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Reduced Pattern Training Based on Task
Decomposition Using Pattern Distributor

Sheng-Uei Guan, Chunyu Bao, and TseNgee Neo

Abstract—Task decomposition with pattern distributor (PD) is
a new task decomposition method for multilayered feedforward
neural networks (NNs). Pattern distributor network is proposed
that implements this new task decomposition method. We pro-
pose a theoretical model to analyze the performance of pattern
distributor network. A method named reduced pattern training
(RPT) is also introduced, aiming to improve the performance of
pattern distribution. Our analysis and the experimental results
show that RPT improves the performance of pattern distributor
network significantly. The distributor module’s classification
accuracy dominates the whole network’s performance. Two
combination methods, namely, crosstalk-based combination and
genetic-algorithm (GA)-based combination, are presented to
find suitable grouping for the distributor module. Experimental
results show that this new method can reduce training time and
improve network generalization accuracy when compared to a
conventional method such as constructive backpropagation or a
task decomposition method such as output parallelism (OP).

Index Terms—Crosstalk-based combination, full pattern
training (FPT), genetic-algorithm-based combination, pattern
distributor, reduced pattern training (RPT), task decomposition.

I. INTRODUCTION

MULTILAYERED feedforward neural networks (NNs)
have been widely used in solving classification prob-

lems. However, they still exhibit some drawbacks when applied
to large-scale real-world problems. One common drawback is
that large networks tend to introduce high internal interference
because of the strong coupling among the hidden-layer weights
[1]. The influences from two or more output units could cause
the hidden-layer weights to compromise to nonoptimal values
due to the interference in their weight-updating directions
during the weight-updating process [2]. Various task decompo-
sition methods have been proposed to overcome this drawback
[2]–[10], [18]–[21], [23]–[26]. Instead of using a single, large
feedforward network (classic network), task decomposition
methods divide a problem into a set of smaller and simpler sub-
problems based on “divide-and-conquer.” The results obtained
from solving these subproblems are integrated together and the
solution for the original problem is obtained.

Anand et al. proposed a method that splits a -class problem
into two-class subproblems [3]. Each subnetwork is trained to
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learn one subproblem only. Therefore, each subnetwork is used
to discriminate one class of patterns from patterns belonging to
the remaining classes, thereby resulting in -modules in the
overall structure. Another method divides the -class problem

into two-class subproblems [4]. A module is designated

to learn each subproblem while training patterns belonging to
the other classes are ignored. The final overall solution is
obtained by integrating all the trained modules into a min–max
modular network. A powerful extension to the aforementioned
class decomposition method, output parallelism (OP), is pro-
posed by Guan [2], [5]–[8]. Using OP, a problem can be divided
into several subproblems as chosen, each of which is composed
of the whole input vector and a fraction of the output vector.
Each module (for one subproblem) is responsible for producing
a fraction of the output vector of the original problem. These
modules can be grown and trained in parallel. Instead of de-
composing the problem with a high-dimensional output space
into several subproblems, each with a low-dimensional output
space, Lu decomposes the problem into several smaller size sub-
problems [10]. Patterns are classified by a rough sieve module
(nonmodular network) at the beginning and those patterns that
are not classified successfully will be presented to another sieve
module. This process continues until all the patterns are classi-
fied correctly. The sieve modules are added to the network adap-
tively with the progress of training.

Although these methods are efficient, there are still some
drawbacks associated with them. First, the methods proposed
in [3] and [4] split the problem into a set of two-class sub-
problems. If the original -class problem is complex ( is
large), a large number of modules will be needed to learn the
subproblems, and thus, resulting in excessive computational
cost. Second, although the dimension (number of output class)
of each subproblem in [2] and [3] is smaller than the original
problem, the size of each subproblem’s training pattern set is
still as large as the original problem. Therefore, each module
will have long training time and ineffective learning especially
when the original problem is large with many training patterns.
Last, the method proposed in [10] only reduces the size of the
problem but not the dimension of the problem. The internal in-
terferences (that exists within each module due to the coupling
of output units) are not reduced.

In this paper, we propose a new task decomposition method
called task decomposition with pattern distributor (PD) to over-
come the drawbacks mentioned previously. A special module
called distributor module is introduced in order to improve the
performance of the whole network. The distributor module and
the other modules in the PD network are arranged in a hierar-
chical structure. The distributor module has a higher position
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Fig. 1. Typical PD network.

as compared to the other modules in the network. This means
an unseen input pattern will be recognized by the distributor
module first. The structure of a typical PD network is shown
in Fig. 1. Each output of the distributor module consists of a
fraction of the overall output classes in the original problem.
The PD method could shorten the training time and improve the
generalization accuracy of a network compared with ordinary
task decomposition methods.

