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Abstract—In this paper, we extend the minimum variance
filter, which is proposed in the literature for discrete state space
systems with multiplicative noise, to continuous-discrete systems
with multiplicative noise. The differential equations that describe
the process are discretised using the Euler scheme at a higher
sampling frequency than the measurement frequency. We test the
performance of our new filter i.e. continuous discrete filter (CDF)
on simulated numerical examples and compare the results with
discrete discrete filter (DDF) which ignores the state behaviour
in-between the measurement samples. The results show that the
CDF outperforms the DDF in all the cases examined.

I. INTRODUCTION

The Bayesian filtering framework is a robust filtering
framework where the state dynamics are typically modeled
with stochastic differential or difference equations. In
continuous-discrete filtering, the state dynamics is modelled
as a continuous time system and the measurement equation
is given in discrete time, i.e. the measurements (which are
typically noisy) are available at discrete time instants. The
measurement frequency may be limited by hardware or
other physical considerations. The major difference between
continuous discrete filter (henceforth abbreviated as CDF) and
discrete time filter (or discrete discrete filter, abbreviated as
DDF) is that, in the DDF approach, both the state dynamics
and the noisy measurements are modeled as discrete-time
processes. Filtering problems where a continuous-time signal
is observed discretely in time have received a great deal
of attention, since this kind of formulation often arise in
numerous applications such as GPS and inertial navigation
[1], stochastic control [2], target tracking [3] and finance [4].
The Bayesian optimal continuous discrete filter [S], [6] is
the same as the discrete-time filter only when measurements
are obtained at discrete time-instants, the posterior density is
propagated from one sampling instant to the next by solving
the associated Fokker-Planck equation.

In the literature, many conventional filtering algorithms are
extended to deal with continuous-discrete systems. Example
of such algorithms are Extended Kalman filter (EKF) [5]
which approximates the exact solution by using a Taylor series
expansion approximation to the nonlinear drift function and
forms a Gaussian process approximation to the SDE, Particle
filters (PF) [7] where a set of weighted particles is used for ap-
proximating the posterior probability measure and Unscented
Kalman filter (UKF) [8] which relies on propagating a set of
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points representing a Gaussian density with the correct first two
moments through the system equations. In [9], the extension of
the cubature Kalman filter [10] to continuous-discrete filtering
using Ito-Taylor expansion of continuous dynamics has been
studied. The results in [11] which use the cubature integration
method in continuous-discrete filtering were generalized in
[12]. In [13], closed form solutions of continuous-discrete
systems is derived. In [14], CDF algorithms using the extended
Kalman filter (EKF), unscented Kalman filter (UKF), and parti-
cle filter (PF) with applications to the angle-only tracking in 3D
are developed. Continuous-discrete filtering in a deterministic
setting is discussed in [15]

Most of the results mentioned above are concerned with
the additive noises only and multiplicative noise (or any other
state-dependent noises) are not taken into account. A separate
strand of research on the filtering problem for linear discrete
time systems with multiplicative noise has also received a
great deal of attention recently, since this kind of formulation
has found many applications in sciences and engineering.
Examples of such systems are encountered in signal processing
systems, chemistry, economics, biological movement and ecol-
ogy; see [16], [17], [18] and [19] and references therein. The
second order statistics of the multiplicative noise, in contrast
to the case of additive noise, is unknown. In an extended KF,
multiplicative noise can act as a proxy for neglected higher
order terms in Taylor series (since, unlike additive noise, it
does depend on state). For systems subject to multiplicative
noise, different kinds of algorithms have been introduced for
the discrete time models. These algorithms are reported in [20],
[21], [22], [23] and [16]. However, a similar problem was
considered in [24] for continuous-discrete linear state space
models where the solution is given in form of solving coupled
ODEs.

The motivation of this paper is to extend the result in [23]
to deal with continuous discrete problems. Specifically, we
consider a class of continuous discrete systems with additive
as well as multiplicative noise, which includes square-root
affine systems. In this paper, we use Euler scheme followed
by conditional moment matching to transform stochastic dif-
ferential equations (SDE) in the process equation into discrete
model on a timescale which is finer than the measurement
timescale. The problem addressed here is the design of a
filter that minimizes the trace of estimation error covariance
matrix at each measurement sampling instant. We demonstrate
through numerical experiments that our new filter performs



better than the corresponding discrete discrete filter in [23],
when information about continuous time dynamics is available.

