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Abstract 
 

In this work, fluid-fluid-solid coupled models are analysed, considering the interaction of 

boundary and finite element techniques. In this context, the paper focuses on the study of 

deforming drops through bulk fluids bounded by flexible walls. Here, the fluid subdomains 

are assumed to be viscous and incompressible, and they are modelled by the BEM. The solid 

subdomains are assumed to be elastic, and they are modelled by the FEM. Both discontinuity 

of tractions on the fluid-fluid common boundaries and discontinuity of velocities on the fluid-

solid interfaces are considered. For the discontinuity of velocities, a formulation based on 

nonlinear slip boundary conditions is adopted, which is treated employing a relaxed iterative 

approach. A Lagrangian representation is considered and remeshing is applied on the fluid-

fluid interfaces, reducing the appearance of numerical problems. Numerical results are 

presented to illustrate the performance and potentialities of the proposed techniques. 
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1. Introduction 
 

The main focus of the work described in this paper is to develop a fluid-fluid-solid coupled 

model to study the interaction between deforming drops transported by bulk fluids bounded 

by rigid or flexible walls. Practical engineering applications of this work involve, for instance, 

the biomedical problem of transport of drops or bubbles in arteries. One interesting such 

application is the use of gas embolotherapy to treat tumours [34, 35]. In this potential kind of 

treatment, which is still under development, transvascular perfluorocarbon droplets, around 6 

μm in diameter, are selectively vaporised using high intensity ultrasound at a desired location 

near or in the tumor microcirculation to form substantially larger gas bubbles (around 150 

times volume expansion), which then occlude blood flow and induce tumour infarction. The 

homogeneity of bubble delivery is expected to determine the uniformity of tumour infarction. 

Consequently, understanding the transport of bubbles, which are long in this case compared to 

microvessel diameters, is essential to designing treatment strategies.  Because of the 

geometrical scales involved, the bulk fluid may be able to slip at the solid boundaries. 

Calderon et al. [36] and Eshpuniyani et al. [37] developed BEM models for bubble 

propagation in microvessels considering slip at the walls, but assuming the walls to be rigid. 

 Another practical engineering application of the current technique is for fluid flow in micro 

and nano-fluidic rotating devices. Nieto et al. [38] developed a BEM formulation for Stokes 

flow with linear slip to study the flow in micro-devices such as concentric and eccentric 

rotating Couette mixers, and a single rotor mixer, again considering rigid walls. 

Several fluid-solid interaction models have been previously developed, some of which 

involve coupled models based on the finite element method (FEM) to model the solid and the 

boundary element method (BEM) to model the fluid. Although these approaches can be useful 

in addressing many engineering problems, they mostly correspond to standard direct coupling 

methodologies and thus exhibit well-known limitations. Indeed, the direct coupling of two 

distinct methods generally involves assembling a single system matrix, accounting for the 

contributions of each method and for the required coupling interface conditions, which 

frequently becomes poorly conditioned due to the different nature of the methods. Since this 

system is formed from the contributions of distinct methods, it is also usually not possible to 

make use of their individual advantages in terms of optimised solvers or memory storage (e.g. 

the final system of equations in coupled BEM-FEM models will no longer be banded and 

symmetric, etc.). In addition to this limitation, by forming a single system of equations, a very 



large problem usually arises, leading to increased computational efforts and thus to a loss of 

performance. 

The above limitations have justified the appearance of iterative algorithms to obtain 

accurate solutions in a more efficient manner. Perhaps one of the first iterative techniques for 

general problems is the Schwarz alternating strategy [1, 2], in which the domain of analysis is 

partitioned into overlapping subdomains and the solution is found by successively iterating 

along these subdomains until convergence is reached. This classical and simple to implement 

algorithm has been applied to many problems, including potential problems [3] and 

electromagnetic wave propagation problems [4]. 

In recent years, several iterative domain decomposition techniques have been proposed for 

a wide range of problems, providing more flexibility and efficiency. These techniques usually 

consider the analysis of coupled models, taking into account the interaction of different 

physical phenomena and discretisation methods. In fact, for complex models, iterative domain 

decomposition techniques are recommended. Indeed, a proper numerical simulation is hardly 

achieved by a single numerical technique in those cases, mostly because complex and quite 

different phenomena interact, requiring particular advanced expertise, and/or large scale 

problems are involved, demanding high computational efforts. Several algorithms are 

available nowadays discussing iterative non-overlapping partitioned analysis. Rice et al. [5] 

presented a comprehensive discussion on several interface relaxation procedures for elliptic 

problems, comparing formulations and performances.  

One of the first publications on BEM-FEM iterative coupling was presented by Lin et al. 

[6], who discussed a relaxed iterative procedure considering linear static stress analyses. 

Similar approaches have also been presented for potential and mechanical static linear 

analyses [7, 8]. In the works of Elleithy et al. [9, 10], addressing potential and elastostatic 

problems, the authors propose that the domain of the original problem is subdivided into 

subdomains, and the coupling between the different subdomains is performed by using 

smoothing operators on the interface boundaries. Their strategy allows separate computations 

for the BEM and FEM subdomains, with successive updating of the boundary conditions at 

the interfaces until convergence is achieved. Similar approaches for the analysis of different 

linear problems using domain decomposition techniques were also presented in [11, 12]. 

