
1 

A Transformation Sequencing Approach to Pseudorandom Number Generation 

Syn Kiat Tan
1
 and Sheng-Uei Guan

2 

 
1
Department of Electrical and Computer Engineering 

National University of Singapore 

10 Kent Ridge Crescent, Singapore 119260 

 

 2School of Engineering and Design 

Brunel University  

Uxbridge, Middlesex, UB8 3PH, UK 

 

Abstract  

This paper presents a new approach to designing pseudorandom number generators based 

on cellular automata. Current cellular automata designs either focus on  i) ensuring 

desirable sequence properties such as maximum length period, balanced distribution of bits 

and uniform distribution of n-bit tuples etc. or ii) ensuring the generated sequences pass 

stringent randomness tests. In this work, important design patterns are first identified from 

the latter approach and then incorporated into cellular automata such that the desirable 

sequence properties are preserved like in the former approach. Preliminary experiment 

results show that the new cellular automata designed have potential in passing all 

DIEHARD tests. 

Keywords: cellular automata, pseudorandom number generation, maximum length period, 

randomness test 

 

 



2 

1. Introduction   

Random numbers are needed in a variety of scientific, mathematical, engineering and 

industrial applications including cryptography, built-in self test, artificial evolution such as 

genetic algorithm and simulated annealing, Monte Carlo simulations, etc [1,6]. Finding 

appropriate pseudorandom number generators (PRNG) is a difficult task [5] - it is known 

that every PRNG has to fail in a certain simulation/statistical test, or in certain setups that 

interfere with the particular regularities of a given PRNG and thus exhibits the hidden 

correlations between numbers. It is also desirable to have low-cost PRNG that can generate 

sequences with desirable properties such as maximum period length, balanced distribution 

of 1 and 0, uniform distribution of the n-bit states, etc. 

 

Wolfram [1] first proposed using the one-dimensional cellular automata (1-d CA) as a 

PRNG. Figure 1 shows a 4-bit CA - an array of four binary registers where each register’s 

new state 
( 1)t

ks
+

 is computed by a transformation function kΦ  over a neighborhood of three 

nearest registers’ current states, 
( 1) ( ) ( ) ( )

1 1( , , )
t t t t

k k k k ks s s s
+

− += Φ , 0 1k n≤ ≤ − .  

 

In previously published CA PRNG works [7, 8, 11-18], authors have generally focused on a 

particular objective(s) from the full set of desirable PRNG properties. In [7, 8, 11, 12], the 

focus is on analytical techniques to configure the set of 0 1 1{ , , , }n−Φ Φ Φ�  for finite length 

n-bit CA to generate sequences 
(0) (1) ( )

{ , , , )
p

k k ks s s�  with the maximum period 2 1np = − . 

Other researchers [13-18] hypothesized that by making structural changes to the CA, the 



3 

randomness quality of the generated sequences 
(0) (1) (2)

{ , , , )k k ks s s �  can be improved and 

verified though empirical testing with the DIEHARD statistical test suite [9]. These include 

changing the connection structure or type of neighborhood to draw inputs [3,16,18] from, 

dimensionality of CA [12,13], the individual transformation function used for each register 

[2,14,15,17], etc.  

 

In conventional CA, the neighborhood of nearest three inputs (
( 1) ( ) ( ) ( )

1 1( , , )
t t t t

k k k k ks s s s
+

− += Φ ) 

allows up to 
322  possible transformation functions to be used by each register. In [13, 16, 

18], each CA register’s transformation function is allowed to use up to five inputs over a 

non-local neighborhood or arranged in a 2-d lattice. The overall space for the CA 

transformation functions 0 1 1{ , , , }n−Φ Φ Φ�  is thus exponentially increased. Through 

extensive testing, function configurations passing all DIEHARD tests are found. Their 

results suggested that strong correlation between adjacent registers may be detrimental to 

the randomness quality of generated sequences. This hypothesis is also affirmed in [4] 

where the authors concluded that correlation dies out between registers that are at least four 

sites apart. 

 

To further reduce correlation in single-bit sequences from adjacent registers, researchers 

began to explore CA registers that can be configured to use time-varying transformation 

functions per clock ( ) ( ) ( )
0 1 1{ , , , }t t t

n−Φ Φ Φ� , 0,1,2,...t =  [2,14,15,17]. It is hypothesized that 

the consecutive states are less likely to be correlated since each new state is generated from 



4 

the current state by a different function. In previous works, each new state 
( 1)t

ks
+

 is given as 

the successive application of the same transformation kΦ  on the current state 
( )t

ks  and 

regularities may be inevitable in these sequences.  

