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Abstract 

A computational study was conducted, to understand the aerodynamic flow-field around 

isolated wheel configurations in free-air. Landing gear is known to be one of the most 

prominent noise sources on approach generating significant aircraft noise, due to the complex 

configurations consisting of many small components interacting with the oncoming airstream 

within close proximity to one another. This noise produces disruption and discomfort 

affecting millions of people in the vicinity of airports on a daily basis. In order to fully 

understand the aerodynamics around this complex configuration, focusing on specific 

components of a landing gear would fundamentally provide insight to the complex flow 

interactions related to these components. As a first step, the aerodynamic flow-field around a 

single stationary isolated wheel was analysed, as a baseline case, with subsequent application 

of wheel rotation, wheel yaw, and both yaw and rotation combined to model the take-off 

phase, and landing and take-off phase with the presence of a crosswind respectively. The 

‘A2’ wheel geometry, primarily introduced by Fackrell, was computationally modelled for 

this study, due to the literature available for comparisons, although previous investigations 

using this geometry were conducted with ground effect. Wheel rotation was applied with a 

peripheral velocity of 192.31rad/s, equivalent to the free-stream velocity of 40m/s, providing 

a Reynolds number of 1.1 × 10
6
 based on wheel diameter. Time-averaged Unsteady 

Reynolds-Averaged Navier-Stokes (URANS) were simulated on a structured hexahedral grid 

consisting of 5 million cells. Results obtained from the CFD simulations provided data such 

as surface pressure distribution, velocity, central vortex core vorticity magnitude and position 

with downstream propagation into the wake, and aerodynamic force coefficients. The data 

was compared to the available literature where possible, although investigations regarding 

‘free-air’ wheel configurations are limited. Overall, results showed good agreement to the 

available literature. Additionally, comparisons were made between the cases to identify the 

key effects of the baseline case, influence of rotation, influence of applied wheel yaw and the 

influence of both yaw and rotation combined.  
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1.  Introduction  

1.1  The Aircraft Noise Problem 

Aircraft noise, which comprises principally of a combination of engine noise and airframe 

noise, remains a significant problem within the aviation industry. Every day across the world, 

thousands of commercial aircraft take-off, travel to a destination, then land. Within the 

landing phase in particular, the aircraft is configured in a high lift state with slats and flaps 

extended as well as the landing gear deployed (Figure 1). Being exposed to the oncoming 

airstream, the interaction of these devices with the flowing airstream generates significant 

areas of unsteady flow and subsequent aerodynamic noise. On approach, the flow interaction 

with the devices can generate noise levels up to 105dB, with significant spectral levels of 

intensity within the frequency range of 0.5-3kHz corresponding to the most sensitive range of 

the human auditory system [1]. Exposure to these levels of discomfort can therefore result in 

serious psychological and physiological effects to many of the millions of people living in 

close proximity to airports. Disturbed sleep, low level repetitious and periodic discomfort, as 

well as short term excessive noise exposure can all effect social relationships, 

physical/mental health and well-being, as well as effectiveness and efficiency at work. 

Therefore, there is an urgency to both better understand and develop solutions to minimise 

the aircraft noise problem and reduce the effects on the population. It is also important this 

Figure 1 – Aircraft noise sources [1] 
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goal be achieved whilst ensuring that this multi-billion pound worldwide economic industry 

is not widely hindered.  

Currently, aircraft operators have to adhere to operational restrictions in many airports across 

the world through the imposition of curfews, noise abatement procedures, total noise quotas, 

limits and surcharges [2]. These restrictions represent a loss of billions of dollars to the 

aviation industry but are nevertheless essential to providing and ensuring a peaceful quality 

of life for the affected nearby residents. Overall, aircraft noise has been reduced by more than 

20dB over the last 50 years [3], with progress over the last few decades in particular focused 

primarily on engine and high-lift aerodynamic aeroacoustic emissions [1]. However, as 

aircraft engine systems are being improved, aircraft landing gear has received much less 

attention, and is now one of the most prominent sources of the total aircraft/airframe noise on 

approach [1]. Within the European Union, Directive 2002/30/EC limits large commercial 

aircraft noise on approach to 95-105dB, depending on the type of aircraft, with commitments 

to reduce this noise by up to 10db between years 2000-2020. However with a three-fold 

expansion in air traffic expected by 2025, a considerable amount of effort needs to be 

dedicated to the problem, as a reduction of 5dB will be required just to maintain the expected 

growth of airport operations [4].  

Large scale commercial aircraft landing gear configurations can comprise from two to six 

individual wheels, depending on the aircraft type with the wheels being connected together 

by axles, and with the axles fixed to the main gear via a support strut or through an 

articulated bogie.  

The overall aerodynamic noise from landing gear is considered broadband in nature, although 

due to the different spatial relationships of gear components; landing gear is considered as a 

cluster of aerodynamic noise sources. One approach of understanding the noise profile from 

landing gear has been to categorise the overall signature in to three spatial domains [5]; 

 Low frequency – Contributions from vortex shedding over the wheels, with a 

significant level of noise radiated over large distances 

 Mid-frequency – Contribution from main support struts propagated over shorter 

distances than the low frequency, with increased atmospheric dissipation  

 And; High frequency – Contributions resulting from smaller feature detail such as 

hydraulic lines, wires and linkages. 
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Unfortunately, the complexity of a modern commercial landing gear is substantial with the 

overall configuration containing several dissimilar bluff body components, operating and 

interacting within close proximity to one another. As a result of this complexity, accurate and 

realistic analysis of this configuration is hindered and is a principal reason why the detailed 

flow physics on an aircraft landing gear continues to remain poorly understood and 

interpreted [6]. Moreover, if goals regarding noise emission targets are to be met, it is of 

utmost urgency to gain more detailed understanding of the principal and underlying flow 

mechanisms of the aerodynamics and subsequent aero-acoustics of landing gear components. 

As a first step to enhancing this fundamental understanding, work centred on the individual 

components such as the wheels themselves, can provide a solid foundation for subsequent 

landing gear analysis. Unfortunately, for aircraft landing gear, previous studies considering 

the aerodynamics of an isolated wheel in free air are particularly scarce. The similar case of 

an isolated wheel in contact with the ground, which is also particularly relevant to landing 

gear is more prevalent, but applied within the motorsport area. Nevertheless, in an attempt to 

provide insight into the aerodynamics of aircraft landing gear, this study considers the 

fundamental investigations of a free air configuration of a single isolated wheel with both 

applied rotation speed and yaw. The work conducted is primarily computational, with the 

influence of added yaw angle and rotation, representing everyday operational conditions 

common to aircraft operations.  
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1.2  Aims & Objectives 

The aims & objectives of the work are as follows; 

1. Computationally investigate the key characteristics of the flow field around an 

isolated wheel in free air. With zero yaw and no applied rotation, compare and 

validate computational results obtained to previous work.  

2. Determine and understand the principal influences of applied yaw angle and wheel 

rotation, as well as both applied wheel yaw and wheel rotation combined on the 

resulting flow physics.  

3. Characterise these influences in terms of vortex core position and through 

characterisation of aerodynamic force generation. 

 

  



 
5 

 

1.3  Thesis Structure 

This thesis was completed with results obtained using a computational approach, over the 

previous three years taken to complete this PhD. The thesis consists of seven chapters. 

Initially a brief introduction is presented in Chapter One regarding the current problem, 

detailing how aircraft noise has affected the population in everyday life, subsequently 

outlining the aims and objectives for the investigation.  

Chapter Two consists of an extensive literature review on the work carried out within this 

field of study. Literature regarding a wheel in free-air is limited as the bulk of the work is 

concentrated on ‘in-contact with the ground’ configurations. However, the latter was still 

extensively reviewed to provide insight into the flow-field and wake characteristics.  

The computational methodology is described in Chapter Three, providing details on the 

solver settings and refinement studies, which subsequently indicated the type and size of the 

grid to use providing the constraints present.  

Chapter Four focuses on validating the computational methodology using the baseline case in 

this study, to make comparisons to the available literature, where possible. Providing the 

comparisons are in agreement, it can be concluded that the methodology used is acceptable.   

Chapter Five consists of the results for each test case, followed by a discussion providing 

insight into the results, identifying key flow characteristics. The results are focused on 

surface pressure distribution, wake velocity, central vortex core vorticity magnitude, central 

vortex core displacement and aerodynamic force coefficients, with all results obtained using 

time-averaged data.  

To end with, a conclusion is presented in Chapter Six identifying the key influences of yaw, 

rotation and both combined; subsequently, followed by recommendations for future work in 

Chapter Seven.  
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2. Literature Review 

This chapter contains a detailed literature review to provide a fundamental understanding 

about the aerodynamic flow-field around simplified landing gear configurations and wheels 

by reviewing the influence of Reynolds number, aspect ratio, applied rotation, applied wheel 

yaw and ground proximity. The flow-field around a cylinder will also be reviewed as the 

shape of a cylinder, particularly low aspect ratio cylinders, is comparable to a wheel. 

Although nearly all the literature regarding wheel studies comprise of a configuration ‘in 

contact with the ground’, these were still reviewed as they provide an understanding of the 

flow physics. 

From an aerodynamics perspective, very little is still known about the complex flow 

interactions taking place over large scale landing gear configurations. However, particularly 

in the last two decades, there has been progress with mean flow and selected wake flow field 

characteristics presented [7, 8]. Unfortunately, time-dependant analysis has received little 

attention. As a result of flow separation, re-attachment and wake/body interaction, the time 

dependent aerodynamics dictates many of the noise producing mechanisms established. The 

extent, structure and behaviour of surface and wake fluctuations can, to some extent, 

contribute to the overall noise signature and are therefore the reason why this information 

remains eagerly sought by landing gear designers and manufacturers. An important aspect to 

be considered in reference to this topic is the use of simplified, overly idealised, single or 

dual wheel arrangements, which lack realistic details. Although these studies are of 

significant value as a first exploratory step, it has also been recognised that the addition of the 

small scale crucial elements would substantially reconfigure the flow-field dynamics and 

overall noise footprint. Predominantly, much of this work has been completed using mean 

surface pressure and flow visualisation techniques in the experimental domain [7, 8], and 

Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Detached Eddy Simulation 

(DES) in the computational domain [9]. All of these studies indicated the nature of the flow-

field to be highly complex and unsteady, with asymmetry between the upper and lower sides 

of the landing gear as a result of the presence of the main support strut. Large areas of flow 

stagnation were found on the front faces of the front wheels, with flow separation and near 

immediate re-attachment when subjected to severe adverse pressure gradients at the wheel 

edges. Comparison of previous computational [10] and experimental [7, 8] works, showed 

good agreement in areas of flow attachment and stagnation regions whilst degrading in 
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agreement in areas of flow separation and within the complex wake region. Therefore there is 

a critical need for more detailed understanding within these areas. DES has been shown to be 

the most suitable for this case; however, using this technique is complex to set up, requiring 

more computational time with no assurance of obtaining a stable solution. URANS was 

therefore found to be more user-friendly; although being less accurate when resolving fine 

detail, it remains to be a valuable tool in assisting existing analysis methods.  

 

The Bluff-Body 

In the engineering industry, a common term used to describe an object which generates 

significant base pressure drag as opposed to skin friction drag, when exposed to an external 

flow, is referred to a ‘bluff body’. Examples of bluff bodies of significant engineering interest 

include buildings, automobiles, aircraft landing gear and have enormous interest in modern 

engineering. Fundamentally, characteristics of bluff body flows can be classified into two 

groups: inviscid flow and viscous flow.  

For the case of inviscid flows, viscosity is negligible resulting in no friction to create 

boundary layer separation, vortices or a subsequent wake. Inviscid flow over a typical 

cylinder shows two stagnation regions, one at the front central region of the cylinder and the 

other behind the cylinder, indicating a classical stagnation surface pressure coefficient of one. 

Due to the symmetry of the cylinder body, the pressure distribution around the cylinder is 

also symmetric. Additionally, due to the symmetric body, aerodynamic forces acting on the 

cylinder will be equal to those present in the opposing direction, indicating no resultant 

aerodynamic forces. However, it is a widely known characteristic that bluff bodies experience 

aerodynamic forces, therefore invalidating this simplified inviscid flow theory for bluff 

bodies.  

Analysing a flow field as ‘viscous’ indicates that friction exists on the boundary of bluff 

bodies. This causes a reduction in flow velocity, forming an adverse pressure gradient (shown 

by Equation 1; where S is the distance travelled over a body), resulting in boundary layer 

flow separation which subsequently forms vortices.  

 
𝑑𝑃

𝑑𝑆
> 0 Equation 1 
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Considering a typical viscous flow around a cylinder, after boundary layer separation, 

vortices are shed from the top and bottom surfaces creating two rows of vortices that 

propagate into the rear wake. The wake is suggested to be unsteady, and is affected by the 

influences of Aspect ratio, Reynolds numbers and vortex shedding frequencies (Strouhal 

numbers), resulting in unsteady aerodynamic forces, such as lift and drag, acting on the 

cylinder.  

2.1 The 2D Cylinder  

The flow field around a wheel is typically much more complex compared to an infinitely long 

2D cylinder, due to the significant changes and characteristics of length to diameter in tyre 

profiles, hub detail, tyre tread, rim configuration, etc.; but as the general shape of a cylinder 

in the streamwise direction is of a similar nature to a wheel, albeit over a larger length, initial 

consideration of the flow around a 2D cylinder (particularly those with very low aspect 

ratios) can be used as a first step to understanding the basics of how air flows around short 

circular objects such as wheels. 

A considerable amount of work over the last century has been for the topic of flow around 2D 

cylinders. Cylinder Aspect Ratio (AR); defined in Equation 2 where L is referred to the 

characteristic length of a cylinder, does have a significant impact on the resulting flow 

physics, however, initially the case of an infinitely long 2D cylinder is considered as a basis 

for comparison.  

 𝐴𝑅 =  
𝐿

𝑑
 Equation 2 

Fundamentally, the flow around a 2D cylinder contains several regions of stagnation, 

separation and recirculating shear layers. At the front of the cylinder, a stagnation region 

occurs where the dynamic motion of the fluid is brought to rest. Either side of this region, the 

flow accelerates around the top and bottom surfaces with the formation of thin boundary 

layers. Large adverse pressure gradients near the top and bottom of the cylinder cause the 

flow on the boundary to decelerate rapidly, creating a separated shear layer, reversed flow, 

and a large base pressure drag. Two free shear layers are formed as a consequence of the flow 

separating, increasing the surface pressure on the surface and forming a recirculation region 

resulting in the formation of vortices, which propagate in the rear wake of the cylinder [11]. 

The size of the wake and vortices are dependent on many factors, including the location of 

separation, cylinder profile, Reynolds number, surface roughness and free-stream turbulence 
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intensity, but typically as the separation point moves further downstream, a smaller wake is 

created and will result in a lower drag force. Within the wake region, once the separated shear 

layers meet, the flow is forced back to the base region (rear surface of the cylinder within the 

wake region), where the surface pressure is usually constant, typical of wake physics. 

However, the location of the separation positions, as previously mentioned, is a result of 

boundary layer physics including where transition occurs from laminar to turbulent. This is 

explained by, and is reliant on the Reynolds number. 

 𝑅𝑒 =
𝜌𝑈∞𝑑

𝜇
  Equation 3 

2.1.1 Influence of Reynolds Number (Ren) 

The Reynolds number, as defined by Equation 3, is often used as an indication of determining 

the fundamental characteristics of cylinder flows and characterises whether the boundary 

layer flow is laminar or turbulent [14]. As shown in Figure 2, the characteristic of cylinder 

flows has delineated different regimes for flow around cylinders, each consisting with a 

different flow topology. At very low Reynolds numbers (Ren < 5) the flow does not separate 

on the walls of a cylinder, resulting in no vortex shedding, therefore providing a symmetrical 

Figure 2 - Flow field characteristics past a 2D cylinder at critical Reynolds Number regimes [12, 13] 
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wake. As the Reynolds number increases to 1 ×10
2
, laminar vortex shedding is experienced 

as the flow separates on the upper and lower surfaces forming shear layers that oscillate, 

eventually rolling up, enacting alternate vortex shedding into the rear wake. Subcritical flow 

regimes (between 1× 10
2
 < Ren < 2× 10

5
) [13], are characterised by a laminar flow upstream 

of the cylinder, subsequently separating slightly before the upper and lower surfaces of the 

cylinder, predicted at 80° on either side relative to the stagnation region [14]. The shear 

layers formed from these regions, entrain the rear wake containing the separated wake flow, 

creating a Von Kármán vortex street (shown in Figure 2) propagating downstream. This large 

alternating separated region, results in the pressure drag contributing more than half of the 

overall drag force of CD ≈ 1.2 [15]. Strouhal number (defined by Equation 4) is a 

dimensionless parameter used to describe the vortex shedding frequency within this region 

and is near constant at approximately St = 0.2. Beyond Re > 10
4
, the effect of the friction 

drag is negligible [16].  The critical regime is a region where transition occurs from laminar 

to turbulent within the boundary layer. This critical regime is characterised to occur at Ren > 

2x10
5
 [12], as values of CD undergo a sudden decrease as Ren is increased (shown in Figure 

3). Past this critical regime, the super-critical region (shown in Figure 2) is characterised by a 

boundary layer which is fully turbulent and remains attached until separation occurs further 

downstream on the cylinder surface. The turbulent boundary layers formed, are inherently 

able to withstand the adverse pressure gradients much more effectively than the laminar shear 

layers, resulting in a smaller wake and a decrease in the total drag force, CD ≈ 0.3. 

 𝑆𝑡 =
𝑓𝑑

𝑈∞
 Equation 4 

Figure 3 - Variation of drag coefficient of a circular cylinder as a function of Reynolds number [19] 
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2.1.2 Influence of Aspect Ratio (AR) 

Zdravkovich [20] has reviewed and analysed the flow field around cylinders with regard to 

changing aspect ratio and has found fundamentally, that as the aspect ratio decreased, there 

was a decrease in CD. This reduction in drag was found to be caused by the higher pressure in 

the rear wake, as the end effects at low aspect ratios become more prominent. However, 

additional work also indicated that with further reductions in aspect ratio below one, a 

substantial increase in CD occurs, as shown in Figure 4. This is a result of the increasing 

amount of skin friction being contributed to the total drag force. At this level of aspect ratio 

magnitude, it was suggested that this result using the side area of the cylinder as the reference 

in calculating the drag force coefficient would be more beneficial [20]. However, this has not 

been widely accepted. Figure 5 shows the typical flow field around a low aspect ratio 

(a) 

(b) 

Figure 4 – Drag coefficient based on (a) L/D, (b) using projected side 

area [20] 
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cylinder, with the development of substantial longitudinal vortices formed as a result of 

separation around the edges. For the special case of cylinders with an aspect ratio less than 

one, separation occurs from the sharp ends, solely with shear layers formed by this 

separation, reattaching on the flat sides of the cylinder. The more extreme case of the flow 

field around cylinders with small aspect ratios (coin-like cylinders), is shown in Figure 6 

[20], and shows the areas of separation at the edges and on the bottom surface where 

secondary separation would occur if the flow was to reattach, depending on the aspect ratio. 

This demonstrates the effect that the edges of a cylinder have on drag, as the presence of 

leading-edge separation would result in a greater drag; therefore with respect to aircraft 

wheels, the most appropriate curvature on the wheels should be used to minimise this drag 

force. Zdravkovich et al [21] later conducted additional studies on coin like cylinders. In an 

attempt to better characterise the flow, a revised equation for calculating CD was used by 

replacing the projected area with the side area, D
2
π/4. A decrease in drag coefficient was 

observed for AR<1, in agreement with [20], as the friction drag dominates as the aspect ratio 

decreases to this level. Separation from the sharp edges of the cylinders formed separation 

bubbles on the flat sides, as this separated flow reattaches on to the flat sides. Reversed flow 

underneath the separation bubble eventually detaches and separates as secondary separation. 

Zdravkovich found that rounding the edges of the cylinder reduces the value of CD, as the 

separation bubbles would be eliminated. This was also confirmed by Fackrell [22], as the 

effect of the more rounded edge profile resulted in a lower drag force. 

Figure 5 – General flow structure around a cylinder [20] 
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2.1.3 Influence of Rotation on Cylinder Flows 

When a cylinder is rotating in a fluid, if the rotational speed of the cylinder is equivalent to 

the free stream velocity, the attached flow on the side of the cylinder travelling in the same 

direction as the free stream flow is accelerated, resulting in a negative pressure on that 

respective side. However on the opposite side, the flow opposes the direction of rotation 

reducing the free stream velocity, resulting in a higher pressure. As a result, an asymmetry in 

the pressure distribution on the cylinder is observed, as the flow travelling in the same 

direction as the rotational velocity will induce a lower pressure, Figure 7 (A), with the flow 

travelling opposite to the direction of the rotational velocity, Figure 7 (B), producing a higher 

pressure. Therefore, a pressure differential is set up on the two sides of the cylinder, with the 

overall result being the production of a resultant lift force, acting towards the lower pressure 

surface side. This is known as the Magnus Effect.  

Figure 7 – Magnus Effect 

(A) 

(B) 

Figure 6 – General flow structure around coin-like cylinders [20] 
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Prandtl investigated the flow around a rotating cylinder at Re≈4×10
3
 at six different ratios of 

Vr/V (where Vr = rotational velocity of the cylinder and V = the free stream velocity), 

observing the fluid flow patterns on the six different ratios analysed (Vr/V=0, Vr/V=1, 

Vr/V=2, Vr/V=4, Vr/V=6, and Vr/V=∞), as shown in Figure 8 (a-f respectively). Water 

surface flow visualization, shows maximum separation downstream of the cylinder diameter 

to the right of the vertical centreline axis for the stationary cylinder, as well as upper and 

lower eddies being formed and shed alternately in the near wake. Once the rotational speed of 

the cylinder is equivalent to the free stream (b), Vr/V=1, the size of the eddy street is reduced 

and separation is observed to occur on the side of the cylinder where the rotational flow 

opposes the free stream. As the ratio of Vr/V increases from zero, the stagnation point 

initially seen in (a) at the front of the cylinder, is moved further down towards the side where 

Vr & V are travelling in opposite directions to each other (C). Similarly, the wake is shifted 

Figure 8 – Flow visualisation around a rotating cylinder in water, (a) Vr/V=0, (b) Vr/V=1, (c) Vr/V=2, (d) 

Vr/V=4, (e) Vr/V=6, Vr/V=∞. [20] 

(C) 
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further down. The formation and shedding of eddies are not visible in (c) at Vr/V=2 and 

beyond, as a result of reduced near-wake size. At the maximum ratio of Vr/V=∞ when the 

cylinder is rotating in stationary fluid, only a single large eddy is formed, Figure 8 (f). 

Overall, with rotation speed, eddy shedding was found to exist only at Vr/V≤2 and with 

rotational speed increasing beyond Vr/V>2, eddy shedding ceases. With these findings, 

Prandtl concluded [20], that when one side of a rotating cylinder moves in the same direction 

as the free stream flow, separation does not occur and eddies are not formed on that 

corresponding side. However, on the other side, with the free stream opposing the direction 

of the rotational velocity, separation occurs and produces vorticity as the flow propagates in 

the near wake. Seifert [23] reviewed a study which also investigated the influence of velocity 

ratio around a rotating cylinder, at Re = 7.2 × 10
4
, using numerical flow visualisation [24], 

with their results illustrated in Figure 9. The velocity ratio (α) from their investigation is 

defined α = Vr/U∞, indicating the first ratio, α = 0, to represent a stationary cylinder in free 

stream, demonstrating an increase in α with increasing cylinder rotational velocity. For low 

velocity ratios in the region α = 0 – 2, alternate eddy shedding from either side of the cylinder 

Figure 9 - Flow patterns for various Strouhal numbers (St) and velocity ratios (α); flow 

direction left to right and clockwise cylinder rotation [23, 24] 
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is observed, representative of a Von Kármán vortex street propagating in to the wake, with 

the length of the eddy shedding significantly shortened as the higher ratios are approached; 

similar to that observed by Prandtl [20] (Figure (a) – (c)). At velocity ratios α > 2, eddy 

shedding can no longer be seen, with the visible displacement of the rear wake towards the 

side where the rotational velocity of the cylinder opposes the free stream direction. Two 

vortices are observed only on the lower side of the cylinder (α = 3), due to flow separation 

caused by the opposing flow directions; however, reducing to a single large eddy at α = 6, 

with results showing general agreement to Prandtl’s investigation [20].  

2.1.4 Influence of applied Yaw angle 

For the special case of a cylinder which is yawed to the free stream direction, the 

configuration can be decomposed in to streamwise and velocity components, normal to and 

parallel to the cylinder axis given by Vn = VcosΨ and Vt = VsinΨ respectively. This 

independence principle, also known as the cosine law, effectively segregates the flow past 

yawed cylinders, with the flow projected on the plane normal to the cylinder given by VcosΨ 

shown to be nearly identical when analysing zero-yaw cylinders. However, several 

limitations and caveats should be adhered to when applying the independence rule [25]; 

 Due to laminar boundary layer theory becoming invalid after areas of separation, the 

independence rule is only valid up to this.  

 The mathematical idealization of two dimensional flow past cylinders of infinite 

aspect ratio cannot be realized in practise, as the flow past cylinders of finite aspect 

ratio are subjected to end effects.  

 The transition around separation for cylinders with no yaw occurs at a specific 

Reynolds number due to the instability of the laminar boundary layers. It is expected 

that the instability would occur at the same Reynolds number on yawed cylinders, 

assuming that the yawed cylinder experiences the same flow disturbances. However, 

as the flow past yawed cylinders has a spanwise component, this is likely to affect the 

disturbances and the Reynolds number at which separation occurs.   

Smith et al [26] carried out some of the early experiments around a yawed circular cylinder to 

investigate the effect of yaw angle on the near wake and drag coefficient. At lower Reynolds 

numbers (40 < Re < 250), the flow is expected to be laminar and stable. As the Reynolds 

number increases, transition from laminar to turbulent flow occurs in the near wake 



 
17 

 

significantly decreasing the base pressure on the cylinder, resulting in an increase in CD. 

Tests were carried out on polished brass cylinders, with diameter and aspect ratio of 

0.375inches & 30 respectively, at yaw angles of 0°, 15°, 30°, 45° & 60° in the Reynolds 

region of 2000 < Re < 20,000 (free stream speed of 6-30m/s). One characteristic evident in 

the results was the decrease in base pressure coefficient (when based on the normal velocity 

component (Vn)) with increasing the yaw angle (Figure 10). This was somewhat expected, as 

the transition from laminar to turbulent flow in the near wake of a body results in a decrease 

in base pressure coefficient and wake size reduction, which is also evident when analysing 

the base pressure coefficient on a cylinder with zero yaw within this range of Reynolds 

numbers.  

Smith et al [26] also investigated cylinder vortex shedding frequency. Frequency peaks for 

cylinders with zero yaw are known to be very defined, sharp and narrow, around a Strouhal 

number of 0.21. Smith et al [26] proposed that as the turbulence levels rise with increasing 

yaw angle, the energy related to the shedding frequency is less dominant compared to a 

cylinder with no yaw. As Smith et al [26] only measured these shedding frequencies at a 

single point behind the mid-span of the yawed cylinder, Hayashi et al [27] attempted to 

confirm this hypothesis by measuring the eddy shedding frequency along the span of yawed 

cylinders. Measurements were acquired with 10° & 20° yaw, at a Reynolds number of 20,000 

on a test cylinder with and without endplates (AR = 15). Power spectra along the span of 

these four different cases [20, 27], indicated that eddy shedding is not uniform along the 

entire span of the cylinder. However, results did support the fluctuations in eddy shedding 

Figure 10 – Effect of Yaw on pressure coefficient 

[20, 26] 
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and was found to become more uniform with the addition of end plates. For the test case of a 

cylinder with 20° yaw, the intensity and strength of eddy shedding was found to decrease 

through observed action of the spectral peaks being less pronounced as they appear weaker, 

and wider in frequency bandwidth than previously seen in the 10° yaw case. This was 

thought to be due to the spanwise velocity component influencing the eddy shedding 

frequency.  

2.1.5 Influence of Ground Proximity 

Bearman & Zdravkovich [28] have experimentally investigated the flow field around a 

cylinder with length and diameter of 0.61m and 0.019m respectively (AR = 32). The tests 

were performed in a wind tunnel with a maximum top speed of 38m/s, with different ground 

diameter ratios (G/d; where G is defined as the distance from the bottom of the cylinder to the 

ground plane and d is defined as the cylinder diameter) to investigate the influence of ground 

effect. Pressure distributions measured on the cylinder surface and along the ground plane 

plate for the various G/d ratios, are shown Figure 11. The cylinder in contact with the ground 

(a) indicates an asymmetric pressure distribution around the cylinder with a discontinuity in 

pressure at the contact patch. This is also a characteristic of wheel in contact with the ground 

investigations. In general, a positive pressure peak was observed at the stagnation position 

(CP = 1) and negative peaks observed where the flow is accelerated. At G/d = 0.1 (b), a 

maximum negative CP = -0.7 is observed at the bottom of the cylinder, as the fluid is 

squeezed through the gap between the cylinder and the ground plane.  As G/d > 0.4, the 

pressure distribution becomes symmetrical about the horizontal axis from the front stagnation 

point, indicating a relative insensitivity with the ground plane. The base pressure in the near 

wake of the wheel decreases as the G/d ratio increases; however after G/d > 1, very little 

change is observed in the base pressure. Upstream and downstream of the cylinder, larger 

separation bubbles were found to be attached when G/d = 0, but these bubbles were 

eliminated as the gap increased, due to the accelerated flow through this region. As the G/d 

ratio > 0.4, the bubbles started to fade away until they were no longer visible at G/d = 0.6. 

The wake behind the wheel was also analysed using smoke filaments, and showed that at 

G/d=0.4, the curvature of the smoke was seen to increase, indicating a lower base pressure in 

the near wake with a short recirculation region. As the G/d ratio increased, the smoke 

filaments in the wake of the cylinder were rarely affected by the existence of the ground 

plane. Visualisations also indicated a displacement of the front stagnation point downstream 

towards the gap with decreasing ground proximity. Separation locations were also found to 
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be affected by the G/d ratio, due to the favourable pressure gradient produced by the gap. 

Therefore as the G/d ratio was reduced, the separation location nearest to the ground plane 

was displaced further downstream of the narrowest point of the gap, as the upper separation 

position was displaced upstream of the cylinder shoulder. 

At small G/d ratios, pressure distributions around the cylinder indicate the presence of a mean 

force acting on the cylinder, away from the ground plane. Negative pressure peaks observed 

on the lower surface of the cylinder at low G/d ratios represent an increase in flow velocity, 

as air is pushed through the gap. However, as the cylinder moves away from the ground, the 

low pressure region is reduced in size as the flow has more space when travelling through the 

gap. Subsequently, as the G/d ratio increases and the pressure distribution on the top and 

bottom surface becomes symmetrical, the mean force, initially observed at low G/d ratios, 

decreases rapidly to values close to zero. 
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(a) G/d=0 

(b) G/d=0.1 

(c) G/d=0.4 

Figure 11 – Distribution of Cp around the cylinder and ground plane plate at differrent G/d ratios (continued on next 

two pages) [28]…(continued on to next page) 
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(c) G/d=0.8 

(c) G/d=1.0 

(c) G/d=2.0 
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2.2 3D Wheel Aerodynamics 

This section of the literature review discusses the key characteristics of the flow field around 

single wheels, whether in free-air, in contact with the ground or as part of a larger 

combination of components. The aerodynamic flow field around a wheel is of upmost 

importance when trying to gain an understanding of the flow field around aircraft landing 

gear, as they comprise a significant proportion of the overall combination of components. 

2.2.1 Wheels in Free – Air  

A large gap in the understanding currently exists for the specific case of a single wheel in free 

air. The aerodynamics of single wheels in-contact with the ground are much more prevalent, 

with a significant number of investigations being carried out in the last 10 years due to their 

importance in the automotive and motorsport industry [29, 30, 31]. Only recently has more 

focus been placed on wheels in free-air, with the most recent investigation being an 

experimental investigation on a scaled landing gear wheel in free air conducted by Zhang et 

al [32]. For this study, two individual wheel configurations were used for the experiments, 

each having a diameter and width of 0.478m and 0.186m respectively. Investigations were 

also performed on both simple and complex hub profiles. These configurations were tested in 

a wind tunnel supported by a single symmetrical airfoil strut at a free stream velocity of 

40m/s corresponding to a Reynolds number, based on wheel diameter, of 1.31x10
6
. 

Fundamentally, areas of separation were observed upstream of the central hub cavities with a 

characteristic four streamwise trailing vortex system convecting downstream within the wake 

of the wheel, Figure 12. Results from pressure distributions along the circumference of the 

Figure 12 – Streaklines on rear surface of wheel [32] 
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wheel at x = 0mm (centreline), and x = ±70mm are shown in Figure 13. Fundamentally, the 

flow around the front of the wheel was found to be reasonably simple, with the trademark 

front stagnation pressure value of CP = 1 observed on the front face of the wheel. As the flow 

travels over the top and bottom of the wheel however, negative pressure peaks of CP = -1, 

were found as the flow accelerates on the face of the wheel. Figure 13 indicates these low 

pressure flow regions present on the top and bottom surfaces of the wheel, interacting with 

the side-flow rolling up to form a wake vortex. Analysing the pressure distribution at 

circumferential cuts obtained at x = ±70mm showed pressure peaks at θ = ±135°, which from 

flow visualisation correspond to the locations of the vortices observed at the back of the 

wheel. Two stronger vortices were formed on the hub side (Figure 12) of both the complex 

and simple hub, due to the higher pressures on the boss side of the wheel caused by the flow 

recirculation behind the support strut. Velocity contour plots behind the wheel were also 

measured, showing areas of recirculation and strong spanwise velocity distributions in the 

wake region (Figure 14). Drag coefficients (un-tripped) were also measured with the wheel 

and supporting strut combination at CD = 0.29 - 0.30 for Reynolds numbers > 1.1x10
6
, with 

inferred isolated-wheel results (corrected for measurements from the support strut itself) 

yielding CD  0.19. 