Further developments of these strategies to nonlinear analysis in solid mechanics can be found 

in Elleithy et al. [13], using an interface relaxation BEM-FEM coupling method for 

elastostatic analysis; Jahromi et al. [14], who established a coupling procedure based on a 



sequential iterative Dirichlet-Neumann coupling algorithm for nonlinear soil-structure 

interaction; or Soares and Godinho [15], who considered coupled inelastic models with 

adaptive remeshing. Taking into account iterative formulations, interacting fluid-solid models 

have also been analysed considering both BEM-FEM [16] and BEM-BEM [17] coupled 

techniques; however, these formulations are restricted to simulate the behaviour of acoustic 

fluids (reviews on the topic are provided in [18, 19]). 

The numerical model developed in this work also considers the interaction of BEM and 

FEM techniques. The fluid subdomains (bulk fluid and drops) are modelled by the BEM, and 

assumed to be viscous and incompressible. The solid subdomain is assumed to be elastic, and 

is modelled by the FEM. Both discontinuity of tractions on the fluid-fluid common 

boundaries and discontinuity of velocities on the fluid-solid interfaces are considered. For the 

discontinuity of velocities, a formulation based on nonlinear slip boundary conditions is 

adopted [20], which is treated in the present work by employing a relaxed iterative approach. 

A Lagrangian representation is considered and remeshing is applied on the fluid-fluid 

interfaces, to prevent the appearance of numerical problems.  

The justification to introduce slip between the solid and fluid boundaries is due to the 

geometrical scale of the biomedical problem of interest to the authors. It has been 

demonstrated that, at the micro/nano scales, the mechanical properties at the fluid-solid 

interface cannot be understood by simply extrapolating known properties of the bulk fluid 

[21]. Experimental [22, 23], theoretical [24] and numerical [25, 26] simulations at micro/nano 

scales have provided clear evidence that wall slip occurs at fluid-solid interfaces, and show 

that the degree of boundary slip is a function of the liquid viscosity and the shear rate. 

Variation in slip length arises from the fact that, during a collision with a solid surface, a fluid 

molecule will transfer some of its tangential momentum to the solid. The collision frequency 

is not high enough to ensure thermodynamic equilibrium, and a certain degree of slip 

tangential velocity must be allowed [27]. 

A Lagrangian representation is considered for this moving boundary problem and 

remeshing is applied on the fluid-fluid interfaces, following the algorithms proposed in [28]. 

The present work focuses on 2D models and numerical results are presented to illustrate the 

performance and potentialities of the proposed techniques. To the best of the authors’ 

knowledge, a BEM formulation considering slip and flexible walls has not been presented 

before.  

 



2. Governing equations and numerical modelling 
 

In this section, the basic governing equations of the fluid-fluid-solid interacting model are 

discussed, as well as their discretizations by boundary and finite element techniques. Some 

special procedures employed to improve the performance of the proposed numerical 

approach, such as interface remeshing, relaxed iterative procedures, etc, are also described 

here. 

 
2.1. Fluid subdomain 
 

In this work, fluids are assumed to be viscous and incompressible, and to flow at very low 

velocities. Thus, low Reynolds number flows are studied and inertia terms in the Navier-

Stokes equations can be neglected, so that the system is in a state of creeping motion. In this 

case, the conservation of mass and momentum is given by the equations: 
 

 0),(, =tu ii x                          (1) 

 0),(, =tjij xσ                          (2) 

 

where t stands for time (as previously highlighted, the acceleration term is neglected in 

equation (2), so a quasi-steady formulation is adopted), x stands for the position vector, u 

represents the velocity vector and σ is the stress tensor, with indicial notation adopted 

throughout the paper. The fluids are assumed to be Newtonian, so that: 
 

 ),(),(),( ttpt ijijij xxx εµδσ +−=                   (3) 

 

where p is the hydrostatic pressure, μ is the viscosity of the fluid, ε stands for the strain rate 

tensor, and δ stands for the Kronecker delta tensor.  

The system of equations (1)-(3) must be supplemented by appropriate boundary conditions. 

The simplest boundary conditions that may be considered are those that directly prescribe 

velocities or tractions ( jiji nστ = , where n stands for a unit direction vector) on the 

boundaries of the fluid domain. However, more elaborate conditions may become necessary if 

more complex physical phenomena are to be represented. This is the case of the current fluid-

fluid and fluid-solid interactions, and these more advanced boundary conditions are discussed 



in detail in the sections that follow. In the next subsection, the Boundary Element Method 

(BEM) is briefly presented. 

 

2.1.1. BEM formulation 
 

Here, a standard BEM approach is considered. The boundary integral equation that describes 

the velocity field at a given source point χ can be written as follows:  
 

∫∫
ΓΓ
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where u* and τ* stand for the steady-state fundamental tensors (velocity and traction, 

respectively), c stands for the free term tensor, and Γ represents the boundary of the model.  