 

Interestingly, we do not know of any proposal in the literature that contains theoretical 

analysis on the properties of the proposed CA as well as DIEHARD test results on the 

generated sequences. We conducted our own DIEHARD testing on maximum length 

sequences [8] and found that their randomness quality is generally not satisfactory [17]. On 

the other hand, analysis is difficult and seldom done for the highly complex CA designed to 

pass all DIEHARD tests; performance evaluation is usually based on experimental results. 

For example, CA with nonlinear transformation functions [18] cannot be studied using the 

matrix approach [2] while others are difficult to model mathematically due to either the set 

of time-varying transformations used or the behavior to be effected.  

 

To circumvent analysis, some authors [13-16] applied genetic algorithms [10] with the 

fitness function defined from the results of some relevant randomness metrics such as 

entropy, correlation, DIEHARD, etc. to evolve the CA transformation 0 1 1{ , , , }n−Φ Φ Φ� . 

However, for CA to be confidently deployed as PRNG in many applications, rigorous 

testing needs to be conducted – this slows down evolutionary approaches tremendously 

because of the vast number of fitness evaluations to be performed repeatedly. For example, 

the 2-d array CA [16] is shown to pass all DIEHARD tests, but only three suitable 



5 

configurations were found after evolution from an initial population of 80 candidates. It is 

also observed that relatively large CA sizes were often used in the proposals reviewed – 

possibly to avoid small period lengths that can arise since the states of these CA can reside 

in more than one cycle. 

 

Some recent designs of CA seem to be driven by making changes in the CA structure first, 

and the generated sequences are then checked for desired properties and tested for 

DIEHARD. When we design a CA to generate highly random number sequences, the focus 

should be on its global behavior - the desired sequence properties. While we are certain that 

the global behavior is brought about from the interaction among individual registers, there 

are unfortunately no clear links as to how desired global behavior can be achieved by 

considering separately the individual behavior of the registers contained in the CA. We can 

study the interaction between a few registers but this quickly becomes infeasible due to the 

exponential growth of possible configurations that can arise from the multiplicity of 

register functions, arrangements of registers, etc.  

 

Can CA-level modifications be applied similarly at the CA transformation level that will 

result in the solutions we expect, such that each register function is specifically modified 

and the concerted effect of all modified registers generates the sequence properties we look 

for? Ultimately, the randomness quality of sequences generated still depends on the overall 

CA transformation 0 1 1{ , , , }n−Φ Φ Φ� .  

 



6 

We have surveyed the present state of art in CA based PRNG and identified common 

design patterns in previous CA works that passed all 19 DIEHARD tests: (a) time-varying 

transformations and (b) transformation functions with more inputs over a non-local 

neighborhood. The high randomness quality of generated sequences is possibly attributed 

to these design patterns and thus they should be incorporated. Bearing desirable, analytical 

properties in mind, we have therefore come up with the new Transformation Sequencing 

(TS) approach that merges the objectives from both analytical and empirical works to 

provide guaranteed sequence properties:  

i) long period,  

ii) balanced  distribution of ‘1’ and ‘0’,  

iii) uniform distribution of n-bit states. 

 

The concept of transformation sequences will be introduced in Section 2 and some 

properties of generated sequences will be highlighted in Section 3. Possible 

implementations based on the TS approach are also suggested. DIEHARD results are 

presented in Section 4. The conclusions are drawn in Section 5. 

 

2. Transformation Sequencing for CA  

Linear binary CA, where each register’s state is computed by a linear function, are also 

considered as linear finite state machines (LFSM) [8]. Hereafter, all CA referred to are 

linear, binary, maximum length CA [11] (generate sequences with a maximum period 



7 

2 1np = − ) unless otherwise specified. Figure 1 shows a 4-bit example. An -bitn  CA state 

at time ( )t  can be denoted by the vector ( ) ( ) ( ) ( )
1 2 0[ , , , ] 't t t t

n nS s s s− −= …  and each CA has an 

n-by-n binary transformation matrix A  which maps the current state to the next state, i.e. 

( 1) ( )t t
S A S

+
= ⋅  [2].  