Figure 13 – Surface pressure distribution along three circumferential cuts through wheel [32] 
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Figure 14 – Normalised velocity components for simple hub at x=0mm plane, 

(a) streamwise z-velocity, (b) vertical y-velocity [32] 

(a) 

(b) 



 
25 

 

2.2.2 Wheels in contact with the ground 

In view of the lack of data currently available for an isolated wheel in free air, the work 

performed on isolated wheels in contact with the ground is reviewed. This work, while not 

directly applicable to the case of free-air, can still provide valuable insight into the flow field 

dynamics.  

Morelli [33] performed one of the first studies on isolated wheel aerodynamics, 

experimentally measuring the aerodynamic forces on both a stationary and rotating racing car 

wheel in contact with the ground. The tests were conducted at several flow speeds including 

different yaw angles from 0 - 20°. The effect of fairing the rims was also investigated by 

completely enclosing the wheel with a fairing covering the upper half of the wheel. 

Experimentally, the wheel was placed on top of a ground plane supported by two stands with 

a DC motor connected to one end of a support shaft, which rotated the wheel at a speed 

equivalent to the free stream flow. To model the wheel ‘in contact with the ground’, the 

wheel was positioned about 15mm into a ‘cut out’ in the ground plane, which represented and 

questioned the methodology as the wheel had no physical contact with the ground plane. 

Experiments carried out with the wheel fully exposed to the oncoming flow, showed that a 

larger yaw angle corresponded to a larger measured value in CD, as shown in Figure 15 (CD 

denoted by CX). The effect of the addition of fairings on the rim, was found to result in a 

reduction of drag by ≈22%; from CD = 0.45 (without fairing) to CD = 0.35 (with fairing) 

respectively. Through the inclusion of the housing on top of the wheel, the drag coefficient 

Figure 15 – Drag coefficient of fully exposed wheel against test speeds at 

different yaw angles [33] 
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was found to increase with increasing yaw angle. However, as the wheel was covered by the 

housing to an increasing degree, CD remained fairly constant with a slight reduction in the 

value (CD) by approximately ∆CD = 0.05, being observed as the yaw angle increased to a 

maximum (Figure 16).  

Only a test speed of 31m/s was used when analysing the lift. Lift was also measured (denoted 

CZ in [33], Figure 17), but was found to be relatively insensitive by the increase in yaw angle 

or housing cover, however, slight variations were observed with maximum coverage of the 

wheel. When rotation was applied to the wheel in this configuration, a negative lift force was 

typical of the results measured. This was later confirmed in other studies [22] as a major 

problem, due to the contact patch/moving ground plane not being modelled correctly. Once 

the wheel to ground contact was configured more accurately, a positive lift force is 

experienced.  

Stapleford and Carr [34] also investigated the aerodynamic forces on the wheels of a race car, 

with both stationary and rotating wheels at different ground clearances. For their case with a 

minimum ground clearance, tests were conducted to obtain lift and drag coefficients for the 

stationary and rotating wheels on both a stationary and moving ground. Analysing the drag 

and lift coefficients for both the stationary and moving ground cases, Stapleford and Carr 

[34] proposed that the effect of a moving ground does not make a substantial difference to 

these measured force coefficients; albeit erroneously deciding thereafter to conduct the 

remainder of their experiments on a stationary ground surface. With the wheels maintained at 

a ground clearance of 0.25inches, they concluded that sealing the gaps between the ground 

plane and the bottom of the wheel made no significant difference to the resulting flow field; 

as the boundary layer was thought to restrict the flow under the wheels when the gaps were 

Figure 16 – Drag coefficient against yaw angle at various 

fairing heights tested [33] 
Figure 17 – Lift coefficient against yaw angle at various 

fairing heights tested [33] 
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open. However, changes in the flow field are indeed seen in their results, as the air flowing 

beneath the wheel is pushed through the gap once rotation was applied on the wheel. For the 

case of the stationary wheel, Figure 18(a), at maximum ground clearance of 2.0inches, an 

expected stagnation pressure peak of CP = 1 was observed on the front face of the wheel, 

together with the flow passing over the top and bottom of the wheel producing a decrease in 

surface pressure to CP ≈ -2 (A). Pressure recovery to a level just below zero in the rear near 

wake was subsequently observed within the region of θ = 150° - 210°. As the ground 

clearance was decreased to 0.5inches, the pressure below the wheel was found to decrease to 

CP ≈ -2.5 (B), whilst the pressure over the top of the wheels increased to CP ≈ -1.5 (B’), 

indicating larger suction peaks representative of increased flow acceleration beneath the 

wheel. Reducing the ground clearance further beyond this level, reversed this trend and at 

zero ground clearance, the pressure was found to be only below zero in the region from θ ≈ 

150° - 270°. A similar pattern in the pressure distribution was observed on the rear wheels, 

however, as a result of the interference from the front wheels and reduced effective velocity 

on the rear wheels, lower pressures (CP ≈ 0.5) were observed at the stagnation region on the 

rear wheels.  

Stapleford and Carr [34] found asymmetry in the wake and pressure flow physics as a result 

of applying rotation to the wheels, Figure 18(b). For the test case at 2.0inches ground 

clearance, an increase in surface pressure to CP ≈ -1 was found on the upper surface (C’) of 

the rotating wheel, with a reduction in surface pressure to CP ≈ -2.5 over the bottom surface 

(C) when comparing to the stationary case. Reducing the ground clearance to 0.5inches, 

Figure 18 – Distribution of surface pressure at different ground clearances around (a) stationary wheel, (b) rotating 

wheel [34] 

(a) (b) 

(A) 

(B) 

(B’) 

(C) 

(C’) 

(D) 
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shows a significant reduction in surface pressure up to CP ≈ -3.4 on the bottom of the wheel 

(D), representative of increased flow acceleration beneath the wheels, as the both the wheel 

and the free-stream airflow is moving in the same direction. However with zero ground 

clearance, although a reduction in surface pressure (CP ≈ -1.5) is observed on the upper 

surface, a recovery in pressure to CP ≈ -0.5 was obtained and maintained on the rear surface 

of the wheel. It is important to note that when comparing the locations of the pressure peaks 

for both the stationary and rotating configurations, the stationary peaks occurred at θ ≈ 90° 

and θ ≈ 270°, whilst the peaks on the rotating wheel occurred at θ ≈ 60° and θ ≈ 270°. This 

offset of 30° observed upstream from the top of the rotating wheel, represents an earlier 

region of separation with the application of rotation.   

Lift coefficient was also measured by Stapleford and Carr [34]. As would be expected, the lift 

generated by the stationary wheels at the highest clearance is very small (CL ≈ 0), but with 

wheel movement closer to the ground, lift coefficient increased (CL = 0.74 and CL = 1.57 at 

0.25in and zero ground clearance respectively). The drag force coefficient also increased 

along a similar pattern, CD = 0.9 and CD = 1.15 at 0.25in and zero ground clearance 

respectively. At maximum ground clearance on the rotating wheel configuration, CL was first 

found to be negative (CL ≈ -1.0), subsequently changing to a positive lift (CL = 0.6) with 

ground clearance reduction to zero. An increase in drag was also measured for the rotating 

wheel configuration when compared to the stationary configuration with CD ≈ 1.1 throughout 

the tested ground clearances. Whilst for the stationary case, as the ground clearance was 

reduced, a significant increase in drag was observed, as CD ≈ 0.7 at maximum ground 

clearance, to CD ≈ 1.15 at zero clearance.  

From their results, Stapleford and Carr [34] constructed a representation of the aerodynamic 

characteristic flow field around both the exposed stationary and rotating wheel. Initially 

considering the case of the stationary wheel in free air, Figure 19(a), the flow around the 

wheel is symmetric about the front stagnation point (Figure 19 – S). Separation regions are 

identified at approximately 120°, on both the upper and lower surface of the wheel from the 

stagnation point forming the boundaries of the rear wake. As a result of the symmetric flow 

field around the wheel, the lift force is negligible. Once the stationary wheel is in contact with 

the ground, Figure 19(b), an obvious conclusion is that, the flow travelling beneath the wheel 

is prevented; therefore the flow must travel entirely around the top or sides of the wheel, 

causing the wake to be extended from the upper separation position on the wheel down to the 

ground plane. The asymmetry created in the flow field, as a result of the wheel in contact 
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with the ground, indicates an increase in suction pressure over the top surface of the wheel 

whilst reducing that on the lower surface. Subsequently the positive pressure around the front 

stagnation region extends towards the frontal lower side of the wheel, resulting in a positive 

lift force. The increased wake region behind the wheel was also suggested to increase the 

drag force. For the case of the rotating wheel in free air, Figure 19(c), the most noticeable 

difference compared to the stationary wheel in free air (Figure 19(a)), is the wake being 

considerably displaced by an up-wash angle. Additionally, the accelerated flow on the lower 

half induced by the rotation of the wheel along with the reduced flow velocity on the upper 

half, creates a pressure differential which is the result of the experienced downwards negative 

lift. The rotating wheel in contact with the ground, Figure 19(d), however, does not 

significantly differ when compared to the stationary configuration of a wheel in contact with 

the ground (Figure 19(b)), as the observed characteristic difference is the reduction in 

velocity on the upper surface of the rotating wheel. 

Fackrell [22] conducted a study on isolated wheel aerodynamics, testing three different tread 

widths and two wheel profiles, denoted A, B, C and 1, 2 in [22]. The wheels comprising a 

(a) (c) 

(b) (d) 

Figure 19 – Flow pattern around stationary and rotating wheels in free air and in contact with the ground [34] 



 
30 

 

diameter of 0.416m were tested in a wind tunnel with a free stream velocity of 18.6m/s 

corresponding to a Reynolds number of 5.3×10
5
, based on wheel diameter. Both stationary 

and rotating wheels were analysed, with the angular velocity of the wheel and the moving 

ground set equivalent to the free stream velocity. Drag and lift coefficients were obtained for 

these tests, with some selected results shown in Figure 20. Common to the investigation were 

Figure 21 – Centreline pressure distribution around rotating wheels A1 & A2 [22] 

Figure 20 – Force coefficients on different wheel geometries tested in [22] 
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that, for the most part, CD and CL increased with wheel width effectively giving larger drag 

forces with increasing aspect ratio. Wheel shapes A & C show similar force coefficient 

magnitudes even though they comprised different tread widths. Results for data obtained for 

the B-profile differed by up to 10% and were to be treated with caution as improvements 

were continuously made as the experiments progressed, as it was the first wheel tested.  The 

contribution of hub force coefficients were presented separately in Figure 20 and showed the 

hub configuration from the ‘A2’ wheel, contributed the most drag force to the overall wheel 

drag (∆CD = 0.08) compared to the other wheel configurations. 

After publishing this seminal work on the topic, comparisons of Fackrell’s work were made 

to Morelli [33] and discovered that his results were significantly different, concluding that 

Morelli’s [33] methodology was not representative of the real fluid flow of an isolated wheel 

in contact with the ground (principally via inaccurate modelling of the contact patch between 

the wheel and ground plane). Pressure distributions presented by Fackrell [22] around the 

surface of the A1 & A2 wheel are shown Figure 21. From these results, the centreline 

pressure coefficient was measured at a value greater than two near the contact patch (θ = 90°) 

and found to result from the extra energy introduced to the flow via the suction of air into the 

contact patch through the converging boundaries of both the rotating wheel and moving 

Figure 22 – Pressure distribution around wheels A1, B1 & C1 (Different wheel width, same 

edge profile) [22] 
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ground. The influence of wheel width, shown in Figure 22, was also found to have minimal 

effect on the values of Cp on the centreline of the wheel but become more prominent closer 

to the wheel edges. Separation was defined as the first point at which large scale pressure 

fluctuations begin (positions was measured at approximately θ = 280° - 300°). Separation 

was also found to take place slightly further upstream for B & C than that observed for wheel 

A. From comparing centreline pressure distributions around all wheel configurations, (Figure 

22), Fackrell found that a lower pressure exists over the lower front face of the narrower 

wheel (A), with the widest wheel (C) found to have a lower base pressure.  The influence of 

rotation was also analysed and compared to the stationary case. Although wheel B was not 

the most accurate wheel modelled in [22], Fackrell suggested any errors present would not 

invalidate any generalised conclusions made. When comparing the stationary and rotating CP 

distributions shown in Figure 23, the influence of rotation resulted in a reduction in drag and 

lift forces (stationary: CD = 1.18, CL = 1.16 and rotating: CD = 1.03, CL = 0.74). A large 

Figure 23 – Centreline Pressure distribution around stationary and rotating wheel B2 [22] 

(A) 



 
33 

 

region of low pressure at the rear of the stationary wheel was seen, Figure 23 - (A), which 

contributes to a larger drag force. Separation on the rotating wheel was found to occur earlier 

on the rotating wheel [22, 35] at θ ≈ 280°, as opposed to the stationary wheel (θ ≈ 220°), 

caused by the presence of a reversed layer of fluid on the wheel’s surface. This was later 

confirmed by total head contour plots taken within this top region at the centreline of the 

wheel (Figure 24). Additionally, Figure 25 shows smoke visualisation obtained over the 

wheel, confirming the earlier separation suspected on the rotating wheel (D) together with the 

flow remaining attached further downstream on the stationary wheel (E). Total head contours 

in Figure 24, also shows a wider effective wheel wake for the rotating wheel on the upper 

half of the hub (B). This bulge feature of the rotating wheel configuration is due to the flow 

inside the upper hub opposing the direction of the free stream flow travelling alongside the 

wheel, creating increased viscous interaction between the flows. Conversely, the lower hub 

surface for the rotating wheel moves in the same direction as the free stream flow, resulting 

Figure 24 – Total head contour at Plane 1; 1.7 inches from the centre of 

the wheel, stationary & rotating [22] 

(B) 

(C) 



 
34 

 

in a total head contour and consequent wake positioned closer to the wheel. However, for the 

stationary wheel, a more uniform contour is seen alongside the hub due to the reduced 

interaction between the free stream flow and the air within the hub cavity. Analysing further, 

the total head contour results show a large displacement away from the lower section of the 

wheel (closer to the ground, Figure 24-C), particularly for the stationary wheel as a result of 

the air travelling out from beneath the front of the wheel rolling up to form a horse-shoe 

vortex around the wheel lower surfaces. Contour plots of total head even further downstream 

[22], also displayed a higher wake profile for the upper half of the rotating wheel whilst 

maintaining approximately, a wake width coincident of the actual wheel width. This wake 

widens in the rear lower half of the wheels as is convected downstream.  

 

 

 

 

Figure 25 – Smoke Visualisation of flow past wheel, (a) side view on rotating wheel, (b) side view 

on stationary wheel [22]. Flow direction: Right to Left 

(E) (D) 

(a) (b) 
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Several seminal conclusions on rotating wheel flows were made from this work. Primary of 

these was the insights gained into the separation flow physics of a rotating wheel in contact 

with the ground. Figure 26 [22, 35] details this physics, providing a pictorial representation of 

the earlier separation evident on a rotating wheel (at ‘A’) due to the attached flow on the 

rotating wheel interacting with the free stream flow travelling in the opposite direction, 

effectively ‘lifting’ the separation position above the surface of the wheel. Also detailed in 

Figure 26 on the lower surface of the wheel (‘B’), are viscous effects on the converging 

surfaces of the wheel and the ground plane, creating a high pressure region which Fackrell 

called a ‘jetting phenomenon’, where the flow travelling around the lower wheel surface and 

the free stream interact and get ‘jetted’ or ‘pumped’ at both sides of the wheel.  

Cogotti [36] also investigated the influence of different ground clearances on aerodynamic 

forces and surface pressures of both stationary and rotating isolated wheels. Detailed in this 

work, a pair of isolated exposed wheels (diameter and width of 0.485m and 0.135m 

respectively), were installed on steel rims attached to an AC motor. The motor rotated at 

equivalent free stream velocity of 38m/s, corresponding to a test Reynolds number of 

1.1×10
6
, based on wheel diameter. Four ground clearances were tested for both the stationary 

and rotating wheel, from 50mm clearance to in contact with the ground. Results showed that 

as the ground proximity/clearance decreases, the air flowing between the lower surface of the 

Figure 26 – Details of the separation point and ‘jetting’ flow [22] 
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wheel and the ground is accelerated, with a corresponding decrease in CP under the rotating 

wheel (Figure 27). However, results also show that when the ground clearance is reduced to 

zero (in contact with the ground), a positive pressure peak (A), is observed due to the 

development of a secondary stagnation point within the contact patch region. The contact 

patch was tested by sealing the gap between the bottom of the wheel and the ground using 

foam and pads, however, there remains some questions as to the viability of this 

methodology, particularly since the characteristics of the positive pressure peak observed at 

this contact patch was found to depend on the quality of sealing of the gap in this region. 

For the stationary isolated wheel case, Cogotti [36] also found drag and lift force coefficients 

to be CD = 0.48 & CL = 0.04 at a ground clearance of H/D = 0.10; however rotating wheels 

produced a larger drag and a net negative lift (CD = 0.54, CL = -0.14), in-line with other 

published work [34], although the stationary wheel in direct contact with the ground 

produced more drag than the rotating wheel (Stationary: CD = 0.59, Rotating: CD: 0.58). Yet, 

this result was found to be dependent on installed fairings around the rims and hub, as 

Morelli [33] had also previously discovered that the drag coefficient would be reduced by 

Figure 27 – Pressure distributions under a rotating wheel at different ground clearances [36] 

A 
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fairing the wheel rim. Cogotti [36] confirmed this with an investigation using faired rims and 

obtaining lower drag forces of CD = 0.54 and CD = 0.49 for the stationary and rotating wheel 

respectively. With the wheel in contact with the ground, the negative lift force experienced, 

with a small gap for the rotating wheel, changed to a positive lift characteristic (CL = 0.18), 

distinctly different however from the stationary wheel case, which generates a larger lift (CL 

= 0.27) than the rotating case, which was also found to be dependent on the quality of sealing 

between the wheel and the ground plane [34].  

In an attempt to theoretically categorise the isolated wheel configuration, Cogotti [36] also 

considered the wheel as a cylinder, treating the body through ‘the theory of vortices 

associated with lifting bodies’ [21]. As a result, Cogotti displayed the resultant motion of 

these dominant vortices (Figure 28), illustrating that for the stationary wheel in free air,  ((a) 

Figure 28 – Rear near wake pattern, (a) stationary wheel, (b) rotating wheel, (c) rotating wheel in contact with the 

ground [36] 
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in Figure 28), separation occurs on all four edges of the wheel forming two pairs of counter 

rotating vortices, symmetrical about the vertical and horizontal centreline of the wheel. With 

rotation applied, ((b) in Figure 28), the four vortices predicted to occur on the stationary 

wheel, are replaced by two mid region vortices. With ground clearance reduction to zero 

(wheel being in contact with the ground (c)) the two counter rotating vortices are seen to 

develop more near the contact patch, with the four upper vortices still present. Unfortunately, 

later work performed by McManus & Zhang [29], showed that this was indeed too simplified 

a characterisation of this flow field and that the real flow is distinctly different.   

Waschle et al [37] conducted experimental and numerical investigations to make 

comparisons of velocity, pressure distributions and aerodynamic force measurements around 

both, a stationary and rotating isolated wheel in contact with the ground. The experimental 

work, obtained using Laser Doppler Anemometry (LDA), was used to compare results 

obtained via two CFD codes; STAR-CD™ and PowerFLOW™.  

A scaled model of an isolated front wheel of a Formula-1 car was used in this investigation, 

comprising a wheel diameter of 215.8mm and tread width of 80.0mm, tested in a wind tunnel 

with a free-stream velocity of 45m/s (Ren = 5.37x10
5
). The wheel was held in the wind tunnel 

by a steel support, with the wheel configuration consisting of an aluminium rim with 5 

openings, a tyre and a brake disk. The numerical solutions were also conducted with an inlet 

velocity equivalent to the experimental set up. The computational grid consisted of a 

hexahedral mesh consisting of 6.7million cells. The simulations in STAR-CD™ used two 

approaches: firstly using the standard 𝑘-ε model and secondly, using a two layer approach 

which uses the 𝑘-ε model to resolve the far field and using a one equation model for 

modelling the near wall flow. These simulations were performed at steady state, therefore 

obtaining the last iteration after convergence to be represented as the averaged flow field, 

which was then compared with the time averaged measurements. However, PowerFLOW™ 

used the RNG-𝑘-ε turbulence model, with simulations obtained in transient conditions 

computed for 0.15 seconds in real time, which converts to 20,000 time steps.  

For the stationary wheel in contact with the ground, results from all four methods showed two 

strong visible ground vortices, as well as a strong central downwash in the rear wake of the 

wheel, as has been shown in Figure 29 and in agreement to the findings in [29]. However, the 

PowerFLOW™ data indicated a downwash 8% larger in magnitude compared to the 

experiments, as shown (A) in Figure 29 and illustrated by the intensity of the velocity vectors 
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directed downstream, compared to the other three methods. Separation does not occur along 

the centreline of the stationary wheel and was thought to be due to the three dimensional flow 

around the wheel. Central vortex core positions were located lower than on the experiments, 

by ≈15mm (PowerFLOW™) and ≈20mm (STAR-CD™), although regions of back flow 

(shown by the lighter regions in the contour plots) were predicted to be in good agreement 

between the methods.   

The application of rotation showed large differences in the flow field compared to the 

stationary case. The ground vortices still exist, but are much weaker (as indicated by the 

intensity of the velocity vectors between Figure 29 and Figure 30), although observed closer 

together due to the moving ground, representing the jetting vortices due to the diverging 

boundaries as found by Fackrell [22].  Separation is observed on the top surface of the 

rotating wheel, forming a wake on the upper half of the wheel which is taller in comparisons 

to the stationary rear wake, with the width of the wake remaining within the projected profile 

of the wheel. The two layer approach using STAR-CD™ was found to agree mostly with the 

experimental data (Figure 30); however the wake in the upper region appeared to be slightly 

Figure 29 - Comparisons of velocity field in the rear wake of the stationary wheel at x = 150mm, illustrating 

velocity vectors and contours of the velocity component in streamwise x-direction [37] 

(A) 
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wider by up to 10mm. At the cross section x=420mm of the rotating wheel, the results from 

PowerFLOW™ shows better agreement to the experimental result with regard to velocity 

magnitude and position of the ground vortices. In the centre plane, for the rotating wheel, a 

wake is present on the upper rear region of the wheel due to the flow separating on the upper 

surface. The strong downwash that was observed behind the stationary wheel was replaced by 

small velocities. Both of the CFD codes compare well to the LDA measurements, even 

though similar differences are observed between the two codes. In general, the two layer 

model proved to be the most beneficial when modelling the rotating wheel, as differences to 

the experimental measurements were minimal.  The effect of drag and lift was also measured 

by the two CFD solvers and the experimental configuration. The STAR-CD™ two layer 

approach gave the closest comparison (CD = 0.620) to the experimental drag coefficient of 

0.612, whilst the STAR-CD™ k-ε and the PowerFLOW™ slightly under and over estimates 

the drag coefficient, with CD = 0.576 and CD = 0.628 respectively. However, the lift 

coefficients showed PowerFLOW™ providing better agreement to the experiments, with 

CL=0.526 and 0.530 respectively. On the rotating case, PowerFLOW™ also compared closest 

Figure 30 - Comparisons of velocity field in the rear wake of the rotating wheel at x = 150mm, 

illustrating velocity vectors and contours of the velocity component in streamwise x-direction [37] 
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to the experimental results, with CD= 0.540, CL=0.311 and CD=0.566, CL=0.315 respectively, 

indicating a rotating wheel produces less drag and lift compared to a stationary wheel in 

contact with the ground.  

A study of the flow field around an isolated wheel in contact with the ground was also 

investigated by McManus & Zhang [29]. The computational study captured the aerodynamic 

flow field around both stationary and rotating wheels using URANS transient simulations. 

These simulations were conducted on the same wheel geometry ‘A2’, as used in Fackrell’s 

experimental wheel configuration [22], to provide experimental validation of their 

methodology.  

Overall results showed a combination of complex vortical flow structures and multiple 

separation reattachment features. For the stationary wheel the flow was found to separate on 

the upper rear edges of the wheel (A) (Figure 31), and then reattach at (B) through the 

interaction of flow moving on to the central surface of the wheels from the sides (shown in 

(D)). This entrainment encourages attached flow on the central region of the wheel, which is 

Figure 31 - Streamlines and iso-surfaces of vorticity magnitude in the rear wake of the stationary wheel [29] 
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directed, thereafter, straight down towards the ground. Trailing vortices are also seen when 

the flow rolls over the wheel edge, in the range of 10° - 30° from the horizontal (G in Figure 

31).  

Within the hub region, airflow is of a low velocity, with a complex interaction with the main 

flow traveling from around the sides of the wheel. The results of these interactions were 

found to form arch shaped shear layers, which extend from the hub cavity to the upper sides 

of the wheel, forming a subsequent wake region at E. A small circulation that occurs in the 

separated region (C) is where the rotation in the surface flow appears from.  

Large regions of separation were also found on the lower sides, on each side, of the stationary 

wheel (L) as the flow in front of the wheel is accelerated around the space between the 

ground and the wheel, causing a high velocity flow to be pushed sideward in front of the line 

of contact (J). This flow phenomenon is then decelerated after entering the mainstream flow 

field and is restricted from vertical propagation.  

Flow features in this lower region, for the case of a rotating wheel, were found to be similar 

to the stationary wheel. Comparing McManus & Zhang’s [29] findings in this region to that 

of predicted by Fackrell [22], expectations were that the positive pressure peaks would 

increase the velocity of the sideward flow from beneath the wheel, increasing the separation 

region with the subsequent formation of a horseshoe vortex. As this vortex was not found by 

McManus & Zhang [29], they proposed that this increase in sideward velocity was the result 

of other oncoming flow interactions. Additionally suggesting, the flow travelling from under 

Figure 32 – Iso-surface of vorticity magnitude on the upper 

rear wake of the rotating wheel [29] 
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the front of a rotating wheel is deflected by the free stream velocity, with the flow travelling 

from under the front of a stationary wheel deflected by the low velocity boundary layer flow. 

As a result, the separation region formed around the stationary wheel is constrained less, 

allowing greater transverse growth than for the rotating wheel case.  On the upper rear wake, 

the flow was observed to separate further towards the top of the wheel, subsequently forming 

an arch shaped vortex, shown H in Figure 32. This is a result of the attached flow on the 

rotating wheel, interacting with the separated shear layer on top of the wheel, causing 

recirculation in the flow. 

Perhaps the most fundamental finding from this work and in agreement with others [22, 34], 

was the generation of a pair of counter rotating longitudinal vortices, formed in the lower 

near wake of the stationary wheel, from the downwash over the rear surface of the wheel and 

its interaction and roll-up with the ground. These vortices were shown to extend upstream to 

cover the near wake region at the rear of the wheel and extend laterally downstream, as they 

get weaker due to the low momentum and vorticity. These characteristic vortical structures 

also exist in the rear wake of the rotating wheel case, however for this case they are formed 

due to the areas of recirculation within the wake of the lower separation region (L).  

Other results presented in McManus & Zhang [29] also illustrated surface pressure 

distributions. As displayed in Figure 33, their results for CP were in reasonable agreement 

with published literature for the stationary wheel, although this agreement deteriorates at the 

contact patch (illustrating a discrepancy of approximately 4.5 degrees between the CFD & 

experimental results, Figure 33(a)), as the pressure falls before reaching the stagnation point 

upstream of the line of contact. Due to the curvature of the wheel on the upper surface, the 

flow is thereafter accelerated and separates at θ = 232° (S-A) or θ = 210° (RKE model). From 

Fackrell’s experimental results [22], separation was observed at θ = 210°, providing 

Figure 33 – Comparisons of surface pressure distribution on the centreline of (a) stationary & (b) rotating wheel to 

Fackrell’s [22] experiment. [29] 



 
44 

 

confidence to the methodology used. Streamlines along the rear surface of the wheel also 

indicated that separation only occurs near the rear extremity of the wheel, with the flow 

travelling down the central region of the wheel remaining attached (Figure 31). For the 

rotating wheel, the experiments from Fackrell [22] indicated flow stagnation below the front 

of the wheel at θ=5.6°, in agreement with the predicted θ = 4.2° from S-A & RKE results 

[29]. For this special rotating configuration, at angular positions closer to the ground, the 

pressure falls and then reaches a pressure peak at the line of the contact patch. The pressure 

peak observed is the ‘pumping’ or ‘jetting’ described earlier, created by the boundary layer 

interaction on the rotating wheel with the moving ground, as McManus and Zhang [29] found 

pressure peaks 36% higher than that observed from Fackrell’s experiments. The separation 

position for the rotating case [22] predicted θ = 280° experimentally, whilst both S-A & RKE 

methods found separation to occur at θ = 270° and θ = 255° respectively; with reasoning by 

McManus & Zhang [29] suggesting that the slight difference in these results (when 

comparing to [22]), is due to the fact that the wheel used in the experimental measurements 

had a 33% difference in width compared to the wheel used in their computational results. 

Having performed their computational analysis and compared it to some experimental results, 

Figure 34 shows the proposed computational flow field around both the stationary and 

rotating wheel configurations. These shows the dominant result presented in McManus and 

Zhang and separates the fundamental differences in attached flow and central downwash, as 

well as the arch shaped & counter rotating vortices observed behind the rotating wheel. 

Comparing force coefficients with [22], McManus & Zhang [29] have found that the forces 

on the rotating wheel are less than that observed on the stationary wheel, as shown in Figure 

35, showing similar results between the two computational methods with agreement to [22].  

Figure 34 – Flow characteristics on general isolated wheel, (a) stationary (b) rotating [29] 
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Axon et al [38] has also performed work on an isolated wheel in contact with the ground. 

Using CFD primarily, the wheel was modelled as being deformable through trimming the 

wheel at the bottom and creating vertical boundaries down to the ground plane. In much the 

same way as McManus and Zhang [29], the aim of this study was to create a CFD model of a 

known wheel geometry (‘B2’ from [22] in this case) so direct comparisons could be made. 

However, unlike McManus & Zhang [29], Axon et al [38] did not include the hub in this 

CFD model, which also consisted of a slightly different wheel edge profile when compared to 

Figure 36 – 90% total head contour behind stationary 

wheel at a plane x = 0.699 [38] 

Figure 35 - Time-averaged force coefficients from [29] with a 

comparison to Fackrell's [22] experimental results 
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the ‘B2’ wheel in [22]. For the rotating wheel case, maximum pressure was found on the 

centreline of the wheel just before the contact patch, with the peak found to be sensitive to 

grid density. Comparisons of areas of separation at the top of the wheel were found to be 

poor, with an error of ±30° when compared to the experimental results, and an additional area 

of poor comparison found on the edge of the wheel. They did, however, assume that this was 

due to the difference in wheel edge profile, which is known to affect surface pressures 

substantially. The pressure distribution over the top of the stationary wheel was under 

predicted; still the general trend was in very good agreement with experimental results in 

[22]. Wake measurements (Figure 36) also showed a good comparison to [22] near the 

ground plane. On the upper half of the wheel, the computational wake is seen to be much 

taller than observed in [22], due to the under prediction of peak pressure over the top of the 

wheel. With the drag force coefficient for the rotating wheel case being generally in good 

agreement with the experimental results, lift however, was over predicted by 8.2% and was 

thought to be due to the slightly later separation point. In general agreement with others [22, 

29], the rotating wheel was found to produce less lift and drag than the stationary wheel.   

Mears et al [39] also conducted an experimental study to understand the surface pressure and 

wake physics around a stationary and rotating pneumatic tyre. The wheel chosen was based 

on a racing car wheel model with an aspect ratio of 0.54, in comparison to Fackrell’s ‘B1’ 

wheel profile [22]. Overall, the surface pressure distribution along the centreline of the wheel 

was found to be in good agreement with Fackrell’s work [22], although the base pressure 

region of the stationary wheel was somewhat under calculated by Mears et al [39], as shown 

in Figure 37(a), and was thought to be due to differences in wheel edge profile, aspect ratio 

and Reynolds number. A larger lift force was experienced for the stationary wheel 

configuration compared to the rotating wheel, which was characterised via a stronger 

negative pressure peak at the top of the stationary wheel. Generally, surface pressure along 

the centreline of the rotating wheel, Figure 37(b), agreed reasonably well with [22], showing 

both similar areas of separation. In agreement with [22], a pressure peak of CP ≈ 2.2 was 

found within the contact patch region of the rotating wheel configuration in [39], with similar 

reasoning as already explained for Fackrell [22]. A strong negative peak was found by [39] 

immediately after the line of contact; and although further investigation regarding this 

negative peak was suggested to be carried out by [39], this peak was not observed in 

Fackrell’s [22] experiments, yet his theoretical prediction suggested that this negative peak 

should exist. Flow separation positions at the top of the rotating and stationary wheel were 
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observed at θ ≈ 290° & θ = 230° respectively, and were found to be in general agreement 

with other work. Pressure contour plots in [39], and illustrated in Figure 38, showed that the 

wake behind the stationary wheel is lower and wider, than the wake behind the rotating wheel 

which is higher and narrower, also found by [22], showing that this was due to the earlier 

separation from the rotating wheel. Vortices in the wake of the stationary wheel were also 

observed to be stronger than the vortices formed on the rotating wheel, however, the vortices 

formed behind the rotating wheel were somewhat closer together and higher in vertical 

position than those found for the stationary case [39] due to an up-wash effect caused by the 

rotary motion of the wheel. Vortices for the rotating wheel also indicate a weaker rotational 

velocity in the flow when compared to the stationary case, due to the weaker vortices 

positioned behind the rotating wheel. Generally two counter-rotating vortices are visible in 

the lower rear wake of both the stationary and rotating case, with both configurations in 

agreement with McManus and Zhang [29].  