 Once discretization is introduced and proper numerical treatment is considered, the 

following system of equations arises, describing the BEM solution of the fluid subdomain:   
 

 GτHu =                            (5) 
 

where G  and H  stand for influence matrices. By re-arranging the system of equations (5), 

taking into account the boundary conditions of the problem, just known and unknown 

variables can be moved to the right and left hand sides of the system of equations, 

respectively, allowing its solution. Equations (4)-(5) only intend to summarily describe the 

boundary element formulation considered here; for further details on the topic, the following 

references are suggested [29, 30].  

 

2.2. Fluid-fluid interaction 
 

Drops of viscous fluids in a carrying bulk fluid are considered here. In this case, the fluid-

fluid interactions can be described by the interface conditions acting on the drops surfaces; 

i.e., the interactions are governed by the compatibility and equilibrium conditions along the 

fluid interfaces.  

The compatibility and equilibrium conditions at the interface between a drop and the bulk 

fluid are given by:  
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where the superscripts d and f indicate if a variable is related to the drop or to the bulk fluid 

subdomain, respectively, γ stands for the surface tension coefficient, κ is the surface 

curvature, and n is the unit drop-outward normal vector. As one can observe, equation (6a) 

represents the continuity of the velocities, whereas equation (6b) represents the continuity of 

the tangential stresses and the discontinuity of the normal stresses, which is caused by an 

interfacial tension. In the next subsection, equations (6) are employed to define the adopted 

BEM-BEM coupling approach. This coupled procedure is based on a BEM subregion 

formulation. 

 

2.2.1. BEM-BEM coupling 
 

It is possible to combine two integral equations (see expression (4)), one for source points 

belonging to the bulk fluid and the other for source points belonging to a drop, in order to 

eliminate the interface tractions between these subdomains by using the equilibrium equation 

(6b). By doing so, the following integral equation arises: 
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where Γd and Γe represent the internal (drop) and the external boundary of the bulk fluid, 

respectively (i.e., edf Γ∪Γ=Γ ), and 1)( =χη  for eΓ∈χ  and )/(1)( fd µµη +=χ  for 
dΓ∈χ .  

Once equation (7) is established, discretization by boundary elements can be considered, 

leading to an algebraic system of equations analogous to equation (5), whose solution 

describes the behaviour of the variables of the fluid subdomains. Thus, the velocities along 

the drops surfaces can be computed, as well as the unknown fields on Γe. 

In a Lagrangian representation, the fluid-fluid interface is assumed to deform with the 

interface velocity, such that the location of the boundaries describing the drops must be 

continuously adapted, following the relation ux = . Thus, in addition to the solution of the 

BEM system of equations, a time stepping procedure must be considered in order to compute 

the evolution of the fluid-fluid interfaces. This can be carried out as follows: 



 

 ttttt ∆+=∆+ uxx , for dΓ∈x                     (8) 
 

where, in this case, a simple finite difference expression is employed and ∆t stands for the 

adopted time-step. 

 Since the evolution of the positions of the nodes related to the drops is computed as 

described in equation (8), an effective node relocation routine along the fluid interfaces 

becomes of great importance in order to avoid numerical problems such as singularities due to 

an excessive approximation of boundary nodes, etc. In the next subsection, a numerical 

procedure to relocate the nodes on the drops surfaces is discussed.  

 

2.2.2. Remeshing procedures 
 

As it is well known, taking into account a natural coordinate ξ, the physical coordinates of a 

line (2D models are focused here, thus the drop surfaces are described by lines) can be 

represented as follows: 
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where nN stands for an interpolation function and nx represents the position of the nth node (in 

a total of m nodes) describing the line in focus.  

 The main goal here is to obtain the middle point location of this line, so that this 

information can guide the node relocation. In order to do so, the following auxiliary values 

can be defined, taking into account the extremities of the line, in each direction: (i) 

)(ˆ 1
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ii
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ii

m
i xxx −=∆ . Then, one can find ix̂  that solves equation (9) for 

each ix̂  and, once these values are computed, the natural coordinate related to the middle 

point of the line can be easily approximated as an average of these values:  
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Once  x  is computed, the physical coordinates of the middle point of the line (i.e., ix ) can be 

easily established following equation (9).  



 In this work, a group of m consecutive nodes (where m is an odd integer) is considered to 

define a local line over the surface of the drops, and the entire surface is divided into local 

lines, each with m nodes. Then, the middle nodes defining these local lines are relocated to 

their middle positions, following the computed ix  values for each line. In the sequence, the 

definitions of the local lines are translated by one node (i.e., the first nodes of the local lines 

become the consecutive nodes of the previously defined first nodes) and the procedure is 

repeated, once again relocating the middle nodes of the local lines. After a total of m adjacent 

translations of the local lines, the adopted remeshing procedure is completed. In this work, m 

= 3 is adopted; thus, second-order polynomials may describe the interpolation functions N and 

ix̂  can be simply computed using the Bhaskara formula [28].  

