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Abstract

Regularized regression models have gained popularity in recent years. The addition of a penalty term
to the likelihood function allows parameter estimation where traditional methods fail, such as in the
p � n case. The use of an l1 penalty in particular leads to simultaneous parameter estimation and
variable selection, which is rather convenient in practice. Moreover, computationally efficient algorithms
make these methods really attractive in many applications. This thesis is inspired by this literature and
investigates the development of novel penalty functions and regression methods within this context.

In particular, Chapter § 2 deals with linear models for time-dependent response and explanatory vari-
ables. This is beyond the independent framework which is common to many of the developed regularized
regression models. We propose to account for the time dependency in the data by explicitly adding au-
toregressive terms to the response variable together with an autoregressive process for the residuals. In
addition, the use of a l1 penalized likelihood approach for parameter estimation leads to automatic order
and variable selection and makes this method feasible for high-dimensional data. Theoretical properties
of the estimators are provided and an extensive simulation study is performed. Finally, we show the
application of the model on air pollution and stock market data and discuss its implementation in the R
package DREGAR, which is freely available in CRAN.

In Chapter § 3, we develop a new penalty function. Despite all the advantages of the l1 penalty, this
penalty is not differentiable at zero, and neither are the alternatives that are proposed in the literature.
The only exception is the ridge penalty, which does not lead to variable selection. Motivated by this
gap, and noting the advantages that a differentiable penalty can give, such as increased computational
efficiency in some cases and the derivation of more accurate model selection criteria, we develop a new
penalty function based on the error function. We study the theoretical properties of this function and
of the estimators obtained in a regularized regression context. Finally, we perform a simulation study
and we use the new penalty to analyse a diabetes and prostate cancer dataset. The new method is
implemented in the R package DLASSO, that is freely available in CRAN.

Finally, Chapter § 4 deals with regression models for discrete response data, which is frequently collected
in many application areas. In particular, we consider a discrete Weibull regression model that has
recently been introduced in the literature. In this chapter, we propose the first Bayesian implementation
of this model. We consider a general parametrization, where both parameters of the discrete Weibull
distribution can be conditioned on the predictors, and show theoretically how, under a uniform non-
informative prior, the posterior distribution is proper with finite moments. In addition, we consider
closely the case of Laplace priors for parameter shrinkage and variable selection. A simulation study
and the analysis of four real datasets of medical records show the applicability of this approach to the
analysis of count data. The method is implemented in the R package BDWreg, which is freely available
in CRAN.
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Chapter 1

Introduction

1.1 Introduction

Since the first application of linear regression in [Galton, 1894], there have been so many publications

in almost any field that make regression an essential part of statistical modelling. For example, a quick

search on Google at the end of June 2015 revealed about 4, 170, 000 results including the word“regression”

and the number of publication is increasing as it is shown in Table (1.1).

Month June 2015 July August September October November December
Results 4,170,000 4,230,000 4,270,000 4,310,000 4,330,000 4,380,000 4,420,000

Table 1.1: Google scholar results for the word “regression” during seven consecutive months starting
from June, 30 2015.

Let the general form of regression be y = f (x) + e where y, x, f and e are response, covariates, link

function and unknown error respectively. Imposing linearity on the link function f and assuming that x is

a vector of r mutually independent variables and that the errors are independent result in the well-known

linear regression model,

y = xβ + e. (1.1)

Then, given a data matrix, X of T(> r) observations on the covariates and a noisy column vector response

y, the least-squares (LS) method gives the Best Linear Unbiased Estimator (BLUE) of the parameters,

provided the noise elements are independent and identically normally distributed, ei ∼ N(0, σ2 < ∞), i =

1, 2, . . . , T. Rewriting the problem using matrices and norms, LS minimizes the second norm of the errors

with respect to the parameters that is

arg min
β
||y− Xβ||22,

where ||z||2 = 2
√

∑T
i z2

i for any vector z = (z1, z2, . . . , zT). Solving this minimization problem for β leads

to β̂ = (X′X)−1X′y and Var(β̂) = (X′X)−1σ2 where (′) denotes the transpose of a matrix.

1
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Various extensions of the traditional regression model have been developed in literature. For instance,

replacing linearity with a general function results in so called non-parametric regression, see [Hollander

et al., 2013, Gibbons and Chakraborti, 2003, Wasserman, 2006]. Allowing measurement error in the

predictors is the subject of Error in Variables (EV) methods, see [Fuller, 2009, Carroll et al., 2006,

Gustafson, 2003]. Moreover, if one looks at the estimation aspect of the problem, there are a number of

inference procedures such as Robust, Minimax, Quantile etc, see [Du and Pardalos, 2013, Davino et al.,

2013, Bloomfield and Steiger, 2012, Koenker, 2005, Lawrence and Arthur, 1990, Nawata, 1988, Wu, 1997]

and references therein for a complete discussion about the corresponding methods.