In this paper, the PD method will be discussed in details. In
Section II, a theoretical model is presented to compare the per-
formance of a PD network with a typical task decomposition
network—OP network. In Section III, we introduce the reduced
pattern training (RPT) method to improve the PD network’s per-
formance. Because of the importance of the distributor module,
we present in Section IV two combination methods, crosstalk-
and genetic-algorithm (GA)-based combinations, to find good
grouping for the distributor module. In Section V, the exper-
imental results are shown and analyzed. Conclusions are pre-
sented in Section VI.

II. THEORETICAL MODEL FOR THE PD NETWORK

There are two types of modules in a PD network, distributor
and nondistributor modules (for simplicity, nondistributor mod-
ules are just called modules). Normally, a PD network consists
of one distributor module and several nondistributor modules.

Class decomposition is often used to in solving classifica-
tion problems. Compared with ordinary methods in which only
an NN is constructed to solve the problem, class decomposi-
tion divides the problem into several subproblems and trains an
NN module for each subproblem. Then, the results from these
modules are integrated to obtain the solution for the original
problem. OP is a typical class decomposition method. Here we
present a model to show that the PD method has better perfor-
mance than the OP method when the recognition rate of the dis-
tributor module is guaranteed.

Consider a classification problem with output classes. To
solve the problem, a PD network with one distributor module
and nondistributor modules is constructed. See Fig. 2 for de-
tails. There are outputs in the distributor module and each
nondistributor module is connected to an output of the distrib-
utor module. Each output of the distributor module consists of a
combination of several classes. For an unknown pattern, the dis-
tributor module recognizes and dispatches it to only one of the

Fig. 2. PD network used to solve a K-class problem.

Fig. 3. OP network used for the sameK-class problem.

outputs. Then, the connected nondistributor module continues
the classification process to specify which class the pattern be-
longs to. In other words, a nondistributor module needs to rec-
ognize the pattern among several classes. Assume module is
a nondistributor module that needs to recognize classes.
Different nondistributor modules are assumed to have no over-
lapping classes; we have the following:

(1)

Fig. 3 shows the corresponding OP network used to solve
the aforementioned -class problem. For the convenience of
comparison, we assume that the OP network has the same output
grouping as the PD network. There are also modules in the OP
network and module needs to recognize classes among
all the patterns. When an unknown input pattern is presented
to the OP network, it is processed by each module (module 1
to module ), and the final result is obtained by integrating the
results from module 1 to module .

In the PD network, a nondistributor module only recognizes
the patterns dispatched to it by the distributor module. These
patterns most likely belong to one of the classes covered by that
module. Of course, the distributor module may make wrong de-
cisions and send wrong patterns to that module. The OP network
is different. Each module needs to recognize all the patterns. In
other words, module in the OP network needs to differentiate
the patterns belonging to it from those patterns which do not.
Now, we denote the probability of error incurred by module
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processing the patterns that belong to one of the classes of
module by . If we do not implement winner-take-all arbi-
tration, a pattern can be regarded as wrongly classified if one
or more modules give wrong decisions. When a test pattern be-
longing to one of the classes of module enters the network,
the probability of error in the OP network can be written in the
following form:

(2)

The first terms represent the probability of a test pattern being
classified wrongly by one module. The following

terms represent the probability of the test pattern being
classified wrongly by two modules, and so on. Equation (2) can
be rewritten as

(3)

Here, is the number of modules and is normally not a large
number, so the number of terms in (3) is not a large number.
is a small positive real number. In other words, is much
smaller than . We can ignore the terms of the product of two
and more ’s. Thus

(4)

The number of test patterns classified wrongly by the OP net-
work is

(5)

where is the number of patterns belonging to the classes of
module . It can also be written as

(6)

Now, we define as the probability of error when module
processes the patterns not belonging to the classes of module .
Equation (6) can be revised as

(7)

where is the probability of error when module processes
the patterns belonging to it, is the number of test patterns, and

is the number of patterns belonging to the classes of module
.
It should be mentioned that, in the aforementioned OP

network, each module can be trained separately using all the
training patterns, whereas for the PD network, we can also train
these modules separately. If we use all the training patterns
to train these modules, then the weights and hidden units of
the nondistributor modules will be the same as those of the
corresponding modules in the OP network. After the training
of the PD network is completed, the distributor module will
be the first to classify any unseen input pattern. The corre-
sponding output unit in the pattern distributor will have the
largest output value among all the output units. Then, only the
corresponding module will be activated. After that, the input
pattern is presented to this module only, and then, this module
will complete the classification process. Only the distributor
and the corresponding modules are used in the classification
process.