 In Fig. 1, the effectiveness of the proposed remeshing procedure is illustrated, taking into 

account a deformed drop discretized by the BEM. In the analysis related to Fig. 1(a), the 

remeshing procedure is active and a regular distribution of the BEM nodes is observed. On 

the other hand, in the analysis carried out in Fig. 1(b), the remeshing procedure is not 

considered, rendering an excessive concentration of nodes at the drop extremities, allowing 

numerical difficulties to arise.  

 
2.3. Solid subdomain 
 

For the solid subdomains, the conservation of momentum is given by: 
 

 0),(, =tjij xσ                          (11) 

 

where null body forces are considered and, again, the acceleration term is neglected, so that a 

quasi-static formulation is adopted. Here, elastic constitutive relations are employed: 
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where E and υ represent the Young’s modulus and the Poisson’s ratio, respectively, and ε 

stands for the strain tensor.  

As in section 2.1, the system of equations (11)-(12) must be supplemented by appropriate 

boundary conditions, and prescribed displacements or tractions are considered here. The 

interconnection of these boundary conditions with the fluid subdomain is discussed in section 

2.4. In the next subsection, the Finite Element Method (FEM) is briefly presented. 



2.3.1. FEM formulation 
 

Here, a standard FEM approach is considered. The integral weak-form of the governing 

equations (11) can be written as: 
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where Ω and Γ represent the domain and the boundary of the solid, respectively, and 

τν Γ∪Γ=Γ , where νΓ  stands for the Dirichlet boundary and τΓ  stands for the Neumann 

boundary. The variable w stands for a weight tensor, which is assumed to have null values on 

the Dirichlet boundary.  

By introducing spatial approximations for the variables of the model into the integral 

equation (13), and by adopting these approximations to define the specified weight functions 

(Galerkin Method), the following system of equations can be obtained, once relations (12) are 

employed (as well as the strain tensor definition as function of the displacements) and proper 

numerical treatment is considered: 
 

 fKν =                             (14) 
 

where K stands for the stiffness matrix, and ν and f stand for the nodal displacement and force 

vector, respectively. After considering the Dirichlet boundary conditions of the problem, the 

FEM responses for the elastic solid can be computed, following equation (14). Equations 

(13)-(14) only intend to summarily describe the finite element formulation considered here; 

for further details on the topic, the following references are suggested [31, 32].  

 
2.4. Fluid-solid interaction 
 

Analogously to the fluid-fluid interaction, the fluid-solid interaction is also governed by the 

compatibility and equilibrium conditions along the common interfaces. These conditions are 

given by:  
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where the superscripts s and f indicate if a variable is related to the solid or to the bulk fluid 

subdomain, respectively. As one can observe, equation (15a) represents the continuity of the 

model, indicating that the fluid keeps in touch with the solid, and equation (15b) represents 

the equilibrium of the interface boundary forces. In the next subsection, these equations are 

employed to define the adopted BEM-FEM coupling approach. A pseudo-coupled 

formulation is adopted here, and the BEM and FEM subdomains are treated and solved 

separately, as uncoupled models. In addition to equations (15), relations between the 

velocities of the fluid and solid subdomains along their common boundaries must also be 

defined. In subsection 2.4.2, slip boundary conditions are discussed in detail, allowing the 

discontinuity of velocities at the fluid-solid interfaces. 

 

2.4.1. BEM-FEM coupling 
 

The fluid-solid interaction can be uncoupled through the time stepping procedure, allowing 

each subdomain to be analysed separately. Thus, the fluid subdomains can be analysed 

considering prescribed velocities on the fluid-solid interfaces (further details about these 

velocities are given in the next subsection) and the tractions on these interfaces can be 

computed following the discussions presented in sections 2.1 and 2.2. Once these tractions are 

computed, they can be applied as prescribed boundary conditions for the solid subdomains, 

following the equilibrium relation (15b). Thus, equation (13) can be rewritten as: 
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which explicitly shows the influence of the bulk fluid subdomain over the solid subdomain. In 

this case, i
τΓ  and e

τΓ  represent the internal (interface) and the external Neumann boundary of 

the solid, respectively (i.e., ei
τττ Γ∪Γ=Γ ). 

 Once equation (16) is established, the FEM system of equations can be computed 

(analogously to equation (14)) and the solid subdomains can be solved, allowing computing 

their deformations. In the sequence, the geometry of the solid subdomains can be updated 

taking into account the computed displacements, while the geometry of the bulk fluid 

interfaces is also updated following the continuity relation (15a): 
 

 tttt νxx +=∆+ , for sΓ∈x                      (17) 
 



where sΓ  stand for the bulk fluid boundaries that interface the solid subdomains ( es Γ⊂Γ , 

for the bulk fluid). Since small deformations are supposed to occur in the solid subdomains, 

remeshing procedures are not necessary.   

 

2.4.2. Slip boundary condition  
 

The Navier slip boundary condition states that the relative tangential fluid velocity, with 

respect to the tangential solid velocity, is proportional to the tangential projection of the local 

shear rate (e): 
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where n and s stand for normal and tangential unit vectors, respectively, and Ls represents the 

slip length, which may also depend on the tangential shear rate at the solid surface, as 

indicated below: 
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 In equation (19), a is an index that depends on the cohesive property at the interface, b is 

the slip length in the case of linear slip condition, and β is function of the critical shear rate. 