The organization of the paper is as follows. In section
2, the aforementioned class of systems is described. We
outline the problem in this section and derive its solution. In
section 3, the proposed filtering algorithm is demonstrated by
comprehensive numerical examples. Some concluding remarks
given in section 4. Proofs of the main theorems in section 2
are provided in the Appendix.

II. BAYESIAN FILTERING ALGORITHM UNDER
ADDITIVE-MULTIPLICATIVE NOISE

A. State space model

Consider a system in which the process equation is de-
scribed by a stochastic differential equation:

dX(t) = (AX () + B)dt + U,dW(t) + GXY(£)dS(t) (1)

The behavior of the system is observed through noisy measure-
ments )(t;,) which are taken at discrete time instant ¢, = kT,
where T is the measurement sampling interval:

y(tk) = CX(L‘]C) + UUV(tk). 2)

Here, v € {0,0.5,1}, X(t) is an n-dimensional state of the
system at any time ¢, V(t;) € R" is the measurement at t%h
time instant and A, B, G, C, D, U,, and U, are given constant
matrices of appropriate dimensions. X7 (t) indicates a vector
whose each element is the corresponding element of X(¢)
raised to the power v. W(t) € R is a standard Wiener process
with increment dWV(t) and V(t), k = 1,2,--- is a discrete
time stochastic process which represents the measurement
noise. The standard Wiener process S(¢t) € R™ represents
the multiplicative noise. The initial state is a random vector
with a known mean and covariance matrix, E[X'(0)] = X'(0)
and E[(X(0) — X(0))(X(0) — X(0))"] = P(0) respectively.
X(0), W(t), V(tx) and S(t) are mutually independent. This
class of systems include systems with additive noise (v = 0),
multiplicative noise (y = 1) and square root affine noise
(y = 0.5). The last case is especially relevant in financial
mathematics; see, e.g. [25] and references therein.

The purpose of the optimal (Bayesian) continuous-discrete
time filtering is to determine the evolution in time ¢ of
the conditional probability density function, also called the
posterior density of the state defined for all ¢ > 0:

(X @OV (1), V(tr)),  tE [ty thsn),

or at least the relevant moments of the distribution (e.g.
the mean vector and the covariance matrix). The optimal
continuous-discrete Bayesian filter is the same as the discrete
filter performed in two steps.

k=1,2,..

1) Prediction step: In this step, the prior probability density
function is evaluated by propagation of the previous posterior
density between the measurement instants.

2) Update step: In this step, the posterior density is obtained
by fusing with the predictive density using Bayesian rule. This
step is the same as the discrete-time filter update step be-
cause the measurement-update relies only on the measurement

equation, which is modeled in discrete time for a continuous-
discrete state-space model case.

Solving the dynamic system (1)-(2) is very challenging
since the SDEs appearing in the dynamic model or the corre-
sponding Fokker-Planck-Kolmogorov partial differential equa-
tions cannot typically be solved analytically and approximation
must be used. We outline our choice of discretisation scheme
below. The discretisation is on a time-scale which is finer than
that of measurement sampling time-scale.

B. Discretization of process model

Let {41 —tx = T, k > 0 be the uniform time interval be-
tween consecutive measurement samples. Applying the Euler
scheme to (1) over time interval (¢x, ¢, + A) yields

X = X(6) + (AX () + B) A+

VLA + 32 (] (1)AS,.

Jj=1

where ti € [tx, tx+1],7 = 1,2,...,m are uniformly spaced
inter-sampling times and A = % AW and AS are n-
dimensional Gaussian random variables with zero mean and
covariance matrices E[AWAW ] = A, E[AS;AS]] = A

respectively. G; represents jth column of matrix G and AS;

is the j' component of vector valued random variable AS.