(a) 

(b) 

Figure 37 - Centreline Pressure distribution, (a) stationary (b) rotating wheel [39] 
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Using the same wheel geometry and model described above, Mears et al [40] also carried out 

a subsequent investigation to analyse the flow field, specifically around the pneumatic tyre 

used previously in [39]. Overall, lift and drag measurements showed general agreement to the 

results obtained by Fackrell [22], showing a decrease in lift and drag for the rotating wheel 

(from surface pressure distribution: ∆CD = -0.17, ∆CL = -0.18 and from load cell data: ∆CD = 

-0.07). Centreline surface pressure distributions were similar to that observed in [39], as the 

same model was used; however additional pressure tapping locations were added to the wheel 

in [40]. Surface pressure distributions for the stationary and rotating wheel at the location of 

tapping 5, indicated that a stagnation region was not seen at this location for either the 

stationary or rotating wheel as there is a cross flow present across the wheel, due to tapping 5 

being located more towards the sidewall of the tyre tread. Local pressure on the rotating 

wheel decreases to CP ≈ 0 as the flow approaches the contact patch region, before reaching a 

positive pressure peak of CP ≈ 1.2 upstream of the contact patch (also referred to the ‘jetting 

phenomenon’ [22]). However, downstream of the contact patch, a pressure distribution 

similar to that on the centreline of the wheel is observed and was thought to be due to the 

cross flow not affecting the highly unsteady flow in this area behind the wheel. The pressure 

distribution at tapping 9, located on the side edge of the wheel, was also analysed and 

indicated CP similar to that expected of the jetting phenomenon, at 90°. The peak was not as 

extensive as observed on the centreline of the wheel or as discussed previously on tapping 5, 

and was thought to be because tapping 9 is not in contact with the ground plane, therefore the 

air that is pushed through between the bottom of the wheel and the ground plane, must travel 

down the side of the wheel. For the stationary case (Figure 39(a)), accelerated flow is present 

over the top of the wheel, resulting in a strong downwash (A) with a velocity magnitude of 

(a) (b) 

Figure 38 - Pressure contours at z = 2.5D, (a) stationary (b) rotating wheel [39] 



 
49 

 

18.5m/s at the back of the wheel, also observed in [29]. Separation was found to occur on the 

stationary wheel at θ = 225°, creating a separated shear layer that rolls up into a vortex in the 

rear wake of the wheel, resulting in reversed flow characteristics as shown in Figure 39(B). 

For the rotating case, Figure 39(b), the ‘jetting phenomenon’ can be seen with a slight 

downwash (C) comprising a velocity magnitude less than 4m/s. Additionally, an up-wash (D) 

is present due to the air being entrained in the direction of wheel rotation. When analysing the 

upper rear wake, vector plots on the stationary wheel (Figure 40(a)) show attached flow 

before separation, subsequently forming a vortex as described earlier. The rotating case, 

Figure 40(b), shows an earlier separation (E) compared to the stationary wheel (as discussed 

earlier and shown in all other studies comparing stationary and rotating wheel 

configurations), thereafter causing recirculation of the flow on the wheel surface (E). Overall, 

with comparisons made to instantaneous velocity vector plots obtained at different time 

intervals, it has been suggested by Mears et al [40] that the flow in the rear wake of a 

stationary wheel appears to be more unsteady than for the rotating case.   

With reference to previous work carried out by Mears et al. [39, 40], Mears & Dominy [41] 

carried out another experimental & CFD study, on the same wheel geometry already used in 

[39, 40]. Using the κ-ε turbulence model to obtain a steady state solution, an unstructured 

tetrahedral volume mesh consisting of 3.1 million cells was used for the CFD mesh, with the 

moving ground and wheel edge peripheral velocity set to 14.7m/s and its equivalent angular 

velocity, respectively.  

Comparing the lift and drag force coefficients to the previous work by Mears et al. [39, 40], 

Figure 39 - Velocity vector plot on the centreline of the lower rear (a) stationary (b) rotating wheel [40] 

(A) 

(B) 

(C) 

(D) 

(a) (b) 
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CD was found to be in good agreement. However, there were differences in results for CL, due 

to the differences in relative separation positions measured and presented by the methods 

used. Centreline surface pressure distributions taken both, experimentally and from CFD are 

shown in Figure 41 for comparison. Generally, there is good agreement between the results 

near the contact patch, indicating a pressure peak of CP = 1.32, considerably lower than the 

experimental pressure peak of CP = 1.9. A low pressure peak of CP = -0.6 & CP = -1.45 was 

observed in the CFD and experimental pressure behind the contact patch respectively, with 

this region of low pressure thought to be due to the presence of the two diverging boundaries 

of the wheel and the moving ground plane, pulling air out from the contact patch. This 

observed rear jetting motion opposes the jetting phenomenon discussed earlier at the front of 

the contact patch, as a suction of air into the contact patch causes a higher pressure peak. 

Comparing the separation positions for the CFD & experimental results, results for the CFD 

were at θ ≈ 245° and experimentally at θ ≈ 290° respectively. The earlier separation due to 

the rotation on the wheel observed experimentally, is somewhat in agreement to Fackrell’s 

experimentally measured position at θ = 280° [22]. Although separation was computationally 

observed further downstream on the wheel, a similar result was found by McManus & Zhang 

[29] when comparing their computationally obtained separation position to [22]. Asymmetry 

in the wake behind the wheel on the experimental set up was attributed to the support sting, 

where the wake was observed to be much wider than observed on the CFD results, 

Figure 40 - Velocity vector plot on the centreline of the upper rear (a) stationary (b) rotating wheel [40] 

(E) 

(a) (b) 
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surprisingly; however the pressure gradients across the wakes were in good agreement. 

Velocity vector plots for the experimental and CFD results were generally in good agreement, 

although flow vectors were found to differ slightly due to the difference in flow separation 

positions obtained between the two methods. 

Using Fackrell’s work, again as a benchmark, Ramachandran & Doig [42] carried out CFD 

investigations using RANS, URANS, LES and DES on the ‘A2’ wheel configuration [22]. 

After carrying out initial simulations using steady state RANS, they found that the ‘lip’ or 

‘rim’ of the hub had minimal effect on the flow field, deciding thereafter, not to model the 

‘lip’ on their model, to reduce the mesh density and computational expense. The contact 

patch was also modelled off the surface by 1.2mm to reduce the skewness of the cells in that 

area. Two structured grids of different densities (3.48 million cells and 6.79 million cells) 

were created using the STAR-CCM+ grid generation software. However, after a grid 

refinement study based on lift and drag coefficients, it was decided to use the coarse mesh 

only, as a small error (1.7% for lift and 2.7% for drag) was present with this mesh, compared 

to the finer mesh proposed. Free stream velocity of 18.6m/s was used which also 

corresponded to the peripheral speed of the rotating wheel. Both the RKE model & Kw-SST 

models were employed for the RANS method, but the RKE was ultimately used as it was 

decided that this model gave more accurate results. For URANS and DES the KW-SST & 

Figure 41 – Centreline Pressure dsitribution, experimentally [40] 

& CFD, [41] 
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Spalart-Allmaras models were used respectively. Overall, the centreline pressure coefficient 

for all simulations, under predicted the pressure peak at the contact patch when compared to 

Fackrell’s CP, with this difference attributed to how well the contact patch was modelled 

through the geometry and grid resolution. Base pressure behind the wheel was found to be 

within the range -0.5 < CP ≤ -0.1, and well predicted by all methods, however differences 

occurred at areas of separation with the different CFD models used. RANS, URANS & DES 

predicted separation to be within Fackrell’s experimental range of θ = 280°-290°, at 290°, 

289° & 293° respectively, with corresponding pressure coefficients of -0.41, -0.6 & -0.38 

respectively, to Fackrell’s CP of -0.5 at his measured separation location. LES predicted 

separation further downstream at θ = 275°, with CP = -0.94. These variations in CP & 

separation locations indicate the necessity for LES to have a much larger grid resolution 

within the boundary layer. Drag force coefficients measured, were in good agreement with 

each other resulting in the range of CD ≈ 0.61 – 0.68, with the anomaly of CD ≈ 0.52 from the 

steady state RANS, indicating that it may not be suitable to model an unsteady flow field 

Figure 42 – Vorticity plots for (a) RANS (b) URANS (c) LES (d) DES; upper row: z/d = 0.22, lower row: z/d = -0.04 

[42]. Flow travelling towards –z/d. 

Lower Row 

Upper Row 
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using a steady state solver. Lift coefficient showed values, for the sRANS, URANS, LES & 

DES models, at CL ≈ 0.07, 0.19, 0.28 and 0.1 respectively, with the largest value observed by 

the LES method thought to be caused by the much later separation position.  The jetting 

phenomenon on a rotating wheel proposed by Fackrell [22] is clearly seen in [42], showing 

the separation location adjacent to the surface of a rotating wheel, with the rotation of the 

wheel causing a strong shear flow to travel in the opposite direction. Vorticity contour plots 

from Ramachandran and Doig [42] (Figure 42), show the pair of upper hub vortices found in 

the investigation by McManus & Zhang [29], with symmetry on each hub; however, URANS 

solutions predicted the vortices being located more towards the centre of the hub, with the 

LES simulation indicating much more mixing within the hubs. Further downstream from the 

centreline of the wheel, Figure 42 (lower row), the flow has developed to displace towards 

the centre of the hub, what was referred to as a ‘blow out’ effect.  Another difference in the 

flow field observed near to the ground plane was the increased levels of vorticity, resulting in 

a wider wake apart from the steady state RANS. The flow is dispersed after interacting with 

the contact patch, with separation further downstream the wheel using the LES method. From 

Figure 43, wake physics predicted by LES was found to be shorter than the wakes obtained 

by the other three methods, with the ‘blow out’ effect found to affect the upper wake. For the 

URANS & LES simulations, a larger ‘blow out’ region, corresponding to the wider upper 

wake downstream on both sides of the wheel can also be seen, whilst vorticity levels on the 

DES was observed to be smaller corresponding to a weaker upper wake. Overall, the authors 

were able to identify the deficiency in using the steady state RANS solver, as the URANS, 

LES & DES methods, provided a better understanding of the flow field in the unsteady wake 

region behind a wheel. 

Figure 43 – Vorticity plots at z/d = -0.52, for (a) RANS (b) URANS (c) LES (d) DES from [42]. Flow travelling 

towards –z/d. 
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A 60% scaled isolated rotating formula 1 wheel has also been used to investigate wake 

physics of a wheel in contact with the ground [30]. As all previous studies that have been to 

date, carried out on idealised wheels without the effect of modelling the tyre tread, Axerio-

Cilies & Iaccarino [30] presented work which included this influence. Four wheel geometries 

were tested; a simplified wheel geometry with wheel fairings; a full wheel geometry with 

outer ducts, inner passages and brake assembly; a full wheel geometry with exterior brake 

ducts and spokes; and simplified wheel, with a Reynolds number of 5.0 × 10
5
 based on wheel 

diameter (0.3948m). These four geometries were denoted CI, CII, CIII and CIV respectively. 

Both experimental and CFD investigations were carried out at a free stream velocity of 

18.4m/s in a wind tunnel fitted with a moving belt. CFD simulations were carried out using 

hybrid structured-unstructured grid containing tetrahedral cells in the boundary layer, with 

hexahedral cells extending further out to the far-field domain (mesh sizes from 9 - 27 million 

cells). As already discussed from earlier work, results also indicated a counter rotating vortex 

pair dominated the rear lower wake behind the rotating wheel, which in agreement with 

McManus & Zhang [29], were found to originate from the front of the contact patch, due to 

the ‘jetting’ phenomenon. Generally, the wake was also found to be narrower and taller, with 

a larger area of recirculation behind the wheel compared to a stationary wheel. This is also 

observed in other studies [22, 39], and was a result of separation occurring on top of the 

rotating wheel compared, to the further downstream separation position expected on a 

stationary wheel. This flow mechanism also forms two vortices at each shoulder of the tyre. 

The influence of the support sting and wheel camber was also found to import a degree of 

asymmetry in the rear wake at x/d=1.14, (Figure 44), generating a larger vortex on the right 

side (B) with the downwash region translating from right to left.   

Figure 44 - Time-averaged URANS velocity vectors at 

x/d = 1.14 in the wake of CI wheel configuration [30] 
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From comparisons of the experimental PIV measurements (CII configuration), to results from 

CFD, the upper two vortices (C, D) were found to be in the same location and of the same 

intensity in both results, Figure 45. The strong left vortex of the counter rotating vortex pair 

was found to overpower the right vortex, dominating the lower wake region. The downwash 

region was observed to be pushed towards the right side and then towards the centre of the 

tyre as it propagates further downstream. This was thought to be due to the cross flow of air 

moving towards the centreline of the tyre entrained by the top left vortex.  

As this configuration was modelled with the brake duct (Figure 46), the brake duct was found 

to ‘inhale’ a lot of the air forming a low pressure region, hence a stronger cross flow (B). As 

the air exits near the top of the right side of the hub (C), a strong asymmetric recirculation 

occurs resulting in a strong downwash (D) towards the right side of the wheel, as the vortex 

on the left dominates the majority of the rear wake (A). Nearly all the turbulence models used 

for this comparison over predicted the intensity of the lower left vortex, apart from the 

unsteady RKE model which found the cross flow to reduce the vortex intensity, observed 

through comparison to the experimental PIV data. The steady and unsteady RKE models, 

predicted the separation at the top of the wheel to be at θ = 270°, corresponding directly to 

their measured experimental separation location at θ = 270°. The stagnation region was also 

found to be equally well predicted, at θ = 6° (using both the RKE models compared to the 

experimental set up). As this study was the first study to publish the pressure change along 

the tread of the tyre on a fully loaded racing wheel, the addition of modelling the tread and 

the load was found to have a significant effect on the contact patch. They found that the 

Figure 45 - Velocity vectors in x/d=0.57 plane in the wake of CII wheel configuration, (a) PIV (b) CFD [30] 

(a) (b) 
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negative pressure peak, also observed by previous authors, on the ‘rotating wheel has 

approximately 12% less drag, 72% less upward lift and 50% less side force compared to a 

stationary wheel’ [30]. Figure 47 indicates the flow pattern along the centre plane of the 

wheel with streamwise velocity profiles. At the front of the wheel, as the stagnation region is 

approached, the increase in pressure causes the flow to decelerate. The formation of the shear 

layer causes the air to slow down, as it flows over the top of the tyre. At the top of the wheel, 

a negative streamwise velocity, results in the formation of the arch-shaped vortices, 

confirmed by McManus & Zhang [29]. Further downstream, the streamwise velocity appears 

to merge with the free stream velocity.  

Figure 47 – CII streamwise velocity profiles for centre plane from experimental and CFD URANS simulations [30] 

Figure 46 - Time-averaged URANS velocity vectors in 

x/d=1.14 plane in the wake of CII wheel configuration [30] 

(B) 

(C) 
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Overall, by investigating the flow field around a wheel configuration corresponding to real 

world conditions with the inclusion of tyre treads, the existence of the pair of counter rotating 

vortices was confirmed and found to be asymmetric, due to the air travelling through the hub 

creating a cross flow, which ultimately reduces the intensity of the vortex found on the right 

side of the wheel. From the six different turbulence models tested, the KW-SST model was 

closest at determining the experimental vortex core locations; however if the velocity fields 

from each turbulence model were translated so that the co-ordinate origin of each simulation 

lies on a particular vortex core, the RKE model was found to be most accurate at predicting 

the strength and intensity of the vortices. The inclusion of modelling the treads on the wheel, 

as well as on the contact patch geometry, was also found to affect the drag by up to 3%.   

Saddington et al [10] also carried out Laser Doppler Anemometry (LDA) measurements in 

the near wake of an isolated formula one wheel rotating in contact with the ground, with a 

free stream velocity and Reynolds number of 30m/s and 6.8×10
5
 respectively. Measurements 

taken at various streamwise locations also showed a near wake consisting of two lower 

ground vortices and one central region of recirculation, as illustrated in Figure 48.  

From these results, the size of the two lower vortices also indicated asymmetry due to the 

presence of the support sting, as was also found in [30]. Four regions of vorticity were clearly 

visible in their results, with line integral convolution images at x/d = 0.6, presented in Figure 

49(a), showing two upper and lower vortices, with the upper two vortices dissipating quickly 

and merging with the two lower vortices slightly below the horizontal centreline of the wheel 

Figure 48 – Contours of mean streamwise velocity at x/d = 0.6 [10] 
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by x/d = 0.75 (b). All four separate vortex positions were found within the projected area of 

the wheel outline and separated by a central downwash region.  

 

Figure 49 – Velocity Vectors (left) & line integral convolution image (right) from [10] 

(a) 

(b) 

Figure 50 – Line integral convolution image from [10] 
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Measurements were taken on a plane intersecting the wheel, at x/d = 0.4, in an attempt to 

identify the origins of the two upper vortices. Results presented in Figure 50, clearly show the 

origins of the two upper vortices at the top of the wheel, positioned within the projected 

wheel outline, suggesting that they are formed immediately downstream of flow separation 

and roll up around the shoulders of the wheel.   

In a subsequent investigation, Knowles et al [43] investigated how the presence of a formula 

one car affects the wake behind a formula one wheel. LDA was used, with measurements 

taken in two planes downstream of the wheel at x/d = 0.75 & x/d = 1, under the same 

condition as used in [10]. Streamwise velocity contours obtained from the two planes behind 

the wheel showed the effect the car has on the wake, Figure 51. With the car present, the 

Figure 51 – Contours of mean streamwise velocity at x/d = 0.75 and x/d =1 [43] 
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wake is taller, indicating separation occurs further upstream on the wheel when modelled 

with the car. Areas of recirculation (indicated by the dashed lines) in Figure 51, are shown to 

be affected by influence of the car. The central region of recirculation observed in the wake 

behind the isolated wheel was thought to be due to the entrainment of flow into the region by 

the upper vortices. However, with the inclusion of the car, the central wake region was 

replaced by a strong recirculation, spanning the central vertical axis, within the projected 

wheel outline. The downwash, initially observed for the isolated wheel case, has been 

replaced by a ‘side wash’ directed towards the centre of the wheel, also observed in [30], 

creating the low velocity reversed flow due to the earlier separation, reducing the entrainment 

effect, as the two upper vortices observed on the isolated wheel case are no longer visible 

with the car present. However with the influence of the car, a single smaller trailing vortex 

Figure 52 – CFD Line integral convolution images at different planes downstream F1 wheel 

with & without sting from [31] 
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appears on the bottom right of the wheel. Although the origins of the vortices, behind an 

isolated wheel, had been shown to be within the projected profile of the wheel in [30], the 

smaller vortex observed on the lower right has its origin just outside of the profile, leading 

the authors to speculate that this vortex was not generated from the wheel. This assumption 

was reinforced by the work carried out by van den Berg [44], as this vortex was on the likely 

path of the front-wing end-plate vortex. Therefore, overall analysis of their results showed 

that the recirculation regions in the rear wake of a wheel, with the influence of the car, occurs 

along the vertical axis as opposed to the streamwise axis for the isolated wheel case; also 

showing that the car body has a strong interference effect on the wheel wake flow.   

Knowles [31] subsequently described the findings of these results in more detail and also 

conducted a computational investigation to make flow-field comparisons. The computational 

method involved modelling the wheel and the support sting, using a grid size of 1.5 million 

cells with the wheel modelled in contact with the ground. The grid, which consisted mainly 

of tetrahedral cells, was simulated with a ground plane given a moving wall boundary 

condition comprising a free stream velocity of 30m/s. Using the RANS standard k-w model, 

simulations were run until the monitors of drag, lift and mass flow rate reached a 

convergence criteria of up to three orders of magnitude, with first order schemes used to 

stabilise the flow before switching the simulation to the second order schemes, in a similar 

methodology to [30]. From the results in [10, 43], generally, good agreement was observed 

between the experimental and computational results. Centreline velocity profiles were, in 

general, well correlated though the asymmetry observed in the near wake from the 

experimental results was found to be less prominent in the computational results. Overall, the 

computational results under predicted the centreline streamwise velocity at z/d > 0.25 and 

over predicted the centreline streamwise velocity at z/d < 0.25, when compared to the 

experimental results. Comparison of the near wake for changes in streamwise velocity 

magnitude between the CFD & experimental data, suggested that the major difference 

between the two results was the prediction of the reversed flow regions on the bottom of the 

wheel (initially seen by the two blue low velocity regions in Figure 48), with the CFD results 

capturing two upper vortices (Figure 52). Further downstream, the upper vortices were found 

to merge into the general wake structure, forming a large area of reversed flow behind the 

wheel. This enhanced the increasing skewness of the central downwash as the flow 

propagated downstream, as well as reducing the asymmetry in the planes further downstream. 

Pressure coefficients obtained computationally were also compared to work carried out 
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experimentally by Hinson [45], who had obtained pressure data on a similar configuration. 

The centreline surface pressures were in very good agreement, with pressure peaks being 

observed upstream and downstream of the contact patch and showing flow separation in the 

region θ ≈ 270° & θ ≈ 295° (upstream from the top of the tyre), for the experimental and 

computational results respectively. One major difference was that the CFD base pressure was 

predicted slightly lower (∆CP ≈ -0.5) than observed in the experiment. This pressure data 

showed a similar trend to the pressure data obtained by McManus & Zhang [29], although 

lower peak values of CP ≈ 2.1 & CP ≈ -1.3 (upstream and downstream respectively) were 

found at the suction region near the contact patch.  

MacCarthy [12] has studied the aerodynamic effects on exposed racing car model wheels. 

Experimental tests were carried out in both water and in air, with solid and pneumatic wheel 

diameters ranging from 0.2-0.327m, corresponding to a range of aspect ratios from 0.38 - 

0.61, at a Re ≈ 4.7x10
5
. Results of the stationary and rotating wheel in contact with the 

ground in the water, shows the ‘jetting’ action previously observed by authors. The rotating 

wheel shows a more unsteady flow field than the stationary wheel, with large clusters of dye, 

representing vorticity, found on the rear surface of the rotating wheel, due to the earlier 

separation of the flow causing a low velocity wake to propagate downstream from that 

region. Two small clusters of dye were also found in the upper rear corners of the stationary 

wheel and were thought to be due to a pair of upper vortices being present, however, the 

central clustered region observed on the rotating case, was not present on the stationary case.  

PIV results obtained in the rear wake of the 38% pneumatic tyre, showed the dominating two 

upper shoulder counter rotating vortices originating from the shoulders of the wheel. Two 

weaker vortices are also seen on the lower region of the rear wake. With PIV data being 

obtained further downstream in to the wake, it was shown that, at a data plane 1.5D 

downstream, the upper two vortices merge with the two lower vortices at around the wheel 

mid-height. At up to 4D downstream, the weaker lower vortex pair, had shown to deteriorate 

at a slower rate but was still perceptible. Symmetry in the rear wake was observed up to a 

distance of one diameter downstream of the wheel; however after this region, the positive 

circulation of the vortical structures was evidently higher than the negative circulation, which 

was confirmed in the PIV data obtained 2.5D downstream, showing a highly skewed flow 

characteristic towards the bottom right of the wheel (when looking directly behind the 

wheel). A suggestion for this resulting asymmetry was the presence of the support arm.  
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MacCarthy [12] also investigated the influence of wheel yaw. Four yaw angles of ±6° and 

±2° were applied to the wheel, with vorticity in the near wake of the wheel yawed at -6° 

indicating the most dominant feature to be a shoulder vortex, located at the upper right corner 

of the wheel. The central downwash was also found to be highly skewed in that region with 

these findings being similar to the wheel yawed at 6°, but with wake characteristics skewed 

to the opposite side to the findings at -6° yaw. Velocity magnitude plots for all three angles in 

the positive yaw direction are shown in Figure 53. It is evident, that as the yaw angle 

increases, the velocity of the downwash is reduced with results further downstream showing 

the larger region of circulation present on the right side, as the vortex decays slower than 

observed on the right. A larger drag force was also found with the larger yaw angle due to the 

flow being more likely to separate in the adverse pressure gradient on the leeside, resulting in 

a larger wake and lower base pressure. The effect of covering the hubs had also shown to 

reduce the overall drag on a rotating wheel, as the flow remains attached on these surfaces 

travelling in the same direction as the flow. Velocity vector contour plots obtained of the flow 

field with the hub covers on and off, shows a larger lateral spread of velocity vectors 

indicating an increase in wake size, which also corresponds to an increase in drag force. The 

reduction in peak vorticity, at higher yaw angles, on the upper rear wake indicating weaker 

upper vortices was suggested to be the reason a lower lift force was experienced with 

increasing yaw angle. Results of drag coefficients obtained for different configurations are 

shown in Figure 54, and shows the immediate reduction in drag by up to 24% by sealing the 

hub cavities. Direct comparisons were also made to Fackrell’s ‘B2’ wheel [22] (CD = 0.58). 

Although the wheel used in both investigations were of the same aspect ratio and wheel edge 

profile, the design of the central hub was reported to be the reason for the difference in drag, 

as Fackrell’s hub was solid and smooth as opposed to the spoked design used in [12], 

resulting in the change in drag coefficient to CD = 0.63.  

However, the configuration with the ‘spokes blocked’ was thought to be the most similar 

configuration tested, when compared to Fackrell’s wheel, therefore, analysing drag 

coefficients (Fackrell’s B2 wheel: CD = 0.58 and Spokes blocked: CD = 0.59) showed that the 

results are in good agreement. 
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Figure 53 – Contours of velocity magnitude with velocity 

vectors at different yaw angles from [12] 
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Strouhal numbers ranging from 0.17-0.26 were obtained for three different stationary wheel 

configurations, with Reynolds number within the range of 1.3x10
5 

< Re < 6x10
5
, which 

corresponds well to St=0.24 for a typical Von Karman vortex shedding from a 2D cylinder 

and to those measured by previous authors. In order to investigate the instabilities around a 

stationary wheel in contact with the ground and the influence of aspect ratio and Strouhal 

number, a double wheel-width configuration was created by attaching two wheels together 

and bridging the gap to create a large smooth tread surface. A lower spectral peak frequency 

of St = 0.19 was obtained for the double width configuration, as opposed to the single wheel 

(St = 0.24), showing agreement to those observed by Bearman [46]; therefore indicating that 

the spectral peak frequency is higher on lower aspect ratio wheels. Overall, aerodynamics 

around an isolated stationary wheel in contact with the ground experiences a higher drag 

force compared to the rotating case. Separation is observed to occur upstream of the top and 

off the shoulders of the rotating wheel. Sizes of the hub cavity and support stings (if any 

present), can influence the size of the vortices in the rear wake, subsequently having an 

influence on the drag, as shown in Figure 54. The influence of yaw angle promotes the 

skewness in the rear wake of the wheel in the direction of the yaw angle.  

  

Figure 54 - Drag coefficients for a rotating wheel using different 

hub sealing arrangements [12] 
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2.3 Aerodynamics & Aeroacoustics of Aircraft Landing Gear 

The Landing gear of an aircraft combines various parts and components, of different shapes 

and sizes, (wheels, struts, linkages, hydraulic lines, etc.) and can therefore be referred to as a 

cluster of bodies which, in its entirety, has proven in the past to be one of the hardest to 

analyse and investigate effectively, as well as being one of the largest contributors to 

unwanted noise. Although the work of this thesis centres predominantly on a component of 

aircraft landing gear, it is thought to include a review of the current aerodynamic and 

aeroacoustic understanding of aircraft landing gear. The following section includes both 

experimental and computational work, to try and understand how the flow field around 

landing gears differ from individual wheel components.  

Lazos [7] experimentally analysed the mean flow characteristics around a four wheel landing 

gear, using a simplified scaled model of a Boeing 757 landing gear, entailing the wheels 

(diameter and width of 0.305m and 0.113m) and struts. Digital particle image velocimetry 

(DPIV) data was obtained on a plane bisecting the inline wheels, at a free stream velocity of 

29m/s, and fiduciary points [7] were used on one of the wheels to accurately map oil mist 

visualization images. Fifty pressure taps were also fitted around another wheel, whilst a 

servomotor was used to allow data to be measured around the full 360 degrees circumference 

Figure 55 – Velocity magnitude contours inplane bisecting inline wheels from [7] 
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of the wheel. Overall, the results obtained, indicated that the flow conditions were 

significantly unsteady with significant areas of separation, reattachment locations and 

complex aerodynamic interactions (Figure 55). Considering surface pressure on the 

circumferential centreline of the front wheel (Figure 56), a flow stagnation region is observed 

at the front of the wheel with CP = 1, before accelerating around the top and bottom surfaces 

of the wheel reaching a negative pressure peak (CP = -1). A pressure recovery is then 

observed until separation occurs on the rear surface of the wheel, where pressure peaks are 

observed at 134° and 148° (Figure 56); with flow attachment between -150° to -190°.  

Differences in these separation positions clearly indicate separation on the ground side occurs 

14° ahead of that observed on the wing side, and was suggested to be due to the geometric 

asymmetry of the centre support strut which, subsequently, contributed to the asymmetric 

flow features observed on the rear wheel. Illustrated in Figure 55, are the present asymmetric 

features on the rear wheel, including the magnitude of flow velocity on the wind and ground 

sides and the locations of flow attachment. A 5° offset is present between the two regions of 

flow attachment located on the rear wheel, at 30° on the wing side and -35° on the ground 

side. Flow attachment on the wing side, closer to mid-wheel height on the wheel, allows the 

flow to enter into the gap between the wheels, shifting the location of separation on the rear 

wheel towards the ground side, allowing the separated flow to roll up into a vortex behind the 

Figure 56 – Mean centreline pressure on front (fore) wheel, from [7] 
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front wheel. Contours of mean vorticity obtained in the same data plane bisecting both the 

front and rear wheels (Figure 57), correlates well to what Lazos [7] had already described, 

confirming the flow very nearly remaining attached, with a mean positive vorticity, on the 

wing side of the front wheel up to approximately 200° from stagnation, as well as the 

formation of the mid-wheel vortex. Away from the wheel surfaces, vorticity levels were 

found to be very close to zero, with changes in vorticity magnitude indicating regions of 

separation, Figure 57-A. A wavy, discontinuous region of negative vorticity is observed on 

the upper rear surface of the front wheel (approximately -115° from the front stagnation 

position), indicating an unstable vorticity region causing the flow to remain attached to the 

wheel at times with separation to otherwise occur. This highly unstable wake, contains 

turbulent eddies that will eventually scrub against the wheel surface due to the rotation of the 

vortex, and is therefore able to produce significant ground directed noise.   

To identify the position of the vortices between the wheels, datasets from three different 

positions were obtained by the DPIV data (Figure 58), showing changes in vortex position 

between the wheels. The vortex has a downstream shift, as the shear layer on the ground side 

of the wheel begins to separate, however, once it is completely separated the vortex is 

positioned directly in front of the rear wheel, as has been shown in Figure 58(c). The 

observed mid-wheel vortex was suggested to be a possible noise source, as if the vortex was 

resting against the wheel surface in a stationary position, it would scrub turbulent eddies 

Figure 57 - Mean vorticity in mid-plane of wheels [7] 

(A) 
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against the surface of the wheel. Also if the vortex was to move, the collision of the vortex 

with the wheels would also generate noise. In addition, with separation locations, vortex 

formation position (Figure 57) and vortex translation (Figure 58) being located more towards 

the ground side, the potential noise generated was suggested to be directed downwards 

towards the ground.   

To computationally validate these finding by Lazos [7] and to further understand the flow-

field, Hedges et al [9] used the same, but simplified geometry of the 31% scaled Boeing 757 

main landing gear model, using DES and URANS with the Spalart-Allmaras turbulence 

model. DES was employed, as it was found to be a more computationally efficient method 

than LES, when modelling the highly unsteady separated regions.   

For the URANS results, a grid consisting of approximately 2.5million cells was developed, 

with simulations initially started using the steady RANS (SRANS), to allow the flow to 

develop quickly across the domain up to three or four orders of magnitude, before employing 

URANS with a normalised time step of 0.03. Time averaging was turned on after 

Figure 58 – Change of positions of vortex between wheels from [7] 
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approximately 10 time units, so that sufficient time was given for any initial fluctuations to 

stabilise.  

Pressure coefficients along the horizontal centre line of the front and rear wheel are shown in 

Figure 59 from a top view. These illustrations were obtained by producing line plots of (1-

CP)/10, as they indicate the magnitude of CP on the surface by showing regions of low 

pressure as the curve appears to be ‘pulled’ away from the surface, whilst high pressure 

regions are indicated as the curve appears to ‘press’ against the surface. It can be seen from 

Figure 59-C, that the stagnation occurs at maximum CP in front of the wheel, as would be 

expected. All three computational methods are in agreement in this region. As the flow 

travels around the sides of the wheel, CP is reduced to a minimum as the flow is accelerated 

around the sides of the wheel (Figure 59-A). URANS simulations seemed to over predict this, 

generally, with DES showing best agreement with experimental results. For the majority of 

the rest of the wheel, CP comparisons between CFD and experimental results were well 

correlated, with DES predicting closer results than URANS. The greatest differences 

observed were found to be in the region between the wheels, as would be expected, due to the 

instability within this region [7]. DES simulations were also found to be more accurate when 

visualising the contour plots in [9], although URANS simulations had also revealed the same 

flow features with small spatial discrepancies. Comparisons of the numerical simulations to 

experimental lift and drag coefficients, were poor with values of the computational CD 

differing by up to 45% to the experimental, however, the authors suggested that this could be 

improved by carrying out a grid and time step refinement study, to ensure the correct grid is 

used in order to capture the flow features more accurately. Moreover, instantaneous and time 

Figure 59 – CP around the wheel when placed in the top view, (a) Front wheel, (b) rear wheel [9] 

C C 
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averaged velocity magnitude plots of the two CFD models were compared. The DES time 

averaged plots were also found to show eddy like features, as a result of separation off the 

shoulders of the wheels, a flow characteristic that the URANS simulations did not pick up 

due to the use of turbulence closure modelling. Overall the time averaged results for both 

numerical tests were very comparable. Instantaneous and time averaged vorticity magnitude, 

shown in Figure 60, was also analysed. The DES simulation in Figure 60(a) showed strong 

vortical structures downstream of the configuration, a characteristic that the URANS 

simulations (b) also predicted, however, some features were less oscillatory and ‘damped 

out’, as a result of using the URANS method. 