 

For a maximum length CA, the transformation matrix has the property 

(2 1) mod(2 1) 0 mod(2 1)n n n

A A I− − −
= =  such that the sequence of generated states 

(0) (2) (2 2){ , , , }
n

S S S −
…  has a period 2 1n

− , i.e. all possible n-bit tuples except [0,0, ,0]'…  

are generated exactly once. As stated in [2], we have the following relations: 

( ) (0)t t
S A S= ⋅  , 0,1, 2,t = …                 (1) 

( 2 1) 2 1 ( ) ( )n n
t t t

S A S S
+ − −

= ⋅ =                 (2) 

Besides having a maximum period, these sequences (0) (1) (2 2){ , , , }
n

S S S −
…  have desirable 

properties such as balanced distribution of bits and uniform distribution of n-bit tuples [8]. 

 

 

 

 

 

 

Figure 1. A 4-bit CA and its transformation matrix A 

(0)
3s  

(0)
2s  

(0)
1s  

(0)
0s  

  

1 1 0 0
1 0 1 0 0 1 1 1
0 0 1 1

A
 
 =
 
 

 
s3 s2 s1 s0 

(1)
0s  

(1)
1s  

(1)
2s  

(1)
3s  

�  
 

�  
 

�  
 

�  
 



8 

 

To avoid confusion in subsequent mathematical expressions, the superscript 
f
 without 

parenthesis is used to denote fA , which can be understood as
1

f
f

i

A A
=

≡ ∏ , while the 

superscript 
(t)

 is used to:  

i) indicate the transformation matrix ( )tA  used at time (t) – ( )tA can take on any value 

from the set ( ) 2 1
1{ }

n
t f

fA A
−

=∈  (note that generally ( )t tA A≠ ), and  

ii)  denote the output state ( )t
S  vector at time t.  

The subscript k is used to indicate a specific bit or register within a vector, i.e. the k
th

 bit ( )t
ks  

within ( )t
S .  

 

To generate the state ( )t
S  in a CA such as the one shown in Figure 1, the transformation A  

is applied to the state (0)
S  t times successively. Consider the state sequence generated in a 

single period by a CA, we can write the following using (1): 

(1) (2) (2 1) 1 2 2 1 (0){ , , , } { , , , }
n n

S S S A A A S− −
≡ ⋅… …        (3) 

 

This ordered sequence of transformations 1 2 2 1{ , , , }
n

A A A −
…  is defined over a single 

complete period (from (2), it has the same period as its associated state sequence) and 

contains the transformation matrices applied to the initial state (0)
S  at each clock (t) to 

generate the output. Called the transformation sequence, it can be viewed as a fixed process 



9 

inherent to the CA. Regardless of the initial state (0)
S  used, the CA always uses this 

transformation sequence to generate the successive output states.   

 

Let Φ  be the global, iterative transformation function of an arbitrary PRNG such that its 

states are computed by  ( 1) ( )( )t tS S+
= Φ  and its transformation sequence over a complete 

period be 1 2 3 4 5 6 7{ , , , , , , }Φ Φ Φ Φ Φ Φ Φ . If a CA is found whose transformation matrix A 

can be written as 1 2 3 4 5 6 7 1 2 3 4 5 6 7{ , , , , , , } { , , , , , , }A A A A A A A ≡ Φ Φ Φ Φ Φ Φ Φ , the PRNG is 

actually equivalent to that CA. Consider the case where the transformation sequence of an 

arbitrary PRNG expressed using  the transformation matrix of any CA is still of the 

following “jumbled order” form, for example   

3 5 6 2 4 1 7{ , , , , , , }A A A A A A A 1 2 3 4 5 6 7{ , , , , , , }≡ Φ Φ Φ Φ Φ Φ Φ . We hypothesize that no 

equivalent linear CA can be used to represent this PRNG, in other words, Φ  is nonlinear 

and the output sequences produced by this PRNG is nonlinear. As long as each 

transformation ,0 2 1f nA f≤ ≤ −  appears exactly once in the equivalent transformation 

sequence (over a single period), each ( ) ( ) ( ) ( )
1 2 0[ , , , ] 't t t t

n nS s s s− −= …  is generated exactly once. 

The corresponding PRNG’s output state sequence thus looks like a permuted version of the 

CA’s sequence, for example (3) (5) (6) (2) (4) (1) (7){ , , , , , , }S S S S S S S  from the PRNG compared 

to the CA’s (1) (2) (3) (4) (5) (6) (7){ , , , , , , }S S S S S S S . We have particular interests in such 

“jumbled order” sequences and the reasons will be made clear in the following section. 

Note for now that such sequences still retain one of the desirable properties, i.e. maximum 

length period. 