In order to match exactly the first two moments, we
use moment matching approach. So, the expression for the
conditional mean of X (¢."') given X (t}) can be easily shown
to be

E[X ()X (8)] = X () + (AX () + B))A,

where ¢ = 1,2..,m — 1 and the associated conditional covari-
ance matrix is

var[X (G N|X (1)) = UnUy A + i(GjG;r (A7 (8))A
j=1

Then

where

and W, S are uncorrelated, zero mean random processes with
identity covariance matrices. This puts the system in a discrete
state space framework for which the standard discrete time
filtering tools can be applied.



C. Minimum variance filter for the continuous-discrete system

To derive the recursive filtering equations, it is assumed
that the observations are given up to time ¢ and that the ap-
proximate conditional mean of X'(¢%) given V(tx) , X (¢ |tx),
is available. From this value, the approximated conditional
mean of X'(¢;"'), which provides the predictor, X (i |t;),
is derived using (3):

X(tH |tn) = AX(th[tr) + B. @)
The predicted estimate X (tiT|ty) needs to be updated with
the information provided by )(tp41), to obtain the filtered
estimate. So, the update equation for a linear filter is

A?(t?'l\tk-o-l) = X(t?‘l\tk) + K(k+1)(V(tgs1) — :
o)

where X(ti"|t,11) indicates updated estimate of X'(ti™!)
after )(t;4+1) becomes available, and the covariance matrix
is given by

Pty |tk) = EI(X (1) — X (6 |t)
(X () = 2@ 1) 1. (6)

As in [23], our objective is to find a filter gain K (k + 1) that
would minimize the trace of the covariance P(t}""|t)) of the
state estimate X (t;7'|tk+1) and obtain an expression for the
optimum filter. Our main result in this section, which is an
extension of the corresponding result from [23], is given in
the next theorem.

Theorem 1: For equation (2) and (3), the filter gain
(k—f— 1) that minimizes the trace of the covariance P(t."|t;,)
is given by

K(k+1) = P(tj1[t;)CT[CP(ty 4 |t;)CT + ULU) ],
(7N
where
P(thylty) = AP(tj|t) AT + UnU,,+
GE| diag(X] (1})) diag(X) (£,)) |G (8)
and
E[diag(X] (t},)) diag(X] (¢},)) ]
= diag (Py;(th|th) + (A, (410))7) ity =1,
= diag (%;(flh)) i 4 =05,
= diag (I,,) if v =0. )

Proof: See Appendix.
A few of remarks on this result are in order.

e If G = 0 i.e. if there is no multiplicative noise, our
filter reduces to the Kalman Bucy filter for continuous-
discrete models with additive noise [26].

e  The major difference between our work and the work
represented in [23] is that, in this paper the dynam-
ics are modeled as continuous-time process and the
measurements are modeled as discrete-time process
while in [23] both the dynamics and measurements
are modeled as discrete-time processes. This requires
updating values of X(¢t) at t € (ti,trt1). As will

V(tes1ltr)),

be seen in the numerical examples, this improves the
prediction quality. If m = 1, we recover results from
[23].

e As mentioned earlier, the three specific values of ~
viz. 0,0.5 and 1 encompass the cases of additive,
square root affine and multiplicative noise respectively.
As will be seen later in the proof (see equation (9),
in particular), these choices of ~ still allow us to get
a closed-form recursive expression for the covariance
matrix. Further, note that v < 1 in our set up is
sufficient for the Euler scheme to converge; see ( [17],
chapter 10), for example.

III. NUMERICAL EXAMPLE
A. Example 1

For numerically evaluation, we used the same model
parameters was described in [23] for the system (1)- (2)
which are:

A=-05,B=0,C=10,U, =6,U, =1, and G =0.1.
W(t) and S(t) are standard Wiener process, V(¢;) is random
variable with with E(V(t;)) = 0 and E(V(#))? = 1 and
uncorrelated with W(¢) and S(f). Initial conditions are
X(0)=1, X(0) =0and P(0)=1

The measurement sampling period 7' = 1. We consider a
sequence of two different time steps between t; = k7 and
thit1 = (k+1)T m = 5 and m = 10, so A = 1/5 and
A =1/10 . Then we will use these parameters to derive the
discretization parameters presented in the Section 2.2. That
is,

A=09 B=0, U,=26833, G=0.0447,

A=095 B=0, U,=1.8974, G =0.0316.