 

Further landing gear experiments were carried out at the NASA Langley Research Centre by 

Lazos [8], with the main aim, to improve computational modelling of the flow-field around 

landing gear. Tests were carried out on a scaled model of a simplified four-wheel main 

landing gear configuration of a Boeing 757, with the dimensions of the model and free stream 

velocity identical to that previously used by Lazos [7] and Hedges et al. [9]. The tests 

commenced at a Reynolds number of 6x10
5
, based on the wheel diameter, with data obtained 

via DPIV. The results from the tests were then used to make comparisons with the 

computational fluid dynamics results, which were also performed. The area where the vortex 

was previously observed, in between the wheel in [7], shows a region of high turbulence 

intensity, with maximum and minimum transverse velocity components of 60 and -48m/s 

respectively. This highly turbulent region is skewed towards the ground side of the 

Figure 60 – Instantaneous vorticity magnitude, (a) DES, (b) URANS [9] 
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configuration, leading to a suggestion by the authors that it may be of significant contribution 

to ground directed noise. The asymmetry in this mid region was also found to be due to the 

obstruction of the flow by the centre support strut, which contributes to the flow interaction 

between the ground and wing side. The flow through these areas, were expected to be of 

significance on fully functional landing gears, due to the stronger pressure gradients created 

by flow interactions with the gear elements in this region.   

Following the work of Lazos [7], Li et al [47] performed URANS computations on a 

modelled representation of a Boeing 757 main landing gear, inclusive of four wheels, 2 

diagonal struts, an oleo strut, a side door attached to the oleo strut and yokes and pins that 

assembled the landing gear structure. A structured grid consisting of 13.3 million grid points 

was used for the simulations, which were computed using the two equation k-ω turbulence 

model. Reynolds number and wheel diameter were 1.23×10
6
 and 0.094m respectively, with 

detailed analysis of velocity contours for each modelled component. From this work, 

centreline pressure for each wheel showed that the flow does not stagnate directly at the front 

centres of the two front wheels (Figure 61), because of the asymmetry in the configuration 

caused by the struts and door. High pressure regions (red colour in contour plot) were, 

therefore observed on the front strut and oleo strut, with the stagnation on the two front 

wheels being pushed slightly inboard towards each other. Low pressure regions (green) on 

the curvature of the front two wheels indicate the low pressure regions, where acceleration in 

the flow occurs, with stagnation not occurring on the front of the rear wheels as this region 

Figure 61 – Instantaneous pressure contours [47]; 

red = high pressure, green = low pressure 
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lies within the wake of the front two wheels. Instantaneous centreline pressure data was taken 

on all four wheels at 13 different instances of time. Graphs shown in [47] for values of Cp 

against azimuthal angle, show the classical flow around a circular object for the first half of 

the two front wheels (i.e. from stagnation to the top and bottom of the wheel respectively). 

For the 13 curves plotted (each representing a point in time), results of CP show minimal 

differences to one another for the front left wheel. However, the ground side of the front right 

wheel shows variations in the pressure plots, indicating that the flow has either reached an 

unsteady state or is oscillating at a very low frequency. Overall, the flow for the front two 

wheels reaches a minimum pressure between θ = 80° - 90°, in-line with classical circular 

cylinder theory, recovering thereafter for the front left wheel until approximately θ = 140° on 

the wing side (upper surface) and θ = 130° ground side (lower surface) respectively. Pressure 

recovery was found to cease earlier on the front right wheel, with these differences in the 

flow field around the two front wheels, explained to be a result of the asymmetry in the 

model configuration. Once the flow reaches the two rear wheels, as mentioned previously, 

stagnation does not occur due to the front surfaces being exposed in the rear wake of the two 

front wheels, and unsteady separation occurs at approximately θ = 110° - 130°. Conversely, 

the pressure distribution on the left wheel for all 13 time instances was found to remain fairly 

constant; however the rear right wheel was found to show oscillatory fluctuations on the 

ground side. The reason for this, as suggested by the authors, was caused by the impingement 

of the wake from the front right wheel, to the rear right wheel. These measurements of 

pressure distribution were generally in good general agreement when compared to the work 

carried out by Lazos [7]; however Lazos’s experiments showed a slight decrease in pressure 

in the rear half of the wheels.  

Figure 62 – Spanwise velocity contours (blue: -0.12 and red: 0.12), left: z=0 plane, right: z= 1.3 plane [47] 

(A) 
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Top view velocity contour plots at two planes, horizontal mid-plane and a cut further up, are 

also shown in Figure 62. As mentioned earlier, a more energetic flow pattern is observed 

behind the rear right wheel when compared to the left side because of the wake from the strut, 

accelerating the flow on the right rear side. A vortex was found, in [47], to form at the top (A) 

and bottom (B) of the door, with areas of reversed flow being present between these two 

positions. Considering streamwise velocity contours (Figure 63), the lower vortices were 

observed to merge into the surrounding flow field, whilst the upper vortex propagates into the 

streamwise wake region.  

 

 

Further comparisons were made to Lazos’s [7] work by Venkatakrishnan et al [48], who 

carried out an experimental investigation on a rudimentary four wheel landing gear. This 

rudimentary landing gear was similar to the configuration used by Lazos [5] and consisted of 

a four wheel truck arrangement including the vertical post, truck and wheels comprising a 

diameter 0.406m. Experiments were conducted at a free stream velocity of 40m/s, 

corresponding to a Reynolds number of 1x10
6
, with the flow field around boundary layer 

tripped wheels analysed using oil flow visualisations (Figure 64) and contours of pressure 

distribution. The stagnation pressure region was also seen to be shifted inboard towards each 

other in a similar result to [47], coinciding not in the exact centre of the two front wheels. A 

region of low pressure is observed on the outboard edge of the front wheel representing flow 

acceleration, however, this only occurs on the outboard face of the wheel dissimilar to that 

Figure 63 – Streamwise velocity contours, y = 0.463 

plane (blue: -0.1 and red: 0.25) [47] 

(A) 

(B) 
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observed on a single isolated wheel. The presence of the truck on the inboard of the 

configuration was thought to be the cause of this, with pressure in the central region 

remaining high. The flow on the rear of the front wheels was found to separate and reattach 

on to the front face of the rear wheels. This reattachment shows a stagnated region biased 

towards the wing side of the configuration and is thought to be caused by the presence of the 

vertical strut decelerating the flow, creating asymmetry between the top and bottom halves of 

the rear wheels. Comparing CP plots to those provided from [7], the maximum Cp on the 

front face of the wheels centreline does not reach a classical stagnation value of one. This is 

confirmed by the pressure contour plots, showing the stagnation point being shifted more 

towards the inboard side of the configuration. The position of this stagnation region was also 

found to be offset from the centreline of the wheel by 4%, after obtaining pressure data 

around the circumference of the wheel passing through the centreline of this stagnation point. 

Figure 64 – Half landing gear model showing oil flow visualisation data – (a) top view, (b) 

isometric view from front [48] 

(A) 
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Although the graph comparing  CP to that obtained in [7] are of similar nature, significant 

differences are observed after separation on the rear surface of the front wheels, as CP across 

the rear surfaces are observed to be higher in [7]. This was suggested to be due to the 

difference in Reynolds number, trip/untripped wheel configuration and difference in the strut 

geometry. Complex flow features were found when observing the flow on the rear surface of 

the front wheel, such as the presence of a focus (A) and saddle (B), at θ = 150° & θ = 165° 

respectively, (Figure 65). The formation of the focus was determined to be caused by the high 

speed flow from the inboard side of the wheel, separating along a negative open bipartition 

which terminates at the focus. The saddle is therefore formed upon meeting the negative open 

bipartition lines, after the flow from the outboard side separates and reattaches. As the flow 

travels further downstream, a node (C) was observed at θ = 190°, leading to a stagnated 

region of up to θ = 220°, because of the open bipartition lines from the wing-side moving 

towards the node [48]. Similar features were also found in a computational study which 

compared the aerodynamic flow field around a rudimentary landing gear using Partially-

Averaged Navier-Stokes (PANS) methods and LES [49]. The focus and saddle points 

observed in [48] are also known as critical points; those being defined as the “points at which 

all the spatial derivatives of the velocity are zero” [49]. These points can be classified into 

three main groups, (Figure 66); nodes, foci and saddles, where the former two groups can be 

stable or unstable. Streamlines compared on the rear surface of the front wheel also showed 

Figure 65 – Surface flow visualisation on rear surface of front wheel [48] 

(A) 

(B) 

(C) 
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these critical points. When comparing the three different methods (experimental, PANS & 

LES), the stable focus was found in the range of 143° ≤ θ ≤ 150° and the saddle point in the 

range 160° ≤ θ ≤ 165°. Comparison of these features by Krajnović et al [49] to those 

observed in [48], are in good agreement. However, the differences in these positions between 

the different methods in [49] were suspected to be caused by poor spatial resolution in the 

near-wall region.  Drag & lift force coefficients were also obtained for this configuration. By 

calculating force coefficients obtained on the wheels from the surface pressures, as well as 

force balance data, it was observed that the contribution of CD & CL from the truck and strut 

were 43.3% & 72.5% of the total CD & CL respectively. Overall, the authors [48] found that 

the truck and strut were significant contributors to the total lift and drag.  

Guo [5] also investigated the effect of local flow variations on a landing gear, from CFD 

results obtained from Boeing’s CFD database which had been accumulated over several years 

for different aircraft configurations. Data for full scale nose and main landing gear 

configurations, for the Boeing 777 & 737, were analysed to identify how flow velocity 

around wing mounted and fuselage mounted landing gear affects the overall generated noise. 

Around a wing mounted landing gear, the local flow velocity was found to be up to 25% 

lower than the free stream velocity because of the circulation region close to the high lift 

systems, such as the wings and flaps, encouraging the flow to be less than the free stream. 

This reduction in velocity corresponds to an approximate 6dB reduction in noise levels. The 

same gear installed in a wind tunnel was found to generate 6dB more noise. Therefore, it was 

found that the local flow velocity around a wing mounted landing gear increases as the 

distance of the flow from the wing/flap surface increases. Other strong influences that are 

known to affect the local flow around a landing gear, and specifically for wing mounted 

landing gears, are the angle of attack. Guo [5] discovered that as the angle of attack is 

Figure 66 – Schematic representation of an unstable node (UN), stable focus (SF) & saddle point (SP) [49] 



 
78 

 

increased, the local flow velocity beneath the wing decreased significantly, due to the larger 

region of circulation producing more lift on the wing.    

The flow around the fuselage mounted gear has a similar but opposite trend, as the flow 

travels much faster than observed for the wing mounted gear. The flow velocity on the lower 

surface of a fuselage travels within a very close range to the free stream speed because of the 

flat unobstructed surface. Whilst the flow travels past the nose cone of the fuselage, the flow 

stagnates shortly downstream of the nose point, where flow velocity is at minimum. Further 

downstream of the nose point, the flow accelerates along the lower surface of the fuselage, 

increasing the velocity in the region of the nose gear; opposing what was observed on a wing 

mounted gear, as the velocity reaches a maximum closest to the fuselage and reduces as the 

distance from the fuselage increases. With applied angle of attack, the flow velocity was 

observed to exceed the free stream velocity, depending on the angle of attack and the location 

of the nose gear.   

Dobrzynski et al [50] carried out experiments obtaining wake measurements, in an attempt to 

improve noise prediction around landing gears. Experiments were carried out in a wind 

tunnel with velocities up to 70m/s, on a scaled fully extended central landing gear with the 

landing gear doors present. Wake characteristics showed the largest area of low velocity 

present behind the main leg, above the axle between the two doors. High turbulence intensity 

was found to occur downstream of the main gears, reaching values of up to 35%, additionally 

values of up to 23% were also observed above the tyres. Downstream of the wheel, vortex 

shedding peaks were found to occur off the main fitting, however, overall results showed that 

small changes upstream of the gear had no major influence on the characteristics of the gear 

wake. Khanal et al [51] also conducted a computational study to obtain a deeper 

understanding about the aeroacoustics on a single wheel. Noise levels generated from certain 

components of landing gear were found to be reduced by making them streamlined. 

Unfortunately due to the bulky nature of wheels and their purpose, streamlining the wheels is 

not possible, resulting in the wheels being a significant contributor to noise. Due to the 

expense in computing resources required by LES to achieve a highly accurate simulation of 

an unsteady flow field, a hybrid method was used. The results presented in [51] are not 

sufficiently detailed, however, still outlines key features observed in the flow field. Iso-

surfaces illustrated in Figure 67, show a highly unsteady flow field in the wake of the wheel, 

with large amounts of vortex shedding. Acoustic measurements taken from around the wheel, 

displayed in Figure 68, show peaks in amplitude at low frequencies, typically less than 200Hz 
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all around the wheel. Khanal et al [51] suggested that this was due to the flow over large 

bodies emitting noise at low frequencies, whilst smaller bodies are responsible for noise at 

higher frequencies. Therefore, low frequency noise generated from aircraft wheels indicate 

that the wheels are large contributors towards noise generated from a landing gear.   

  

Figure 67 – Iso-surface of Vorticity [51] 

Figure 68 – Acoustic Signals, (a) Directly above the wheel, (b) Directly below the wheel, (c) Upstream 

of the wheel, (d) Downstream of the wheel [51] 

(a) 

(d) (c) 

(b) 
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In conclusion, a detailed understanding of the flow physics was obtained from this literature 

review to aid this present computational study in terms of the strategies that could be used 

and to provide insight into the flow physics when trying to understand the aerodynamic flow 

field around a single wheel in free air. 
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3. Computational Methodology & Set-Up 

A computational approach was used for this investigation, and this chapter outlines the 

reasons for using this approach and provides a detailed description of the methodology used. 

Justification for the decisions made throughout this methodology is also validated by making 

comparisons to the available literature where possible.  

 

3.1 Introduction to CFD 

Computation Fluid Dynamics (CFD) is a technique used to model and analyse fluid flow 

around objects. By using mathematical models and numerical methods, it provides qualitative 

and quantitative predictions of the real fluid flow from virtual simulations. CFD technology is 

more commonly used nowadays due to its speed and ability to provide data for multiple 

variables from just a single simulation. It is also used in research areas where experimental 

investigations are difficult, and may not even be possible to carry out, (and although CFD 

should not be used as a substitute for experiments), by accurate modelling and use of 

appropriate models and conditions, a detailed real life scenario can be analysed.  

The procedure for using CFD comprises of four stages; 

1. Identifying the problem to model, with an idea of what variables are required to be 

analysed 

2. Creating a grid/mesh 

3. Simulating the grid/mesh with correct operating conditions with the most appropriate 

numerical models 

4. Carrying out post-processing analysis 

All of the four stages mentioned above, were met and completed in order to obtain results for 

this study.  

3.2 Description & Justification of selected Wheel Geometry 

The wheel geometry chosen for this study is the ‘A2’ configuration used in Fackrell’s [22] 

experimental investigation, and the same used for the computational results in [29, 42]. The 

decision to choose this configuration was driven by the need to provide a solid foundation of 

experimental and computational data for subsequent validation and verification of the 
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computational methodology and subsequent flow-field dynamics. The A2 wheel (Figure 69) 

has a diameter and width of 0.416m and 0.191m respectively, corresponding to AR = 0.46. 

This wheel also contains both hub details approximating a simplified landing gear hub 

configuration (although usually more asymmetric) as well as a tyre width to diameter ratio 

(aspect ratio) indicative of a landing gear wheel.  

 

3.3 Computational Method & Grids 

The geometry of the wheel was carefully measured from Fig. 2-1 & Fig. 2-2 in [22] using a 

digital calliper measuring instrument. These extracted measurements were drawn on 

SolidWorks™ CAD software which, in the end, provided a computational geometry of the 

wheel.  To create the initial grid, the CAD geometry of the wheel was exported in to 

Pointwise™; which was used to create all grids. Pointwise™ grid generation software allows 

users to generate 2-dimensional (2D) and 3-dimensional (3D) grids and meshes before 

exporting them into CFD packages to be simulated. As the full 3-dimensional flow field is 

required to be analysed in this study, the grids created in Pointwise™ are all 3D.  

The grids can either be structured, unstructured or hybrid. These are defined by the shape of 

the cells used; unstructured grids consist of triangular tetrahedral cells whilst structured grids 

Figure 69 - Cross-sectional view of wheel showing dimensions 

(mm) 
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consist of all hexahedral cells. A hybrid grid combines both structured and unstructured 

blocks. A review comparing the differences between structured and unstructured grids [52] 

showed that structured grids are known to be superior to unstructured grids due to their 

quality and control. Using a structured grid provides users control over the generating the 

exact grid required. An advantage of using a structured grid is the time and memory it 

requires, as a volume can be filled with fewer hexahedral cells as opposed to tetrahedral cells 

subsequently lowering the cell count of the grid. As a result, the computational time and 

memory usage is reduced; therefore it is a key factor when generating large scale grids, 

similar to that needed for this investigation. Improved resolution and alignment is also 

achieved by using a structured grid. Fluid flow that experience strong pressure gradients, 

particularly in the regions of boundary layers and wakes, require high quality cells with high 

aspect ratios which can be stretched, however, the use of stretched tetrahedral cells causes 

difficulties in the generation of the solutions due to problems such as cell skewness, although 

the use of tetrahedral cells can be an advantage when attempting to mesh very small confined 

spaces.  Additionally, CFD solvers were found to produce results with higher accuracy when 

the grid is aligned with the geometry and flow direction, and a hexahedral mesh would 

automatically provide this due to their six sided cell volume blocks as opposed to the 

tetrahedral meshes which provide no such alignment. With these differences between the two 

grid types showing a bias towards the use of a structured grid, together with previous 

investigations using structured meshes [29, 38, 9], it was decided to use a structured 

hexahedral grid for this study.       

Certain variables need to be considered to obtain good quality grid such as skewness & 

volume of the cells. Skewness is the stretching of cells; the less skewed the cells are, the 

higher the grid quality is. During the process of grid generation, cell skewness was 

maintained below the default skewness value of 0.8 set in Fluent™ (the CFD solver used in 

this study) for 3D models [53]. The volume of the cells (also referred to as Jacobians in 

Pointwise™ [54]) had to be kept at a positive value as negative Jacobian cells would indicate 

twists in the grid or negative cell volumes caused by overlapping domains which will 

eventually cause problems when trying to simulate the grid. 

Different topologies can be applied when creating grids; two of the commonly used 

topologies are the block topology (also known as a C-grid) and the circular topology (also 

known as an O-grid) as illustrated in Figure 70. The block topology (a) consists of creating 

volume blocks around the geometry propagating to the far field. However, due to the near 
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field blocks touching the geometry with just the corners of the blocks at a certain point 

(illustrated A), differences in near wall cell size are produced as a result of the adjoining 

corner of the blocks (B) having to satisfy the near wall spacing constraints as well as the 

corresponding connector distribution to the connector present on the opposite side of the 

domain. Therefore, when simulated, discontinuities in the results are observed due to the 

(a) 

A 

B 

(b) 

D 

C 

Figure 70 - Representation of (a) block topology - 'C' grid and (b) circular topology - 'O' grid 
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large variances in cell size. Using a block topology was also found to be more challenging 

when trying to keep the Jacobians and the skewness at an acceptable level because of the 

circular shape of the wheel geometry. On the other hand, the circular topology, Figure 70(b), 

involves creating a circular boundary layer off the geometry (C), by conducting a normal 

extrusion of the wheel surface and extending it in to the near field and subsequent far field 

using the block topology. This provides greater control of the internal volume mesh as well as 

maintaining smooth gradual increases in cell wall distance from the wheel surface (D).  

Therefore a multi-block topology, consisting of a circular topology for the boundary layer 

region and a block topology propagating to the far field domains, was used.  

The imported geometry was presented in Pointwise as a database, and connectors were 

created on the database surface. The dimensions of the connectors were chosen according to 

the size (length) of the connector and by deciding on how dense the corresponding section of 

the wheel, where the connector is placed, has to be. After the connectors had been created 

appropriately on the database, the connectors were deleted leaving behind just a 2D plane 

consisting of the edge profile. A 2D normal extrusion on the wheel’s edge profile was 

conducted up to 10-20mm away from the surface of the wheel at a growth rate of 1.1 so a y
+
 

≈ 1 was achieved, corresponding to the first cell wall distance off the surface to be 

approximately 0.005mm. A near field boundary was created on the same 2D plane to form a 

rectangular outer domain which was then rotated 360° about the projected centre of the wheel 

to fully obtain the near-field mesh including the boundary layer mesh and surface mesh of the 

wheel. Subsequently, the near field mesh was extruded outwards in all three coordinate 

directions to create the far field boundary. The distance & length of the far-field boundary 

were chosen to closely correspond with the far field computational domain used by McManus 

& Zhang [29]. The skewness of the grids was kept as low as possible but definitely below the 

threshold value of 0.8, whilst also making sure that all Jacobians were positive; criteria that 

have to be met for a good quality grid.  

The geometrical axis was identical to the coordinate (x, y, z) axis; x in the spanwise direction 

(positive x directed right to left when looking downstream from the inlet), y in the vertical 

direction with positive y directed towards the top of the domain and z in the downstream 

direction with positive z directed downstream from the inlet.  

Majority of wheel in contact with ground studies described in the literature [22, 29, 39, 30], 

used free stream velocities in the range 15 – 18.6m/s, through focusing primarily on race car 



 
86 

 

wheel configurations. Free stream velocities for wheel configurations used for investigations 

based on landing gear used higher speeds ranging from 29m/s – 40m/s [48, 7] , with 

additional free-air and a ground clearance study using 40m/s [32] and 38m/s [36] 

respectively. As the speed of a large passenger aircraft on approach is known to be in the 

range of 130-140 knots, corresponding to approximately 65-70m/s; a speed of 70m/s was 

considered and attempted at first with a preliminary simulation but, as expected the 

simulation took approximately a month to obtain ≈0.5s of data. Therefore a longer simulation 

time was required for convergence to be reached. Considering time and computational 

constraints playing a vital role in this study, using a velocity of ≈70m/s was not practical. 

Therefore it was decided to reduce the velocity to correspond to the range used in previous 

studies for landing gear and free air studies as more direct comparisons can be made. As a 

result, a final free stream velocity of 40m/s was chosen corresponding to a Reynolds number 

of 1.1×10
6
 based on wheel diameter. Turbulence intensity of 0.2% was used, corresponding 

to that used by McManus & Zhang [29], with a hydraulic diameter equivalent to the diameter 

of the wheel of 0.416m, since the hydraulic diameter is considered as the characteristic length 

of obstruction in external unbounded flows [55]. Atmospheric pressure condition with gauge 

pressure of zero was defined for the pressure outlet, with a symmetry condition on all other 

remaining sides of the far field domain. The symmetry condition is used to negate the need to 

resolve the boundary layers on these far field walls. A symmetry boundary condition is 

summarised as a plane with zero normal velocity and with zero normal gradients for all 

variables, and as the wheel was placed at the centre of the computational domain, the flow 

pattern is expected to mirror symmetry [53]. Due to the free stream flow only entering from 

the inlet, and the far fields boundaries placed at a significant distance from the wheel 

(dimensions provided in Section 3.3.7 and Section 3.3.7), the walls were measured to produce 

a negligible effect on the flow field, as the flow was expected to be of a steady state by the 

time it reached the far field walls. The wheel was modelled as a smooth, no slip wall (Figure 

71). This is a default condition in Fluent™ for walls in viscous flow and indicated that the 

fluid sticks to the wall and if moving, moves with the same velocity as the wall [53]. This 

enables the components of velocity on the walls to be set as required; a zero velocity 

stationary wall for the stationary wheel condition and a moving wall for modelling the 

influence of rotation.  

The surface mesh on the wheel, illustrated in Figure 71 also shows denser regions in the mesh 

(A & B) due to a finer grid being required to resolve the boundary layer. Considering the 
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flow field around a single wheel from the literature, it has been shown that complex flow 

characteristics such as separation, recirculation and wake flow dynamics are prominent 

features that determine the aerodynamic flow field. For that reason, it is important to predict 

accurately these positions. One of the factors that affect the prediction of separation position 

was suggested to be the wheel edge profile [22], with differences of ±30° when comparing 

CFD data [38] to experimental results [22]. Subsequent to separation position, the flow was 

shown to roll up over the shoulders of the wheel forming vortices [42, 10, 9, 12], with a 

similar characteristic shown on the shoulders of a cylinder [28], therefore, in an attempt to 

minimise errors and to accurately predict separation positions and the locations of vortex 

formation, a finer mesh was applied around the shoulders of the wheel (A). In addition, flow 

interaction on sharp edges will cause recirculation within the flow, therefore a denser mesh 

was applied in the regions where two wheel surfaces meet (i.e. hub and rim regions illustrated 

(B) in Figure 71).  

 

 

 

  

Figure 71 – Surface mesh on wheel 

A 

B 
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3.3.1 Numerical Methods & Turbulence Models 

Turbulence is known to be an unsteady random motion, observed in fluids [53]. Although 

turbulence is initially described via the Navier-Stokes equation, resolving these equations 

using Direct Numerical Simulation (DNS) would exceed the computational capabilities 

currently available as the cost required for a DNS solution is proportional to Ren
3
. Therefore, 

averaging is required to reduce & simplify parts of the turbulence spectrum. The most 

commonly used method involved eliminating the turbulent structures to obtain averaged 

velocity and pressure fields, and is known as the Reynolds-Averaged Navier Stokes (RANS) 

equations. The governing incompressible RANS equations for continuity and momentum 

[53] are defined as: 

𝝏�̅�𝒊

𝝏𝒙𝒊
= 𝟎        Equation 5 
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From the equations, variables are defined, ρ is the air density, p is the air pressure, v is the 

kinematic viscosity, ui is the velocity in the ith direction (i.e.: i = 1, 2, 3 = 𝑢, 𝑣, 𝑤) and uj is 

the velocity in the jth direction (i.e.: j =1, 2, 3 = 𝑢, 𝑣, 𝑤). The directional tensors, xi and xj, are 

defined for the ith and jth directions (i.e.: i = 1, 2, 3 = 𝑥, 𝑦, 𝑧 and j = 1, 2, 3 = 𝑥, 𝑦, 𝑧). Mean 

and fluctuating quantities are indicated by the over-bar and the prime, respectively [29]. As a 

result of this averaging process, additional terms are introduced to the transport equations 

known as Reynolds Stresses, 𝜌𝑢𝑖
′𝑢𝑗

′, which require an appropriate turbulence model in order 

to be resolved. The quality of the simulation depends on the selected turbulence model, and 

with no single turbulence model specifically designated for classical problems, special 

consideration needs to be given to the flow physics, level of accuracy required and available 

time and computational resources available, as all these variables differ from each turbulence 

model.   

A few other turbulence models that were of interest when deciding which model to use are 

subsequently described. 



 
89 

 

The one equation Spalart-Allmaras [56] model solves a modelled transport equation for the 

kinematic turbulent viscosity (�̃�), shown in Equation 7.  
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)
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] − 𝑌𝑣 + 𝑆�̃� 

Equation 7 – Spalart-Allmaras transport equation 

 

This equation combines the production of turbulent viscosity (𝐺𝑣) and the turbulent viscosity 

destruction term (𝑌𝑣). The destruction term occurs in the near wall regions, where viscous 

damping and wall blocking effects are dominant [55].    

Initially the Spalart-Allmaras model was created for aerospace applications as it has been 

proven to provide good results when modelling boundary layers subjected to adverse pressure 

gradients. Although, this model is becoming more popular in other areas of engineering, the 

quality of the results start to deteriorate as errors are produced when modelling the free shear 

layers formed after separation due to the swift changes in length scales [53].  

The three k-ε models (standard, RNG and realizable k-ε) have also been analysed in this 

study. These models are all two equation models based on the turbulent kinetic energy (k) 

and the turbulent dissipation rate (ε). All three models are similar to one another but the 

differences occur in the method of calculating the turbulent viscosity.  

1. Standard k-ε model (k-ε) 

The standard k-ε model was the first from its group to be created, hence the most 

basic. Solving two separate equations allows the model to determine both turbulent 

length and time scale. This model is used in many engineering applications due to its 

robustness, low economical expense, along with providing results to a reasonable 

level of accuracy for turbulent flows. Whilst deriving the standard k-ε model, it was 

assumed that the flow being modelled is fully turbulent and that the effects of 

molecular viscosity are negligible, therefore, only making this model valid for fully 

turbulent flows. As this is the oldest model in its group, modifications were made to 

enhance its performance resulting in the creations of the two most recent versions of 

the k-ε model as described below. 



 
90 

 

2. RNG k-ε model (RNG) 

This model was created using a statistical technique called the ‘renormalization group 

theory’. It is a refinement of the standard k-ε model, as the equation for turbulent 

dissipation rate (ε) includes an additional term which improves its accuracy. The 

accuracy of predicting swirling flow is also improved and also enables this model to 

be used for flows at low Reynolds numbers, if the near wall region is modelled 

appropriately. This allows a more accurate and reliable modelling solution for a wider 

range of flows [55].   

3. Realizable k-ε model (RKE) 

‘Realizable’ means that this model is consistent with the physics of turbulent flows as 

the model satisfies certain mathematical constraints on the Reynolds stresses. The 

Realizable k-ε model has two significant features that differentiate it from the 

standard k-ε model; it uses an alternative formulation for turbulent viscosity and it 

contains a modified transport equation for the turbulent dissipation rate (ε) [55]. The 

transport equations for the RKE model are shown below: 
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Equation 8 – Turbulence Kinetic energy transport equation (𝑘) 
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Equation 9 – Rate of dissipation transport equation (ε) 

Out of all the k-ε models, the RKE model has been proven to provide the best performance 

when analysing separated flows with complex secondary flow features [53, 55]. It has been 

additionally validated for flows that contain boundary layers with adverse pressure gradients, 

flows involving rotation, separation and recirculation [57]. Ramachandran & Doig [42] also 

used the RKE model in their investigation due to its accuracy. Axerio-Cilies & Iaccarino [30] 

tested six difference turbulence models for their investigation on a wheel in contact with the 

ground, and found that the KW-SST model was closest at determining vortex core locations; 

however the RKE model was found to be most accurate at predicting the strength and 

intensity of the vortices.  

Large Eddy Simulation (LES) was also of interest due to its enhanced accuracy. The LES 

model resolves the large eddies directly, whilst modelling the small eddies allowing a coarser 
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mesh to be used with large time step when resolving the larger eddies. However, a mesh in 

LES is significantly finer and larger in size than those used in RANS simulations, therefore 

LES simulations are required to be computationally simulated for a longer period of time to 

obtain a near steady solution. This subsequently, increases the computational expense in 

terms of memory (RAM) & CPU time when compared to RANS calculations [55]. 

Due to the both computational expenses and time constraints present for this study, using a 

LES approach was not a practical solution,  therefore the URANS method was chosen with 

the Realizable k-ε model due to its advantages over the other models. It has been validated 

for enhanced performance in capturing separated flow regions and boundary layers 

containing adverse pressure gradients together with flows involving rotation and 

recirculation, making the decision more bias towards this model as these are known to be 

prominent flow features around a wheel, which are to be thoroughly analysed and discussed 

from the results acquired from this study. The RKE model was used by other authors [29, 42, 

30] who have conducted similar studies due to the advantages mentioned. McManus & Zhang 

[29] used both the RKE & S-A turbulence models in their computational investigations, and 

although both predicted similar results, the S-A computations were found to predict better 

surface pressures and separation positions. However, the S-A computations were found to 

have a larger dependency on the grid, as opposed to the RKE model. Additionally, Mahon & 

Zhang [58] have conducted a computational study analysing the pressure and wake 

characteristics of an aerofoil using six different turbulence models: one equation Spalart-

Allmaras model, standard k-ε model, standard k-ω model, k-ω SST model, k-ε RNG model, 

and the Realizable k-ε model. Conclusions from their study have stated that the RKE model 

was the most accurate when predicting the flow field in the near wake. Unsteady Reynolds-

Averaged Navier-Stokes (URANS) was chosen due to its capability to provide a time 

dependent unsteady solution, therefore, not assuming that the simulation is of steady state. As 

the flow over a bluff body is known to be unsteady with a highly oscillatory flow in the rear 

wake region, the unsteady solver would predict these unsteady flow characteristics more 

accurately [53].    

3.3.2 Solver Settings 

URANS simulations were computed on a cluster with a Linux based operating system. 

Boundary layer modelling was implemented through the use of the enhanced wall treatment 

due to the complex flow structures expected. As previously used in [29, 30], the y+ value was 
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maintained at less than 2.0 over the entire wheel, ensuring that the wall adjacent cells are 

within the viscous sub-layer.  

