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Abstract

Recanisingfacewith large posevariation is more chal-
lengingthanthatin a fixedview, e.g. frontal-view, dueto
the severe non-linearity causedby rotation in depth,self-
shadingand self-occlusion. To addressthis problem, a
multi-view dynamicface modelis designedo extract the
shape-and-posedefacial texture patternsfrom multi-view
face images. Kernel Discriminant Analysisis developed
to extract the significantnon-lineardiscriminatingfeatues
which maximisethe between-classarianceand minimise
the within-classvariance By usingthe kernel technique
thisprocesss equivalento a Linear DiscriminantAnalysis
in a high-dimensionafeature spacewhich can be solved
corveniently The identity surfacesare then constructed
fromthesenon-lineardiscriminatingfeatuies. Facereca-
nition can be performeddynamicallyfrom an image se-
guenceby matding an objecttrajectoryand modeltrajec-
torieson theidentity surfaces.

1 Introduction

Facerecognitionis emegingasanactiveresearclarean
computervision. Over the pastdecadeyariousapproaches
suchas Eigenfaces[18], Elastic Graphmodel[10], Lin-
earObjectClasseg21], Active ShapeModels (ASMs) [4]
andActive Appearancélodels(AAMs) [3] have beenpro-
posedto addresghis problem. It is importantto point out
thatmostof the previouswork in facerecognitionis mainly
concernedvith frontal view or nearfrontal views. Due to
the severe non-linearity causedby rotationin depth, self-
occlusion,self-shadingandillumination change recognis-
ing faceswith largeposevariationis morechallenginghan
thatatafixedview, e.g.frontal view.

Extractingthe discriminatingfeatureswhich maximise
the between-classarianceand minimise the within-class
variance,is crucial to face recognition, especiallywhen
facesare undegoing large posevariation. Principal Com-
ponentAnalysis (PCA), alsoknown as eigenficemethod,

has beenwidely adoptedin this researcharea[16, 18].

However, it is worth noting that the featuresextractedby

PCA areactually“global” featuredor all faceclassesthus
they are not necessarilyrepresentatie for discriminating
one face classfrom others. Linear Discriminant Analy-

sis (LDA), which seeksto find a linear transformationby

maximisingthe between-clasgarianceandminimisingthe

within-classvariance,proved to be a more suitabletech-
niguefor classificatior6, 17]. AlthoughLDA canprovide

asignificantdiscriminatingimprovemento thetaskof face
recognition,it is a lineartechniquen nature.Whensevere
non-linearityis involved, this methodis intrinsically poor.

Anothershortcomingof LDA lies in the factthatthe num-

berof basisvectorsis limited by thenumberof faceclasses,
thereforet would belessrepresentatie whena smallsetof

subjectds concernedKernelPCA (KPCA) hasbeendevel-

opedto extractthenon-linearprincipalcomponentsor pat-

ternrecognitionproblemg15, 14]. However, aswith PCA,

KPCA capturesthe overall varianceof all patternswhich

areinadequatéor discriminatingpurposes.

Another limitation of the previous studiesis that the
methodologyadoptedfor recognitionis largely basedon
matchingstatic faceimages. Psychologyand physiology
researctshoved that the humanvision systems ability to
recogniseanimatedfacesis betterthan that on randomly
orderedstill faceimages(i.e. the samesetof images,but
displayedin randomorder without the temporal context
of moving faces)[9, 2]. For computervision systemsal-
thoughsomework hasbeenreported[8, 5, 7], the problem
of recognisingthe dynamicsof humanfacesin a spatio-
temporalcontext remaindargely unresohed.