Let be the probability of error of the distributor module.
Then, the number of test patterns which are classified wrongly
by the distributor module is

(8)

Assume the distributor module classifies patterns wrongly in a
uniform manner. In other words, the number of wrongly clas-
sified patterns by the distributor module to each nondistributor
module is proportional to the number of patterns entering that
nondistributor module. The number of correct patterns that enter
module is . Then, the number of patterns classified
wrongly by module is written as

(9)

Thus, the number of patterns classified wrongly by the PD net-
work can be expressed as

(10)

Comparing the OP network with the PD network, we have

(11)

Similar to the analysis made earlier, is much smaller than
and , so

(12)
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Fig. 4. Two OP networks for a six-class problem.

Now, we derive the condition under which the PD network can
achieve better classification accuracy than the OP network

(13)

We know that each module needs to process all the test pat-
terns in an OP network, while in a PD network each nondistrib-
utor module only needs to process a subset of the test patterns.
Intuitively, if the number of wrongly classified patterns by the
distributor module in the PD network is smaller than the sum of
the number of patterns wrongly classified by each module when
processing patterns not belonging to it in the corresponding OP
network, the PD network will perform better.

Discussions

1) Class decomposition can still be applied to the modules
of the OP and PD networks so that these modules can be
further decomposed into submodules. If each submodule
is used to recognize one class from all the patterns, then
there will be submodules in the whole OP network. Of
course, these submodules may belong to different mod-
ules. Fig. 4(a) shows an example of a six-class OP net-
work. There are two modules that are further partitioned
into six submodules. Fig. 4(b) shows a fully decomposed
OP network for this six-class problem. In both OP net-
works, all the training patterns are used to train these sub-
modules, so the submodules in Fig. 4(a) are the same as
their counterparts in Fig. 4(b). In Fig. 4(a), the submodules

are grouped into two modules. For an unknown pattern, the
outputs from submodules 1–3 are considered together to
give the result of module 1, similar for module 2. Then,
the results from modules 1 and 2 are considered together
to give the final output. In the OP network of Fig. 4(b),
the outputs from all the submodules are considered alto-
gether to give the final output. In fact, there is little differ-
ence between the OP networks in Fig. 4(a) and (b). Note
that the nondistributor modules in the PD network are the
same as the counterparts in the OP network. Thus, by de-
composing the modules into submodules, we can compare
the performance of the PD network with that of the fully
decomposed OP network. In most of our experiments, we
used such networks.

2) In (4), we have ignored the situation in which two or more
modules make wrong decisions at the same time because
the situation appears much less frequently compared to the
situation in which only one module makes wrong deci-
sions. If we consider that situation, will be a little
smaller than .

3) In the previous model, we do not consider the implemen-
tation of winner-take-all for the OP network. In reality,
winner-take-all is used for selecting a unit among several
candidate units to produce the final output. The purpose of
a conventional winner-take-all network is to select a unit
with the highest activation strength from a set of candi-
dates. Using winner-take-all, the network may still choose
the correct output even if some modules make wrong de-
cisions. For example, consider a test pattern that belongs
to class in module 1. When the pattern enters module
1 of the OP network, module 1 produces the correct an-
swer—class . However, when the pattern enters module
2 of the OP network, module 2 gives an incorrect answer
and thinks it belongs to class . If the output corresponding
to class is larger than that of class , the OP network
can still give a correct decision. Using winner-take-all will
slightly reduce the final classification error of the OP net-
work than not using it.

III. MOTIVATION FOR RPT

In a PD network, an unseen pattern is first classified by the
distributor module to decide which module will continue to
process it. Then, the corresponding module will be activated.
Thus, only two modules are used to process that pattern. Now,
we look at all the test patterns. We note that each nondistributor
module only processes a subset of the test patterns. In other
words, each nondistributor module only needs to recognize the
patterns belonging to it if the distributor module classifies all
the test patterns correctly. Also, if the distributor module clas-
sifies some patterns wrongly, the mistake cannot be corrected
by the later modules. This motivates us to train a nondistributor
module using only the patterns belonging to it. Such a method
is called RPT. Similarly, the method of using the whole training
set to train each nondistributor module is called full pattern
training (FPT).

When we train module using FPT, the module will carry in-
formation of the instances that do not belong to its own classes.
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Such information does not contribute to the classification accu-
racy of module , so it is useless. Also, training time would be
reduced when training using RPT compared with FPT.