URANS simulations were computed using the Pressure-Based segregated algorithm with 

absolute velocity formulations in transient conditions. The Pressure-Velocity coupling 

method, SIMPLEC, is used in this study as it aids convergence [53]. Accuracy is a significant 

factor in this study as resolving the boundary layer in highly separated flow regions can be 

affected by errors and inaccurate modelling. As a result, an upwind spatial discretization was 

used, yielding second order spatial accuracy rather than first order, although first order will 

reduce the computational time. However, a combination of both first and second order 

schemes was used in this study and will be described in the subsequent section. In addition, 

the gradient discretization used was the Least Squares Cell Based. The least squares method 

is comparable in accuracy to the Green-Gauss Node based but requires less computational 

time [55]. Under-Relaxation factors are used in the pressure-based solver to control the 

convergence at each iteration. Default values for these factors were already set in Fluent™ 

(Density = 1.0, Pressure = 0.2, Momentum = 0.5, Turbulent Kinetic Energy (𝑘) = 0.5, 

Turbulent dissipation rate (ε) = 0.5), and are optimised to work for a large number of cases, 

therefore, it is recommended to begin the simulations with the default values and to only 

reduce them if the residuals start to show unstable or divergent behaviour [53].  Therefore the 

under-relaxation factors were unchanged and kept at their default values as the solutions 

eventually reached a converged state.  

3.3.3 Convergence 

Before starting the simulations, the entire computational domain was initialized to the free 

stream conditions at the inlet boundary, which was chosen, as the initial flow variables were 

required to be computed based on the initial free stream velocity of 40m/s [53]. All results 

obtained from the URANS solver were obtained using a time step of 6×10
-5

s representing a 

non-dimensional time step of 0.005, based on free stream velocity and wheel diameter, 

however a time step study was subsequently carried out (Section 3.3.6 in this thesis) to 

provide confidence in the time step size. For each time step, residuals were allowed to 

converge to a minimum standard of three orders of magnitude at 20 iterations per time step. 

This determines the numbers of iterations that are carried out within a time step before 

moving to the next and if the convergence criteria are met before the maximum number of 

iterations within the time step are completed, the solution will progress to the next time step 



 
93 

 

[53]. Computational discretization was performed initially using first-order schemes for 

pressure, momentum and turbulence quantities to minimise computational expense [30], 

before enacting second-order discretization schemes after an initial development period. An 

initial start-up from first order also yields convergence reducing the simulation time [53], also 

used in [29, 30]. After this initial first-order development period, the flow was allowed to 

further develop (in second-order), with residuals required to converge to five orders of 

magnitude, for an additional 17.3 non-dimensional time units before data sampling for mean 

flow statistics was initiated. The solutions were considered to be converged, once the mean 

flow quantities were stabilised, showing no significant changes with additional time units, 

represented by the force coefficients and residuals illustrating regular oscillating patterns 

[30]. Mean flow quantities were thereafter calculated after 173 subsequent non-

dimensionalised time units corresponding to a total of approximately 2 seconds of data. Drag, 

lift and side force coefficient monitors were set to record the data in +z, +y and +x directions 

respectively. 

3.3.4 Boundary Refinement Study 

A boundary refinement study was carried out to find the most appropriate distance at which 

the far field boundary distance has negligible effect on the results, so that the boundaries were 

large enough to minimise their influence on the results as well as keeping them as small as 

possible to minimise the number of grid cells, which will subsequently reduce computational 

expense.  

This study was conducted on the grid comprising of the largest blockage, as this grid 

comprises the far field boundaries closest to the walls of the wheel, therefore the grid with the 

wheel yawed at 15° was chosen. An initial grid was created with boundary and mesh 

conditions similar to those used by McManus & Zhang [29], due to the same wheel geometry 

being modelled. The far field boundary distance was enlarged by 0.5 & 2.0 times the original 

distance in all three coordinate directions. Simulations were completed and the values of CD 

& CL were plot on a graph (Figure 72). The mean drag obtained from the results shows CD = 

0.49 for both the initial and ‘2.0x’ grid, whereas the grid with a boundary distance 

enlargement of 0.5 indicated CD = 0.51. Average lift coefficient is observed as negligible (CL 

≈ 0) for all test cases. Boundaries on the initial grid were placed at 18d downstream and 6d 

upstream the centre of the wheel, with the total test section horizontal width and vertical 

height of 4.5d and 6d respectively. For comparison purposes of the rear wake region, 
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boundary distances downstream the centre of the wheel were placed 15d [29], 16d [31], and 

20d [41], showing that the downstream distance of 18d, from the initial grid in this study, is 

of sufficient distance and in range to similar computational studies carried out. Vertical 

boundary distances were also in range, with other studies showing boundary distances of 2.9d 

[29], 5d [31] and 10d [41]. It is important to note that although vertical boundary distances as 

small at 2.9d were used by McManus & Zhang [29], the present study is conducted with the 

wheel positioned at the vertical centre of the computational domain (free-air), as opposed to 

previous studies investigating a wheel in contact with the ground. Horizontal domain 

boundary distances had a length of 10d [31, 41], although a width of 3.66d was used by 

McManus & Zhang [29]. This study used a horizontal boundary distance of 4.5d, which is of 

a similar length to that used by McManus & Zhang [29]. However, as McManus & Zhang 

[29] did not experience any boundary interference with their reduced horizontal boundary 

length, with results from Figure 72 showing almost negligible effects with increasing 

boundary distances, the horizontal boundary distance of 4.5d was kept unchanged. Therefore, 

the initial grid was used for the final study, also resulting in the computations being more 

computationally efficient.  

3.3.5 Mesh Refinement Study 

A mesh refinement study was also carried out to find the most appropriate sized grid that will 

identify key features in the flow field to a reasonable level of accuracy, whilst keeping the 

computational time to a minimum. As has been mentioned previously, a larger and more 

refined grid will provide better results but with a significant computational expense, 

therefore, it is vital that an appropriate sized grid is chosen due to the computational and time 
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Figure 72 - Force coefficient against real time, for different far-field boundary distances 
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limitations present for this study. To perform an accurate mesh refinement study, the grids 

have to be refined in all three coordinate directions, keeping the denser regions (where key 

characteristics, such as separation, are expected) dense so flow features can be accurately 

observed.  Grids of 3, 4, 5 and 6 million cells were created and simulated. After plotting the 

acquired data of CD & CL for each grid on a graph, the trend (as expected), was observed to 

be highly oscillatory (Figure 73). Lift coefficient (dashed curves) averaged to approximately 

zero for all cases. All grid sizes showed variations in CD in the region 0.33 < CD < 0.35. The 

overall average of the data for each grid size indicated CD = 0.35, with both the individual 

five and six million cell grids showing this value.  

Earlier investigations used a structured - 2.9 million [29], structured – 2.5 million [9], 

unstructured – 3.1 million [41], hybrid – 9.1 million [30] and hybrid – 1.6 million [31] grids. 

All the grids from these previous studies are comparable in size to the grid consisting of 5 

million cells in this study. Grids that are noticeably lower in grid size which were used for 

simulation, comprised of a simplified wheel geometry [41, 9], or used a hybrid mesh type 

[31], both requiring less cells to produce an acceptable grid. Although a hybrid grid structure 

was used in [30], the grid size totalled to 9.1 million cells as a result of smaller but complex 

wheel components (such as brake ducts, fairings, calliper) being included in configuration. 

 With a need to finalise the mesh size, the grid consisting of 5 million cells was chosen, as the 

mean drag calculated from Figure 73 corresponds to this grid size. Even though the 6 million 

grid is more refined, giving the same average value of CD, a higher computational time would 

be required if this grid was to be used.   

Figure 73 - Force coefficient against real time, for different sized grids 
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3.3.6 Time Step Study 

Similar to McManus & Zhang’s [29] computational procedure, a time step of 0.01 (non-

dimensionalised by wheel diameter and free stream velocity) was used with the initially 

tested free stream velocity of 70m/s. Although the free stream velocity was reduced to 40m/s 

after preliminary tests, the time step size (∆t = 6 × 10
-5

) was unchanged when using the 

revised free stream velocity (though the revised non-dimensionalised time step was 0.0057), 

as the flow characteristics should be captured more accurately with a smaller time step. 

However, a time step study was completed with additional simulations, conducted with a 

time step size of ∆t = 1 × 10
-4

 and 1 × 10
-5

. After plotting drag and lift coefficients for each 

test case (Figure 74), it was observed that, similar to the mesh and boundary refinement 

trends, the largest and smallest time step peaked between 0.25 < CD < 0.5, with the initially 

tested time-step showing a trend in between. Averaging this data showed CD = 0.35, therefore 

indicating using the initial time step size ∆t = 6 × 10
-5

 (or 0.0057 non-dimensionalised by 

wheel diameter and free stream velocity) would be suitable. Additionally a similar trend was 

observed for the lift coefficient, as the average of the lift coefficient data obtained produced 

CL ≈ 0. Therefore a non-dimensionalised time step of 0.0057 was used for the remainder of 

this study. Earlier investigations used time steps of 0.01 [29], 0.0046 [30] and 0.005 [47], (all 

non-dimensionalised by wheel diameter and free stream velocity). The larger time step (0.01) 

used by McManus and Zhang [29], is due to the lower Reynolds number used in their study. 

However, time steps similar to that chosen for this study were used in previous studies [30, 

47], showing that using a larger time step was found to be too coarse for capturing the 

unsteadiness in the wake [30].  

Figure 74 - Force coefficient against real time, for different time-steps 
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3.3.7 Final Computational Grid 

On completion of the refinement studies, the final computational grid used as a baseline for 

this study comprised 80 blocks, positioned both within the near-field (32 blocks), Figure 75, 

and far-field (48 blocks). The distribution of grid points from a single block to its adjacent 

block was carefully analysed, to make sure that there was no significant jump/increase in cell 

distributions (as shown in Figure 70(b)), as discontinuities in the flow field can be seen if the 

solver is not able to calculate the flow accurately between cells. Boundary conditions were 

kept the same as described in section 3.3.  A schematic of the final computational domain is 

detailed in Figure 76.  

For all simulations, the wheel centre was positioned at the geometric centre of the height and 

width of the domain, positioned at a distance z2 = 6d downstream from the inlet plane. 
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Figure 76 – Geometry of computational domain 

Figure 75 - Near-field computational grid 
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Therefore a final computational domain with measurements z1 = 24d in length, x1 = 4.4d in 

width and y1 = 6d in height, comprising of 5 million structured hexahedral cells was selected. 

Figure 77 shows the final baseline computational grid. Data acquired for this investigation 

from planes P1, P2, P3 & P4, as shown in Figure 76, are taken at distances of 0.75d, 1.0d, 

1.5d & 2.5d from the centre of the wheel respectively.   

 

 

3.3.7.1  Modelling Yaw 

Yaw angles between Ψ = 0 - 15° at 5° intervals were selected to analyse the typical crosswind 

approach conditions of an aircraft. For the grids incorporating wheel yaw, the blocks, 

domains and connectors in the near-field region of the baseline grid (Ψ = 0°), including the 

wheel, were selected and rotated with centre of rotation positioned to the geometric centre of 

the wheel, anticlockwise by an angle (5°, 10° or 15°) about the y axis representative of the 

yaw angle required, in the mesh generation software Pointwise™. The far-field mesh was 

Figure 77 – Side view (+x) of computational grid 

Figure 78 – Top view of Computational grid including wheel showing applied yaw angle, (a) no yaw (b) 15° yaw 
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automatically reformed around the yawed near-field blocks, to complete the computational 

domain, maintaining the integrity, dimensions and quality of the grid. Top view 

computational grids of the zero yaw and 15° yawed configurations are shown in Figure 78, 

clearly illustrating (on the 15° yaw case) the intersection between the near-field and the far-

field blocks upstream (A) and downstream (B) of the wheel. Rotating both the near-field 

blocks and the wheel, ensures the grid spacing around and on the wheel surface is maintained 

and corresponds to that of the zero yaw case as much as possible, therefore once simulated, 

the influence of applied wheel yaw, only, could be observed.   

3.3.7.2  Modelling Rotation 

The effect of rotation on the wheel was modelled, in Fluent™, by changing the boundary 

condition on the wheel to ‘moving wall’. Thereafter, the angular velocity (ω), axis and 

direction of rotation were required. The angular velocity (ω) was calculated from Equation 10 

and set to 192.31rad/s, equivalent to the free stream inlet velocity U∞=40m/s. The wheel was 

rotated in the direction of θ (anticlockwise as shown in Figure 76) about the centre (x-axis) of 

the wheel.   

 

 𝜔 =
𝑈∞

𝑟
 Equation 10 

  

In order to model the combined effect of yaw and rotation, the wheel had to be yawed with 

rotation applied on the wheel before simulation. Yaw was implemented on the wheel as has 

been described in the previous section of this chapter, however the application of rotation was 

changed as this is a 3D problem. With a yaw angle applied on the wheel, the centreline wheel 

axis had shifted, consequently changing the rotational axis (parallel to the centreline of the 

wheel). Referring to Figure 79, the coordinate axis for an un-yawed wheel, from a top view, 

is marked by the +𝑥 & +𝑧 axis. Once a yaw angle (Ψ°) is applied, the geometric axis of the 

wheel is also yawed, providing the revised geometric axis to be marked 𝑥’ and 𝑧’. As the 

application of rotation on the wheel surface in Fluent™ requires a rotational axis and 

direction, this information was entered in the form of a ‘point and normal’ of rotation. Due to 

the yaw angle being applied on the wheel by rotating the wheel about the wheel centre, this 

point would not change and would also lie on the rotational axis (𝑥’) of the yawed wheel 
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configuration; therefore this point was kept unchanged. However, to obtain 𝑥, 𝑦, 𝑧 co-

ordinates for the normal, the initial geometric axis (Figure 79 – solid arrows) need to be 

resolved in to their horizontal and vertical components (Figure 79 – dashed arrows) 

representative of the applied yaw angle. Resolving these values mathematically would 

provide 𝑥’ = cos (Ψ), 𝑦’ = 0, 𝑧’ = -sin (Ψ) for the normal direction vector, thereafter 

specifying the angular velocity (ω = 192.31rad/s), rotation would be applied on the wheel. 
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Ψ 

Figure 79 - Representation of rotational axis on a 

wheel with applied yaw angle 
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4. Validation of Computational Methodology 

Before presentation and discussion of the results from the computational analysis, where 

available and appropriate, both experimental and computational results available in the 

current literature will be compared to the baseline case of the isolated, non-yawed, wheel in 

Figure 80 – Comparison of centreline mean pressure coefficient with experimental literature, (a) centreline 

(b) x/d = ±0.17 
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free-air, to validate and verify the computational methodology. Where possible, this 

validation involves the use of both mean surface data as well as near-field wake data, 

however, particularly for the latter, limited data exist for comparison. 

As an initial comparison, Figure 80(a) shows the mean surface pressure coefficient along the 

centreline of the wheel obtained from the current URANS study, plotted against centreline 

experimental data manually extracted from the two studies by Lazos [7] and Zhang et al [32]. 

The illustrated graphs for comparisons indicate excellent agreement to [32] over most of the 

wheel centreline circumference with maximum deviations found to be typically less than ∆CP 

≈ 0.05, although Zhang et al [32] involved a dedicated experimental investigation of an 

isolated wheel with asymmetric hub detail. Agreement with Lazos [7], which was extracted 

from the front wheel of a four wheel landing gear model, is much less correlated, but 

nevertheless, does show general qualitative agreement with that of the isolated wheel flow 

cases presented. For both comparisons, it is evident that the URANS solution tends to predict 

higher mean pressure coefficients within the wake region surrounding θ = 180° than those 

obtained experimentally. This trend has been identified in other studies comparing both 

URANS to higher-order computational methods as well as experimental studies [9]. Flow 

separation is predicted to occur where pressure recovery ceases [22, 29]. Comparing the data 

from Figure 80, flow separation along the centreline tends to occur earlier (θ ≈ 140° & 220°) 

on the current URANS results with more asymmetric wake behaviour, indicating these 

regions are in agreement with [7, 57], and that the influence of the subsequent rear wheel is 

significant on the aerodynamics of the front wheel of a landing gear. Similarly separation was 

observed at 150° & 220° in Zhang et al [32], 148° & 226° in Lazos [7]. From the upper rear 

wake analysis by McManus & Zhang [29], separation was observed at 232° & 225° from the 

S-A & RKE models respectively. Comparison of these separation locations to those observed 

in this present URANS study are in very good agreement with near exact agreement with the 

experimental study [32] and up to variations by 3% when compared to [7]. Differences 

between the previous studies [7, 32] are expected as these separation locations were extracted 

from a wheel from a four wheel landing gear configuration and a wheel in contact with the 

ground respectively. The presence of support struts/axles was also found to complicate the 

wake characteristics for this configuration [7]. Comparing experimental mean pressure 

coefficient data, Figure 80(b), at x/d = ±0.17 from the wheel centreline, results also shows 

reasonably coherent correlation between the two sets of isolated wheel data. This is 

particularly evident in regions on the wheel where attached flow is expected to occur in the 



 
103 

 

regions of θ < 120° and θ > 220°. Off-centreline surface pressure is known to be very 

sensitive to wheel profile [22] and from Figure 80(b), the qualitative differences evident, 

together with differences in hub detail are thought to be the main factors responsible for the 

observed differences in the data.  

The wheel geometry used for the experimental investigation in [32] was also drawn on CAD 

software and subsequently simulated in an attempt to validate the computational 

methodology used in the present study. The boundary conditions and computational domain 

were identical to that used for this present URANS study. Centreline surface pressure 

distribution obtained from the simulation Figure 80(a), shows general agreement with the 

experimental work. The overall trend of the curve is also generally over-predicted by the 

URANS computations, though this has also been observed when comparing URANS to 

experimental results [9]. Computationally modelling this geometry provided separation 

angles of θ = 132° & θ = 209°, showing general agreement with the experimental study with 

variances of up to 13%. Overall, results between the computationally modelled geometry of 

[32], the experimental data and the present URANS study are in general agreement. 

Discrepancies are present in the wake region; however the wheel geometries are different as 

the present URANS study comprises of two near-identical hub cavities which would 

essentially demonstrate a symmetrical flow-field on either sides of the wheel. 

Additional surface pressure data measured on the centreline of the front wheel of a four 

wheel rudimentary landing gear configuration (Figure 81) are used for comparisons of this 

study. Venkatakrishnan & Karthikeyan [48] had also used the work of Lazos [7] to compare 

their pressure data and is shown in Figure 81. As both of these studies used a four wheel 

landing gear configuration, stagnation at θ = 0° did not reach the expected value of unity, as 

stagnation was shown to occur slightly inboard of the wheel centreline towards the centre of 

the configuration [7, 47]. In agreement with Lazos [7], the pressure distribution on the ground 

side showed generally lower values for CP due to the presence of the truck on the wing side 

obstructing the flow field. Overall, the pressure distribution obtained in [48] was in good 

agreement up to θ ≈ 100° on the top and bottom surfaces of the wheel from the front 

stagnation region of the wheel. Beyond this point, significant differences are observed 

between the two investigations on the rear surface of the front wheel and were thought to be 

caused by the lower Reynolds number of 6 × 10
5
 used in [7] with untripped wheels, as 

opposed to 1 × 10
6 

used in [48] with tripped wheels, resulting in larger base pressures for 

laminar flows at lower Reynolds numbers than for turbulent flows.  Comparing this pressure 



 
104 

 

distribution with that observed in this study Figure 80(a), similar to Lazos [7] the general 

trend is also in agreement on the front face of the wheel up to θ ≈ 100°. Separation was found 

to occur earlier in [48] at 115 and 240°, and with a subsequent negative peak CP of -1.2 

observed at 148° on the ground side indicating flow acceleration. The presence of the truck, 

especially in [48] consisting of a rectangular shape with sharp corners, as opposed to the 

circular shape in [7], was considered to significantly affect the flow field in the wake of the 

wheel.   

Pressure distributions obtained on the front stationary wheel by Stapleford & Carr [34] are 

shown in Figure 18(a), although direct comparisons will not be possible due to the difference 

in ground clearances, as their maximum ground clearance was 2.0 inches compared to the 

‘free-air’ configuration used in this study. However, Figure 18(a) does show general 

agreement to that observed in this study, Figure 80(a).  Negative pressure peaks from [34] 

reached approximately CP = -2.0 at the top and bottom of the wheel, indicating increased 

flow acceleration probably due to the effect of the ground. Separation was predicted to occur 

at 120° from stagnation on both top and bottom surfaces of the wheel indicating an angular 

position of θ = 120° and θ = 240°, with a base pressure just below unity showing general 

agreement with the present study.  

Figure 81 - Centreline pressure data on front wheel [48] 
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Further comparisons made to the pressure distributions obtained from the work conducted by 

Li et al [47], show better agreement to the current study than the work by Stapleford & Carr 

[34]. Figure 82(a) shows the pressure distributions along the centreline of the front left wheel 

taken at 13 different selected time instances, as indicated by the visible thickness in trend line 

(A). Similar to other landing gear investigations providing results for surface pressure 

distribution, a stagnation CP slightly less than unity is observed due to the flow stagnating 

towards the centre of the configuration. Subsequently, a pressure distribution similar to [7, 

32, 34] is observed. Separation is observed in [47] at θ = 140° & 230° (B), respective to the 

defined azimuthal angle used for this study, and were found to be in very good agreement 

with [7, 32] and this present URANS study, although showing general agreement with [48, 

34]. Base pressure in the rear wake (C) was also shown at a value very close to zero, showing 

good agreement to [32] and the present URANS study, although slightly higher (∆CP ≈ 0.2) 

than that observed by Lazos [7] as shown (D) in Figure 82(b).  This decrease in pressure with 

angular position in the rear wake is suggested due to the differences in landing gear 

configurations between the computational [47] and experimental work [7], and therefore was 

not used for quantitative validation, but to validate the CP trend within the flow-field.  

Comparisons of mean drag coefficient between the two isolated wheel studies (Table 1) also 

show reasonable agreement. Results of drag coefficient reported in [32] for both the wheel 

and support sting without artificial boundary layer tripping (Ren > 1×10
6
) were reported as CD 

≈ 0.29-0.3. Overall drag coefficient for the present URANS study, modelling the wheel only 

at Ren = 1.1×10
6
, was measured at CD = 0.35. If consideration is given to the influence of the 

(a) (b) 

Figure 82 - Surface pressure distribution along the centreline of the front left wheel; (a) single front left wheel, (b) with 

comparisons to Lazos [7], from [47] 

A 

B 
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sting drag supporting the wheel from [32] whose individual drag was estimated at CD = 0.11 

(un-tripped), inferred overall wheel drag coefficient reduces to CD ≈ 0.19. It should be noted 

however, that in accounting for this difference, the A2 wheel profile used in the present 

study, has near-symmetric, wholly evacuated hub detail allowing the generation of further 

flow stagnation regions within the inside of the hub region. This will be discussed in 

subsequent sections. Allowing the flow to enter this region and stagnate would further 

increase the overall drag of the wheel, with previous studies showing differences in exposed 

and covered hub detail representing as much as a further 27% increase in drag [33, 59]. 

Additionally, CD = 0.26 from the computationally modelled geometry from [32] showing 

general agreement to both results presented in Table 1. However, deducting the drag 

contribution from the hub of the A2 wheel (stated in [22] of CD = 0.08) from the present 

URANS coefficient, an overall drag coefficient of CD = 0.27 would be obtained showing 

good agreement to the URANS computational  geometry used in the experimental study [32]. 

 

 

 

Moreover, it should also be noted that the hub detail, described in the experimental study [32] 

and shown in Figure 83, on the ‘boss’ side (a) has no perceivable evacuated area, exposing 

the flow field to a much more streamlined wheel side producing less internal stagnated 

regions of flow, and conceivably, less aerodynamic drag. This reasoning is also supported 

from estimates of individual wheel drag coefficients extracted from ‘no hub’ landing gear 

wheels (CD ≈ 0.15-0.16 [9]). Inherently, these configurations are much more streamlined 

inhibiting free stream flow impingement onto downstream internal hub surfaces. 

Additionally, although URANS computations are used for general comparison and does show 

good agreement, this method was also observed to over-predict drag coefficients up to 9.7% 

when compared to experimental results modelling the turbulent flow past a cylinder. 

However, drag force predictions using LES & DES showed variances up to 1.2% due to their 

capabilities in capturing small and finer detail within the flow-field [18, 60], however due to 

time and resource constraints, it was not possible to model an LES or DES solution for this 

study.  

 CD Ren 

Zhang et al [32] – Wheel with Sting 0.29 1.3 × 10
6
 

Present URANS study 0.35 1.1×10
6
 

Simulated geometry of Zhang et al 0.26 1.3 × 10
6
 

Table 1 - Drag force coefficient with comparisons to [32] 
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Qualitative comparisons of the general wake dynamics observed from the current study also 

show general agreement with other published literature. Figure 84 provides baseline wake 

information representative of the centreline, non-dimensional, streamwise velocity at wheel 

mid-width. Considering Figure 84(a) initially, the baseline wake characteristics are similar in 

general topology to the isolated wheel experimental investigation by Zhang et al [32] 

presented in Figure 84(b) and the rear wheel wake characteristics of the four-wheel complete 

landing gear study presented by Lazos [7]. Characteristics of this wake are the contours of 

non-dimensional streamwise velocity magnitude emanating from directly behind the wheel 

with very low flow velocity experienced at wheel mid-height. URANS results from the 

present study, calculated within the inner-most region of the wake, were very close to zero, 

with results observed in the literature reporting a similar magnitude both behind an isolated 

wheel [32] and within the wake of the rear wheel of a four-wheel landing gear [7]. Contour 

plots of non-dimensional streamwise velocity at mid-height (y/d = 0.5 – Figure 85) also show 

Hub side (b) 

Boss side (a) 

Figure 83 - Wheel geometry used in [32], indicating 'hub 

side' & 'boss side' 

(a) 

Figure 84 – Contour plots of streamwise velocity on wheel centreline plane x/d=0; (a) present study, (b) from [32] 

(b) 
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general qualitative agreement with similar topology presented for both the ‘simple’ and 

‘complex’ hub configurations presented in Zhang et al [32]. Evident in both of these 

comparative cases, are a pair of near symmetric regions of flow velocity behind the wheel. 

Non-dimensionalised mean y-velocity in the near wake centreline plane of the wheel is 

shown in [32] for both the simple and complex hub. Comparison of this data from the simple 

hub configuration (closest in wheel configuration to the wheel used in this study) illustrated 

in Figure 86(b), to the data obtained in the same centreline plane in this study Figure 86(a), 

shows very good agreement in shape and magnitude.  Negative & positive y-velocity in the 

centreline rear wake indicates the flow travelling vertically downwards & upwards 

respectively, due to the combined down-wash, up-wash and recirculation of the counter 

rotating vortex pairs formed behind the wheel. The four vortices observed in this URANS 

study correspond to those found by Zhang et al [32] and to Cogotti’s [36] theory for the 

formation of counter-rotating vortex pairs behind a stationary wheel, Figure 28(a).   

Comparison of rear surface flow features from [48], as discussed earlier in the literature, 

shows similar features to those observed in this study. As illustrated in Figure 87, surface 

streamlines show a stable focus (SF) on the upper rear section of the wheel in both 

configurations, indicating good agreement in both topology and position. The predicted 

position of this focus in [48] was at θ = 210° (note that Figures in [48] were presented with 

angular position measured clockwise from the inlet, therefore for comparative reasons, these 

angular positions are re-defined as 360° - θ, corresponding to the angular position used in this 

(a) 

SL SL 

Figure 85 – Contours plots of streamwise velocity on wheel centreline plane y/d=0.5; (a) present study, (b) from [32],  

(b) 
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study). The position of SF in this present URANS study is at θ ≈ 226°. Additionally a saddle 

point (SP) was located in this study at θ ≈ 190° compared to those from the experimental 

results [48] being predicted at θ = 195°. These positions are in good agreement with 

maximum difference in focus (SF) position ≈ 8% and saddle point position (SP) ≈ 2.7%. An 

unstable node (UN) is observed on the rear surface of the wheel in [48] at θ = 170° and is also 

observed in this present study at θ ≈ 180°, comprising a difference of 6% in position. These 

small deviations in the angular positions of these characteristics were suspected to be due to 

UN 

SF 

Figure 87 – Streamlines on the upper rear surface – (a) present URANS study, (b) front wheel [48] 

(a) (b) 

SF 

SP 

UN 

SP 

Figure 86 – Contour plot of y-velocity on wheel centreline, at x/d=0; (a) present study, (b) from [32] 

(a) (b) 
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the difference in geometry. The wheels in the experimental study [48] were modelled without 

hub cavities; therefore the flow could travel along the sides of the wheel without interacting 

with the hub flow. However, hub flow has been shown to affect the flow in the wake region 

influencing vortex position and overall drag force [22, 12].  

A stable focus (SF) and saddle point (SP) were also discovered on the rear surface of the 

front wheel of a rudimentary four wheel landing gear [49], and were predicted in the regions 

of 210° ≤ θ ≤ 217° and 195° ≤ θ ≤ 200° respectively, showing good agreement to the 

positions observed in this study and in [48]. The configurations modelled in the literature [48, 

49] are models of a full rudimentary landing gear configuration, therefore the presence of 

additional components such as additional wheels, truck assembly and struts would ultimately 

affect the overall flow-field, causing unsteadiness and asymmetry in the flow field [30, 10, 

48, 12]. Additionally, as described in the literature, the flow stagnation region is shifted 

slightly inboard towards the centre of landing gear configuration [47, 48, 49] and is therefore 

a contributor to the overall asymmetry of the flow-field as opposed to the near symmetric 

flow-field around the front of a single isolated wheel, as analysed in this study. A saddle 

point can also be seen vaguely near the centre behind the wheel in Figure 12 by Zhang et al 

[32], although there is no reference to this position in their work. The saddle point is assumed 

to be a region where the three-dimensional derivatives of velocity are zero [49]. With 

reference to Figure 88, it can be seen that this saddle point is the region where the up-wash 

and downwash from the upper and lower half of the wheel, respectively, meet and get 

dispersed to the sides of the wheel eventually forming vortical structures.   

Figure 88 - Streamwise velocity contours with streamlines behind the wheel at plane z/d=0.5 

SP 
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The observed rear wake (Figure 88) is found to be asymmetric, both about the horizontal (x) 

and vertical (y) centreline axis. The asymmetry about the vertical (y) centreline was predicted 

to be due to the asymmetric hub depths, as one hub is marginally deeper than the other. 

However, the asymmetry observed about the horizontal (x) centreline was predicted to be due 

to the ‘skewing’ of the flow, to either side of the vertical centreline, directly behind the wheel 

due to the high Reynolds number. Additionally, due to the highly oscillatory nature of this 

rear wake, another reason for this asymmetry about the horizontal centreline could be due to 

the limited amount of unsteady data available for time-averaging. 

Overall, the computational methodology was validated by comparing surface pressures, 

separation positions and drag force coefficients, for a quantitative comparison. Additionally, 

rear wake data was also compared to the available literature for a qualitative comparison, 

with both the quantitative and qualitative comparisons showing good agreement when 

compared to the literature. To provide further confidence in the methodology, the wheel 

geometry used by Zhang et al in their experimental investigation was also extracted and 

modelled computationally using the current methodology, and results also showed general 

agreement. 
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5. Results & Discussion 

In order to understand the flow field around an isolated wheel in free air with applied yaw 

and wheel rotation, it is essential, as a first step, to understand the fundamental flow physics 

around a stationary wheel in free air with zero yaw and zero rotation. This chapter is split into 

four sections, first outlining the baseline flow case of the stationary isolated wheel, 

subsequently followed by the remaining three sections outlining the effect of yaw, rotation 

and both variables combined. Results obtained from the computational simulations for each 

flow case include mean surface pressure data, wake physics and aerodynamic forces with 

comparisons made to the literature where possible. A discussion will also be provided at the 

end of each section comparing the different flow cases for each variable.  

5.1 Characterisation of the baseline flow case (zero yaw, zero rotation) 

Primarily, the fundamental flow physics on a un–yawed, non – rotating, stationary isolated 

wheel is analysed. Results obtained from the URANS simulation on the flow case discussed 

within this section include non-dimensional vorticity magnitude, together with mean velocity 

direction and magnitude, mean surface pressure distribution and force coefficients. The 

results obtained for the two latter variables are also used in discussions in the previous 

chapter. 

The general flow field around a single isolated wheel in free air [47, 32, 7], indicates the flow 

stagnating at the front face of the wheel before accelerating around the two sides, top and 

bottom surfaces of the wheel. Subsequently, the flow travels into the hub cavities on either 

sides of the wheel and impinges on the rear hub surfaces, causing the flow to circulate within 

the hub until the air is drawn out due to the entrainment around the sides of the wheel before 

separating. This causes the air to roll up over the shoulders of the wheel forming four 

streamwise vortices that propagate downstream into the unsteady wake region.  

5.1.1 Surface Pressure Characteristics 

The centreline surface pressure distribution for this baseline flow case, Figure 80(a), has 

already been presented and discussed in the previous chapter to validate the computational 

methodology. Contours of mean surface pressure on the wheel and on a plane obtained at 

wheel mid-height (y/d = 0.5) are presented in Figure 89. At the cross-sectional plane (c) and 

discussed in conjunction with (a), (b) and Figure 85(a), there is a substantial region of 
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stagnated air (A) located on the front surface of the wheel at θ = 0°. From this position, the 

flow accelerates up to 37% in excess of the free-stream velocity reaching a maximum 

velocity of 54.7m/s and CP = -0.97 around both the top and bottom of the wheel. Prominent 

on either side of this main front stagnation region (A), is a crescent shaped region of suction 

pressure (B) in Figure 89(c), with CP = -1.34, where the flow, upon being fully retarded by 

the front face of the wheel, accelerates up to 47% of the free-stream velocity to a maximum 

of 58.7m/s around both sides of the wheel edges. Subsequent to these regions of flow 

acceleration, a separated shear layer forms over the wheel hubs, SL in Figure 85(a), with the 

flow found to impinge onto the back inner face of the exposed, evacuated hubs indicated C in 

Figure 89(c), reaching a mean pressure magnitude of CP = 0.35. This is a near-symmetric 

(b) (a) 

C 

A 
B B 

C 

Figure 89 – Contours of mean CP for 0° yaw + no rotation, (a) wheel surface looking downstream from 

left, (b) wheel surface looking downstream from right (c) cross-sectional plane at y/d=0.5 

(c) 

AW 

AL 

A 
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characteristic over both sides of the wheel. The transfer of this flow momentum to the wheel 

through this physical mechanism is what would be expected to increase the drag force 

compared to the more streamlined hub configurations discussed in the literature review [22, 

36, 33, 12]. After passing over the evacuated hubs, the flow reattaches to the rear side edges 

before being entrained within the wake behind the wheel.  