In this work, we presenta comprehensie approachto
addresghe threechallengingproblemsin facerecognition
statedabove. A multi-view dynamicfacemodelis designed
to extract the shape-and-pose-de facial texture patterns
for accurateacross-vie registration. Kernel Discriminant
Analysis (KDA), a kernelbasedmethod,is developedto
computethe non-lineardiscriminatingbasisvectors. Fi-
nally facerecognitionis performeddynamicallyby match-
ing an object trajectorytracked from an image sequence



with modeltrajectoriessynthesisedn identity surfaces

2 Kernel Discriminant Analysis

As statedin the previous section,both PCA and LDA
are limited to linear problems,and KPCA is designedto
dealwith the overall ratherthan the discriminating vari-
ance.In thiswork, KernelDiscriminantAnalysis,a nonlin-
eardiscriminatingapproachbhasedon the kerneltechnique
[20, 15, 13, 1], is developedfor extractingthenonlineardis-
criminatingfeatures.

The underlying principle of KDA can be describedas
follows: For a setof training patterns{z} which are cat-
egorisedinto C' classesg is definedasa non-linearmap
from the input spaceto a high-dimensionafeaturespace.
Thenby performingLDA in thefeaturespacepnecanob-
tain a non-linearrepresentatiom the original input space.
However, the computationin the high-dimensionafeature
spacemay be problematicor evenimpossible.By employ-
ing a kernelfunction

k(z,y) = (¢(x) - o(y)) 1)

theinner productof two vectorsg¢(x) and¢(y) in thefea-
turespacecanbecalculatedirectly in theinputspace.

The problem can be finally formulated as an eigen-
decompositiorproblem

Aa =\ 2

The N x N matrix A is definedas

c 4 -1 /¢ 1
- (Dyrn) (D) @
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where N is the numberof all training patterns,N, is the
numberof patternsn classe, (K.);; := k(z;-x;) isanN x

N. kernelmatrix, and(1n.);; := 1isan N, x N, matrix.

More details of the underlyingalgorithm are available in

[11].

For anew patternz, onecancalculatdts projectiononto
aKDA basisvectorwv in the high-dimensionaleaturespace
by

(¢(z) -v) = a’k, (4)

wherek, = (k(xz,z1),k(z,x2), ...,k(w,wN))T- Con-
structingthe eigenmatrix U = [, @, ..., a ] from the
first M significanteigervectorsof A, theprojectionof z in
the M -dimensionaKDA spacss givenby

Y= UTkz (5)

We usea“toy” problemtoillustratethecharacteristicef
KDA in Figure 1. Two classe®f patternsdenotedby cir-
clesandcrossegespectiely, have a significantnon-linear

distribution. Wetry to separat¢hemwith aonedimensional
decisionboundaryof PCA,LDA, KPCA or KDA. Gaussian
kernelis usedin KPCA and KDA. The upperrow shavs
the patternsandthe discriminatingcurvescomputecby the
four differentmethods.Thelower row illustratestheinten-
sity valuesof the one-dimensiondeaturescomputedrom
PCA, LDA, KPCA andKDA. It canbe seenclearly that
PCA andLDA areincapableof providing correctclassifi-
cationbecausef their linear nature. NeitherdoesKkPCA
do sosinceit is designedo extractthe overall ratherthan
thediscriminatingvariancealthoughit is nonlinearin prin-
ciple. KDA givesthe correctclassificationboundary:the
discriminatingcurve accuratelyseparatethetwo classe®f
patternsandthe featureintensity correctlyreflectsthe ac-
tual patterndistribution.
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Figure 1. Solving a nonlinear classification
problem with, from left to right, PCA, LDA,
KPCA and KDA.

3 Multi-View Dynamic Face M odel

Due to the severe non-linearity causedby rotation in
depth,self-occlusionself-shadingandillumination change,
modellingthe appearancef facesacrossmultiple views is
muchmorechallengingthanthatfrom afixed,e.g. frontal,
view. Another significant difficulty for multi-view face
recognitioncomesrom thefactthattheappearancesf dif-
ferent peoplefrom the sameview are often more similar
thanthoseof the samepersonfrom differentviews.