Moreover, training module together with unnecessary pat-
terns may reduce the ability of module to classify the patterns
belonging to module correctly. There are two aspects. First,
the objective of training is to let each module reach its best clas-
sification accuracy when processing the patterns dispatched to
it. Using FPT, a module may be able to attain its best perfor-
mance when it needs to process all the test instances. However,
it may not attain its best performance when processing only a
subset of the test instances. Second, for patterns not belonging
to module , it would have the outputs as 0 during the learning
process. (In our experiments, if a pattern belongs to some class,
the corresponding output is 1, otherwise, 0.) With the introduc-
tion of those patterns not belonging to module , there are many
more patterns with an output label 0 than patterns with an output
label 1 in the learning process, so the patterns with an output
label 0 will be more influential in updating the weights and,
therefore, in computing the training error function. In contrast,
the patterns with an output label 1 will become less influential
in the decision of weight updates. After the training process is
over, it is likely that the trained network may mislabel some test
patterns, in particular those patterns with an output label 1. From
the previous observations, we conclude those unnecessary pat-
terns are harmful to the module training. Our experimental re-
sults confirmed that RPT is crucial for a PD network to obtain
good performance.

RPT might not be applicable to OP, because the modules in an
OP network operate in parallel and each module must deal with
all the test patterns in the test process. Training these modules
using reduced patterns may lead to information loss and to poor
accuracy when the test patterns are presented.

IV. COMBINATION OF CLASSES IN THE DISTRIBUTOR MODULE

From the analysis in Section II, it can be seen that the perfor-
mance of a PD network depends greatly on the accuracy of the
distributor module. How to group the classes and combine them
becomes a key issue in designing a PD network.

We define two concepts—combination and combination set.
If some classes are grouped together, we call them a combi-
nation. The combination of classes , , and is denoted
as . Once some classes are combined, they will
form a new class. A combination set is an aggregation of
combinations where each class in the original problem appears
once and exactly once. For example, in a six-class problem,

is a combination set. Here, we present
two methods to find an appropriate combination set in the
distributor module.

A. Crosstalk-Based Combination

The basic idea is to find classes which are close in the feature
space and combine them together. We first project a -dimen-
sional ( is the number of the input classes) input space to a 1-D
space using Fisher’s linear discriminant (FLD) method [12].
The distances between the centers of different classes are calcu-
lated. Then, these distances are arranged to form a table which is
called crosstalk table. If the distance between two classes in the

crosstalk table is relatively small, then the two classes are likely
to be close in the feature space. Thus, we choose and combine
those classes that have relatively smaller distances from each
other in the crosstalk table.

B. GA-Based Combination

The basic idea of this method is to find an optimal or near-op-
timal combination set through evolution. First, we define our
chromosome encoding. A binary string of specific length is
often used to encode a chromosome in canonical GAs, but it
is not suitable here. Thus, we define chromosome according to
the following principles. A chromosome consists of a sequence
of combination numbers, wherein each class is encoded with
its combination number. The length of a chromosome is equal
to the number of the classes. Assume chromosome encoding
always starts with the smallest class number and increases as
follows. For example, 122333 is a chromosome for a six-class
problem. Number “1” in the first place means class 1 belongs
to combination 1. Similarly, number “3” in the fourth place
means class 4 belongs to combination 3. The corresponding
combination set of this chromosome is .
There is a need for normalization, however. Let us look at
another example—chromosome 233111. It is obvious that
chromosomes 233111 and 122333 represent the same combina-
tion set (though the ordering differs). Therefore, chromosome
233111 can be normalized as 122333.

For convenience, we convert all the chromosomes into a
form such as 122333. This process is called standardizing the
chromosomes. The procedure of standardizing a chromosome
is shown in the Appendix.

Then, we create an initial population of chromosomes. After
generating the initial population, each chromosome is evaluated
and assigned a fitness value. Here, we use a simple NN for the
evaluation and use the classification error of the validation
data set to calculate the fitness

fitness (14)

where is the average of classification errors based on the
validation data set for all the chromosomes in the population.
is also called evaluation value. If is smaller than
0, fitness .

The execution of our GA can be viewed as a two-stage
process. It starts with the current population. Then, selection
is applied to the current population to generate an intermediate
population. After that, mutation and crossover are applied to
the intermediate population to create the next population. We
use “stochastic universal sampling” to form the intermediate
population [11]. Assume that the population is laid out in
random order as in a pie graph in which each individual is
assigned space on the pie graph in proportion to fitness. Next,
an outer roulette wheel is placed around the pie with equally
spaced pointers ( is the number of the population). A single
spin of the roulette wheel will now simultaneously pick all
members of the intermediate population.

After the construction of the intermediate population,
crossover and mutation are used to generate the next popula-
tion. Crossover is applied to randomly paired chromosomes
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with a probability . Consider two chromosomes: 112233 and
122123. The random crossover point is chosen, for example,
after the fourth place. Then, the numbers in the fifth and sixth
places are exchanged and new chromosomes are formed. Here,
the new chromosomes are 112223 and 122133. After crossover,
mutation is applied to random chromosomes with a probability

. After a chromosome is selected for mutation, a place is
randomly selected for mutation and the number in that place
is randomly chosen. After the crossover and mutation is com-
plete, standardize the chromosomes. Then, the next population
is evaluated and becomes the current population. Then, the
previously described process is repeated.