5.1.2 Wake Physics 

Considering the vorticity plot shown in Figure 90, the wake structure seems to be dominated 

by a primary interaction of intense down-flow from the top of the wheel and up-flow from the 

bottom of the wheel indicated D & E respectively in Figure 90(a), both originating from the 

wheel centreline x/d=0. In both cases, maximum mean flow velocity magnitude was found to 

be near symmetric. Results also indicate that as a consequence of these two distinct flows 

(a) 

E 

D 

V1 

V3 V4 

V2 

(b) 

V2 

V1 

V3 

V4 

Figure 90 – Non-dimensional vorticity plots for 0° yaw; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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over the top and bottom of the wheel and their interaction with the wheel side-flow, four 

distinct and separate vortices are formed and are observed to propagate downstream. The 

physical mechanisms for the generation of these separate vortical structures are fundamental 

to the resulting flow field in several distinctive ways [30]. As is shown in Figure 90(a), the 

four vortices generated play a significant role in entraining the flow from the top and bottom 

of the wheel, delaying flow separation and producing a much smaller wake size than would 

be experienced from larger aspect ratio configurations. This is a common characteristic of 

finite length bluff-bodies with high inherent vorticity and typically results in a drag reduction 

with decrease in aspect ratio [20]. Although significant, this entrainment mechanism still 

remains of insufficient intensity to remove the generation of a separated wake completely 

(full base pressure recovery), and as is evident in Figure 84(a), there remains a region of very 

low velocity flow on the rear surface of the wheel, defining a separated wake. Similar 

characteristics of the wake flow behind both an isolated wheel in free air [32], as well as the 

rear wheels of complete landing gears [47, 7], are detailed in the literature. Wake flow 

physics from [32] shows this low velocity region on the rear surface of the wheel (Figure 

84(b)), and indicates that it is the central region between the positive and negative vertical 

velocity regions on either side of the wheel centreline recirculating due to the vortex 

structures. The flow around the rear wheels of landing gear configurations [47, 7] shows a 

velocity defect on the ground side of the wheel and a higher velocity on the outboard side of 

the wheel, caused by the blockage effects from the central support truck, creating a shear 

layer after flow separation, resulting in the low velocity flow in the central rear wake region 

behind the wheel.  Another important characteristic of these vortices is that they are 

generated as Counter-Rotating Vortex (CVP) pairs, both within the upper (V1, V2) and lower 

halves (V3, V4) of the wheel wake. Vortices V1 and V2, generated initially from either side of 

the top half of the wheel are shown to propagate downwards with the intense entrained flow 

(D) over the top of the wheel favouring a bias in vortical position towards the left of the 

wheel centreline. Conversely, vortices V3 and V4, initially developed on either side of the 

bottom of the wheel, are entrained from the intense up-flow (E) with vortical position bias 

towards the right side of the wheel centreline. From flow-field interrogation, vortex core 

position and vorticity magnitudes were analysed by determining the centre of curl of the 

velocity vectors at the vortex core [30]. As evident from Figure 90 at data planes further 

downstream (b) (c) (d), the upper left vortex V1 & the lower right vortex V4 appear to 

dissipate into the free stream quicker than vortices V2 & V3 with almost negligible vorticity 
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magnitude of Ωd/U∞ ≈ 0.5 for V1 and V4 at z/d = 2.5.  Considering vortex core vorticity 

magnitude at z/d = 0.75, Figure 90(a), vortex core vorticity magnitudes for V2 & V3 are 

stronger than V1 & V4 by up to 34%. The downwash (D) from the top of the wheel being 

skewed to the left, in essence pushes vortex V1 outwards and away from the wheel in the 

horizontal and vertical direction allowing more space on the upper right side for vortex V2 to 

be entrained in to the gap. 

Similarly on the lower half of the wheel, vortex V4 is also pushed outwards by the intense up-

wash (E) from the bottom of the wheel as is skewed to the right, again with increasing 

skewness further downstream whilst V3 is entrained in to the central gap on the lower left 

side. Overall, the higher intensity of V2 & V3 keeps these two vortices entrained into and near 

to the central region of the wheel by the skewed downwash and up-wash respectively, whilst 

this downwash & up-wash simultaneously push vortex V1 & V4 further away from the wheel, 

as shown by the red dashed arrows in Figure 90, with the size of the arrow indicating 

approximate vortex translation as described. Comparing vorticity magnitude between the 

nearest and furthest data plane used (z/d=0.75 & z/d=2.5) respectively, there is a rapid 

decrease in vorticity magnitude for each vortex; V1: ∆Ωd/U∞ ≈ 5.4, V2: ∆Ωd/U∞ ≈ 5.4, V3: 

∆Ωd/U∞ ≈ 5.5, and V4: ∆Ωd/U∞ ≈ 4.4. Although, the change in vorticity magnitude is similar 

for all four vortices, the differences in vortex intensity between the vortices further 

downstream remain the same, i.e. V2 & V3 was found to be stronger than V1 & V4 at the 

closest plane to the wheel (z/d = 0.75), and at the furthest downstream plane (z/d = 2.5). 

Additionally, Figure 90(a & b) shows two large circular regions of vorticity on either side of 

the wheel (F1, F2) causing asymmetry in the rear wake.  

After further analysis of the flow field around the sides of the wheel, it was suggested that 

these large regions of vorticity are produced due to the location at which the flow is being 

entrained out of the hub cavities. With reference to Figure 89(a & b), two stagnated regions 

are present on the rear internal hub surface (AW, AL), and are also shown in Figure 91(a & b) 

to be positioned in the corresponding region.  Although near symmetrical pressure was 

observed on the rear hub surface on the y/d=0.5 data plane (Figure 89(c)), contour plots of CP 

on the wheel surface shows the internal hub impingement positioned at θ = 195° with CP = 

0.63 and θ = 161° with CP = 0.52, on the left (AW in Figure 89(a)) and right (AL in Figure 

89(b)) hubs respectively when looking in the streamwise direction. Therefore, it is noticeable 

that the left impingement occurs above wheel mid-height (θ=180°) whilst the right 

impingement occurs below wheel mid-height; this is also illustrated in Figure 91 (referenced 
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to wheel mid-height shown by red dashed line). After analysing flow patterns on either sides 

of the wheel, an upper wheel mid-height impingement (AW) causes the flow to circulate 

inwards and downwards, resulting in the flow leaving the hub on the lower half of the wheel 

(GW). The lower impingement (AL) shows the opposite, as flow stagnation occurs in the hub 

cavity below mid-height, therefore circulating inwards and upwards, resulting in the flow 

leaving the hub on the upper half of the wheel (GL). After computationally testing four 

different wheel configurations, Axerio-Cilies & Iaccarino [30] also found that the hub flow 

reduces the intensity of the outboard vortex causing asymmetry in the wake. The reduction in 

vortex intensity, on the corresponding side that the flow departs from the hub, can also be 

seen from the flow curvature between V4 & V2 on the left side from Figure 91(a), and 

similarly between V1 & V3 on the right side (b). This has also been shown and discussed 

earlier in the vorticity plots (Figure 90). Furthermore, Figure 91(a) shows a similar flow 

structures (HW) on the rear face of a stationary wheel that had been observed by McManus & 

Zhang [29] and shown in Figure 31(D), indicating regions of flow attachment onto the rear 

edge of the wheel as the flow is entrained in to the rear wake, and is also shown HL & HW in 

Figure 91. The analysis of the hub flow and internal hub impingement was also expected to 

affect the overall drag force [12].     

  

(a) (b) 

Figure 91 - Streamlines showing hub flow on the, (a) left side (b) right side, when looking in the streamwise direction 
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5.1.3 Aerodynamic Forces 

Force coefficients obtained for drag, lift and side force, obtained were CD = 0.35, CL = -0.01 

& CX = -0.05 respectively. As already has been discussed in the previous chapter, CD was 

found to be higher than expected when compared to similar experimental configuration which 

obtained an overall CD = 0.19 for an isolated untripped wheel. This is thought to be due to the 

flow impingement within the exposed hub cavities on either side of the wheel. Investigations 

that were conducted with and without hub cavities [33, 12], showed that allowing the flow to 

travel in to the hubs, results in unsteadiness in the flow and increases the wake size, creating 

an overall increase in drag force. Fackrell [22] obtained pressure measurements at two holes 

inside the hub of the ‘A2’ wheel geometry, and found positive pressures in the regions 140° ≤ 

θ ≤ 200°, and suggested that these locations represent the flow entering the hub and 

circulating inside. The hubs were also found to be a large contributor to the drag, specifically 

with ∆CD = 0.08 for the ‘A2’ geometry. Although this study by Fackrell [22] was conducted 

as a ‘in-contact with the ground’ configuration, if the same ∆CD was assumed to be present 

for this free air configuration which uses the same ‘A2’ geometry modelled computationally, 

an overall drag coefficient of CD = 0.27 (CD = 0.35 – 0.08) would be provided representing a 

wheel with no hub cavity, similar to the wheel configuration used in [32]. The drag 

coefficients would then be in good agreement with the free air configuration in [32], and the 

computationally modelled geometry used by Zhang et al [32] which provided CD = 0.26. This 

reasoning is also supported by estimates of individual wheel drag coefficients extracted from 

‘no hub’ landing gear wheels (CD  0.15-0.16 [9]). Inherently, these configurations are much 

more streamlined inhibiting free stream flow impingement onto downstream internal hub 

surfaces. Considering lift and side force, both were observed and expected to be very close to 

zero as the wheel is stationary and positioned at the vertical centre of the domain with a 

symmetrical flow-field on the upper and lower halves of the wheel. Side force was also very 

close to zero but CX = -0.05, represents the side force acting in the negative x-direction 

(towards the right side of the computational domain when looking in the streamwise 

direction). This could be due to the slightly larger hub cavity on the positive x-side of the 

wheel, whereby the flow enters into a larger volume, essentially having a push towards 

negative x-direction. However, as this side force is almost negligible, it will be investigated 

in more detail with the application of yaw and rotation.    
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5.2 The Influence of Wheel Yaw 

When a crosswind is present during the approach phase of an aircraft, the free-stream air is 

flowing at an angle to the aircraft, which can be interpreted as a yaw angle. Therefore, to 

simulate the typical crosswind approach conditions of an aircraft, yaw angles of Ψ = 5°, 10° 

and 15° were applied on to the single stationary wheel. The results will focus on the surface 

pressure distribution on the centreline of the wheel with subsequent wake analysis identifying 

the vortical structures and the influence of yaw angle on the rear wake. Aerodynamic forces 

will also be discussed for each case. Although insights into yawed wheel cases are limited, 

comparisons to the available literature with similar flow physics and configurations will be 

provided. For comparison purposes, identification of flow features/regions is denoted with a 

letter followed by ʼ for increasing yaw angles, (i.e. Flow feature/region being described in 

zero yaw case is denoted A, with the same feature/region denoted A’, A’’ & A’’’ for the 5°, 

10°, & 15° yaw cases respectively).   

Initial results from the un-yawed case showed almost symmetric flow characteristics 

upstream of the wheel, flow stagnation (CP = 1) occurred on the central region of the front 

surface of the wheel before flowing around the wheel. Due to the curved profile on the wheel, 

the flow accelerated around the sides up to 58.7m/s with CP = -1.34, and around the top and 

bottom up to 55m/s with CP = -0.97. Upon passing the edges on the side of the wheel, the 

flow travels into the hub cavities and forms a stagnation region on the rear hub surface. 

Fackrell [22] also observed this flow characteristic to occur in the region 140° ≤ θ ≤ 200°, 

causing a subsequent circulation of the flow inside the hub. Impingement position on the rear 

surface of each hub was found to influence the direction of circulation of air within the hub 

hence, determining the location of exit; an upper impingement (above wheel mid-height) 

found the flow to circulate inwards and downwards and exit on the lower half of the hub 

whereas a lower impingement (below wheel mid-height) showed the opposite. The zero yaw 

case showed the positions of these impingements to be on either side of the mid-wheel 

centreline as has been discussed previously, therefore creating asymmetry in the near wake 

region. On the rear surface of the wheel, an intense up-wash from the bottom of the wheel 

and down-wash from the top of the wheel were present, skewing towards the positive and 

negative x- directions respectively. Overall, on the rear surface, four distinct vortical 

structures are formed due to the separated flow rolling up over the rear shoulders of the 

wheel. The asymmetry in the wake shows two of the vortices being up to 34% weaker in 
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magnitude, therefore being dissipated in to the free-stream much quicker than the remaining 

two stronger vortices. Changes in vorticity magnitude between the nearest and furthest data 

plane, showed a reduction in vorticity magnitude by ∆Ωd/U∞ ≈ 5 for all four vortices, but 

their individual strengths were maintained (i.e. the stronger vortices (V2 & V3) observed at 

z/d = 0.75 remained to be stronger than V1 & V4 at the furthest data plane of z/d = 2.5). 

5.2.1 Surface Pressure Characteristics 

The application of wheel yaw shows a similar surface pressure distribution along the 

centreline of the wheel, with significant differences observed on the rear surface of the wheel, 

120° ≤ θ ≤ 240°, as illustrated in Figure 92. Analysing the flow field from the most upstream 

point on the centreline of the wheel, differences in CP at θ = 0° are also evident. This region 

initially represented the stagnation region for the zero yaw case providing CP =1, however the 

pressure at θ = 0° decreases to CP = 0.99, 0.94, 0.87 with increasing yaw angle at 5°, 10° and 

15° respectively, showing that an increase in yaw angle causes a shift in stagnation position 

on the front surface of the wheel. After the frontal region, the flow accelerates around the top 

and bottom surfaces of the wheel to a maximum velocity magnitude of 55m/s with negative 

peak CP ≈ -1 on all yawed cases. Subsequently, a pressure recovery occurs until separation is 

observed, which is predicted to be, where pressure recovery ceases [47, 29]. A significant 
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Figure 92 – Stationary wheel centreline mean surface pressure coefficient with added yaw angle 
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reduction in base pressure is also observed with CP = -0.04, -0.10, -0.21, with increasing yaw 

angle to 5°, 10° and 15° respectively, directly behind the wheel at θ = 180°. This was also a 

discovered characteristic behind a yawed cylinder, as the influence of yaw reduces the 

intensity of vortex shedding in the rear wake reducing the base pressure [26].  

Pressure contour plots obtained on the wheel surface (Figure 93) and at a cross-sectional 

plane at wheel mid-height (y/d = 0.5) from Figure 94, representing 5°, 10°, 15° yaw cases 

respectively, provides a more detailed understanding of the characteristic flow field around a 

yawed wheel. Considering the frontal region of the wheel, the earlier stated shift in stagnation 

position towards the windward side of the wheel is clearly evident (A’, A’’, A’’’) from the 

figures, and is shown to have a transverse displacement towards the windward edge of the 

front surface as applied wheel yaw angle increases with ∆x/d = 0.04 (5° yaw), ∆x/d = 0.08 

(10° yaw), ∆x/d = 0.11 (15° yaw), relative to the initial stagnation region at x/d = 0 (0° yaw). 

This would be expected as the flow would essentially interact first on the windward side due 

to the applied yaw angle.  

Subsequent to the flow stagnation, the mean pressure distribution (Figure 94) shows an 

enhancement of negative pressure on the leeside of the wheel, together with an overall 

increase in pressure on the windward side. This is principally evident with the increase in 

suction region around the front leeside edge of the wheel from CP = -1.34 at 0 yaw ((B) in 

Figure 89(c)), to CP = -1.9 (B1), CP = -2.6 (B3), CP = -3.0 (B5). Corresponding velocity 

magnitudes of 60m/s (B1), 71m/s (B3), 78m/s (B5) respectively, were also found indicating 

increasing flow acceleration around the front edge on the leeside of the wheel. This increase 

in negative pressure, occurs in unison with a decrease in negative pressure on the windward 

side of the model from CP = -1.34 at 0 yaw ((B) in Figure 89(c)), to CP = -1.05 (B2), CP = -

0.73 (B4), CP = -0.35 (B6) with corresponding velocity magnitudes up to 55m/s (B2), 51m/s 

(B4) and 46m/s (B6) respectively. The decrease in negative pressure and velocity is a result of 

relative exposure to the oncoming free stream. Together with the flow asymmetry found over 

the front edges of the wheel, there is also evidence of flow asymmetry within the flow 

stagnation regions impinging onto the rear face of the internal hub cavities of the wheel. 

Within these regions, there exists an increase in surface pressure within the windward side 

cavity, representing more than a 30% increase (at 5° yaw) over the results found at zero yaw, 

CP = 0.44 (C2) relative to CP = 0.30 (C) respectively. Conversely, a 13% decrease (CP  = 0.26, 

C1 from Figure 94(a), relative to CP = 0.30, C from Figure 89) is shown within the leeside 

cavity.  
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Figure 93 – Contours of mean CP on stationary wheel surface when looking downstream: (a) 5° left, (b) 5°  right, (c) 10° left, 

(d) 10° right, (e) 15° left, (f) 15° right 
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Figure 94 – Contours of mean CP on stationary wheel at cross-sectional plane at y/d=0.5: (a) 5°, (b) 10°, (c) 15° 
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Similarly, this trend is followed with further increases in yaw angle, with leeside hub rear 

stagnation regions decreasing to CP = 0.09 (C3) at 10° yaw and CP = -0.15 (C5) at 15° yaw. 

On the windward side, the pressure increases to CP = 0.58 (C4) at 10° yaw and CP = 0.77 (C6) 

at 15° yaw. This would be expected as the leeside cavity is more sheltered and obstructed 

from direct exposure to the oncoming free-stream flow, minimising the area exposed to direct 

impingement, whilst the windward side cavity, particularly the rear surface, is more exposed 

as the yaw angle increases. However at 15° yaw, the single dominant flow stagnation region 

evident on the windward side rear face of the hub (C6), showed CP = 0.77, approximately 

equivalent in magnitude to that observed at the front centreline of the wheel (ACL: CP = 0.87). 

The impingement on the rear surface of the hub cavity on the leeside (C5), is almost 

negligible, with the oncoming free stream flow being obstructed to an extent where the flow 

reaches the back of the wheel before having the opportunity to impinge on the hub cavity 

resulting in low velocity circulation to persist in the hub cavity on this leeside. Overall, the 

flow asymmetry around the wheel continues to increase, as more of the windward side of the 

model becomes directly exposed to the oncoming free-stream. 

5.2.2 Wake Physics 

With the application of yaw, both significant and subtle changes in the physics of the flow-

field are immediately evident. First, considering the 5° yaw case, it is clear, from Figure 95, 

that the most noticeable feature of the wake dynamics is that there is a clear bias and 

asymmetric distribution of vorticity favouring the windward side of the wheel. Significant 

changes in the number of distinctive vortical structures present as well as vortex core central 

magnitudes have also occurred. There is no direct evidence of the development of V1 & V3, 

seen for the zero yaw case, however the z/d = 0.75 streamwise location for the 5° yaw case 

signifies, that a fundamental shift in the distribution of wake vorticity to dominate a two-

vortex wake has occurred. Together with this fundamental overall change in wake dynamics, 

the application of wheel yaw has also resulted in a characteristic change in the flow 

entrainment over both the top and bottom of the wheel. Outlined for the zero yaw case shown 

in Figure 90, the flow entrainment over the top and bottom of the wheel, was seen to undergo 

an interaction that resulted in the downwash (D) from the top, upon interacting with the up-

flow (E) from the bottom, displacing to the left and right of one another prior to subsequent 

convection downstream. This skewness characteristic in the downwash, was also observed in 

[12] with the application of ±6° yaw.  However from Figure 95, the added vorticity generated 

from applied wheel yaw on the windward side, is shown to both intensify and fortify the 
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skewness of the entrainment over the bottom of the wheel (E’ relative to E), with the 

entrainment from the top of the wheel previously moving towards the left of the wheel (D in 

Figure 90), now being straightened to move directly down the wheel centreline (D’ relative to 

D). Effectively, it seems that the applied wheel yaw and the augmented vorticity produced 

bias towards the windward side of the model, resulting in further intensification of the 

resulting sideways flow entrainment to augment wake bias towards the windward side of the 

wheel.     

Considering central core vorticity magnitude at z/d = 0.75, the application of 5° yaw on the 

wheel has increased the vortex core magnitude of V2’, increasing from Ωd/U∞ = 6.60 for V2 

in Figure 90(a) to Ωd/U∞ = 6.77 in Figure 95(a). Correspondingly, vortex core vorticity 

magnitude for V4’ has increased  to Ωd/U∞ = 8.60 from Ωd/U∞ = 4.96 for V4, suggesting that 

(a) 

(d) 

(b) 

(c) 

E’ 

D’ 

V4’ 

V2’ 

Figure 95 – Non-dimensional vorticity plots for 5° yaw; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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the application of yaw has an effect on increasing the net core vorticity magnitude on the 

bottom half of the wheel wake relative to the top. This is thought to be caused by the 92% 

increase in transverse velocity from the upwash, relative to the zero yaw case (indicated by 

the red dashed circular region in Figure 95(a) and Figure 90(a)), creating a stronger curl 

within the flow in the region of V4’. This effect acts in unison with the attached flow on the 

lower half on the windward side (HW’), separating and rolling up over the edge of the wheel 

forming a more intense vortex structure for V4’, as shown in Figure 96(a). Additionally, the 

larger vorticity but lower intensity region (F2’) of V2’ compared to V4’ is suggested to be due 

to the effect of the low velocity recirculating flow in the hub leaving on the upper half of the 

wheel (GW’, GL’) and being entrained into the upper vortex (V2’) reducing its intensity, also 

observed on the zero yaw case and in [30]. Similarly, on the leeside of the wheel, the flow 

entering the rear wake of the wheel originates from the upper hub region and the attached 

flow over the lower edge, which is subsequently entrained by the downwash and upwash 

respectively. The flow from the upper leeside hub (GL’), is entrained into the upper vortex V2’ 

whilst the attached flow from the lower side of the hub (HL’) is entrained by the upwash into 

V4’. The reason behind the hub flow leaving both hub cavities on the upper half, is due to the 

flow impingement below wheel mid-height at θ = 174° and θ = 165°  for the windward side 

(AW’), and leeside (AL’) respectively, with corresponding pressure coefficients of CP = 0.48 

and CP = 0.46 illustrated in Figure 93(a & b) and Figure 96. 

  

Figure 96 - Streamlines (coloured by mean streamwise velocity) showing hub flow on the 5° yaw wheel, (a) windward 

side (b) leeside, when looking in the streamwise direction 
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It is also evident that through comparing Figure 90 and Figure 95, that the application of a 5° 

yaw angle has increased the transverse displacement of the two primary vortex structures (V2, 

V4), with vortex core positions relative to Figure 90(a) being displaced by ∆x/d = 0.003 and 

∆x/d = 0.002 for V2’ & V4’ respectively at z/d = 0.75. The central vortex core position was 

obtained, by using the bottom centre of the wheel as a reference point (x/d = 0, y/d = 0), 

allowing the vortex core to be predicted at the centre of the curl of velocity vectors [30]. At 

z/d = 0.75, there also appears to have been an increase in vertical displacement, with vortex 

core positions relative to Figure 90(a) being displaced by ∆y/d = 0.10 and ∆y/d = 0.08 for V2’ 

& V4’ respectively. For the 5° yaw case shown in Figure 95, an increased asymmetric 

horizontal offset of vortex V4’ relative to V2’ is present; most probably as a result of the more 

efficient constructive interference over the bottom of the wheel than over the top as has been 

discussed earlier for Figure 90. The difference in offset between the two vortices,  initally 

representing ∆x/d = 0.07 at z/d = 0.75, was found to increase to ∆x/d = 0.15 at z/d = 2.5. 

Similarly, the vertical positions of V4’ relative to V2’ were found to differ, with initial ∆y/d = 

0.27 and ∆y/d = 0.49 at z/d = 0.5 and z/d = 2.5 respectively, indicating that the vortices 

propagate downstream with horizontal displacement in the +x direction and vertical 

displacement (+y direction for V2’ & -y direction for V4’). This tends to correspond to results 

obtained for the respective vortex core magnitudes with the bottom vortex (V4’) showing 

increased intensity over the top vortex (V2’). Additionally, and in similar trend to that found 

for the 0° yaw case, with subsequent propagation downstream from z/d = 0.75 to z/d = 2.5, 

vortex core vorticity magnitudes for both vortices were found to dissipate rapidly from 

Ωd/U∞ = 6.77 to Ωd/U∞ = 1.29 for V2’ and Ωd/U∞ = 8.60 to Ωd/U∞ = 1.27 for V4’ 

respectively.  

Application of another 5° incremental increase in yaw angle to 10°, Figure 97, shows the 

dominant two-vortex wake structure, observed for the wheel at 5° yaw, continues to persist. 

The additional increase in yaw angle has continued to increase the central vortex core 

magnitudes of the two vortices V2’’ & V4’’ presented in Figure 97. There is also an increase in 

the transverse displacement of the dominant pair of vortices (V2’’, V4’’) towards the windward 

side of the wheel. This additional displacement caused through the additional increase in 

transverse flow entrainment is rather subtle, at the spanwise location of z/d=0.75, being 

marginally larger, than that observed for the 5° yaw case where x/d = 0.118 (V2’) and x/d = 

0.188 (V4’) from Figure 95(a), and x/d = 0.168 (V2’’) and x/d = 0.22 (V4’’) from Figure 97(a). 

Propagating downstream from z/d=0.75 to z/d=2.5, an increased displacement in the trasverse 
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direction, is observed when analysing the central vortex core positions between the 5° and 

10° cases (demonstrated for the transverse displacement of the upper vortex  at 5° as ∆x/d = 

𝑥2’ – 𝑥1’, and at 10° as ∆x/d = 𝑥2’’ – 𝑥1’’). 

Comparing ∆x/d & ∆y/d from z/d=0.75 to z/d=2.5, the 5° configurations from Figure 95 

indicates that the displacement in the upper vortex V2’ as ∆x/d = 0.113, ∆y/d = 0.139 with the 

lower vortex V4’ having ∆x/d = 0.188 and ∆y/d = -0.081 (Note. negative value indicates 

displacement in the negative y direction). However at 10° yaw (Figure 97), vortex V2’’ has a 

displacement of ∆x/d = 0.188, ∆y/d = 0.146 and V4’’ ∆x/d = 0.208, ∆y/d = -0.08. This 

indicates a marked increase in transverse displacement of the central vortex core positions 

over the five degree yaw case, although the vertical change in vertical displacement between 

the two cases are almost negligible as they both seem to be shifted vertically by 

approximately y/d = 0.08. Also evident from the results in Figure 97, is confirmation that 

(a) 

(d) 

(b) 

(c) 

E’’ 

D’’ 

V4’’ 

V2’’ 

V4’’ 

V2’’ 

V4’’ 

V2’’ 

V4’’ 

V2’’ 

Figure 97 – Non-dimensional vorticity plots for 10° yaw; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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with the increase in yaw angle to 10°, the downflow from over the top of the wheel (D’’) and 

the up-flow from the bottom of the wheel (E’’), has become noticeably more symmetric 

under these flow conditions; with the strength of the vorticity, particularly over the top of the 

wheel now being strong enough to not only entrain the downwash from the top of the wheel 

moving to the adjacent side of the upflow, as shown in Figure 95, but also to now fully 

entrain the flow towards the windward side of the wheel, with a similar degree of instensity 

(D’ relative to D’’). Contrary to this near symmetry, there is still an offset in the transverse 

direction of the central vortex cores (V4’’ relative to V2’’) by approximatly up to 30% at 

z/d=0.75 with this offset reducing to approximately 21% further downstream. However this 

offset percentage is almost double for the 5° yaw case (Figure 95) with V4’ being positioned 

almost 60% more in the +x/d direction relative to V2’. Furthermore, unlike this offset 

reducing further downstream as observed in the 10° yaw case, this offset remains about 60% 

further downstream on the 5° yaw case. With the application of 10° yaw, the degree of flow 

asymmetry around the wheel continues to increase as more of the windward side of the model 

becomes directly exposed to the oncoming free-stream, confirming and enhancing the flow 

characteristics already observed in the 5° yaw case.  

At 10° yaw, central vortex core vorticity magnitude indicates Ωd/U∞ = 8.30 (V2’’) and Ωd/U∞ 

= 9.68 (V4’’) at z/d = 0.75, signifying a stronger lower vortex. The less intense vortex on the 

upper half (V2’’) although again covering a larger region (F2’’), was suggested to be due to the 

flow from the upper side of the leeside hub being entrained into the upper vortex. 

Considering Figure 93(c & d) and Figure 98, internal hub impingements are shown at 

(a) (b) 

Figure 98 - Streamlines (coloured by mean streamwise velocity) showing hub flow on the the 10° yaw wheel, (a) 

windward side (b) leeside, when looking in the streamwise direction 
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approximately wheel mid-height on the windward side of the wheel, AW’’: θ = 179° with CP = 

0.58 and below wheel mid-height at θ = 165° with CP = 0.40 on the leeside of the wheel 

(AL’’). The rise in impingement CP on the windward side (AW”) by 21% (relative to CP = 0.48 

(AW’) at 5° yaw)  indicates the increased exposure of the rear surface of the hub cavity, 

allowing the flow to stagnate/impinge on, whereas the front of the wheel further obstructs the 

rear surface of the hub cavity on the leeside due, to the applied increased yaw angle 

minimising the area exposed to direct impingement. Referring to Figure 98, and considering 

the same theory used earlier to describe the effect of impingement location on the subsequent 

flowfield, the near mid-height impingement on the windward side of the wheel (AW’’) results 

in the motion of the flow thereafter illustrated to be very near symmetric, with the flow 

leaving the hub on both the upper and lower regions, and re-attaching to the edge of the 

wheel (GW’’ and HW’’ respectively) before separating and forming vortices. However, on the 

leeside of the wheel, the flow impinges below wheel mid-height (AL’’), forcing the flow to 

circulate into and upwards, inside the hub due to its geometry, resulting in the flow leaving 

the hub on the upper half (GL’’) and being entrained into V2’’, reducing its intensity as has 

been observed on the 5° yaw case. 

The wake dynamics for the wheel with an applied yaw angle of 15° continues to uphold the 

two-vortex dominant flow-field, evident for both the 5° and 10° yaw cases, as shown in 

Figure 99. The two vortices appear to be near symmetrical about the horizontal centreline of 

the wheel at y/d=0.5. With a similar trend to what was observed for the 10° yaw case, the 

central vortex core magnitudes increased with this further 5° increase in yaw angle, by 29% 

for V2’’’ however reducing by 11.5% for V4’’’. Although, central core vorticity magnitude for 

the two vortices differed slightly by up to 23% at z/d=0.75 (V2’’’: Ωd/U∞ = 10.70, V4’’’: 

Ωd/U∞ = 8.68), further downstream (z/d > 0.75) the maximum difference in vorticity 

magnitude was of 7%, with both vortices comprising an identical vorticity magnitude of 

Ωd/U∞ = 2.26 at z/d=2.5. The application of 15° yaw also demonstrates that the downwash 

and upwash is now fully able to entrain the flow over the top and bottom of the wheel 

respectively, providing a near symmetrical wake. Wheel mid-height (y/d = 0.5) stagnation on 

the rear surface of the hub cavity on the leeside (Figure 94 - C5) is almost negligible for the 

15° yaw case, with the oncoming free stream flow being obstructed to an extent, where the 

flow reaches the back of the wheel before having the opportunity to impinge on the hub 

cavity. Considering wheel surface pressure, Figure 93(e & f), internal hub cavitiy 

impingement occurs on the windward side (AW’’’) at θ = 181° with CP = 0.79 and a region of 
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maximum pressure reaching CP = 0.33 at θ = 197° on the leeside (AL’’’). The further upstream 

region on the leeside hub at θ = 197°, located above wheel mid-height, explains the larger 

vorticity region F2’’’ shown in Figure 99(a), due to the flow exiting the hub from its lower half 

(Figure 100 – HL’’’), subsequently being entrained by the highly skewed upwash into the V4’’’ 

vortex region. However, on the windward side of the wheel, the mid-wheel impingement 

(AW’’’) accounts for the near wake flow charactersitics being very near symmetrical about the 

horizontal wheel centreline, y/d = 0.5, as the flow re-circulates within the hub, leaving from 

both the upper and lower halves (HW’’’ & GW’’’). 

The formation of the two vortical structures observed in the rear wake of all yawed cases are 

caused by the separated flow rolling up over the rear shoulders of the wheel [29, 22, 40]. 

Considering the graph of CP against angular position for all yaw cases, (Figure 92), together 
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Figure 99 – Non-dimensional vorticity plots for 15° yaw; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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with the convention previously used in [34, 30, 29], predicting seperation to occur where 

pressure recovery ceases; maximum separation angles were predicted for the current cases at 

θ = 139° & 230°, θ = 133° & 230°, θ = 129° & 228° for 5°, 10°, 15° configurations 

respectively on the lower and upper surfaces. Comparing the upper surface separation 

positions, the flow appears to separate approximately at θ ≈ 230° for all three yaw angles. 