The nonlinear slip boundary condition is obtained by substituting equation (19) into equation 

(18a). The linear slip condition and the no-slip condition can be regarded as particular cases 

of equation (19). Thus, the linear slip condition can be obtained by adopting β = 0 (in this 

case, Ls = b) and the no-slip condition can be obtained by adopting b = 0. 

 Once equations (18) are established, one can observe that the prescribed velocities for the 

bulk fluid, on the fluid-solid interfaces, become function of the fluid tractions on those 

interfaces, as there is a direct correlation between the tangential projection of the local shear 

rate and the tangential traction, as well as of the solid velocities themselves, which can be 

easily evaluated taking into account simple finite difference expressions based on the 

evolution of the solid vector positions (analogously to expression (8), for instance).  

 Since equations (18)-(19) represent a nonlinear configuration, an iterative procedure must 

be introduced into the analysis, in order to properly handle their evaluations. In order to do so, 

the present work adopts the following iterative algorithm: 
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where the superscript (k) stands for the iterative step of the analysis.  

As described by equation (20a), the Ls variable in equation (18a) is computed based on the 

information from the previous iterative step, and a relaxed value of e is considered in this 

case, i.e., the value of e′ is considered instead of e itself, as indicated in equation (20b). The 

definition of e′  is provided in equation (20c), which employs a relaxation parameter α . Here, 

1≠α  is adopted in order to speed up and/or to ensure the convergence of the iterative 

algorithm. Of course, this iterative algorithm must only be activated once 0≠b  is 

considered, otherwise linear boundary conditions are enabled and no iterative procedures are 

necessary. 

A workflow diagram is presented in Fig.2, briefly summarising the sequence of the 

proposed calculations discussed in this section. 

 

3. Numerical applications 
 

In this section, two numerical applications are considered to illustrate the performance of the 

proposed numerical methodologies. In the first application, the flow through a channel is 

analysed. Initially, a simple horizontal geometry is adopted for the channel and, in the 

sequence, a forward-facing step is introduced into the configuration of the model. In both 

cases, the analyses of the interaction of the bulk fluid with flowing drops, considering rigid 

and flexible walls for the channel, as well as nonlinear, linear and no-slip boundary 

conditions, are provided. In the second application, analogous analyses are carried out for a 

lid-driven cavity flow. In this work, analyses accounting for the possibility of merging two or 

more drops are not considered. 

In the applications that follow, quadratic boundary elements and linear finite elements are 

considered. For the iterative procedure related to the nonlinear slip boundary conditions, 

convergence is achieved once the relative error of the tractions on the fluid-solid interfaces is 

lower than a given value, and a tight tolerance of 10-5 is adopted here. For the value of the 

relaxation parameter, usually good results are obtained with α = 1; however, when this is not 

the case, α = 1 – β can be selected, increasing the relaxing feature of the technique as the 



nonlinearity of the model increases. In addition, in the sections that follow, the international 

system of units is adopted and an explicit indication of units is omitted. 

 

3.1. Flow through a channel 
 

As previously remarked, initially, a simple horizontal channel is considered. A sketch of the 

model is provided in Fig. 3(a). The geometry of the channel is defined by a length of 1, a 

height of 0.2 and a thickness of 0.01 (horizontal walls). In this application, unity values of the 

horizontal tractions are applied on the vertical boundaries of the bulk fluid, i.e., at x1 = 0 and 

at x1 = 1. The physical properties of the model are: μf = 10-3; μd = 2∙10-3; γ = 10-2; E = 105; υ = 

0.25. The external contour of the bulk fluid is discretized by 240 BE (200 BE on the fluid-

solid interface) and each drop surface is discretized by 30 BE; the walls of the channel are 

discretized by 800 square FE. Each drop has a diameter of 0.05 and their centres are located at 

(0.15; 0.00) and (0.20; 0.05), see Fig. 3. A time-step of 10-3 is adopted for the analyses. 

For this simple configuration and considering the absence of drops on the carrying fluid, as 

well as considering rigid solid walls, analytical solutions are available for the velocity profile 

of the bulk fluid, taking into account several slip boundary conditions [33]. In Fig. 4, these 

profiles are depicted, taking into account analytical solutions and computed results, 

illustrating the good accuracy of the adopted numerical techniques. The parameters describing 

the slip boundary conditions are: (i) no-slip (b = 0; β = 0); (ii) linear (b = 0.1; β = 0); and (iii) 

nonlinear (b = 0.1; β = 0.4). In this work, a = 1 is always considered. As one can observe in 

Fig. 4, slip boundary conditions, as expected, increase the values of the fluid velocities in the 

channel, and a greater increase is observed when the nonlinear model is considered.  