There is another important parameter —maximum
number of classes in a combination. Using this parameter,
we kick out some chromosomes directly. For a six-class
problem, if we choose , then chromosome 121112
will be eliminated, because combination has four
classes. The purpose of setting is to avoid the existence
of nondistributor modules with many classes. If there are
many classes in a nondistributor module, it is unlikely that
this module can recognize patterns with a high classification
rate. With a chromosome such as 111111, there is only one
grouping and the job of the distributor would be trivial. For this
extreme case, the classification error of the distributor module
is obviously 0 because the distributor module combines all the
classes together. Such an extreme case can be avoided using
the parameter .

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Electronic Image Files (Optional)

Constructive backpropagation (CBP) algorithm was used
to train the network in the experiments. Please refer to [13]
for details. CBP can reduce the excessive computational cost
significantly and it does not require any prior knowledge con-
cerning decomposition. In this paper, RPROP1 is used with the
following parameters:

and ( is the increase/decrease
parameter, is the initial update value, and
stands for the upper/lower limit of the update value) with initial
weights selected from randomly. Please refer to
[14] for details. In order to avoid large computational cost and
overfitting, a method called early stopping based on validation
set is used as the stopping criteria. Please refer to [22] for
details.

The set of available patterns is divided into three sets: a
training set is used to train the network, a validation set is used
to evaluate the quality of the network during training and to
measure overfitting, and a test set is used at the end of training
to evaluate the resultant network. The size of the training,
validation and test sets is 50%, 25%, and 25% of the problem’s
total available patterns.

Four benchmark classification problems, namely vowel,
glass, segmentation, and letter recognition were used to eval-
uate the performance of the new modular network—task

1RPROP stands for “resilient propagation,” which is a learning algorithm that
performs a direct weight update based on local gradient information (refer to
[14]).

Fig. 5. OP network used for the glass problem.

TABLE I
CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE GLASS DATA

decomposition with PD. These classification problems were
taken from the PROBEN1 benchmark collection [15] and the
University of California at Irvine (UCI) repository of machine
learning database [16]. In the set of experiments undertaken,
the first three classification problems were conducted 20 times
and the letter recognition problem was conducted eight times
(due to the long training time). All the hidden units and output
units use the sigmoid activation function and is set at 0.1.
When a hidden unit addition was required, eight candidates
were trained and the best one selected. All the experiments were
simulated on a Pentium IV 2.4-GHZ PC. The subproblems
were solved sequentially and the central processing unit (CPU)
time expended was recorded, respectively.

B. Experiments for PD Network Based on FPT and RPT

1) Glass: This data set is used to classify glass types. The
data set consists of nine inputs, six outputs, and 643 patterns
(divided into 321 training patterns, 161 validation patterns, and
161 test patterns). These patterns are normalized and scaled so
that each component lies within .

Fig. 5 shows the OP network structure used for this problem.
The OP network is composed of six submodules and each sub-
module recognizes one class from all the patterns. As described
in Discussion 1 in Section II, these submodules are combined
into two modules in the OP network. The submodules which
recognize classes 1, 3, and 5 are combined into module 1 and
the remaining submodules are grouped into module 2.

Table I lists some data which are used in (13). Here,
represents the number of the patterns in the test data set be-
longing to the classes of module while denotes the overall
number of the patterns. is the probability of error when
module processes the patterns belonging to module and

is the probability of error when module processes the
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TABLE II
RESULTS FOR THE GLASS DATA

Fig. 6. PD network used for the glass problem.

patterns not belonging to module . Now, we show that Dis-
cussion 2 in Section II is reasonable. There are two modules in
the OP network. From Table I, we have %
and %. So %,
which is much smaller than and . It is similar that

%, which is much smaller than and .
Ignoring these terms has little effect to the final results, in other
words, the situation in which two or more modules making
wrong decisions at the same time can be ignored. Now, we
follow up on the Discussion 3 in Section II—the effect of
winner-take-tall. From Table I, we can compute the classifica-
tion error before the implementation of winner-take-all, which
is %. The
result is slightly larger than the result using winner-take-all,
which is 14.2547% (see Table II). It also matches our analysis
in Discussion 3 in Section II.

The PD network structure for this problem is shown in Fig. 6.
The distributor module has two outputs; one has the combina-
tion while the other has . Module 1 consists of
three submodules, identical to its counterpart in the OP network,
and the same for module 2.

