β) = (2α1α2, 2α1β3 + α2β2, ε3β1 + α2β3, 2β1β2, β
2
2 , ε3β2β3),

ξ6(α, β) = (β1β3, β2β3, β
2
3 ,−α1β3, ε3β1 − α2β3, ε3β2 − α3β3).

The lifts are (z, 2ξ1), ((u + ε3α3)z, 2ξ2), ((u2 + ε3α3 + 5ε3α2 − β2
3)z, 2ξ3), (β3z, 2ξ4), ((β3u−

β2)z, 2ξ5) and (0, ξ6), respectively.

Remarks. 1. Note that the real discriminants are to be seen as the real slices of the
discriminants of the complexification of Section 3 where the calculations are sketched.

2. Note that Derlog(∆F0) =<ξ1 . . . ξn >Oα ⊕<ξn+1 . . . ξm >Oα where ξi(α, 0) = 0, n + 1 ≤
i ≤ m.

2.4 Classification

We recover then the classification obtained by direct methods using KO(2),SO(2)
Λ in [8].

Theorem 2.2. The paths in ~Pm of topological K∆F0-codimension up to 2 are listed in the
following table. The symbols Iin, IIi and IIIin represent the paths, of O(2)-codimension n,
of topological codimension i corresponding to the normal forms for the cores I, II and III,
respectively. The normal forms correspond to paths (ᾱ, µβ̄). Note that the elements of the
normal space do not include the terms in the modal parameters of the normal forms.

CASE NORMAL FORM NORMAL SPACE top-cod cod
I01 (δλ, ε0) 0 0 0
I11 (δλ, κ1λ + κ2µ) (0, 1) 1 1
I2a
1 (δλ, κ1λ + κ5µ

2) (0, 1), (0, µ) 2 2
I2b
1 (δλ, κ2µ + κ3λ

2) (0, 1), (0, λ) 2 2
I22 (δ2λ

2 + κ0µ, κ1λ) (1, 0), (0, 1) 2 2
II11 (δλ, 0, ε0, 0) (0, 1, 0, 0) 1 1
II21 (δλ, m1µ,m2µ + κ5µ

2, κ6) (0, 1, 0, 0), (0, 0, 1, 0) 2 4
II23 (δ2λ

2,m3λ, ε0, 0) (1, 0, 0, 0), (λ, 0, 0, 0) 2 3
III22 (δλ, 0, 0, ε0, 0, 0) (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0) 2 2
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The modal parameters are m1, m2, m3 with conditions m1m2(ε2m2 − κ6m1) 6= 0 and
m2

3 6= 4ε2δ2. The coefficients ε, ε2, δ, δ2, κ, κi, i = 0, 1, 2, 3, 5, 6, are all non zero, normalised to
±1.

Proof. We use the calculations for K∆F0 . We need to calculate the pullback by γ̄ of
Derlog(∆F0). For the core I1, Derlog(∆F0){Eλ,EΛ} =< ξ1 >Eλ

+ < µξ1, ξ2 >EΛ. For the core II,
Derlog(∆F0){Eλ,EΛ} =<ξ1, ξ2 >Eλ

+ <µξ1, µξ2, ξ3, ξ4 >EΛ, etc. For instance for Ii1, i = 1, 2a, 2b
and 2, the paths are given by ᾱ(1)(λ) = δλ, ᾱ(2)(Λ) = 0 and we have different β̄’s. After
some calculations using (2.5), we find that the extended tangent space is equal to

<

[
δ

µβ̄λ

]
>Eλ

+µ <

[
δ

µβ̄λ

]
,

[
0

β̄ − β̄λ

]
,

[
0

β̄ + µβ̄µ − δλ2µβ̄λ

]
,

[
0

λβ̄λ + µ2β̄2β̄λ

]
>EΛ .

Replacing by the different expressions for β̄ and evaluating the normal spaces we get all the
results. 2

2.5 Comments on the relationship between the two approaches

Although the two theories coincide for finite codimension problems, we can make the follow-
ing remarks.

• The set-up for path equivalence is independent of the number of parameters and their
structure. If λ ∈ Rk, the paths are maps r̄ : (Rk, 0) → (Rm, 0) and the contribution of
Derlog ∆F0 in the tangent spaces does not depend on k. The path formulation makes
explicit which singular behaviour is attributable to the core, which to the paths.