As a sequence to the analyses of channel flows, more complex configurations may now be 

considered. Thus, firstly, one drop, which is initially centred at (0.15; 0.00), is inputted into 

the analysis and its behaviour within the horizontal channel is studied. The evolution of the 

drop deformation, considering different slip boundary conditions, is depicted in Figs. 5 and 6, 

taking into account rigid and flexible walls for the channel, respectively. In these figures, 

different shades of gray are adopted to represent the time evolution of the results; thus, darker 

colours are related to more recent time instants. In Fig. 7, the evolution of the horizontal 

position of the mass centre of the drop is depicted, once again considering rigid (BEM 

analysis) and flexible (BEM-FEM analysis) walls.  

As one can observe in Fig. 7, taking into account the tangent values of the described 

curves, the drop basically moves with the same velocity at the centre of the bulk fluid. 



Considering rigid walls, this velocity is practically constant whereas, considering flexible 

walls, it decreases as the wall expands and it increases as the wall contracts. In addition, the 

velocity of the drop considerably increases as slip boundary conditions are considered. These 

phenomena are expected, and the adopted numerical techniques properly reproduce them. 

Similar analyses are now carried out considering two drops within the horizontal channel, 

as shown in Figs. 8 and 9. The results presented in Fig. 8 consider a channel with rigid walls 

whereas, in Fig. 9, the computed evolution of the drops is illustrated considering flexible 

walls. It can be seen that the second drop affects the trajectory of the central drop, and its 

previously straight movement in a horizontal line is modified, including a subtle movement in 

the vertical direction as well. Figs. 8 and 9 also indirectly illustrate the parabolic profile of the 

velocities along the carrying fluid, with the drops deforming following this outline. In this 

context, it is interesting to observe that the new second drop is more intensively deformed 

when it flows through the contracted stretch of the channel with flexible walls (as well as it is 

less intensively deformed when it flows through the expanded stretch of the channel), further 

illustrating the increasing of velocities and their influence over the drop in this region.     

A channel with a forward-facing step is also studied in this section, as described in Fig. 

3(b). In this case, the corner of the step is located at position (0.35; 0.00). The same 

properties/features of the previous model is considered for the fluid subdomains and the 

BEM; however, the solid subdomain (i.e., the walls of the channel) is now defined by E = 106 

and υ = 0.25 (thus, a more stiff material is considered for the flexible channel), discretized by 

840 square FE.  

As before, and as depicted in Fig. 3(b), two drops are considered within the stepped 

channel, and their evolution through the channel considering different slip conditions is 

depicted in Figs. 10 and 11, taking into account rigid and flexible walls, respectively. The 

evolution of the horizontal position of the mass centre of the drops is depicted in Fig. 12, 

analogously to Fig. 7.  

It can be observed that the introduction of the forward-facing step considerably reduces the 

velocity of the drops through the channel and, again, as expected, the deformations of the 

drops describe the velocity profile of the carrying fluid. It is interesting to observe that, for the 

horizontal channel, the expansion of its flexible walls implied into a reduction of the 

velocities of the drops whereas, for the stepped channel, an increase of these velocities is 

observed, once deformable walls are considered. This is probably because, once flexible walls 

are considered, the stepped channel configuration gets closer to the horizontal channel 



configuration, allowing an easier flow through its boundaries, and thus the velocities through 

the channel are increased.  

As in all previous cases, greater velocities are obtained if nonlinear slip boundary 

conditions are considered, and considerably lower velocities are observed once the no-slip 

boundary condition is applied. This is, of course, expected since, for both channel geometries, 

non-zero velocity fields along the fluid-solid interface should allow a faster flow through the 

channel. However, faster flows are not always obtained once slip boundary conditions are 

considered, as illustrated in the next application.   

 

3.2. Lid-driven cavity flow 
 

In this section, a lid-driven cavity flow is considered. A sketch of the model is provided in 

Fig. 13. The geometry of the square cavity is defined by a length of 1 and a thickness of 0.02 

(vertical and lower horizontal walls). The upper horizontal wall stands for a moving 

boundary, which is defined by a prescribed unity horizontal velocity. The physical properties 

of the model are: μf = 10-3; μd = 5∙10-4; γ = 10-3; E = 105; υ = 0.25. The external contour of the 

bulk fluid is discretized by 200 BE and each drop surface is discretized by 30 BE; the vertical 

and lower horizontal walls of the cavity are discretized by 608 square FE. Each drop has a 

diameter of 0.2 and their centres are located at (0.00; 0.00) for the first analysis, and at (0.20; 

0.35), (0.20; 0.00), and (0.20; -0.35), for the second analysis. A time-step of 2·10-2 is adopted 

for all the analyses. 

 As in the first application, initially, rigid walls and no drops are considered within the bulk 

fluid, allowing obtaining the velocity profiles along the boundaries of the model. The results 

obtained are depicted in Fig. 14. For the case of no-slip boundaries, a unity horizontal velocity 

is applied at the top horizontal boundary, whereas zero velocities are applied at the other 

boundaries (prescribed boundary conditions). As expected, this configuration is modified 

once slip boundary conditions are considered. In this case, reduced velocities are obtained 

along the top boundary (with a maximum value of around 0.6) and non-zero values arise on 

the other boundaries. Thus, the introduction of slip boundary conditions on the boundaries of 

the cavity homogenises the flow within it, smoothing the fluxes along the model. As a 

consequence, velocities are reduced next to the top of the model, and increased next to the 

bottom and vertical borders. In addition, it is interesting to observe that, for this cavity model, 

basically the same results are obtained considering linear and nonlinear slip boundary 

conditions; thus, only the linear model is further employed in the analyses that follow. 