10 

 

3. Properties and Implementations of Transformation Sequencing  

We now describe some properties and possible implementations based on the 

Transformation Sequencing approach. 

 

Proposition 1.  If the transformation sequence (1) (2) (2 1){ , , , }
n

A A A −
…  of a PRNG 

contains all possible ( ) { | 1, 2,..., 2 1}t f nA A f∈ = −  exactly once, then the generated 

sequences have a maximum length period 2 1n
− , balanced distribution of ‘1’ and ‘0’ as 

well as uniform distribution of n-bit states. Working with transformation sequences allows 

us to identify easily that each transformation from the set { | 1, 2,..., 2 1}f nA f = −  appears 

exactly once in a single period. 

 

Proposition 2.  If we let a PRNG’s transformation be ( 1) ( )t f t
S A S

+
= ⋅  (for 

gcd(f,2
n
-1)=1, 1f > ) where A is the transformation matrix of any maximum length CA 

from [11], it can be shown that the transformation sequence 2 (2 1){ , , , }
n

f f fA A A −
…  will 

contain each transformation ( ) { | 1, 2,..., 2 1}t f nA A f∈ = − in one period. This implies that 

this PRNG satisfies Proposition 1 and generates sequences having properties stated therein. 

Recall from Section 1 the desirable design pattern of using register functions with more 

inputs over a non-local neighborhood; we now show that this PRNG incorporates the 

above.  



11 

 

It can be observed that each row in fA  (where gcd(f,2
n
-1)=1, 1f > ) may contain more 

elements of ‘1’ compared to the rows of A
1
. These ‘1’s correspond to the inputs used by 

each individual register function to compute its new state [2]; and each row vector f
kA
�

‡
 in 

fA  corresponds to a linear function for the k-th register. Since (1) (2) (2 1){ , , , }
n

A A A −
…  

generates a sequence with a period as 2 1n
− , each f

kA
�

, 0 2 1nf≤ < −  cycles through 

[00…1] to [11…1]. To illustrate, consider the complete set of transformations 

1 2 15{ , ,..., }A A A  obtained from the 4-bit CA in Figure 1.  

1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0

A

 
 =
 
  

, 
2

0 1 1 0
1 0 1 1
1 1 1 1
0 1 1 1

A

 
 =
 
  

, 
3

1 1 0 1
1 0 0 1
0 0 1 1
1 1 1 1

A

 
 =
 
  

, 
4

0 1 0 0
1 1 1 0
0 1 0 1
0 0 1 1

A

 
 =
 
  

, 

5

1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1

A

 
 =
 
  

, 
6

1 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

A

 
 =
 
  

, 
7

1 0 0 1
0 1 1 1
0 1 1 0
1 1 0 0

A

 
 =
 
  

, 
8

1 1 1 0
1 1 1 1
1 1 0 1
0 1 1 0

A

 
 =
 
  

, 

9

0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 1

A

 
 =
 
  

, 
10

0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0

A

 
 =
 
  

, 
11

0 1 1 1
1 0 0 0
1 0 1 1
1 0 1 0

A

 
 =
 
  

, 
12

1 1 1 1
1 1 0 0
1 0 0 1
1 0 1 1

A

 
 =
 
  

, 

13

0 0 1 1
0 1 1 0
1 1 1 0
1 0 0 1

A

 
 =
 
  

, 
14

0 1 0 1
1 1 0 1
0 0 0 1
1 1 1 0

A

 
 =
 
  

, 
15

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A

 
 =
 
  

. 

 

The register functions in fA  ( 1,2 1nf ≠ − ) can have an increased number of inputs from 

any register in the CA and the notion of local neighborhood is not applicable. See the 4-bit 

CA configured using 2A  in Figure 2 for a clearer view - the third register’s transformation 

 

‡ 
f

kA
�

refers to the kth row vector of fA , 0 1k n≤ ≤ − . 



12 

function actually XOR all the four neighboring inputs to compute its next state. The state 

sequence is then generated as ( ) 2 (0)t t
S A S

⋅
= ⋅ . 

  

 

 

 

 

 

 

 

Figure 2. A 4-bit CA configured using 2A  

 

 

Proposition 3.   If a PRNG’s transformation sequence can only be expressed as a 

permuted order form of any other CA’s transformation sequence, it implies that 

time-varying linear transformations are used. For example we have 

1 2 3 4 5 6 7 3 5 6 2 4 1 7{ , , , , , , } { , , , , , , }A A A A A A AΦ Φ Φ Φ Φ Φ Φ ≡  for any A. The actual state 

transformation at each clock (t) is respectively (1) 3 (0)
S A S= ⋅ , (2) 2 (1)

S A S= ⋅ , 

(3) (2)
S A S= ⋅ ,… It can be seen that such sequences have the properties stated in 

Proposition 1 and this PRNG incorporates both design patterns given in Section 1. 