Table II shows the experimental results of the ordinary
method, the OP method, the PD method with FPT, and the PD
method with RPT. The ordinary method is a method in which a
single-module NN was constructed to solve the problem. CBP
algorithm is still used in the ordinary method. “Indep. Param.”
stands for the total number of independent parameters (i.e., the
number of weights and biases in the network). “C. Error” stands
for classification error. Training time (in parallel) is the max-
imum training time among all the modules (all modules were
trained in parallel). Training time (in series) stands for the sum
of training time for all the modules (all modules were trained in
series). Using the ordinary and the OP methods, the classifica-
tion errors were 16.0870% and 14.2547%, respectively, while
using the PD method, the classification errors were 10% for
FPT and 7.8261% for RPT. Comparing with the classification
errors from the former two approaches, the classification errors
obtained by the PD network are much smaller. It can be also
noted that the classification error is further reduced when using
RPT instead of FPT.

Now, we explain why the PD network can achieve smaller
classification error than the other two methods. According
to our analysis, if (13) is satisfied, the PD network will have
better classification accuracy. Using the data in Table I, we
have . From the classification error

of the distributor module in Table II, we find .
Thus, (13) is satisfied, which means that using the PD network
will get smaller classification error. From Table II, we can see
that the number of hidden units and the number of independent
parameters in the PD network are larger than those in the
ordinary network and the OP network. This can be attributed to
the fact that the PD network has more modules than the other
two. From Table II, we can also note the changes of the training
time using the previously described three methods. With series
training, the training time of FPT (298.7 s) is larger than those
of the ordinary network (168.1 s) and the OP network (197.7 s)
due to a large number of modules in the PD method. However,
the training time of RPT (194 s) is reduced compared to that
of FPT and is thus comparable to the training time of the other
two networks. The reason for this is that the number of training
instances used in RPT is smaller than that in FPT. With parallel
training, the training time of the PD network (RPT or FPT) is
similar to those of the other two methods, and it is even shorter
than that of the ordinary method. From the previous analysis,
we see that the PD method, especially RPT, performs better
than the other methods.

2) Vowel: The input patterns of this data set are ten element
real vectors representing vowel sounds that belong to one of 11
classes. It has 990 patterns in total (they are divided into 495
training patterns, 248 validation patterns, and 247 test patterns).
The patterns are normalized and scaled so that each compo-
nent lies within . The distributor module has three outputs

, and . Module 1 recognizes
classes 1–3 and consists of three submodules. Module 2 recog-
nizes classes 4–7 and consists of four submodules, while module
3 recognizes classes 8–11 and consists of four submodules. The
OP network has the same modules 1, 2, and 3 as the PD network.

The experimental results of the ordinary, the OP, and the PD
methods for the vowel data are listed in Table IV. Using the
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TABLE III
CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE VOWEL DATA

TABLE IV
RESULTS FOR THE VOWEL DATA

ordinary and the OP methods, the classification errors were
37.1660% for the ordinary method and 25.5466% for the OP
method, respectively, while using the PD method, the classifi-
cation errors were 24.8987% for FPT and 18.7045% for RPT.
The classification error obtained by FPT is much smaller than
the classification error of the ordinary method and resembles
that of the OP method, while for RPT, the classification error
is decreased to 18.7045%, which is much smaller than those of
FPT and the other two methods. We can compute the number of
wrongly classified patterns using the data in Table III to explain
why the PD method can get smaller classification errors than
the other two methods. We have
while . Expression (13) is satisfied. Thus, the
PD network has smaller classification errors. From Table IV,
we can see that the number of hidden units and the number of
independent parameters in the PD network (RPT or FPT) are
larger than those in the ordinary and OP networks. Table IV
also shows the training time using these methods. Using series
training, the training time of FPT (534.3 s) is longer than those
of the ordinary network (237.9 s) and the OP network (418.9 s).
The training time of RPT (245.6 s) is much reduced compared
to that of FPT and is also smaller than those of the former two
networks. If parallel training is used, the training process of the
PD network can save more time. From the previous analysis,
we see that RPT outperforms the others.

3) Segmentation: This data set consists of 18 inputs, seven
outputs, and 2310 patterns (1155 training patterns, 578 valida-
tion patterns, and 577 test patterns). The patterns are normal-
ized and scaled so that each component lies within . The

TABLE V
CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR

THE SEGMENTATION DATA

TABLE VI
RESULTS FOR THE SEGMENTATION DATA

distributor module has two outputs and .
Module 1 recognizes classes 3–5 and consists of three submod-
ules. Module 2 recognizes classes 1, 2, 6, and 7 and consists of
four submodules. The OP network has the same module com-
position as the PD network.