for A =1/5 and A = 1/10, respectively. In order to compare
the performance of the estimators, we use the root mean
square error (RMSE) and the mean relative absolute error
(MRAE) criteria. Consider 100 independent simulations, each
with 200 data points. Denoting V) (t;), k=1,...,200 as
the st" set of true values of the measurement, and ﬁ(s)(tk|tk)
as the filtered measurement estimate at time t; for the s
simulation run, the RMSE and MRAE of the filter for each of
the algorithms is calculated by

200
1 .
- | = (s) — Y(s) 2
RMSE(s) 500 t;(y (tr) — VO (tetr))2,
s=1,...,100,
200 (s) —_ )
MRAE(s) = 1 | V& (te) =Y (751c|15k)|7
200 ; | YO (tr) |
s=1,..., 100.

Then the average of RMSE and MRAE for each of the states
over 100 simulations is given by

100
1
AvRMSE = — S RMSE(s).
v 100 ; (5)



100

> RMSE(s).

AvMRAE = —
vME 100 &~

Using our estimator, we will compare the performance of two
filters: continuous-discrete filter and discrete discrete filter i.e.
filter presented in [23] with different values of v . The results
of continuous-discrete filter and discrete discrete filter will be
represented by CDF' and DDF, respectively. The results are
summarized in Tables I and II. We can see from these tables
that, in all the cases, the estimators with C'DF' perform better
than the estimator with DDF'.

TABLE 1. COMPARISON OF AvRM SE AND AvM RAE FOR CDF
AND DDF FOR DIFFERENT VALUES OF ¥ AND WITH A = 1/5
¥y=0 =05 =1
AvRMSE CDF 09850 09864  0.9044
DDF 14572 1.4794 1.4664
AvMRAE CDF 09800  0.9691 0.9700
DDF  1.6485 1.4573 1.4548
TABLE II. COMPARISON OF AvRM SE AND AvM RAE FOR CDF
AND DDF FOR DIFFERENT VALUES OF Y AND WITH A = 1/10
=0 ~v=0.5 y=1
AvRMSE CDF 09758  0.9865 0.9801
DDF 14635 1.4796 1.4699
AvMRAE CDF 09625 0.9801 0.9700
DDF 15415 1.4782 1.4548
B. Example 2

As another example, we consider the same model parame-
ters was described in [23] for the system (1)- (2) which are:

[ -1 05 B [ -6
A[l_l,BOUw{l],
—100 0.12 0.02
C:[ 10 ] G:[O.IS 0.1 }
and U, = 1. As before, W(t) and S(t) are standard

Wiener process, V() is random variable with zero mean and
identity covariance matrix Z and uncorrelated with W(¢) and
S(t). The initial conditions are:

X0 = [0 1], X0 =
P(O)[(l)(l)].

The measurement sampling period 7' = 1. We consider
a sequence of 10 time steps between ¢, = kT and
thkv1 = (kK + 1T, so A = 1/10. A difference in our
simulation was that instead of using the parameters described
in [23] themselves we used them to derive the discretization
parameters presented in the Section 2.2. That is,

[0 0] and

. 09 —005] = - _1.8974
A="101 o9 | B=0 Uw:[0.3162 ]
& [ 00379 0.0063

= | 00474 0.0316

We will compare the performance of two filters for this
data generating system: continuous-discrete filter and discrete
discrete filter i.e. filter presented in [23] with different values
of v . In keeping with the notation in the previous subsection,
the results of the continuous-discrete filter and discrete discrete
filter will be represented by CDF and D DF, respectively. The

AVRMSE and AvMRAE are calculated for these filters with
different values of ~ as the previous subsection.

Table III summarizes the results of this experiment. As can
be seen, the CDF provides better accuracy when compared to
DDF in all the cases.