 

One possible way to implement a PRNG with the above transformation sequence is via 

( )( ) | |t
t C

Z A S= ⋅                      (4) 



13 

The transformation matrix 
( )| |t

CA  at each clock is given by the decimal state ( )| |tC  of 

another maximum length CA. Here, S is the initial state. Since the sequence ( ) 2 1
1{| |}

n
t

tC
−

=  

has a period 2 1n
− , each transformation from the set { | 1, 2,..., 2 1}f nA f = −  appears 

exactly once. 

 

4. DIEHARD Results 

We now provide the DIEHARD [9] test results for randomness quality of the generated 

sequences from the PRNG described in Proposition 3 (codenamed TS-1) and the PRNG in 

Proposition 2 (codenamed TS-2). Details on the DIEHARD tests can be found in the cited 

reference [9]. For each n (the length of the CA or TS-1 used), a transformation matrix A is 

obtained from the list given in [11]. The state sequence ( ) 2 1
1{ }

n
t

tS
−

=  for the CA is generated 

using ( ) (0)t t
S A S= ⋅  (from (1)). For the TS-1, the sequence ( ) 2 1

1{| |}
n

t
tC

−

=  is obtained using 

( ) (0)t t
C A C= ⋅  while the final state sequence is obtained using (4). For the TS-2, we 

examine sequences generated from a 24-bit example. These sequences are generated from 

( ) (0)t f t
S A S

⋅
= ⋅  where 0 1 2 232 , 2 , 2 ,..., 2f =  The results are averaged from experiments 

conducted using 20 different initial states S
(0)

. The results for ordinary linear maximum 

length CA are provided as well for benchmark purposes in Figure 3, since both TS-1 and 

TS-2 are constructed from such maximum length CA.  



14 

0

2

4

6

8

10

12

14

16

18

20

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

CA

TS-1

n = 29         32        48

No. of DIEHARD tests passed (max. 19)

 

Figure 3. Number of DIEHARD tests passed (maximum score of 19) by 16- to 48-bit CA 

and  TS-1  

 

In Figure 3, the vertical axis shows the number of DIEHARD tests passed (maximum 19) 

as a function of n, the length of the CA or TS-1 used. The randomness quality of maximum 

length CA sequences is generally not good, as detected by the DIEHARD tests. The 

random quality of TS-1 clearly exceeds the CA in all cases tested. For 24-bit and larger 

cases, nearly all 19 tests are passed. 

 

The results of for the 24-bit version of the PRNG in Proposition 2 (codenamed TS-2) are 

given in Figure 4. Since there are many fA  that satisfy the constraint 

gcd( , 2 1) 1,  1nf f− = > , we chose 2k

A , 1,2,... 1k n= −  since gcd(2 , 2 1) 1k n
− =  holds. 



15 

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22 24k = 

No. of DIEHARD tests passed (max. 19)

 
Figure 4. Number of DIEHARD tests passed (maximum score of 19) by 24-bit TS-2 with 

2 , 0,1,..., 23
k

A k =  

 

In Figure 4, the vertical axis shows the number of DIEHARD tests passed (maximum 19) 

as a function of k in the transformation 2k

A  used in TS-2. The data point on the vertical 

axis (k=0) represents the result of the ordinary CA with transformation A. The random 

quality of TS-2 exceeds the CA although the degree of improvement is not very consistent 

for the various values of k. The result of the 24-bit version of TS-1 outperforms the TS-2. 

This can be explained by TS-1 incorporating both design patterns listed in Section 1 while 

TS-2 only incorporates one pattern. 

 

5. Conclusion 



16 

New PRNG can be designed from existing linear maximum length CA such that generated 

sequences can be viewed as having n-bit blocks permuted compared to the original CA 

sequence. Working with transformation sequences allows us to identify easily that each 

transformation from the set { | 1, 2,..., 2 1}f nA f = −  appears exactly once such that the 

generated sequences have a maximum length period as 2 1n
− , balanced distribution of ‘1’ 

and ‘0’ as well as uniform distribution of n-bit states. The DIEHARD results of the PRNG 

in Propositions 2 and 3 suggested that incorporating the design patterns improves the 

randomness quality of generated sequences, especially when both patterns are used.  