Among different types of regression, we concentrate on a relatively young class, namely models and

inference procedures for high-dimensional data. By this, we mean data that contain more variables than

observations. It is well understood that linear models and classical multivariate methods do not properly

handle problems with more variables than observations. This is due to the fact that they rely heavily on

the inverse of X′X, that can be singular or ill-conditioned in high-dimensional settings. For example in

the linear regression presented in (1.1) we get,

MSE(β̂) = σ2tr{(X′X)−1},

where tr{·} denotes the trace of a matrix. It is important to recognise that inverse of a matrix can be

significantly high on diagonals if singular values are small. This is a common case in high-dimensional

setting because there is not enough information to identify the space of the parameters. In other words,

small, or zero singular values convert the problem to an infinite solution problem. As a result, β is

estimated with significantly high variation.

It should be noted that increasing or decreasing T compared to r has very different and opposite effect

on the statistical inferences. In general, multivariate methods try to make statistical inference about de-

pendencies among variables so that increasing T has the effect of improving the accuracy of the inferred

parameters, whereas increasing r has the opposite effect of reducing accuracy.

1.2 Penalized approaches to regression

Reviewing the literature reveals several methods that can cope with high-dimensional data. The majority

of these methods rely on imposing an extra term, namely a penalty term, on the likelihood to convert

the maximum likelihood estimation (MLE) from an infinite solution problem to a tuned-solution one. In

other words, the classical multivariate methods solve the unconstrained likelihood whereas penalized MLE

constrains the estimations to lie in some geometric shapes centred around the origin. For instance, Ridge

regression [Hoerl and Kennard, 1970] imposes an l2 norm penalty on the (log)likelihood to regularize

estimations. That is, ridge regression solves the following minimization problem, which is equivalent to

maximizing an l2 constrained likelihood,

||y− Xβ||22 + λ||β||22, λ ≥ 0.

[Frank and Friedman, 1993] extend Ridge regression by introducing lα, α ≥ 1 norm penalty in Bridge

regression. Then, the underlying problem in Bridge is to find the solution to the following minimization
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problem,

||y− Xβ||22 + λ||β||αα α ≥ 1, λ ≥ 0,

where ||β||α = α
√

∑i βα
i . Least Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996]

considers a special case of Bridge penalty when α = 1,

||y− Xβ||22 + λ||β||1, λ ≥ 0.

This penalty leads to interesting properties including automatic parameter estimation and variable selec-

tion which are the main subject of this thesis. By variable selection, we mean estimating some coefficients

exactly equal to zero. Figure (1.1) provides an illustrative view of penalized LS under l1, l2 and l4 norm

penalties. From this figure, one can see that increasing the norm index α results in less sharp geometry

on the axis, that is less probability of getting zero for estimations.

Figure 1.1: Contour lines of penalized LSE where β̂ is LS estimation, and l1, l2 and l4 correspond to
lasso, ridge, and bridge penalties.

Due to the usefulness of l1 and l2 norm penalties, some authors take the advantage of combining norms

for certain purposes. For example [Zou and Hastie, 2005] suggest a weighted function of l1 and l2 norm

penalties under the name of Elastic-net,

Penalty(Elastic−net)
λ,a = aλ||β||22 + (1− a)λ||β||1, a ∈ [0, 1], λ ≥ 0.

Clearly setting a to the two extremes leads to lasso and ridge penalties, respectively. This configuration is

particularly useful when strongly correlated predictors tend to be in or out of the model together. Similar

to elastic-net, [Hebiri, 2008] suggests Smooth-Lasso by assuming the l2 norm to be on the difference of
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consecutive parameters,

Penalty(Smooth−Lasso)
λ,a = aλ||Oβ||22 + (1− a)λ||β||1, a ∈ [0, 1], λ ≥ 0,

where O(.) is the differencing operator acting on a vector of length r so that O(β j) = β j − β j−1, j =

2, . . . , r. This setting is particularly useful when the variations between successive coefficients of the

unknown parameter of the regression are small. Similar to Smooth-Lasso, [Tibshirani et al., 2005] propose

Fused-Lasso, by assuming the l1 norm for both terms in the Smooth-Lasso penalty,

Penalty(Fused−lasso)
λ,a = aλ||Oβ||1 + (1− a)λ||β||1, a ∈ [0, 1], λ ≥ 0.

This configuration is specifically designed for problems with features that can be ordered in some mean-

ingful way. [Fan, 2001] propose the Smoothly Clipped Absolute Deviation (SCAD) penalty, by considering

a quadratic spline function with knots at λ and a,

PenaltySCAD
λ≥0,a =


λ|β j| |β j| ≤ λ

−
β2

j−2aλ|β j |+λ2

2(a−1)
λ < |β j| ≤ aλ

a+1
2 λ2 |β j| > aλ

,

where a = 3.7 is recommended by [Fan, 2001]. This penalty is non-concave and is capable of producing

a sparse set of solutions and approximately unbiased estimations for large coefficients. Alternatively,

Dantzing selector [Candes and Tao, 2007] tries to find the solution to the following regularization problem,

min
β∈Rr
|β|1 subject to ||X′(y− Xβ)||∞ ≤ (1 + t−1)

√
2 log r σ, t > 0.