However on the lower surface, the maximum separation angle appears to be displaced further  

towards the bottom of the wheel by approximately 4° with an incremental increase of 5° yaw.  

 

5.2.3 Aerodynamic Forces 

The aerodynamic force coefficients for the stationary wheel with applied yaw angle are 

displayed in Table 2. A 42% increase in drag, is observed with increasing yaw angle from 0° 

- 15°, which can be the resultant effect of several factors. The internal hub impingement was 

found to contribute to the drag as stated by Fackrell [22], therefore as the yaw angle 

increases, internal hub impingement CP, particularly on the windward side, was found to 

increase by 68% from 5° to 15° of applied yaw. Additionally, an increase in yaw angle was 

also found to result in a larger lateral spread of velocity vectors in the wake region, which 

increases the wake size and subsequently, increasing the drag [12]. This was also found in the 

present results (illustrated in the vorticity plots Figure 95, Figure 97 & Figure 99) as the 

skewness of the up-wash and downwash intensifies with increasing yaw angle, with the 5° 

yaw case symbolising a 92% increase in transverse velocity towards the windward side, 

Figure 100 - Streamlines (coloured by mean streamwise velocity) showing hub flow on the 15° yaw wheel, (a) 

windward side (b) leeside, when looking in the streamwise direction 
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relative to the zero yaw case. A lower base pressure in the rear wake is also found with 

increasing yaw angle (Figure 92), and is suggested in [12] to be caused by the flow separating 

due to an adverse pressure gradient at the back of the wheel. The lift coefficient remained 

very close to zero, however the side force decreased, directing the force towards the –x 

direction. This is predicted to be due to the windward side hub cavity being more exposed to 

the oncoming free stream flow, essentially having a push on the internal face of the hub 

towards the leeside (-x direction).  

 

 

 

 

  

Wheel Yaw 

Angle 

Force Coefficient 

CD CL CX 

0° 0.35 -0.01 -0.05 

5° 0.35 -0.07 -0.18 

10° 0.39 -0.04 -0.35 

15° 0.50 0.02 -0.52 

Table 2 – Stationary wheel force coefficients with 

applied yaw 
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5.2.4 The effect of Yaw 

With the application of yaw, the most noticeable difference was the four distinct vortical 

structures (observed with no yaw) being transformed into two distinct vortices. However, 

detailed analysis into the flow physics around each stationary yaw case, showed significant 

changes that were influenced by yaw angle.  

From the most upstream position at the front central region of the wheel, a clear shift in front 

stagnation position is observed. Vertical displacement of the stagnation position is negligible, 

as the region remains within the front central midpoint region of the wheel, however changes 

in transverse position is noticeable, as can be seen in their individual pressure contour plots 

previously shown and  discussed, (Figure 93 & Figure 94). Transverse displacement from the 

wheel centreline was measured and plotted on a graph (Figure 101), and showed ∆x/d = 0.04, 

∆x/d = 0.08 and ∆x/d = 0.11 for the 5°, 10° and 15° yaw configurations respectively, 

representing a horizontal linear displacement of x/d ≈ 0.04 towards the windward side of the 

wheel from the wheel centreline with each 5° incremental increase in yaw angle. 

The flow travelling past the sides of the wheel upon stagnation shows an increase in 

acceleration around the leeside of the wheel as the yaw angle increases, acting in unison with 

a decrease in acceleration on the windward side of the front edge of the wheel. With no 

applied yaw, maximum velocity magnitude around the leeside indicates 59m/s and with 5° 

incremental increases in yaw angle to 15° yaw, the maximum velocity increases  to 60m/s, 
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Figure 101 - Change in transverse displacement of stagnation region from stationary wheel 

centreline with increasing yaw angle 
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71m/s and 78m/s respectively. Similarly, on the windward side maximum velocity magnitude 

reduces from 59m/s at 0° yaw to 55m/s, 51m/s and 46m/s at 5°, 10°, and 15° yaw 

respectively, indicating an approximate 9% decrease in velocity for each 5° addition of yaw. 

Moving further downstream towards the hub regions, the flow impinges on the rear surface of 

each hub. As has been previously discussed, the hub impingement influences the direction of 

flow within the hub, hence determining the location the flow departs the hub; these locations 

and flow patterns for each individual yaw case have been discussed previously under each of 

their respective sections. It is evident from the results that although impingement location 

varies at lower yaw angles (Ψ < 10°), after Ψ ≥ 10° the rear wake becomes somewhat steady 

with minimal asymmetry and internal hub impingement occurring in the wheel mid-height 

region, essentially stabilising the flow. Separation was predicted to occur from the centreline 

pressure graph (Figure 92) at θ = 140° & 220°, θ = 139° & 230°, θ = 133° & 230°, θ = 129° 

& 228° for 0°, 5°, 10°, 15° configurations respectively on the lower and upper surfaces. It 

was difficult to computationally predict the zero velocity regions on the wheel surface by 

identifying regions of backflow caused by flow separation due to the alignment of the 

velocity vectors with the wheel axis. This was also experienced by Smith et al [26], as they 

found regions of backflow on a yawed cylinder were defined by a position where the flow in 

the x-z plane was aligned with the cylinder axis, and not by the region of zero velocity. 

However from the centreline pressure data, separation location on the upper surface of the 

wheel increased by 10° with the application of yaw (relative to the un-yawed case), therefore 

occurring 10°closer to the top of the wheel but remained at that separation location of θ ≈ 

230° with increasing yaw angle between 5° ≤ Ψ ≤ 15°. However, on the lower surface of the 

wheel, separation location decreased by up to 4° with each 5° incremental increase in yaw 

angle, therefore occurring closer to the bottom of the wheel with increasing yaw angle. The 

change in separation position on the lower rear surface of the wheel, can be expected due to 

the increasing yaw angle exposing the windward side of the wheel to the oncoming flow, 

therefore, as the low pressure flow rolls over the sides of the wheel, the interaction with the 

higher pressure region on the rear sheltered side creates an adverse pressure gradient resulting 

in flow separation.  
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Considering vortex core position and magnitude, the initially observed four vortices on the 

un-yawed configuration, transform into only two vortices with applied yaw angle. Central 

vortex core vorticity magnitude and position for the 0° yaw case has already been discussed 

earlier in this section, subsequently, followed by the individual yaw configurations. The 

wheel configurations with applied yaw angle show two vortices on the windward side of the 
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Figure 102 - Vortex core vorticity magnitude (on yawed stationary wheel) with 

downstream propagation into the rear wake; Upper vortex - V2 (dashed), Lower 

vortex - V4 (solid) 

(a) 

Figure 103 – Vortex core displacements (on yawed stationary wheel) relative to z/d = 0.75 with downstream 

propagation; V2 (dashed), V4 (solid). (a) Transverse (b) Longitudinal 

(b) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.5 1 1.5 2 2.5


x/

d
 

z/d 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.5 1 1.5 2 2.5


y/

d
 

z/d 



 
137 

 

wheel. Central vortex core vorticity magnitude at z/d = 0.75, illustrated in the earlier vorticity 

plots and in Figure 102, indicate the lower vortex V4’ and V4’’ for the 5° & 10° configurations  

respectively, to be stronger in magnitude than their respective upper vortex by up to 28% and 

16% respectively. However, at 15° yaw, the upper vortex (V2’’’) is stronger than V4’’’ by up to 

23%, although reducing to less than 5% for all cases with downstream propagation, z/d > 

0.75. Both yaw angles, of 5° & 10°, show the same difference in magnitude of ≈5% between 

the two vortices after z/d ≥ 1.5. Figure 103 illustrates the lateral and longitudinal central 

vortex core positions with downstream propagation referenced to z/d = 0.75 (∆x/d = 0, ∆y/d = 

0). Considering the lateral displacement (a), an almost linear correlation is present showing 

an increase in relative horizontal displacement to the windward side of the wheel with 

increasing degree of applied wheel yaw. Interestingly, while the upper vortex (V2) moves 

with almost linear relative displacement with downstream propagation, the transverse 

displacement of V4, exhibits some non-linear behaviour at lower yaw angles (Ψ ≤ 10°). As 

described earlier, this result is suggested to be due  to the asymmetric levels of constructive 

amplification discussed earlier resulting from the transverse flow physics (upper vortex V2) 

being unable to fully entrain the opposing wake flow from moving to the opposite leeside of 

the wheel  which was found to be most prominent at Ψ = 5°. The rear wake flow is dominated 

by the skewed up-wash and downwash, and is intensified by increasing transverse velocities 

near the centre of the wheel, therefore, being fully able to entrain the wake towards the 

windward side of the wheel at yaw angles > 5°. An anomaly in the 10° lower vortex (V2’’) at 

z/d = 1, shows a slight dip in ∆x/d, at z/d = 1, and not being able to fulfil the linear trend 

observed at higher yaw angles; this is predicted to be as result of the highly oscillatory, 

unsteady near rear wake as an almost linear trend is shown further downstream z/d ≥ 1.5. The 

upper and lower vortices at Ψ > 5°, show an almost equal ∆x/d as they propagate further 

downstream whilst the 5° yaw case shows a difference of ≈66% between the transverse 

displacement of the two vortices at the furthest downstream plane, z/d = 2.5; also confirming 

the suggested observation that the increase in yaw angle essentially stabilizes rear wake flow 

field. These significant changes in transverse displacement with applied yaw, were found to 

occur with relatively small, but linear, changes in vertical displacement, as is shown from 

Figure 103(b), with results revealing both a relative insensitivity with very little defined trend 

or direct relationship relative to applied yaw angle. The size and shape of the rear wake are 

shown in Figure 104, which displays mean velocity magnitude contours and streamlines on 

the wheel’s centreline plane. The rear wake on the 0° yaw case is relatively small in size 
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when observing the low velocity region due to separation being located more towards the 

rear, however, this low velocity region increases with increasing yaw angle. The asymmetry 

in the wake observed at 10° and 15° yaw, is due to the difference in vortex size and 

magnitude. As described earlier for the 10° yaw case, although the windward side hub cavity 

experiences flow impingement near wheel mid-height, the leeside cavity experiences 

impingement at 164.5°. With reference to Figure 98(b), this impingement location causes the 

flow to leave the hub on the upper half of the wheel and contribute to the upper vortex V2’’. 

Similarly, on the 15° case, the leeside impingement occurs at 196.7°, causing the flow to 

leave the hub on the lower side and contribute to V4’’’, as shown in Figure 100(b). These hub 

flow contributions to the vortical structures had shown to reduce the magnitude but increase 

the size of the vortices, therefore, resulting in the asymmetric rear wake indicating the low 

velocity regions to be the vortices that are weaker but larger in size.  The increase in low 

velocity wake size contributes to the rise in drag coefficient as shown in Figure 105.  

(a) 

(d) 

(b) 

(c) 

Figure 104 – Contour plots of velocity magnitude on stationary wheel centreline cross-sectional plane; (a) 0° yaw, 

(b) 5° yaw, (c) 10° yaw & (d) 15° yaw, with velocity streamlines 
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A larger wake region is expected to induce a larger drag force, due to the earlier separation 

forming the two shear layers which entrain the flow in the wake region [12]. Increasing yaw 

angle on the stationary wheel was found to intensify the lateral spread of velocity vectors in 

the wake of the wheel [12], as illustrated in the vorticity plots, resulting in a larger wake size 

subsequently increasing the drag force. Furthermore, Smith et al [26] also carried out tests on 

a yawed cylinder and observed a decrease in base pressure, was found to contribute for the 

increase in drag. In this investigation the same principle can be applied as a lower base 

pressure occurs as yaw angle increases (Figure 92), corresponding to an increase in drag 

coefficient. Lift is observed to fluctuate around the value of zero as the wheel is placed in the 

vertical centre of the domain, resulting in a near symmetric flow field on both upper and 

lower halves of the wheel. Side force shows a linear decrease with increasing yaw angle, 

representing a force directed in the negative x-direction respective of the wheel geometry and 

coordinate axis. An increase in side force is also shown by Morelli [33]; however, although a 

similar trend is experienced, direct comparisons were not made to the experimental results 

[33] as subsequent investigations by other authors proved that errors were present due to their 

methodology. An almost negligible (near zero) side force is present on the zero yaw case; this 

could be due to small fluctuations caused by the unsteady flow or due to the slight asymmetry 

between the hubs as the hub cavity on the positive side of the x-centreline is marginally 

deeper than the opposite side. Therefore as the flow travels into the marginally larger hub 

cavity comprising of a larger volume, a small side force could be induced in the –x direction.  

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 5 10 15

C
o

e
ff

ic
ie

n
t 

Yaw Angle (Degrees) 

Drag

Lift

Side

Figure 105 - Force coefficients for stationary wheel with applied yaw angle 
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5.3 The Influence of Wheel Rotation 

Rotation was applied in order to understand the flow field around the wheel after an aircraft 

has taken off.  Immediately after take-off, the wheels continue to spin forward into the 

oncoming free-stream flow at an equivalent speed to the aircraft’s take-off speed, therefore 

rotational angular velocity of 192.31rad/s, equivalent to the modelled free stream flow of 

40m/s was applied on the wheel. Time-averaged pressure on and around the wheel will be 

discussed with a detailed analysis of the wake physics and corresponding aerodynamic forces 

with comparisons made to the available literature. Similar to the yawed cases, identification 

of flow features/regions are denoted with a subscript (R) for the rotating cases, (i.e. Flow 

feature/region being described in zero yaw stationary case is denoted A, with the same 

feature/region denoted AR for rotating cases). 

The general flow field around a rotating wheel shows a stagnation region on the front face of 

the wheel, before the flow accelerates around the wheel. Separation is found to occur earlier 

on the rotating wheel due to the attached flow on the wheel interacting with the free stream 

flow upstream at the top of the wheel, as illustrated in Figure 26 by Fackrell [22]. After the 

flow separates, a shear layer is formed on top of the wheel propagating in to the rear wake. 

Due to the wheel rotation, an intense up-wash is present on the rear surface of the wheel; 

however, after reaching and interacting with the upper shear layer, the flow is entrained in 

this region and recirculated forming two upper vortices.  

5.3.1 Surface Pressure Characteristics 

Centreline mean surface pressure (Figure 106) for the rotating wheel, shows a different trend 

to that observed on the stationary wheel after the bottom of the wheel at θ = 71.5°. Initially 

considering the frontal region of the wheel, flow stagnation occurs at the front of the wheel 

with CP = 1. The pressure reduces around the bottom of the wheel reaching a negative peak of 

CP = -1.04 at θ = 90° (A) with a corresponding maximum velocity of 56m/s. The negative 

pressure peak observed slightly lower, than on the stationary wheel, is predicted to be due to 

the 4% increase in velocity magnitude on the bottom surface of the rotating wheel, compared 

to the stationary wheel and caused due to the free-stream flow travelling in the same direction 

as the wheel rotation. A pressure recovery occurs until the flow detaches on the rear surface 

of the wheel at θ = 145° (B) and θ = 264° (D). At the former location of θ = 145°, located 35° 

below mid-height on the rear surface, CP = -0.22. However, the pressure decreases to a value 

of CP = -0.28 directly behind the wheel at θ = 180° (C) where the, previously stated, up-wash 
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occurs with a mean velocity of 29.7m/s, before recovering at (D) to CP = -0.18 at θ = 264° 

where the flow separates. This separation location is 6° downstream from the top of the 

wheel. Centreline surface pressure obtained by McManus & Zhang [29] on the rotating 

wheel, predicted separation to occur at θ = 270° and θ = 255° for the Spalart-Allmaras & 

RKE computations respectively. Therefore it is clearly evident that the result from this study 

for the upper separation position is in good agreement. Separation on the lower half of the 

wheel was not observed by McManus & Zhang [29], although a lower base pressure was 

obtained. However, their study was conducted with the wheel in contact with the ground, 

therefore indicating a ‘pumping’ effect (as has been discussed in [29]) accelerating the flow 

outwards and downstream from the contact patch due to the diverging boundaries. With 

wheel rotation also inducing the up-wash velocity on the rear surface of the wheel, a 

consequent reduction in base pressure is observed on the rotating wheel in contact with the 

ground.  

For comparison, the centreline surface pressure coefficient of the stationary wheel at zero 

yaw discussed earlier, is also plotted on the same graph, Figure 106, for direct comparisons. 

The graph clearly illustrates the difference in separation positions between the two 

configurations; the rotating wheel separates at an earlier angular position (θ°) on the upper 

surface compared to the stationary case. This was also found by authors who have previously 

modelled both rotating and stationary wheels on the ground, whereby the rotating wheel is 

found to separate earlier than the stationary wheel, due to the reversed layer of flow on the 

wheels surface interacting with the free-stream flow (Figure 107 – D). 

Figure 106 – Centreline mean surface pressure coefficient on rotating wheel with no yaw 
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Between the separation regions on the rear surface of the rotating wheel, the average base 

pressure (CP = -0.23) remains lower than observed for the stationary case (CP = -0.11) as 

shown in Figure 106, and is thought to be due to the rotation on the wheel increasing the 

velocity directly behind the wheel, entraining the flow upwards, as shown E in Figure 107 

and Figure 108. 

Figure 107 - Mean z velocity contours and streamlines on x/d=0 plane, with ‘D’ showing a detailed illustration of 

the separation region 
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Figure 108 - Contours of mean y velocity with velocity vectors in 

x/d=0 centreline plane 
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The contour plot of pressure on the y/d=0.5 data plane, Figure 109(c), shows a similar 

pressure flow field to that observed for the zero yaw stationary case, showing the stagnation 

region at the centre of the front surface of the wheel (AR), before accelerating around both 

sides of the wheel reaching a maximum velocity of 57.5m/s. As the flow travels around the 

sides of the wheel, impingement regions are observed on the rear surface of both hub cavities 

causing the flow to circulate inside. However the direction of circulation is indicated by the 

location of the impingement. From the pressure contours on the wheel, Figure 109(a) (b), the 

flow was observed to impinge on the rear surface of both hub cavities above mid-height 

(AWR, ALR), at approximately 190° ≤ θ ≤ 198°, resulting in the flow circulating into the hub 

travelling downwards. As the circulated flow reaches the outer lower edge of the hub, the 

flow leaves and is entrained downstream by the free-stream flow travelling past the wheel, 

(c) 

(b) (a) 

Figure 109 – Contours of mean CP for 0° yaw + rotation, (a) wheel surface looking downstream from 

left, (b) wheel surface looking downstream from right (c) cross-sectional plane at y/d=0.5 
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which is subsequently pulled upwards near the rear of the wheel due to the intense up-wash 

caused by the rotation, as has been described earlier and shown in Figure 108. The regions 

where the flow leaves the hub and rolls up around the lower shoulders of the wheel can also 

be identified in Figure 110(a)-F1R, F2R as regions of low vorticity. Further downstream into 

the wake, these regions of low vorticity are reduced until they are no longer visible at z/d = 

2.5 (d) as the flow is entrained upwards by the already stated, up-wash.  

5.3.2 Wake Physics 

The application of rotation on the wheel produces a pair of near symmetrical arch-shaped 

vortices (V1R, V2R) in the rear wake of the wheel as shown in Figure 110; in agreement with 

the flow physics observed on the upper rear surface of the rotating wheel by McManus & 

Zhang [29]. An intense up-wash (ER) is present on the lower half of the wheel caused by the 

Figure 110 – Non-dimensional vorticity plots for 0° yaw + rotation; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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rotation of the wheel entraining the flow in the direction of rotation. However, once this flow 

reaches the upper section of the wheel, it meets an adverse pressure gradient due to the 

separated shear layer on the upper surface of the wheel, previously identified in Figure 107, 

which directs the up-wash on the rear surface of the wheel to either side, forming two 

vortices.  This vortex pair illustrates a counter-rotating motion as vortex V1R rotates anti-

clockwise and V2R rotating clockwise (when viewed from behind the wheel); contrary to 

what was observed on the stationary case where the upper vortices V1 rotated clockwise in 

unison with V2 rotating anti-clockwise as shown in Figure 90, in agreement with the counter-

rotating vortex pair found on the upper rear wake of a rotating wheel in contact with the 

ground [29, 12]. After analysis of the central vortex core position and vorticity magnitude, 

the two vortices were found to be near identically symmetrical about the x/d = 0 centreline of 

the wheel. Central vortex core vorticity magnitude in the z/d = 0.75 plane, Figure 110(a), 

revealed Ωd/U∞ = 5.05 for V1R and Ωd/U∞ = 5.64 for V2R, comprising of a difference in 

magnitude of 12% between the two vortices. However, at the furthest downstream data plane 

at z/d = 2.5, the difference in magnitude between the two vortices reduced to ≈1% (V1R: 

Ωd/U∞ = 1.45, V2R = Ωd/U∞ = 1.47) indicating near identical vorticity magnitude with 

downstream propagation. The magnitude of the two upper vortices appears to be smaller on 

the rotating wheel when compared to the stationary wheel (V1/V1R: ∆Ωd/U∞ = 16%, V2/V2R = 

∆Ωd/U∞ = 17%), with a similar trend found in [39] which was suggested to be due to the 

earlier flow separation on the rotating wheel. Vertical vortex core positions at the z/d = 0.75 

plane shows, V1R: y/d = 0.856 and V2R: y/d = 0.847, confirming the symmetry of the vortices 

with only a 1% difference in vertical position between the two. Comparing these positions to 

the upper vortex pair on the stationary wheel, it is also evident that the upper vortices on the 

rotating wheel are positioned higher up in the wake region by 37% and 39% for V1R and V2R 

respectively, representing a taller wake which is also expected on a rotating wheel, also 

observed in earlier studies [22, 29, 39]. Additionaly, due to the earlier separation on the 

rotating wheel, the wake is constrained within the shear layers, more than on the stationary 

wheel, allowing greater transverse growth of the wake on the stationary wheel [22]. This was 

also observed in the current URANS study when calculating the transverse displacement of 

each vortex from z/d = 0.75 to z/d = 2.5   showing ∆x/d = -0.12 (V1R) and ∆x/d = 0.10 (V2R), 

for the rotating wheel and ∆x/d = -0.22 (V1) and ∆x/d = 0.09 (V2) for the stationary wheel, 

(note the negative symbol indicating displacement in the negative x-direction). Figure 111 

shows a clear representation of the characteristic flow-field around a rotating wheel in free 
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air. The upper mid-wheel hub impingement (AWR) shows the flow being directed into the hub 

and circulating downwards until the flow leaves on the lower side of the hub, subsequently 

being entrained by the intense upwash (ER), as indicated by the coloured contours. The 

upwash forces this escaped hub flow to travel upwards until it interacts with the separated 

shear (SLR), subsequently, forming the two counter rotating vortices (V1R & V2R) that 

propagate downstream into the wake. 

5.3.3 Aerodynamic Forces 

Force coefficients for the rotating wheel shown in Table 3, are presented together with those 

obtained for the stationary wheel. Many earlier investigations studying the flow around both a 

stationary and rotating wheel in contact with the ground, had found the rotating wheel to 

produce less lift and drag than the stationary case [22, 29, 30]. However, in this case, with 

both the wheels placed in free-air, the opposite trend is observed as the rotating wheel 

indicates a larger lift and drag force. However, Cogotti [36] investigated the aerodynamic 

forces on a wheel at different ground clearances and had also found a larger drag force on the 

rotating wheel than the stationary (CD = 0.54, CD = 0.48) respectively. Although Cogotti’s 

drag coefficient for the rotating and stationary wheel is 23% and 37% larger in comparison to 

the present results, this could be due to their maximum ground clearance being 0.05m 

compared to the present results obtained in a ‘free-air’ configuration. Additionally, the 

experimental configuration comprised of a motor to hold the wheel in position and would 

have caused an interference with the flow-field [36], as also shown in [30, 43] with the 

presence of a support sting. Although the motor was shielded by a fairing, Cogotti [36] 

(a) (b) 

Figure 111 - Streamlines coloured by y-velocity 
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showed that a 13% difference in drag still persists on the stationary wheel. Lift force on the 

rotating wheel was experienced as a negative, and with the theory of the ‘Magnus effect’, this 

would be expected as the flow accelerates around the lower surface of the wheel at a higher 

velocity compared to the top of the wheel creating a pressure differential, subsequently 

directing the lift force towards the side of the wheel where the wheel rotation and free-stream 

flow are travelling in the same direction [20].  Stapleford & Carr [34] also suggested that a 

reduction in lift can be expected as rotation induces the velocity on the lower side of the 

wheel whilst decreasing the velocity on the upper surface, causing the rear wake of the 

rotating wheel to be displaced at an up-wash angle. This was also observed in the present 

results as shown in Figure 107. 

 

 CD CL CX 

Stationary 0.35 -0.01 -0.05 

Rotating 0.44 -0.25 0.01 

Table 3 - Force coefficients of stationary and rotating wheel 
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5.3.4 The effect of Rotation 

The effect of rotation showed both similarities and differences when compared to the 

stationary case and the literature. The most significant difference to the stationary case was 

the dominant two vortex wake created as a result of the up-wash, caused by the wheel 

rotation interacting with the separated shear layer on top of the wheel (Figure 110), as is 

observed in [22]. Flow stagnation was observed in the same region as for the stationary case, 

at the central most upstream point of the wheel. Upon stagnation, the flow travels around the 

sides of the wheel and enters the hub cavity before impinging on the upper hub surface 

causing the flow to circulate into and downwards inside the hub before being entrained out of 

the hub on the lower half of the wheel by the free stream flow and the wheel rotation 

travelling in the same direction (Figure 111). An intense upwash is present on the rear face of 

the wheel due to the wheel rotation, subsequently, entraining the flow behind the wheel to 

travel upwards towards the top of the wheel. On the upper surface of the rotating wheel, the 

flow was observed to separate earlier at θ = 264°, compared to the stationary case. The earlier 

separation was caused by the free stream flow and the direction of wheel rotation opposing 

one another on the upper surface [22, 29, 10]. This is also illustrated in Figure 107. 

Considering vortex core displacement and magnitude, change in vortex core magnitude with 

downstream propagation is shown in Figure 112 indicating that both vortices have a similar 

rate in magnitude reduction, with both vortices comprising of identical magnitude at the 

Figure 112 - Vortex core vorticity magnitude on rotating with downstream 

propagation into the rear wake; V1R (dashed), V2R (solid) 
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furthest downstream plane of z/d = 2.5. The transverse displacement of both vortices (V1R, 

V2R) consists of a linear relationship as both vortices are displaced almost equally on either 

side of the wheel centreline, as illustrated in Figure 113(a). However, a slight variance of 

∆x/d = 0.025 occurs between the two vortices at the furthest plane downstream. Although this 

difference is very small (representing just 0.01m), it is predicted to be due to V1R being 

weaker by up to 8% at z/d = 1.5, therefore dissipating faster into the freestream. The 

longitudinal displacement between the two vortices, Figure 113(b), showed the higher 

position of V1R as has been observed previously.   

Although most of the flow field characteristics are in agreement with previous investigations 

conducted on rotating wheels, a different trend is found when analysing the drag. Many 

investigations in the past that have considered both the stationary and rotating wheel 

providing results for aerodynamic force coefficients, were conducted with the wheel in 

contact with the ground, and have always shown to comprise of a higher drag force on a 

stationary wheel compared to the rotating wheel. However, in this study, a higher drag force 

was observed on the rotating wheel. Also described in the previous section are the results for 

the aerodynamic force coeffcients obtained by Cogotti [36], and although his investigation 

was conducted with a ground clearance of 0.05m, the trend observed was similar to what is 

found in this study. Therefore the opposite trend found for wheels in contact with the ground, 

Figure 113 - Vortex core displacements (on yawed rotating wheel) relative to z/d = 0.75 with downstream propagation; 

V1R (dashed), V2R (solid). (a) Transverse (b) Longitudinal 
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is generally concluded to be due to the influence of the ground.  A negative lift (CL = -0.25) 

was found (as expected) due to the pressure differential between the upper and lower surface 

of the wheel. Additionally, the rotation of the wheel resulted in the wake being displaced at 

an upwash angle, which has also been a proven factor in reducing lift [34]. Side force 

remained at zero as the flow around both sides of the wheel is near-identical.   
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5.4 The Influence of Wheel Rotation and applied Wheel Yaw 

Combining wheel rotation and yaw angle provides a fundamental understanding of the flow 

physics around a landing gear wheel immediately after an aircraft takes off into a crosswind. 

The crosswind component is a typical representation of the added yaw angle and the wheel 

rotation represents the spinning of the wheels after take-off. Similar to Section 5.2, three yaw 

angles (Ψ = 5°, 10° and 15°) will be modelled combining the application of wheel rotation 

(Section 5.3) with the wheel peripheral speed equivalent to the free stream velocity. As has 

been stated previously, flow features/regions are denoted with by ʼ for increasing yaw angles, 

combined with a subscript ‘R’ to signify rotation (i.e. Flow feature/region being described in 

zero yaw rotating case is denoted AR, with the same feature/region denoted A R’, A R’’ & A R’’’ 

for the 5°, 10°, & 15° combined yaw and rotation cases). 

5.4.1 Surface Pressure Characteristics 

Centreline wheel surface pressure on the combined yaw and rotation cases (Figure 114), 

shows the stagnation region on the front face of the wheel to be offset from the initially 

observed location of θ = 0° with CP = 1 for the zero yawed case. At this angular position, the 

front stagnation region appears to be insensitive to the application of rotation on the yawed 

wheel as the central front region (θ = 0°) of Figure 114 is in very good agreement with that 
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Figure 114 – Rotating wheel centreline mean surface pressure coefficient with added yaw angle 
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observed in Figure 92. Further downstream the front central region, the three cases 

comprising of different yaw angles show good correlation to one another until θ = 71.5°, as 

the flow approached the lower surface of the wheel. Subsequent to this region, the flow is 

accelerated around the bottom surface of the wheel to velocity magnitudes up to 56m/s for all 

yaw cases, before pressure recovery begins, as the flow travels around the lower rear surface 

of the wheel. Flow separation, similar to the previous cases, is defined where pressure 

recovery ceases and where large scale pressure fluctuations no longer occur [22, 30], and are 

observed on the upper surface at θ = 263°, θ = 255° and θ = 247° at 5°, 10° and 15° yawed 

configuration respectively, as can be identified by the centreline pressure graph shown in 

Figure 114. Comparing these positions to the stationary separation locations for the yawed 

cases (Figure 92), separation occurs further upstream on the rotating wheel, showing good 

agreement with previous literature comparing stationary and rotating cases. However, a 

decrease in separation angle is observed from these results showing that separation occurs 

further downstream towards the rear surface of the wheel with increasing yaw angle. In 

addition, Figure 114 indicates a decrease in average base pressure as the yaw angle is 

increased. 

Contour plots of mean surface pressure on the rotating wheel surface and at y/d = 0.5, for all 

three yawed configurations are shown in Figure 115 and Figure 116 respectively, clearly 

illustrating the previously identified transverse shift in front stagnation position towards the 

windward side of the wheels.  The horizontal displacement of this region from the centreline 

of the wheel was ∆x/d = 0.04 (AR’), ∆x/d = 0.08 (AR’’), ∆x/d = 0.11 (AR’’’) for 5°, 10°, 15° 

yaw respectively. Around either sides of this stagnation region, the flow travels around the 

sides of the wheel and illustrates an increase in maximum velocity on the leeside with 

increasing yaw angle showing 61.1m/s with CP = -1.37 (BR1), 70m/s with CP = -2.3 (BR3), 

77m/s with CP = -2.81 (BR5). The increase in velocity on the leeside acts in unison with a 

decrease in maximum velocity on the windward side indicating 53.5m/s with CP = -0.92 

(BR2), 50.8m/s with CP = -0.61 (BR4), 46.3m/s with CP = -0.33 (BR6). The increase in flow 

velocity on the leeside edge is expected due to the respective side being angled at a position 

in which the free-stream flow can travel streamwise upon stagnation, however a reduction in 

flow velocity on the windward side occurs due to the stagnated flow having to travel around 

the edge of the wheel which is located further upstream towards the inlet than the leeside 

edge. The contour plots obtained at wheel mid-height (Figure 116) also shows the region of 

flow impingement on the rear surface of each hub. 
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Figure 115  – Contours of mean CP on rotating wheel surface when looking downstream: (a) 5° left, (b) 5°  right, 

(c) 10° left, (d) 10°  right, (e) 15° left, (f) 15° right  
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As has been observed previously, from the non-rotating yawed cases, CP decreases on the 

leeside due to the obstruction of the flow, caused by the front of the wheel providing pressure 

coefficients of: CP = 0.29 (CR1), CP = 0.164 (CR3) and CP = -0.17 (CR5) for 5°, 10° and 15° 

yaw respectively. 