Although CA is used for illustration, the transformation sequence approach can be used 

with any maximum length LFSM [7]. 

 

References 

[1] S. Wolfram, “Theory and Applications of Cellular Automata: Including Selected 

Papers 1983-1986”, World Scientific publishing Co., Inc., River Edge, NJ. 1986. 

[2]  P. Pal Chaudhuri, D. Roy Chowdhury, S. Nandi and S. Chattopadhyay, “Additive 

Cellular Automata Theory and Applications”, Volume 1, IEEE Computer Society 

Press, Los Alamitos, ISBN 0-8186-7717-1, California, 1997. 

[3] S. Nandi and P. Pal Chaudhuri, “Analysis of Periodic and Intermediate Boundary 

90/150 Cellular Automata”, IEEE Trans. on Computers, Vol. 45, No. 1, pp. 1-12, 

Jan. 1999. 



17 

[4] P. D. Hortensius, R. D. Mcleod, W. Pries, D. M. Miller and H. C. Card, “Cellular 

Automata-Based Pseudorandom Number Generators for Built-in Self-Test”, IEEE 

Trans. on Computer-Aided Design, Vol. 8, No. 8, pp. 842-859, 1989.  

[5]  P. Hellekalek, “Good Random Number Generators are (Not So) Easy to Find”, In 

Mathematics and Computer in Simulation, 46, pp. 485-505, 1998. 

[6]  P.  Sarkar, “A Brief History of Cellular Automata, ACM Computing Surveys”, Vol. 

32, No. 1, pp. 80-107, 2000. 

[7] G. Mrugalski, J. Rajski and J. Tyszer, “Ring Generators - New Devices for 

Embedded Test Applications”, IEEE Trans. on Computer-Aided Design of 

Integrated Circuits and Systems, Vol. 23, No. 9, pp.1306–1320, Sept. 2004. 

[8] Solomon W. Golomb, “Shift Register Sequences”, Aegean Park Press, 1981. 

[9]  G. Marsaglia, “Diehard”, http://stat.fsu.edu/~geo/diehard.html, 1998. 

[10] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs”, 

Berlin: Springer-Verlag, 1992. 

[11] S. Zhang, D.M. Miller and J. C. Muzio, “The Determination of Minimal Cost 

One-Dimensional Linear Hybrid Cellular Automata”, Elec. Letters, Vol. 27, pp. 

1625 - 1627, 1991. 

[12] K. Cattell, S. Zhang, M. Serra and J. C. Muzio, “2-by-n Linear Hybrid Cellular 

Automata with Regular Configurations,” IEEE Trans. Computers, Vol. 48, pp. 285 

- 295, 1999. 



18 

[13] M. Tomassini, M. Sipper and M. Perrenoud, “On the Generation of High-Quality 

Random Numbers by Two-Dimensional Cellular Automata”, IEEE Trans. on 

Computers, Vol. 49, pp. 1146-1151, 2000. 

[14] Sheng-Uei Guan and Shu Zhang, “An Evolutionary Approach to the Design of 

Controllable Cellular Automata Structure for Random Number Generation”, IEEE 

Trans. on Evolutionary Computation, Vol. 7, No. 1, pp. 23 -36, Feb. 2003. 

[15] Sheng-Uei Guan and Shu Zhang, “Incremental Evolution of Cellular Automata for 

Random Number Generation”, International Journal of Modern Physics C, Vol. 14, 

No. 7, pp. 881-896, Sep. 2003. 

[16] Sheng-Uei Guan, Shu Zhang, and Marie Therese Quieta, "2-d CA Variation with 

Asymmetric-Neighborship for Pseudorandom Number Generation", IEEE Trans. 

on Computer Aided Design of Integrated Circuits and Systems, Vol. 23, No. 3, pp. 

378-388, Mar. 2004.  

[17] Sheng-Uei Guan and Syn Kiat Tan, "Pseudorandom Number Generation with Self 

Programmable Cellular Automata", IEEE Trans. on Computer Aided Design of 

Integrated Circuits and Systems, Vol. 23, No. 7, pp. 1095-1101, July 2004. 

[18] Franciszek Seredynski, Pascal Bouvry and Albert Y. Zomaya, “Cellular Automata 

Computations and Secret Key Cryptography”, Journal of Parallel Computing, Vol. 

30, Issue 5-6, Elsevier, pp. 753-766, 2004. 

 

 