 In order to study the evolution of drops inside the cavity, initially, a single drop is 

considered, initially positioned at the centre of the cavity. The evolution of the deformation of 

the drop is depicted in Fig. 15, considering slip and no-slip boundary conditions, as well as 

rigid and flexible walls. As expected, the movement of the drop follows the velocity profile of 

the bulk fluid, and the figure indirectly illustrates these profiles. As previously observed, 

taking into account no-slip boundary conditions, greater velocities are obtained next to the top 

of the model, and thus the drop moves faster in Figs. 15(a) and (c). In addition, a less smooth 

movement of the drop is observed considering the no-slip condition and trajectories with 

shaper angles are obtained, as well as more intense deformations of the geometry of the drop. 

Fig. 15 shows basically the same results for the deformation of the drop considering rigid and 

flexible walls. In fact, taking into account slip boundary conditions, even the obtained 

deformation of the flexible walls is practically negligible, as depicted in Fig. 15(d). Thus, in 

the analyses that follow, only rigid walls are considered.   

 Once the movement of a single drop has been considered, more complex analyses can be 

carried out, and the interaction of several drops within the cavity can be studied. For this 

second group of analyses, a third configuration is also considered for the boundary conditions 

of the model in which slip boundary conditions are only considered on the bottom and vertical 

contours of the cavity whereas, in its upper boundary, a unity horizontal velocity is directly 

prescribed. Taking into account this configuration, the cavity is supposed not to be closed by 

a moving lid, but opened and linked to a flow that has unity horizontal velocity at that 

common boundary. In order to properly refer to each configuration that is focused here, the 

following nomenclature is adopted: (i) no-slip model ‒ all boundaries of the cavity consider 

no-slip boundary conditions; (ii) slip model ‒ all boundaries consider slip boundary 

conditions; and (iii) mixed model ‒ the lower horizontal and the vertical boundaries consider 

slip boundary conditions and the upper horizontal boundary considers no-slip boundary 

conditions.     

 Computed results are depicted in Fig. 16, taking into account three drops (initially located 

as described in Fig. 13), and the above-discussed three configurations of boundary conditions. 

The evolution of the deformation of each drop is separately depicted in Fig. 17, illustrating the 

computed results in more detail. As observed in these figures, very distinct results are 

obtained, according to the configuration in focus. For the no-slip model, the drop initially 

located at (0.20; 0.35) moves very fast, and its trajectory is greatly influenced by the drop 

initially located at (0.20; 0.00). This second drop has a trajectory with very sharp angles, and 



it is greatly deformed throughout the analysis. The third drop (initially located at position 

(0.20; -0.35)) moves very slowly, and it has a minor influence over the movement of the other 

two drops. For the slip model, on the other hand, the deformations of the drops are smoother. 

In this case the first two drops still deeply interact with each other, but their deformations and 

velocities are lower than in the previous case, and their trajectories are also less sharply bent. 

As expected, the reduction of the velocity of the third drop is not observed (as it is the case for 

the first and second drops), since this drop is located very close to the bottom of the model, 

where non-zero boundary velocities arise. For the mixed model, an intermediary behaviour 

occurs, considering the first two drops and the previously discussed models. In this case, these 

two drops move fast, similarly to what occurs when considering the no-slip model, but 

smoother deformations are then developed, in resemblance to what occurs considering the slip 

model. In contrast, a huge difference in the results takes place considering the third drop. For 

the mixed model, the third drop moves considerably faster than in the other models and its 

more intensive influence over the behaviour of the other two drops occurs sooner. 

Considering these basic aspects, the results depicted in Figs. 16-17 are in agreement to what is 

expected, taking into account these complex models. In fact, as one can observe, the proposed 

techniques allow intricate configurations to be considered, enabling complex analyses to be 

carried out.     

 

4. Conclusions 
 

In this work, fluid-fluid-solid interaction models are considered, taking into account boundary 

and finite element discretizations. The fluid subdomains are modelled by the BEM and the 

solid subdomains are modelled by the FEM. For the fluid-fluid coupling, a BEM subregion 

approach is considered, and remeshing is adopted along the common interfaces. For the fluid-

solid coupling, a pseudo-coupled formulation is adopted, allowing each subdomain of the 

model to be solved separately, taking into account an uncoupled formulation through the time 

stepping procedure. Thus, smaller systems of equations are obtained and proper solvers are 

allowed to be directly employed within each subdomain of the model, according to the 

specific features of the BEM and FEM systems of equations, enabling more efficient analyses. 