Table VI shows the simulation results of the ordinary
method, the OP method, the PD method (FPT and RPT).
Using the ordinary method and the OP method, the clas-
sification errors were 5.7366% and 5.1820%, respectively,
while using the PD method, the classification errors were
5.4419% for FPT and 4.6101% for RPT. From Table V, we
have . From Table VI, we find

, so (13) is not satisfied and FPT has a larger
classification error than the OP network. It is also noted that
the classification error is decreased when using RPT to replace
FPT. From Table VI, we can see that the number of hidden
units and the number of independent parameters in the PD
networks are larger than those in the ordinary and OP networks.
From Table VI, we also notice changes in training time using
the previous three methods. Under series training, the training
time of FPT (2219.2 s) is larger than the training times of the
ordinary network (693.8 s) and the OP network (1719.6 s) due
to a large number of modules in the PD network. However, the
training time of RPT (706.9 s) is reduced compared to that of
FPT and the OP network and is thus comparable to the training
time of the ordinary method. With parallel training, the training
time of RPT is the smallest one. From the previous analysis, we
see that RPT performs better than the other methods.
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TABLE VII
CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE LETTER DATA

TABLE VIII
RESULTS FOR THE LETTER DATA

4) Letter Recognition: The goal of this data is to
recognize digitized patterns. Each element of the input vector
is a numerical attribute computed from a pixel array
containing the letters. This data set consists of 16 inputs, 26
outputs, and 20 000 patterns (10 000 training patterns,
5000 validation patterns, and 5000 test patterns). All the
patterns are normalized and scaled so that each com-
ponent lies within . The distributor module has four outputs

, and . Module 1 recognizes classes
1–7. Due to the long training time of this problem, module 1 is
not further divided into submodules. Module 2 recognizes
classes 8–14, module 3 recognizes classes 15–20, and
module 4 recognizes classes 21–26. The OP network has
the same module composition as the PD network. For
a fair comparison with the PD network, submodules
are not used in the OP network.

The experimental results of the ordinary method, the OP
method and the PD method for the letter data are listed in
Table VIII. Using the ordinary method and the OP method,
the classification errors were 21.672% for the ordinary method
and 19.260% for the OP method, respectively. Using the PD
method, the classification error were 20.515% for FPT and
15.855% for RPT. The classification error obtained by FPT
resembles the classification errors using the ordinary method
and the OP method. Using RPT, the classification error is much

TABLE IX
CROSSTALK TABLE FOR THE SEGMENTATION DATA

smaller than the classification errors of the other three networks.
From Table VII, we have . From
Table VIII, we find , so (13) is not satisfied,
which means that FPT has a larger classification error. From
Table VIII, we see that the number of hidden units and the
number of independent parameters in the PD network are larger
than those in the ordinary and OP networks. Table VIII also
shows the training time using these methods. Under series
training, the training time of FPT (26 723.8 s) is larger than
those of the ordinary network (18 112.6 s) and the OP network
(20 845.05 s). The training time of RPT (14 094.5 s) is greatly
decreased compared to that of FPT and is also smaller than
those of the former two networks. If parallel training were used,
the training process of RPT could have saved more time. From
the previous analysis, we can see that RPT performs better than
the others.

C. Crosstalk-Based Combination for Distributor Modules

Two classification problems, namely segmentation and glass,
were used in the experiments.

1) Segmentation: The crosstalk table for this problem is ob-
tained using the method described in Section IV-A, as shown
in Table IX. As mentioned in Section IV-A, if the distance be-
tween two classes in the crosstalk table is relatively small, then
these two classes are likely to be close in the feature space.
From Table IX, we want to find classes which are close to each
other and combine them. For simplicity, we use to denote
the distance between classes and . From the table, is
1.6476, is 3.0618, and is 6.7673. These distances
are relatively small compared with other distance figures. Thus,
we combine classes 3–5 together. In the remaining four classes,
class 1 is relatively close to classes 3–5. Thus, we combine 1,3,4,
and 5 together. Now, look at classes 2,6, and 7. Classes 2 and
6 are relatively close and we combine them together. The final
combination set is .

We use another combination set for
comparison with the previous set. In this set, we combine to-
gether the classes with relatively large distances. The experi-
mental results for these two partitions are shown in Table X.
Table X shows that the distributor module’s classification error
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TABLE X
RESULTS FOR THE SEGMENTATION PROBLEM

USING CROSSTALK-BASED COMBINATION

TABLE XI
CROSSTALK TABLE FOR THE GLASS DATA

TABLE XII
RESULTS FOR THE GLASS PROBLEM USING CROSSTALK-BASED COMBINATION

as well as the overall classification error are reduced when the
classes close to each other are combined together.

2) Glass: The crosstalk table for this data set is shown in
Table XI. We can see that the distances among classes 1–3 are
0.4467, 0.3481, and 0.501, which are much smaller than the
other distances, so classes 1–3 are combined. In the remaining
classes, it seems that class 4 is close to class 2. However,
and are very large. Class 4 is not added to combination

. Note that classes 4–6 have relatively small distances.
Thus, classes 4–6 are combined. Thus, the final combination set
is .