A multi-view dynamicfacemodel,which consistsof a
sparse3D Point Distribution Model (PDM) [4], a shape-
and-pose-fee texture model, and an affine geometrical
model,is developedin this work. The 3D shapevectorof a
faceis estimatedrom a setof 2D faceimagesin different
views, i.e. givena setof 2D faceimageswith known pose
and2D positionsof thelandmarksthe 3D shapevectorcan
be estimatedusinglinear regression. To decouplethe co-
variancebetweenshapeandtexture, a faceimagefitted by
theshapamodelis warpedto the meanshapeat frontal view
(with 0° in bothtilt andyaw), obtaininga shape-and-pose-
freetexture pattern. This is implementedoy forming a tri-
angulationfrom thelandmarksandemploying a piece-wise
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Figure 2. Distrib ution of multi-vie w face patterns in PCA, LDA, KPCA and KDA spaces.

affinetransformatiorbetweereachtrianglepair. Whenpart
of afaceis invisiblein animagedueto rotationin depth the
facialtexture is recoveredfrom the visible sideof faceus-
ing thebilateralsymmetryof faces By warpingto themean
shapeponeobtainsthe shape-fredexture of the givenface
image.Furthermoreby warpingto thefrontal view, a pose-
free texture representatiorns achieved. We applied PCA
to the 3D shapepatternsand shape-and-pose€e texture
patterngespectiely to obtainalow dimensionaktatistical
model.

Basedon the analysisabove, a facepatterncanbe rep-
resentedn the following way. First, the 3D shapemodel
is fitted to a givenimageor animagesequenceontaining
faces.Thenthefacetextureis warpedontothe meanshape
of the 3D PDM modelin frontal view. Finally, by adding
parametergontrolling pose,shift and scale,the complete
parametesetof thedynamicmodelfor a givenfacepattern
isc = (s,t,a, 3,dr,dy,r)" wheres is the shapeparame-
ter, t is thetexture parameter(a, §) is posein tilt andyaw,
(dz, dy) is thetranslationof the centroidof the face,andr
is its scale. More detailsof modelconstructionandfitting
aredescribedn [12].

Oncethe modelis constructedjt canbe automatically
fitted on new imagesor video sequencesontainingfaces.
The shape-and-pose-de texture patternsobtainedfrom
modelfitting are adoptedfor facerecognition. In our ex-
perimentswe alsotried to usethe shapepatterndor recog-
nition, however, the performancevasnotasgoodasthatof
usingtextures.

4 Extracting the Non-linear Discriminating
Features of Multi-view Face Patterns

There are mainly two kinds of variance involved
for multi-view face recognition, variancefrom identities
(between-classariance)and variancefrom other sources
suchaspose,illumination andexpressionchangegwithin-
classvariance).Thetaskof facerecognitionis to emphasise
the former and suppresghe latter.  Although the within-
classvariancehasbeenreducedoy forming the shape-and-

pose-feefacialtexturepatternstheunderlyingdiscriminat-
ing featuresfor differentfaceclassedave not beenrepre-
sentedexplicitly. Thereforesucha representatioin itself
may not be efficient for recognition.

Weillustratethis situationasin Figure2. Themulti-view
facepatternof differentfaceclassesrefirst warpedto the
shape-and-posedeform, thenthey areprojectedanddis-
playedin thefirst two significantdimensionof PCA,LDA,
KPCA andKDA. For the sale of concisenesgnly patterns
from four faceclassedareshavn here. It is notedthat, with
PCAandKPCA, thevariancefrom differentfaceclassess
not efficiently separatedrom thatof posechangepr more
preciselytheformeris evenovershadwedby thelatter Al-
thoughthe patternaaremoreseparableisingLDA, the per
formanceis not asgoodasKDA sincethe non-linearityis
not appropriatelyaddressedlueto the linear limitation of
LDA. In thiswork, we adoptthe KDA vectorsof facialtex-
ture patterngo representaces.

5 Recognising Multi-view Faces Using | den-
tity Surfaces

The traditional techniquedor facerecognitioninclude
computingthe Euclideanor Mahalanobiglistanceto aface
templateandestimatingthe densityof patternsusingmulti-
modal models. However, the problem of multi-view face
recognitioncanbe solved moreefficiently if the poseinfor-
mationis available. Basedon this idea,we proposean ap-
proachto multi-view facerecognitionby constructingden-
tity surfacesn adiscriminatingfeaturespace.