• To establish path equivalence we actually need to complexify the situation to establish
the result we use about the Derlogs, but nothing will be lost because we are only
interested in germs of finite codimension, that is, equivalent to polynomials.

• Solving the recognition problem using the group action of KO(2),SO(2)
Λ is easier for explicit

simplification to the normal forms.

3 Liftable Vector Fields

3.1 C∗-Theory in ~OC∗z

The rings of C∗-invariant germs is generated by ū(z) = z1z2 which is also χ-invariant. The

module ~O C∗
(z,a) of C∗-equivariant maps with parameter a ∈ (Cm, 0) is generated by Z1(z) =

(z1, z2), Z2(z) = (iz1,−iz2) and the module ~O C∗
(z,a) of O∗-equivariant maps is generated by Z1.

We choose our basis so that the algebra in the complexified situation equals the algebra in
the real case. We use the standard equivariant contact equivalences KΓ with groups Γ = C∗
or O∗. To calculate the tangent space for KC∗ we need the module of C∗-equivariant matrices

acting on C2. It is generated by M1 =

(
1 0
0 1

)
, M2(z) =

(
i 0
0 −i

)
, M3(z) =

(
0 z2

1

z2
2 0

)
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and M4(z) =

(
0 iz2

1

−iz2
2 0

)
. The extended tangent space of f(z) = r Z1 + sZ2, identified

with (r, s), is generated by (r, s), (−s, r), (us, 0), (0, us) and (r + 2uru, s + 2usu).
To construct the space of paths, we need to get the C∗-universal unfoldings of the O∗-

equivariant cores. Before complexifying the situation, recall that the cores f0 of finite
KO(2)-codimension are given by f0(z) = εnu

nz for some n ∈ N. Thus TeKSO(2)(f) =<

(un, 0), (0, un)>Eu= ~Mn, so f0 is always of finite KSO(2)-codimension and its SO(2)-universal
unfolding is equal to (εnun +

∑n
j=1 αju

j−1) z + (
∑n

j=1 βju
j−1) iz. Let F (z, a) = (R(u, a) +

iS(u, a)) z be a germ in ~E SO(2)
(z,a) , and so its complexification is (F, F̄ ) = R(u, a) Z1 +S(u, a) Z2.

We keep track of the sign of uk to be able to go back to the real case.
The discriminant of F0 is formed of 3 varieties: R(0, a, b) = 0, S(0, a, b) and P (u, a, b) =

Q(u, a, b) = 0 that correspond to the projection of the zero-set of F0.

3.2 C∗-Derlog

For our 3 cores we can use directly the following result of Saito’s to show that the liftable
vector fields and the vector fields tangent to the discriminant form the same free module.

Theorem 3.1. (Saito [16]) If the vector fields {ξi}m
i=1 are in Derlog(∆F0) and the deter-

minant they form |ξ1 . . . ξm| is a reduced defining equation for ∆F0 then they generate freely
Derlog(∆F0).

The general fact that the C∗-Derlogs are always free modules and correspond to the
liftable vector fields follows from the same type of arguments as in the general case, but we
need to check some conditions explicitly. Note first that, from the Malgrange Preparation
Theorem, the normal spaceNeKC∗(F0) = ~O C∗

(z,a)/TeKC∗(F ) is freely generated as an Oa-module

by {hi}m
i=1, say. The following formula

ϕ(ᾱ) =
m∑

i=1

ᾱi(a) hi(z)

defines a linear epimorphism:
Om

a

ϕ→ NeKC∗(F0) → 0.

The kernel of ϕ is the C∗-Derlog of liftable vector fields of F0 (in [10] we called this kernel
the algebraic Derlog of ∆F0). That it is free follows from the method of Teissier ([17]) as
adapted by Damon ([4]) because those modules are still Cohen-Macaulay (cf. [2, 15]). The
support of the kernel of ϕ is the projection of the zero-set of F0 onto the parameter space.

To see that vector fields tangent to the discriminant lift over the projection we use the
necessary and sufficient conditions for liftability in [1]. Note that the orbit space of C2 by
the C∗-action is smooth (cf. [15]).
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