In addition, CP on the windward side rear hub surface increases as it is exposed further with 

increasing yaw angle, providing pressure coefficients of: CP = 0.41 (CR2), CP = 0.52 (CR4) and 

CP = 0.69 (CR6) for 5°, 10° and 15° yaw respectively. However, although stagnation pressure 

regions are observed on the rear surface of the hub, direct hub impingement was found to 

occur on either sides of the wheel mid-height location, as was found earlier to have an 

influence on the wake region and vortices formed.  
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Figure 116 – Contours of mean CP on rotating wheel at cross-sectional plane at y/d=0.5: (a) 5°, (b) 10°, (c) 15° 
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5.4.2 Wake Physics 

The wheel with combined yaw and rotation continues to possess a dominant two vortex 

wake. With the application of 5° yaw on the wheel, the two vortices have rotated clockwise 

towards the windward side, as illustrated in Figure 117. Comparing vortex positions to the 

non-yawed rotating case (Figure 110), ∆x/d = 0.08, ∆y/d = -0.03 for V1R’ relative to V1R, and 

∆x/d = 0.01, ∆y/d = -0.33 for V2R’ relative to V2R. As a result of the applied yaw angle on the 

rotating wheel, the up-wash (ER’) is also skewed towards the windward side of the wheel and 

together with the rotation on the wheel and the flow separating off the upper edge of the 

wheel, the upper vortex (V1R’) is translated in the +x direction. The majority of the flow was 

found to leave the hub on the lower half (Figure 118), as this side represents the wheel 

rotation and free stream flow travelling in the same direction, therefore the flow travelling 

Figure 117 – Non-dimensional vorticity plots for 5° yaw + rotation; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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alongside the hub entrains the hub flow towards the back of the wheel. The low velocity flow 

on the leeside of the wheel is entrained by the skewed up-wash behind the wheel and 

contributes primarily to the upper vortex V1R’ whilst the skewness also entrains some of the 

flow into V2R’.  On the other hand, the lower vortex V2R’ is formed due to the recirculation 

caused by the attached flow on the wheel edge once it interacts with the skewed up-wash. As 

most of the flow from the leeside contributes to the upper vortex V1R’, the magnitude is 

reduced although the size of the vortex is larger than V2R’. This was also observed in [30] and 

in the previous results analysed where the low velocity hub flow contributing to a vortex will 

represent a lower magnitude for the corresponding vortex. Comparing vorticity magnitude 

and visual size between V1R’ and V2R’, the lower vortex (V2R’) is smaller but stronger by up to 

50%, (V1R’: Ωd/U∞ = 4.32, V2R’: Ωd/U∞ = 6.61 at z/d = 0.75) respectively. However, the 

difference in vorticity magnitude between the two vortices reduces to approximately below 

5% further downstream z/d ≥ 1.5. As has been discussed previously, internal hub 

impingement location was found to be a key factor when determining the direction of 

circulation inside the hub, subsequently affecting how the flow leaves the hub and enters the 

wake. These regions were found to occur in this case at θ = 184°, CP = 0.42 and θ = 202°, CP 

= 0.39 for the windward (AWR’) and leeside (ALR’) respectively. Due to both of these regions 

being located above wheel mid-height (θ = 180°), the flow is directed into the hub and 

circulated downwards before leaving on the lower half of the hub (HWR’, HLR’), causing a low 

vorticity region on the lower half of the wheel (as observed in Figure 117(a) – F1R’, F2R’), 

Figure 118 - Streamlines (coloured by mean streamwise velocity) showing hub flow on the 5° yaw rotating wheel, (a) 

windward side (b) leeside, when looking in the streamwise direction 
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similar to that observed on the windward hub on the non-yawed rotating case, Figure 110(a). 

Considering vortex core position with downstream propagation for this 5° case from z/d = 

0.75 to z/d = 2.5, V1R’ has a 26% greater vertical displacement upwards than V2R’, (V1R’: 

∆y/d = 0.147, V2R’:  ∆y/d = 0.117). However, V2R’ propagates downstream with a higher 

transverse displacement of ∆x/d = 0.156 compared to V1R’: ∆x/d = -0.027. From Figure 117, 

this is suggested to be caused by the up-wash (ER’), essentially pushing V1R’ upwards and 

V2R’ in the +x-direction due to the skewness.  

 

  

Figure 119 – Non-dimensional vorticity plots for 10° yaw + rotation; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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From initial observation of the vorticity magnitude contours in the rear wake of the rotating 

wheel with the application of 10° yaw, a further shift in vortex position is shown (Figure 

119). As established from the rotating wheel with 5° yaw, the two vortices appear to have 

rotated further towards the windward side. Considering the data plane at z/d = 0.75, Figure 

119(a), the up-wash (ER’’) caused by the rotation of the wheel on the flow, travelling from the 

bottom of the wheel is skewed further to the windward side than observed for the previous 

case (ER’’ relative to ER’). Similarly, the two low vorticity regions (F1R’’, F2R’’) are created as a 

result of the flow exiting the hub cavities and being entrained upwards by the rotation of the 

wheel. At 5° yaw, the upper vortex (V1R’) was positioned in the negative x/d side of the wheel 

(c) 

AWR’’ 

AL’’ 
HWR’’ 

HLR’’ 

(a) (b) 

Figure 120 - Streamlines (coloured by mean streamwise velocity) showing hub flow on the 10° yaw rotating wheel, 

(a) windward side (b) leeside, when looking in the streamwise direction & (c) rear view  
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(leeside) but with a further application of an extra 5° yaw, both vortices appear to be on the 

positive x/d side (windward side). The upper vortex (V1R’’) is now positioned at x/d = 0.066 

and y/d = 0.824 whilst the lower vortex V2R’’ is positioned at x/d = 0.196 and y/d = 0.477 at 

z/d = 0.75, representing vortex core position displacements relative to the vortices on the 5° 

yaw case of V1R’’: ∆x/d = 0.121, ∆y/d = 0.002 and V2R’’: ∆x/d = 0.027, ∆y/d = -0.041. A 

change in internal hub impingement on the windward side of the wheel, located below mid-

height at θ = 167.2° indicates the flow being forced to circulate upwards into the hub, Figure 

120(a) – AWR’’. The circulated flow exits on the upper half of the hub (HWR’’) and separates 

off the edge due to the wheel rotating in the opposing direction, creating an arch-shaped shear 

layer (as shown in Figure 120(c) - SLR’’, with yellow dashed line). The flow on the lower half 

of the hub (HWR1’’) is entrained into the rear wake by the free stream flow and is forced into 

the upper half of the wheel by the up-wash behind the wheel forming the stronger lower 

vortex V2R’’ after interacting with the arch-shaped shear layer. The flow on the leeside of the 

wheel impinges on the rear hub surface at θ = 193.6° (AL’’), above wheel mid-height as 

experienced on the previous case, resulting in the flow exiting the hub on the lower side of 

the wheel (HLR’’), therefore, forced upwards by the up-wash until recirculation occurs after 

interacting with the shear layer forming V1R’’. Vortex core vorticity magnitude indicated 

Ωd/U∞ = 5.60 for V1R’’ and Ωd/U∞ = 7.57 for V2R’’ respectively, at z/d = 0.75; indicating the 

lower vortex being stronger by up to 35%, which can be expected due to the combination of 

the stream-wise flow and rotation of the wheel in that region creating an increased velocity in 

flow entering the rear wake from the lower windward side of the wheel. Further downstream 

to z/d = 2.5, the difference in central core vorticity magnitude reduces to 9% and the two 

vortices translate in the positive x & y direction. 

With the maximum yaw angle (Ψ = 15°) being applied on the rotating wheel, immediate 

differences in wake size, vortex core magnitude and vortex positions can be observed from 

Figure 121. Similar flow characteristics previously observed at lower yaw angles are still 

present in this case such as the presence of two dominant vortical structures and the up-wash 

(ER’’’) which is skewed further towards the windward side of the wheel. The downwash 

(DR’’’) that appears on the upper half of the wheel is a result of the flow which is entrained by 

the rotated shear layer formed on the upper rear surface of the wheel. This shear layer is 

directed in the streamwise flow direction and as the upper vortex (V1R’’’) is rotating anti-

clockwise, the downwash is also pulled in the direction of rotation of the vortex; also visible 

in the previously discussed 10° yaw rotating case. Additionally, the symmetry between the 
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upper and lower halves intensifies with increasing yaw angle, resulting in improved 

symmetry between the two vortices. Comparing the vortices formed behind this 15° yaw 

wheel (Figure 121(a) - V1R’’’ and V2R’’’) relative to the vortices observed on the 10° yaw 

wheel (V1R’’ and V2R’’) at z/d=0.5, Figure 119(a), the vortex core displacement for the upper 

vortex (V1R’’’) is ∆x/d = 0.12, ∆y/d = -0.07 and for the lower vortex V2R’’’ ∆x/d = -0.585, ∆y/d 

= -0.09. The increased skewness of the up-wash (ER’’’) towards the windward side, combined 

with the more prominent downwash (DR’’’) observed on the 15° yaw case, reduces the vertical 

displacement of the two vortices, whilst also increasing the transverse displacement. The 

application of 15° of yaw allows the air to travel directly on to the rear surface of the 

windward hub cavity as has been described earlier in the pressure contour plots in Figure 

Figure 121 – Non-dimensional vorticity plots for 15° yaw + rotation; (a) z/d=0.75, (b) z/d=1, (c) z/d=1.5, (d) z/d=2.5 
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115(e) and Figure 116(c). This impingement location is above wheel mid-height at θ = 194.5° 

(AWR’’’) indicating the direction of hub flow circulation inwards and downwards as shown in 

Figure 122(a). As the flow reaches the lower edge of the hub, due to the hub and the free-

stream flow moving in the same streamwise direction, the flow is drawn out of the hub 

(HWR’’’). In the near rear wake region, the flow is entrained by the up-wash, subsequently 

contributing to the lower vortex (V2R’’’). Therefore, the outflow from the lower half of the 

hub on the windward side is greater in size (F2R’’’) than previously observed at lower yaw 

angles, as shown in Figure 121.  The same reasoning of the wheel and streamwise flow 

travelling in the same direction is valid for the flow exiting the hub on the lower leeside. 

However, the lower velocity flow leaving the evacuated leeside rear wheel edge (HLR’’’) is 

AWR’’’ 

AL’’’ 

HWR’’’ 
HLR’’’ 

(a) (b) 

Figure 122 - Streamlines (coloured by mean streamwise velocity) showing hub flow on the 15° yaw rotating wheel, 

(a) left side (b) right side, when looking in the streamwise direction & (c) rear view  
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entrained up into V1R’’’ by the skewed up-wash. Considering both vortex core vorticity 

magnitudes, V1R’’’ has a larger vortex core magnitude by 9.3% at z/d = 0.75. However, further 

downstream (z/d > 0.75) the difference between the two reduces significantly to 3%.  

5.4.3 Aerodynamic Forces 

Force coefficients on the rotating wheel cases with applied yaw angle are shown in Table 4. 

The drag force on the rotating wheel continues to increase with applied yaw angle up to 16% 

from 0° to 15° yaw. However, the most significant and noticeable difference between the 

force coefficients is the lift. The lift force is observed to increase with increasing yaw angle 

towards zero. The negative lift force on a rotating wheel with zero yaw is expected, as 

described in Section 5.3.3, and is due to the direction of rotation on the bottom of the wheel 

being equivalent to the free-stream flow direction, thereby inducing the velocity and 

decreasing the pressure in that region. A reduction in velocity also occurs on the top of the 

rotating wheel due to the earlier separation region at θ = 264°, creating a pressure differential 

between the upper and lower surfaces of the wheel. However, with increasing yaw angle, the 

flow was observed to separate further downstream from the top of the wheel as shown in 

Figure 114. Therefore a lower pressure persists on the top of the wheel, until separation 

occurs further downstream towards the rear of the wheel, resulting in a reduction in the 

pressure differential as the yaw angle is increased. The side force remained to mimic what 

has already been shown and discussed in the results on the stationary wheel with applied yaw, 

with very similar results for CX.    

 

 

Wheel Yaw 

Angle 

Force Coefficient 

CD CL CX 

0° 0.44 -0.25 0.01 

5° 0.43 -0.24 -0.14 

10° 0.46 -0.21 -0.31 

15° 0.51 -0.11 -0.54 

Table 4 – Rotating wheel force coefficients 
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5.4.4 The combined effect of both Yaw & Rotation 

The application of combined yaw and rotation continued to produce the two vortices in the 

rear wake, as observed on the rotating case. Frontal stagnation position on the rotating wheel 

with no applied yaw, occurred on the central front surface of the wheel x/d = 0, y/d = 0, z/d = 

0, Figure 109-AR. However, with applied yaw, the shift in the vertical direction is negligible 

but experiences a transverse displacement away from the wheel centreline towards the 

windward side as shown in Figure 115 & Figure 116. The horizontal displacement of this 

region is x/d = 0.04, x/d = 0.08, x/d = 0.11 for 5°, 10°, 15° yaw respectively, relative to the 

wheel centreline. Figure 123 shows a clear linear relationship in horizontal displacement with 

∆x/d ≈ 0.04, with 5° increments of yaw. This was identical to that observed on the stationary 

wheel with applied yaw, revealing that, although yaw has an effect on this region, the 

application of rotation does not influence the front stagnation position in ‘free-air’. 

 

Subsequent to flow stagnation on the frontal surface of the wheel, the flow travels in the 

longitudinal and lateral directions around the wheel. The rotating wheel with zero yaw, 

experiences almost symmetrical flow behaviour on either sides of the stagnation region with 

maximum velocity magnitude of 57m/s around the sides of the wheel. However, the 

application of yaw showed an increase in maximum flow velocity to 61.1m/s, 70m/s and 

77m/s at 5°, 10°, and 15° yaw respectively on the front leeside edge, whilst a reduction in 

velocity takes place on the front windward edge of the wheel with maximum flow velocity of 
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Figure 123 - Change in transverse displacement of stagnation region from rotating wheel 

centreline with increasing yaw angle 
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53.5, 50.8 and 46.3m/s for 5°, 10°, and 15° yaw respectively, which is also illustrated in 

Figure 124. Comparing the velocities in these regions for both the stationary and rotating case 

with increasing yaw angle, both sides on both configurations experience a linear increase on 

the leeside, and a linear reduction on the windward side, with marginal differences between 

the rotating and stationary cases.  

Upon passing the front sides of the wheel, the flow enters the hub cavities and impinges on 

the rear hub surface and circulates within the hub cavity before exiting either from the upper 

or lower half of the hub. For most of the cases combining rotation, internal hub impingement 

is located above wheel mid-height indicating flow circulation into and out of hub from the 

lower side. However, the 10° yaw case with combined rotation experienced impingement at θ 

= 167.2°, indicating circulation into and upwards inside the hub, whilst leaving the hub on the 

upper half, although some flow does escape from the lower half due to the entrainment of the 

streamwise flow travelling in the same direction as the rotation of the wheel.  

On the zero yaw rotating wheel case, separation is predicted at θ = 264°; 6° downstream from 

the top of the wheel. However, with increasing yaw angle, the separation position moves 

further downstream towards the back of the wheel to θ = 263°, θ = 255° and θ = 247° at 5°, 

10° and 15° yaw respectively. Comparing these positions to those from the stationary yaw 

cases, the separation positions on the rotating wheel occurs further upstream, as also observed 

in literature comparing stationary and rotating wheels [22, 29, 10]. Separation from the lower 
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surface is also observed at θ ≈ 142° for all configurations, however, at this centreline 

location, separation is caused by the flow interaction on the lower central region of the wheel, 

as the flow wraps itself around the sides of the wheel after being entrained by the up-wash. At 

lower yaw angles, this can be visualised as the point where the up-wash from the low 

vorticity circulation regions on either sides of wheel meet (denoted F1R & F2R in the vorticity 

plots). After flow separation, shear layers are formed off the top of the wheel which entrains 

the flow, which is re-circulated upon interacting with the up-wash, forming two vortices in 

the wake region. The two vortices created in the zero yaw rotating case, are nearly 

symmetrical both in magnitude and position about the x/d=0 centreline. However, with the 

addition of yaw at 5° increments up to 15° yaw, the vortex pair positions appear to rotate 

clockwise up to approximately 80° at the largest yaw angle, when comparing the vorticity 

plots for each case at z/d = 0.75. Time-averaged central vortex core vorticity magnitude show 

the vortex pair at 0° yaw to be near identical, with V2R marginally larger by up to 12% 

relative to V1R. Yet, as 5° increments of yaw is applied on the wheel, the lower vortex V2R’ 

and V2R’’ at 5° and 10° yaw respectively, possess a larger vorticity magnitude over their 

paired upper vortex V1R’ and V1R’’ respectively, as illustrated in Figure 125. This is suggested 

to be due to the contributing flow from the leeside hub, being entrained by the up-wash into 

the upper vortex reducing the intensity. Results from [30] also found that the hub flow 

contributing to any of the vortices in the rear wake would reduce the vortex intensity. The 15° 
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Figure 125 - Vortex core vorticity magnitude (on yawed rotating wheel) with 

downstream propagation into the rear wake; Upper vortex - V1R (dashed), Lower 

vortex – V2R (solid) 



 
167 

 

yaw case shows the difference in magnitude of the two vortices to be almost negligible at z/d 

= 0.75. At the furthest downstream plane (z/d = 2.5), the difference in vorticity magnitude 

between the vortices for each case reduces to ≈9% on the three rotating yaw cases.  

Based on the un-yawed rotating case, it is evident from Figure 110 that V1R & V2R possess a 

negative and positive transverse displacement respectively. Figure 126 displays the calculated 

relative displacement of the two dominant vortex structures (V1R, V2R), with downstream 

propagation referenced to z/d = 0.75 (∆x/d = 0, ∆y/d = 0). Considering the lateral relative 

displacement (∆x/d), the results show that as the yaw angle increases, the lateral displacement 

towards the windward side of the wheel increases. Nonetheless, the upper vortex at 5° yaw 

(V1R’) indicates a small displacement of ∆x/d = -0.03 at the furthest downstream plane z/d = 

2.5. This difference in negative displacement, indicates that the shift towards the leeside of 

the wheel is due to the upwash not being able to fully entrain the flow towards the windward 

side.  At Ψ ≥ 10°, the shear layer is rotated towards the upper windward side of the wheel 

causing regions of recirculation to be entrained within this region. Vortex core displacement 

on the rotating wheel with no yaw, Figure 110 & Figure 113(a), shows V1R propagating 

downstream on the leeside of the wheel (-x direction relative to the wheel centreline). 

Therefore due to the smaller angle of 5° yaw applied, the upper vortex V1R remains to 

propagate on the leeside of the rotating wheel, although, the transverse displacement for both 

vortices in all configurations, remains to have a constant linear displacement downstream 

with increasing yaw angle. Likewise, Figure 126(b) shows the vortex core displacement in 

the vertical direction for increasing yaw angles.  Changes in vertical position are relatively 

Figure 126 – Vortex core displacements (on yawed rotating wheel) relative to z/d = 0.75 with downstream 

propagation; V1R (dashed), V2R (solid) 
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small compared to the transverse differences. Linear downstream propagation is also evident 

with increasing yaw angles, except for the lower vortex (V2R’) on the 5° yaw configuration. 

Yet, the non-linear trend only occurs until the z/d = 1 position downstream, therefore this 

may be due to the unsteady nature of the flow in the near wake region. Application of the 

largest yaw angle (Ψ = 15°) results in the two vortices being near symmetrical about the 

horizontal centreline of the wheel (∆y/d = 0) regardless of the applied rotation on the wheel. 

Although, through comparison of vortex core displacement, the displacement of the lower 

vortex (V2R’’’) on the rotating wheel is very similar to the same vortex observed on the 

stationary configuration. The displacement at the furthest downstream plane (z/d = 2.5) 

indicates a reduced ∆y/d, and is a result of the rotation on the wheel (travelling upwards at the 

rear of the wheel) displacing the wake at an up-wash angle, which is a known flow field 

characteristic on a rotating wheel [34].  

Contour plots of centreline cross-sectional non-dimensional velocity magnitude at 0°, 5°, 10° 

and 15° yaw (Figure 127), show the wake displaced at an up-wash angle on the rotating 

wheel. General flow topology around the wheel mimics what has been described earlier; 

stagnation on the frontal region, flow acceleration around the upper and lower surfaces with 

an increased mean velocity magnitude on the latter as a result of the rotatory motion of the 

wheel inducing the flow on the bottom surface of the wheel. Separation (S) can be seen on 

top of the wheel, with a slight delay in separation position towards the rear of the wheel as 

yaw angle increases. The up-wash caused by the rotation of the wheel is also evident and 

directs the flow upwards on the rear surface and into the upper shear layer where the flow 

circulates. The formation of the upper vortex V1R’’’ on the 15° yaw case, is also visible 

showing the flow recirculation, as already illustrated in Figure 122(c). Vortices for lower 

angles of yaw (Ψ < 15°) are not detectable in Figure 127 as they do not reside on the wheel 

centreline plane. Considering the size of the rear wake, it is clearly evident that the 15° yaw 

configuration exhibits a larger region of low velocity, covering almost the entire rear surface 

due to the vortical structures behind the wheel. Although these vortical structures are still 

present at lower yaw angles, a reduction in their size and magnitude results in a smaller wake. 

As has been mentioned in the discussion for the stationary cases, a larger wake region is 

expected to induce a larger drag force due to the earlier separation forming the two shear 

layers which entrain the flow in the wake region [12], and the obtained results for these 

rotating cases are in agreement. Figure 128 shows the coefficients for drag, lift and side force 

on the rotating wheel with applied yaw angle. A 16% increase in drag, is experienced as the 
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yaw angle is increased from 0° to 15° yaw due to the increasing wake region behind the 

wheel. In addition, similar to the non-rotating yawed cases, the larger spread of lateral 

velocity vectors in the rear wake of the yawed wheels were suggested to contribute to the 

drag as described in [30]. A negative linear decrease was observed for the side force, 

representing the force acting towards the leeside of the wheel. The increased exposure of the 

windward side hub cavity to the free-stream flow, at larger yaw angles, is thought to be the 

cause of this, as the force applied on the windward side hub would increase with increasing 

yaw angle, subsequently increasing the side force acting towards the leeside. An increase in 

lift is also evident and was found to be one of the main findings from the influence of both 

yaw and rotation. Primarily, a negative lift force (acting downwards) is experienced on the 

non-yawed rotating wheel, coinciding directly with the Magnus effect [20] due to the 

pressure differential between the upper and lower surfaces of the wheel. Consequently, with 

(a) 

(d) 

(b) 

(c) 

Figure 127 – Contour plots of velocity magnitude on rotating wheel centreline cross-sectional plane; 

(a) 0° yaw, (b) 5° yaw, (c) 10° yaw & (d) 15° yaw, with velocity streamlines 
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the application of yaw, the lift increases from CL = -0.25 at 0° yaw to CL = -0.11 at 15° yaw. 

The pressure differential comprising a low pressure on the lower surface of the rotating wheel 

(CP = -1) caused by the streamwise flow travelling in the same direction as the wheel, acting 

in unison with the higher negative pressure of CP = -0.33 on top of the wheel, is initially what 

causes the negative lift experienced on the wheel. Though, with increasing yaw angle, the 

pressure on top of the wheel decreases to CP = -0.39, CP = -0.60 and CP = -0.76 at 5°, 10° and 

15° yaw respectively. Furthermore, as has been discussed previously, the increase in yaw 

angle indicates separation to occur further downstream the wheel, moving further behind 

towards the rear of the wheel from the initial position of θ = 264° at 0° yaw, located 6° after 

the top of the wheel. Due to this later separation position, an increase in size of the maximum 

velocity region (up to 53m/s at 15° yaw) persists further along the top surface until separation 

occurs, as shown Figure 127 (G, G’, G’’, G’’’ for increasing yaw angle respectively). This 

decrease in pressure representing an increase in velocity subsequently reduces the pressure 

differential between the top and bottom surface, ultimately resulting in an increase in lift 

towards zero.  

  

Figure 128 - Force coefficients on the rotating wheel with increasing yaw angle 
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6 Conclusion 

An exploratory investigation was completed on single isolated wheel, subsequently 

implementing yaw and rotation to understand the flow-field characteristics around a wheel 

during the take-off and landing phase of an aircraft. The ‘A2’ wheel geometry, initially 

introduced by Fackrell [22] was computationally modelled and simulated using the Unsteady 

Reynolds-Averaged Navier-Stokes (URANS) method. The wheel was initially modelled in a 

‘free-air’ configuration with a free-stream velocity of 40m/s so the computational method 

could be validated to the literature. Due to the unsteady nature of the flow-field, time 

averaged results were obtained for aerodynamic force coefficients, surface pressure data, 

velocities and vorticity, identifying central vortex core vorticity magnitudes and displacement 

downstream into the rear wake. Both existing and new flow characteristics were identified 

with comparisons made to the available literature where possible, although a significant gap 

is present regarding ‘free air’ wheel aerodynamics.  

6.1 Effect of stationary wheel in free air 

The initial case of the stationary wheel in free air showed an asymmetric wake containing 

four distinct vortical structures, with vortices (V2, V3) being up to 34% stronger in magnitude 

than the other two (V1, V4) as they are entrained into the central region of the rear wake by 

the intense up-wash and downwash observed travelling from the lower and upper surfaces 

respectively.  

Internal hub impingement was found to influence the direction of circulation inside the hub 

cavity, which had a resultant effect on the location the flow exits the hub and joins the rear 

wake due to the entrainment of the flow travelling around the sides of the wheel. Flow 

separation was observed at θ = 140° and θ = 220°, showing good agreement with available 

experimental results which predicted separation at θ = 150° & θ = 220° in [32], θ = 148° & θ 

= 226° in [7] and θ = 140° & θ = 230° in [47].  

A drag coefficient of 0.35 was obtained for this baseline case, predicting a larger force 

compared to the experimentally obtained coefficient of CD = 0.19. However, Fackrell [22] 

found that the ‘A2’ wheel hub contributed approximately CD = 0.08 to the total drag force. 

Therefore, considering that the experimental investigation [32] used a wheel geometry with a 

hub detail consisting of a ‘boss’ geometry (as explained in the literature review-Section 
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2.2.1), the hub can be considered as very nearly faired. Consequently, subtracting the overall 

predicted drag contribution by the hub [22] from the present drag result, a resultant drag force 

of CD = 0.27 would be obtained, providing good agreement with the experimental results and 

with the results obtained from the computationally modelled geometry of Zhang et al [32]. 

Coefficients for both lift and side force remained negligible as the flow field around the top 

and bottom, and around both sides were observed to be near symmetrical.  Overall, the 

present results for this case, showed good agreement to the literature when comparing surface 

pressure distribution and separation positions, and showing agreement with the rear wake 

flow physics.   

6.2 Effect of Yaw 

The principal effects of yaw showed a dominant two vortex wake being translated clockwise 

towards the windward side with increasing yaw angle, eventually being near-symmetrically 

positioned about the horizontal centreline of the wheel (y/d = 0.5) at the largest yaw angle (Ψ 

= 15°).  

The influence of yaw demonstrated a linear increase in front stagnation position towards the 

windward side by approximately x/d = 0.04 with each 5° incremental increase in yaw angle. 

Subsequent to flow stagnation, the increase in yaw angle demonstrated a linear increase in 

velocity magnitude by up to 30% on the leeside of the wheel, together with a 20% decrease 

on the windward side.  

Separation positions on the upper surface remained fairly constant at θ = 230°, although the 

lower separation position was displaced further towards the bottom of the wheel, indicating a 

maximum angular displacement of 10° at 15° yaw, relative to the un-yawed case.  

Internal hub impingement was also found to influence the rear wake due to the direction of 

circulation within the hub, followed by the location of flow departure out of the hub, 

subsequently contributing to the rear vortices.  

A linear transverse and longitudinal displacement of the vortices are present. Both vortices 

for each case appear to have a transverse shift at a constant rate and distance, although at 5° 

yaw the lower vortex (V4’) has a larger transverse displacement relative to V2’ by x/d = 0.145 

(at z/d = 2.5), and is suggested to be due to the downwash not being able to fully entrain the 

flow towards the windward side. The vortices appear to propagate both in the transverse and 
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longitudinal direction at a similar rate to one another as the yaw angle increases, with central 

core vorticity magnitude rapidly decreasing to approximately Ωd/U∞ = 2.  

Aerodynamic drag force showed an increase, as expected, due to the reduction in base 

pressure with increasing yaw angle with the combination of the increasing lateral spread of 

the flow behind the wheel forming a larger wake. Side force also increased with increasing 

yaw angle, directing the force towards the leeside of the wheel, due to the amplified exposure 

of the windward side of the wheel. 

6.3 Effect of Rotation 

The effect of rotation essentially mimicked what had already been discovered in the 

literature, particularly when focussing on the upper half of the wheel when comparing to 

ground effect investigations. Two dominant vortices are formed on the upper rear wake due 

to the intense up-wash interacting with the separated shear layer on top of the wheel. 

Separation was also found to occur further upstream towards the top of the wheel, agreeing 

with the literature comparing rotating and stationary cases.  

Force coefficients obtained for this case showed that the rotating wheel generates more drag 

than the stationary case. Although the majority of the literature states the opposite trend, 

those investigations were conducted with a wheel in contact with the ground. Moreover, 

Cogotti [36] had also observed the trend found in this study, at small ground clearances. Side 

force remained negligible due to the flow on either side of the wheel being near symmetrical. 

Furthermore a negative lift was present on the rotating wheel due to the streamwise flow and 

wheel rotation, moving in the same direction creating a pressure differential between the 

upper and lower halves of the wheel, directing the lift force towards the ground.  

6.4 Effect of Yaw & Rotation 

The general flow field around a rotating wheel with applied yaw, showed a combination of 

flow features that were identified, on the individual yaw and rotating cases. The shift in front 

stagnation observed on the stationary yawed cases, appear to be identical to that observed on 

the yawed rotating wheels, signifying that although the effect of yaw influences the position 

of this region, it is insensitive to the application of rotation. Similarly, an almost linear trend 

was also observed in velocity magnitude around the sides of the wheel subsequent to the 
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stagnation region, revealing that the effect of rotation has minimal influence on the flow 

velocity around the sides of the wheel.  

The arch-shaped shear layer formed in the rear wake of the rotating wheel was found to, 

essentially, rotate clockwise (when looking from behind), with increasing yaw angle. Flow 

separation on top of the rotating wheel, which was initially observed on the upper surface of 

the un-yawed wheel, was found to occur further downstream towards the back of the wheel 

with increasing yaw angle. This finding was suggested to be the reason for the identified 

increase in lift towards zero, as the delayed separation region would allow the flow to travel 

further around the top of the wheel, maintaining the suction velocity, subsequently reducing 

the pressure differential.   Side force on the wheel showed to be insensitive to the application 

of rotation as similar forces were observed on the stationary yawed wheel. The drag force 

measured, continued to increase with increasing yaw angle, as experienced on the stationary 

case, although found to be higher than the values obtained on the stationary wheel. Table 5 

(as has been discussed already), shows the net influence the applied variables of yaw and 

rotation, and both combined have on the aerodynamic force coefficients, relative to the 

stationary un-yawed configuration. Note that the signs in Table 5 are respective of the co-

ordinate axis used to define the direction of the forces in this study.   

 

 

 

 

 

 

  

 CD CL CX 

Rotating ↑ ↓ − 

Stationary + Yaw ↑ − ↓ 

Rotating + Yaw ↑ ↑ ↓ 

Table 5 - Variation in aerodynamic force coefficients with applied variables relative to the stationary un-yawed case 

('-' representing a negligible force) 



 
175 

 

Overall, the aims and objectives of this study have been achieved. The non-rotating, un-

yawed single isolated wheel case was modelled and validated with the experimental 

investigation [32] showing good agreement in surface pressure distributions and wake 

dynamics.  

The principal influences of the effect of yaw and rotation were characterised, subsequently 

determining central vortex core vorticity magnitudes and vortex core displacement with 

downstream propagation.  

Aerodynamic forces were also obtained for all cases showing identifiable trends with 

increasing yaw angle, on both the stationary and rotating wheel.  
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7 Recommendations for future work 

Due to imposed constraints during this study with regard to time and computational resources 

because of the number and nature of the test cases that needed to be simulated, the 

investigation was limited to only fulfilling the earlier described aims and objectives. 

However, throughout the course of this exploratory study, additional ideas arose that would 

further strengthen the knowledge and understanding of the flow field around aircraft wheels. 

These are described below as recommendations for future work: 

 To computationally model the wheel with faired hubs to negate the influence of hub 

flow enabling direct comparisons to be made to the literature.  

 Conducting an experimental investigation on a wheel in free-air corresponding to the 

configurations used in this study with the applied variables of yaw and rotation and 

both combined. This would provide insight into the flow field so direct comparisons 

can be made to this computational study.  

 To model the wheel in contact with the ground with subsequent application of yaw 

and rotation to identify key flow characteristics with comparisons made to the 

literature; which mostly consists of ‘in-contact with the ground’ studies.  

 Using different turbulence models and a LES model would be beneficial in comparing 

the key flow characteristics, particularly due to the higher accuracy expected from an 

LES model. However, computational time constraints would be major factors due to 

the mesh size required to model a configuration with complex rim and hub detail. 

 As this study is mainly focused on identifying the flow field characteristics around a 

wheel during the approach and landing phase of an aircraft, it would be interesting to 

model the influence of ground proximity. Modelling this scenario will provide an 

understanding into how and when these key flow features observed in a free-air 

configuration changes as a ground plane is approached. By comparing the literature to 

the present study, it was learnt that the aerodynamic force coefficients were higher on 

a stationary wheel in contact with the ground, as opposed to the rotating wheel 

coefficients being larger in this free-air configuration with additional validation from 

Cogotti [36]. Therefore, it will be interesting to find out at what particular height of 

the ground this phenomenon, (acting somewhat like a ‘point of inflection’), occurs 

and the height that the ground plane starts to show an effect on the flow field.  



 
177 

 

 As this was an exploratory investigation, the modelled configuration was simplified to 

an isolated wheel. Although this provides insight into the flow characteristics around 

a single wheel; for application purposes, this has to be applied to a landing gear 

configuration. Therefore, it may be of interest to model a landing gear configuration. 

Still, this would be a challenging and tedious task to complete, due to the small 

landing gear components having to be modelled with a sufficient grid resolution and 

accuracy. Consequently, it could be more practical in taking smaller steps by 

modelling a two-wheel configuration, followed by a four-wheel configuration and 

making comparisons before subsequently modelling an entire landing gear 

configuration.  

 Furthermore, understanding the aeroacoustic aspect of the single and multiple wheel 

configurations would be useful, as one of the main objectives associated with landing 

gear in the aerospace industry is to reduce the overall noise signature. 
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