As shawn in Figure 3, eachsubjectto be recognised
is representedy a unigue hyper surface basedon pose
information. In other words, the two basis coordinates
standfor the headpose: tilt andyaw, andthe other coor
dinatesareusedto representhe discriminatingfeaturepat-
ternsof faces. For eachpair of tilt andyaw, thereis one
unique“point” for afaceclass.Thedistribution of all these
“points” of a samefaceclassforms a hypersurfacein this
featurespace We call this surfaceanidentity surface



ID surface of Subject A
ID surface of Subject B .

Figure 3. Identity surfaces.

5.1 Synthesising I dentity Surfaces

We proposéo synthesis¢heidentitysurfaceof asubject
from a small sampleof facepatternswhich sparselycover
theview sphere.Thebasicideais to approximateheiden-
tity surfaceusinga setof N, planesseparatedby a number
of N, predefinedviews. The problemcanbe formally de-
finedasfollows:

Supposer, y aretilt andyaw respectiely, z is the dis-
criminatingfeaturevectorof a facepattern,e.g. the KDA
vector (xo1,%o1), (Zoz2,Y02), ---, (Ton, , Yon,) are prede-
fined views which separatéhe view planeinto N, pieces.
On eachof theselN, piecestheidentity surfaceis approxi-
matedby aplane

z=ax+by+c (6)

Supposehe M; samplepatternscoveredby the ith plane
are

(Ti1,Yi1, Zi1)s (Tia, Yia, Ziz)y -5 (Tidt;, Yirds» Zing; ), then
oneminimises
Ny M;
Q = Y ) laiwim + biyim + ci — ziml|* (7)
i m
subjectto a;zor + biyor + ¢; = ajzor +bjyor + ¢
k=0,1,..,Ny,
planes, j intersecat (zox, Yok )- (8)

This is a quadratic optimisation problem which can be
solvedusingtheinterior point method[19].

5.2 Dynamic Face Recognition by Trajectory
Matching

For an unknown facepattern(z, y, zo) wherezg is the
KDA vectorandz, y arethe posein tilt andyaw, onecan
classifythis patterninto one of the known faceclassedy
computingthe distanceto eachof the identity surfacesas

the Euclideandistancebetweenzy andthe corresponding
pointontheidentity surfacez

d = ||zo — 2| ©)

wherez is givenby (6).

As shawn in Figure 3, whena faceis tracked continu-
ouslyin animagesequenceisingthe multi-view dynamic
facemodeldescribedn Section3, an objecttrajectoryis
obtainedby projectingthe facepatternsnto the KDA fea-
ture space.On the otherhand,accordingto the poseinfor-
mationof thefacepatternspnecanbuild the modeltrajec-
tory on the identity surfaceof eachsubjectusingthe same
poseinformation and temporalorder of the objecttrajec-
tory. Thesetwo kinds of trajectoriesj.e. objectandmodel
trajectories.encodethe spatio-temporainformation of the
tracked face. And finally, the recognitionproblemcanbe
solved by matchingthe objecttrajectoryto a setof model
trajectories.A preliminaryrealisationof trajectorymatch-
ing is implementedby computingthe trajectorydistances
uptotimeslicet

¢
dm = Zwidmi (10)
=1

whered,,;, the patterndistancebetweenthe face pattern
capturedn theith frameandtheidentity surfaceof themth
subject,is computedrom (9), andw; is the weighton this
distance Finally, the optimalm with minimumd,, is cho-
senastherecognitionresult.

6 Experiments

We demonstratehe performanceof this approachon a
small scalemulti-view facerecognitionproblem. Twelve
sequencespne of eachsubject,were usedastraining se-
guencesThesequencéengthvariesfrom 40to 140frames.
We randomlyselectedl80images(15 imagesof eachsub-
ject) to train KDA, where Gaussiankernel was adopted.
Recognitionwasthen performedon new testsequencesf
thesesubjects.