Discontinuity of tractions are allowed on the fluid-fluid common interfaces through non-zero 

surface tension coefficients as well as discontinuity of velocities are allowed on the fluid-solid 

common interfaces through slip boundary conditions. Here, linear and nonlinear slip 

boundary conditions were considered, and a relaxed iterative formulation is proposed in order 



to deal with the nonlinear model, ensuring the convergence of the iterative analysis. Quasi-

steady/static formulations are focused, and the adopted time marching procedures are based 

on simple finite difference expressions.  

 Numerical results are presented in section 3, demonstrating the performance of the 

proposed methodologies for the analyses of complex configurations. Interacting drops are 

then studied, flowing through a carrying fluid bounded by rigid or flexible walls. Different 

geometrical and physical properties are considered, as well as different boundary conditions. 

The obtained results are in accordance to what is physically expected and in very good 

agreement to analytical solutions for simpler models where these exact solutions are available. 

Substantially different results may be obtained according to the parameters/configurations that 

are applied into the analysis, highlighting the importance of fully developed numerical 

approaches to properly handle the simulation of complex multiphysics phenomena, and the 

methodologies proposed here stand as a step forward in this direction.   
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Fig.1 – BEM discretization of a deformed drop at a given time step:  

(a) with remeshing; (b) without remeshing. 
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Fig.2 – Workflow diagram illustrating the sequence of the main steps of the proposed 

formulation. 
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Fig.3 – Sketches of the channels and initial drops: (a) plain channel; (b) stepped channel.  

 



 

0 10 20 30

0.00

0.05

0.10

0.15

0.20

b = 0.1
b = 0.4

b = 0.1
b = 0.0

 

 
He

ig
ht

Velocity

  Analytical
 Computed

b = 0.0
b = 0.0

 
 

Fig.4 - Velocity profile for several slip boundary conditions (plain channel with rigid walls 

and no drops within). 
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Fig.5 – Evolution of the deformation of one drop through a rigid plain channel considering 

different slip boundary conditions: (a) no-slip (b = 0; β = 0); (b) linear (b = 0.1; β = 0); and 

(c) nonlinear (b = 0.1; β = 0.4). Snapshots are depicted at each 5∆t. 
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Fig.6 – Evolution of the deformation of one drop through a flexible plain channel considering 

different slip boundary conditions: (a) no-slip (b = 0; β = 0); (b) linear (b = 0.1; β = 0); and 

(c) nonlinear (b = 0.1; β = 0.4). Snapshots are depicted at each 5∆t. 
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Fig.7 – Evolution of the horizontal position of the mass centre of the drop. 
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Fig.8 – Evolution of the deformation of two drops through a rigid plain channel considering 

different slip boundary conditions: (a) no-slip (b = 0; β = 0); (b) linear (b = 0.1; β = 0); and 

(c) nonlinear (b = 0.1; β = 0.4). Snapshots are depicted at each 5∆t. 
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Fig.9 – Evolution of the deformation of two drops through a flexible plain channel 

considering different slip boundary conditions: (a) no-slip (b = 0; β = 0); (b) linear (b = 0.1; β 

= 0); and (c) nonlinear (b = 0.1; β = 0.4). Snapshots are depicted at each 5∆t. 
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Fig.10 – Evolution of the deformation of two drops through a rigid stepped channel 

considering different slip boundary conditions: (a) no-slip (b = 0; β = 0); (b) linear (b = 0.1; β 

= 0); and (c) nonlinear (b = 0.1; β = 0.4). Snapshots are depicted at each 5∆t. 



 

 

 

 

(a) 

 
 

 

 

(b) 

 
 

 

 

(c) 

 
 

 

Fig.11 – Evolution of the deformation of two drops through a flexible stepped channel 

considering different slip boundary conditions: (a) no-slip (b = 0; β = 0); (b) linear (b = 0.1; β 

= 0); and (c) nonlinear (b = 0.1; β = 0.4). Snapshots are depicted at each 5∆t. 
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Fig.12 – Evolution of the horizontal position of the mass centre of the drops: (a) central drop; 

(b) upper drop. 
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Fig.13 – Sketch of the cavity and initial drops: (i) first analysis – dot line drop; (ii) second 

analysis – solid line drops.  
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Fig.14 – Velocities along the boundaries of the model considering several slip boundary 

conditions (cavity with rigid walls and no drops): (a) horizontal walls; (b) vertical walls. 
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Fig.15 – Evolution of the deformation of one drop within the square cavity considering 

different slip boundary conditions and flexibilities for the walls: (a) no-slip (b = 0; β = 0) and 

rigid walls; (b) slip (b = 0.1; β = 0) and rigid walls; (c) no-slip (b = 0; β = 0) and flexible 

walls; and (d) slip (b = 0.1; β = 0) and flexible walls. Snapshots are depicted at each 5∆t. 
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Fig.16 – Evolution of the deformation of three drops within the square cavity: (a) no-slip 

model; (b) slip model (c) mixed model. Snapshots are depicted at each 5∆t. 
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Fig.17 – Separated description of the deformation of each drop: (a) no-slip model; (b) slip 

model (c) mixed model. Snapshots are depicted at each 5∆t. 
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