TABLE IIL. COMPARISON OF AvRMSE AND AvM RAFE FOR CDF
AND D DF FOR DIFFERENT VALUES OF 7y
¥y=0 ~v=0.5 y=1
AvRMSE CDF 0.9622 0.9798 0.9634
DDF 2.5929 2.6408 2.5947
AvMRAE CDF 0.9600 0.9402 0.9400
DDF 2.5315 2.5314 2.5231

IV. CONCLUSION

In this paper, the optimal linear minimum variance filter
is derived for a class of continuous-discrete time systems
with additive as well as multiplicative noise. The closed form
solution generalizes the results for minimum variance filtering
for additive-multiplicative noise case in [23]. Discretization of
the continuous-time dynamic model using the Euler scheme
is described. The results of this paper were applied to sim-
ulated linear system with additive-multiplicative noises. Our
numerical experiments indicate that the continuous-discrete
filter outperforms discrete-discrete filter.

APPENDIX

The filtering estimates of the state covariance is obtained
by combining the equations (2)-(5) as follows. For brevity
of notation, an expression LLT will sometimes be denoted as
(L)(%)T, where L is a matrix-valued expression and where
there is no risk of confusion. The state covariance matrix at
time k + 1 can be written as

Pt |t) = E[(X () — X te) (%))
= E[AX(t}) + B + U W(t;™) + G diag(X] (1)) S(ty™)—

(AX (t) [tw )+B+K(k+1)(y(tk+3>j?(tkﬂltk)))(*ﬂ
=E[A(X(t,) — X(t}|te) () "] + U,

+ GE[diag(X] (t;)) diag(X] (t}.)) ]G T+

K

(k+ DE(trs1) = V(traltr)) ) K (k+1) =
X(t}) + B+ U W(t) + G diag(X] () S (1)
(1 [te) (K (k + 1) (P (trr1) — V(trgaltr) =

(K (k+1)(V(tes1)
G diag(X] (1))S () —

EI

X(thlte) T (10)

_ Next, we need the following covariance term in evaluating
Pt tn):

E[(V(ths1) — V(trraltr)) () 1)) =
CAP(ti|t)ATCT + CU, U CT +
CG(E[diag(X] (t},)) diag(X] (t},)) ' NGTCT + U,U, (11)

= V(thrate))(AX (1) + B+ Un W)+



We also need to evaluate some cross covariance terms, whose
expressions are derived next:

E[(A(X(1],) — X (t;]t) + W(t’“)
G diag(X] (t}))S (t”l))(y(t ) V(trsaltr) ']
= B[(A(X(t}) — X (th[ts) + U W(t)+
G diag(X] (t))S () (C(A(X ( i) — Xt ]tk)+
UnW(t™) + G diag(X] (6)S(£) + UsV (i)
= AP(ti|t)ATCT + U, U CT+
GE[diag(X] () diag(X] (1},))T]GTCT (12)
Further,
E[(V(th41) — Yt lte) (A(X () —
G diag(X] (6,)S () ']
= CAP(ti|t)AT +CU, U, +C
GE[diag(X] (t},)) diag(X] (t},)) T]G T
Substituting (11), (12) and (13) in (10), we have
P(titt) = APt |ty ) AT + U, UL+
GE[diag(X] (t},)) diag(X] (},)) "G T
+ K(k+1)(CAP({i|t)ATCT +CU,, U CT +CG
(E[diag(X] (t},)) diag(X] () )GTCT + UU)K(k+1)"
— 2K (k+ 1)(AP(ti|ty) ATCT + U, U] CT+
GE[diag(X;] (t},)) diag(X] (1)) "]GTCT)

13)

= P(ti_4|ti) + K(k+ 1)(CP(ti |t)CT + U UNK(k+1)"
— 2K (k + 1) P(tj, 1 [t;)CT,
where

P(ti |th) = AP(ti|ty) AT + U, 0,1+

GE[diag(X] (t},)) diag(X] () '1GT, (14)

and E[diag(X] (1},)) diag(X;’(tZ))T] is as in equation (9). To
find the value of K(k + 1) that minimizes the trace of the
covariance P(t2+1|tk) we differentiate the trace of the above
expression with respect to the filter gain matrix K (k + 1) and
set the derivative to zero.
otrP(ti |t)
0K (k+1)
[CP(tyat)CT +UU, .

= 2Pt} [t)CT + 2K (k + 1)
(15)

Setting this partial derivative to zero leads the following
expression for K (k+1) :

K(k+1) = P(ti_4|ti)CT[CP(t 4 |ti)CT +UU,
(16)

which is the required result. ]
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