Figure4 shaws the resultson oneof the testsequences.
The dimensionof the KDA vectorsis setto 10 in this ex-
periment. It is notedthat a more robust performanceis
achieved whenrecognitionis carriedout usingthe trajec-
tory distancesvhichincludetheaccumulatedvidenceover
time, althoughthepatterndistanceén eachindividualframe
alreadyprovidesgoodrecognitionaccurag on a frame by
framebasis.

To comparewith KDA, we appliedthe PCA,KPCA, and
LDA techniquesusing the sameset of face patterns. To
male the resultsof different representationsomparable,
we definethefollowing criterion

N

1 C -dip
d==3 =" 11
N ; Y5y dij -
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Figure 4. Video-based multi-vie w face recognition.

(d) Patterndistances.

(e) Trajectorydistances.

(c) shows the object trajector y (solid line with

dots) and model trajectories in the first KDA dimension, among whic h the model trajector y from the
ground-truth face class is highlighted with solid line. It is noted from (d) and (e) that the pattern

distances can give an accurate recognition

result; however, the trajector y distances provide a more

robust performance , especiall y its accum ulated effects (i.e. discriminating ability) over time.

whereC isthenumberof faceclasses)V is thetotalnumber
of testfacepatternsd;; is the patterndistancebetweerthe
ith testpatternandthe jth faceclass,andd;, is the pattern
distancebetweenthe ith test patternand the ground-truth
faceclass.

Criterion d’ canbe interpretedas a summationof nor-
malisedpatterndistancego their ground-truthfaceclass.
Thesmallerthe d’, the morereliablethe classificatiorper
formance. Figure 5 shaws the valuesof d' for different
representation®CA, KPCA, LDA andKDA, with respect
to the dimensionof the featurespaces. The resultsindi-
catethatKDA givesthe mostreliableclassificatiorperfor-
mance.

Therecognitionaccuraciesvith respecto thedimension
of featurespacesare shown in Figure 6. It is interesting
to notethatthe KDA featuresarevery efficient. A 93.9%
recognitionaccuray wasachieved whenthe dimensionof
the KDA vectorwasonly 2. However, it is alsonotedthat,
for the small scaleproblem(12 subjects),PCA, LDA and
KDA performequallywhenmorethan6 dimensionaffea-
turesare adopted. We will investigatehow this approach
generalise$o large scaleproblemsin futurework.

7 Conclusions

In this paper we have presentech comprehensie ap-
proachto multi-view dynamicfacerecognition. This ap-
proachis designedo addressethreechallengingoroblems:
modelling facesacrossmulti-views, extracting non-linear
discriminatingfeaturesandrecognisingacesdynamically
in aspatio-temporatontext.

Recognisingfaceswith large pose variation involves
a severe non-linearity causedby rotation in depth, self-
occlusionself-shadingandillumination change.To model
theacross-viev faceswe developeda dynamicfacemodel,
which includesa 3D PDM, a shape-and-pose€etexture
model, and an affine geometricalmodel. By represent-
ing faceswith the shape-and-pose-detexture patternsthe
variancefrom posechangsds suppressed.

PCA, LDA and KPCA have beenwidely usedin face
recognition.But PCAandLDA arelimited to thelinearap-
plicationswhile KPCA seeksto capturethe overall rather
than the discriminating varianceof patternseven though
it is non-linear To efficiently extract the discriminating
featuresof multi-classpatternswith severe non-linearity



KDA, which implicitly performsLDA in a non-linearfea-
ture spacethrougha kernelfunction, is developedin this
work. WhenapplyingKDA to theshape-and-pose-detex-
ture patternsthe variancefrom posechangeis further re-
ducedwhile the between-clasgarianceis emphasised.

Insteacbf matchingtemplateor estimatingmulti-modal
density theidentity surfacesof faceclassesreconstructed
in a discriminating feature space. Recognitionis then
performeddynamically by matchingan object trajectory
tracked from an image sequencevith a setof modeltra-
jectoriessynthesisedntheidentity surfaces Experimental
resultsshavedthatthis approachprovidesrobustandaccu-
raterecognition.
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Figure 5. Recognition reliability .

100

dimension

Figure 6. Recognition accuracy.
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