We use another combination set for
comparison with the previous set. In this set, we combine
together the classes with relatively large distances. The exper-
imental results for the two different partitions are shown in
Table XII. From Table XII, it is confirmed that the distributor
module’s classification error as well as the overall classification
error are reduced when the classes close to each other are
combined together.

TABLE XIII
RESULTS OF THE SEGMENTATION PROBLEM USING GA-BASED COMBINATION

TABLE XIV
RESULTS OF THE GLASS PROBLEM USING GA-BASED COMBINATION

D. GA-Based Combination for Distributor Modules

To compare with the results in Section V-C, the same classi-
fication problems, namely segmentation and glass, were used in
the experiments. In the experiments, we chose the probability of
crossover and the probability of mutation .
For each chromosome, the classification error of the validation
set is computed five times. The evaluation value is the average
of the classification errors from five runs.

1) Segmentation: In the experiments, we set the maximum
number of combination . The population number
is 20. Due to long computation time, only 30 generations
were bred in our experiments. We identified the best chromo-
some 1211133, or . The experimental
results are shown in Table XIII. Comparing the results in
Table XIII with those in Table XI, it can be seen that using
GA-based combination, the classification error of the distrib-
utor module is decreased from 0.1040% to 0.0173%. The
classification error of the whole network is slightly better than
that using crosstalk-based combination.

2) Glass: In the experiments, we set the maximum number
of combination . The population number is 12. Due
to long computation time, only 30 generations were bred in
our experiments. We identified the best chromosome 121212,
or . The experimental results are shown in
Table XIV. Comparing the results in Table XIV with those in
Table XII, it can be seen that using GA-based combination, the
classification error of the distributor module is equal to that
using crosstalk-based combination. The classification error of
the whole network is slightly larger than that using crosstalk-
based combination.

In the previous two sets of experiments, it took 11 epochs for
the glass problem and 14 epochs for the segmentation problem
to locate the best chromosome. With the increasing number
of classes, the number of epochs required to locate the best
chromosome is also increased. In the previous two examples,
we see that the classification error of the distributor module
using GA-based combination seems better than or equal to
that using crosstalk-based combination. However, the whole
network’s performance using GA-based combination is not
always better than that using crosstalk-based combination. It
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is also related to the recognition rates of the nondistributor
modules. It can be seen that GA-based combination may not
be a good choice compared with crosstalk-based combination
in these two examples, due to the fact that the improvement in
classification rate is trivial while much more computation is
needed for GA-based combination. For problems with a large
number of classes whose crosstalk computation is more costly
and harder to analyze, GA-based combination may be a better
choice. On the other hand, we may consider generating some
initial chromosomes based on the crosstalk analysis to further
improve the quality of GA-based combination.

VI. CONCLUSION

This paper presented a unique task decomposition approach
called taskdecomposition with PD. In this design, a special
module called distributor module was introduced in order to
improve the accuracy of the whole network. A theoretical
model was shown to compare the performance of PD with that
of OP—a typical class decomposition method. The analysis
showed that PD can outperform OP when the classification
accuracy of the distributor module is guaranteed. The exper-
imental results confirmed this. In order to further improve
the performance of PD, RPT was introduced. RPT apparently
increased the accuracy of the PD network. According to our
model, the distributor module’s classification accuracy dom-
inated the whole network’s performance. Two combination
methods, crosstalk-based combination and GA-based com-
bination, were proposed to find good class grouping for the
distributor module. Crosstalk-based combination could find a
suitable combination set for the distributor module. GA-based
combination could find the optimal (or near-optimal) combina-
tion set for the distributor module, with a larger computation
cost. Our experimental results confirmed the effectiveness of
the combination methods proposed.

We will continue to improve the combination methods in the
future. We hope to design new combination methods which not
only can find optimal or near-optimal sets for the distributor
module but also reduce further the computation time. In our
paper, the number of distributor module is restricted to one. This
can be relaxed by having multilevel PD networks with two or
more distributor modules. How to reduce further the training
pattern set while retaining the recognition rate will also be ex-
plored in our future research.

APPENDIX

The procedure of standardizing a chromosome is shown as
follows.

1) Add a minus sign “ ” to all the places. For example,
a place with number “3” now becomes “ .” Chromo-
some 233111 becomes .

2) Set . Find the number in the first place and
find all the places with the same number as the first
one. Change the numbers in the first place and all the
matching places into “ .” In the previous example,
chromosome becomes

.
3) Set . Scanning from left to right, find

the leftmost place whose number is negative and

find all the following places whose number is
the same. Change the numbers in these places
into “ .” In the previous example, when ,
chromosome becomes

.
4) Repeat step 3) until all the places have positive numbers

inside.
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