This configuration is particularly important because it results in a simple convex function that can be

optimized by convenient linear programming (LP) methods.

1.3 L1 penalized likelihood

In this section, we concentrate on lasso and its theoretical properties. In the context of linear regression,

y = Xβ + e, lasso estimation of the parameters is the solution to minimizing l1 penalized (log)likelihood

with respect to the parameters,

β̂(λ) = arg min
β
‖y− Xβ‖2

2 + λ‖β‖1, (1.2)

where λ ≥ 0 is a tuning parameter. Setting λ = 0 leads to ordinary least squares (OLS) error regression

whereas a very large λ shrinks all the coefficients toward zero and results in a null model. We show this

fact by means of a simple example.

Let y = βx + ε be a linear function and x = 1. Then, we theoretically minimize the following constrained

problem with respect to β,

l = (y− β)2 + λ|β|.
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Note that λ = 0 results in (y− β)2 that is minimized at βmin = y. On the other hand, for λ > 0 it

results in

0 =
dl
dβ

= −2(y− β) + λ sign (β)

= −2(y− β) + λ sign (y),

where the final term holds because of sign (y) = sign (β). Consequently,

βmin = sign (y)

[
|y| − λ

2

]
+

, (1.3)

where [z]+ is zero for negative values of z. From the last equation, one can see that increasing the value

of the penalty λ results in a zero value for βmin.

Generally, lasso has two advantages over other subset selection methods, which make it a popular and

widely applicable technique. Firstly, model selection and parameter estimation in lasso is simultaneous

compared to other subset selection methods like forward selection, backward elimination and so on,

see [Miller, 2002, Ch.3]. The second advantage is the successful application of lasso, as well as its

feasibility, to the analysis of high-dimensional data [Huang, 2008]. These features make lasso a popular

method that is widely studied in much of the recent literature, see e.g., [Zhou, 2009], [Knight and Fu,

2000], [Yoon, 2012], [Kyung et al., 2010a], [Morten Arendt Rasmussen, 2012], [Y. Nardi, 2011], [Zou,

2006], [Leng, 2006], [Meinshausen and Bühlmann, 2006], [Park and Casella, 2008] [Pourahmadi, 2013]

and references therein. In what follows, we briefly review some theoretical properties of lasso.

1.3.1 Consistency of lasso

Beside other properties of lasso, consistency in variable selection as well as in parameter estimation,

which together are called oracle property of the estimator, are two very important ones. Both of these

properties are studied in details by some authors, see e.g., [Zhao, 2006, Knight and Fu, 2000, Zou, 2006,

Fan and Li, 2001]. We start reviewing the consistency of lasso by defining the concept of consistency for

a variable selection method.

Definition 1.1. A variable selection procedure is said to be consistent if the probability that the proce-

dure correctly selects the set of significant variables approaches to one as the sample size increases.

In the context of linear models this is equivalent to correctly selecting the true set of non-zero coeffi-

cients. [Fan and Li, 2001, Knight and Fu, 2000, Sourav, 2013, Zhao, 2006] prove the consistency of lasso

in selecting the true underlying model. In particular, [Zhao, 2006] proves that a single condition, called

“Irrepresentable Condition” is almost necessary and sufficient for lasso to select the true model in the

fixed r or as a function of the sample size, r = h(n) for some h(.). Assuming regression coefficients are

divided into two parts, non-zero coefficients (β◦s ) and zero coefficients (β◦sc ), where s and sc are two sets

of indices corresponding to non-zero and zero coefficients respectively. Having written Xs and Xsc as

variables corresponding to s and sc respectively, irrepresentable condition defines by

| 1
n

(X′sc Xs)(
1
n

X′sXs)
−1 sign (β◦s )| ≤ 1− ν, (1.4)
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where 1 is a vector of 1’s with the length of (|s| − |sc|) and |.| denotes cardinality of a vector as well as

ν ≥ 0. [Zhao, 2006] assumes that the inverse of the matrix in the middle of (1.4) exists. If ν = 0, latter

equation is called weak irrepresentable condition; otherwise, it is called strong irrepresentable condition.

Alternatively, [Sourav, 2013] studies the consistency of lasso with respect to mean squared prediction

error, MSPE(β̂) = E(Ŷ − Y)2, under minimal assumptions. The paper concludes that for the loss

function considered in [Tibshirani, 1996], lasso is consistent under almost no assumptions.

On the other hand, the second challenge of lasso is consistency in parameter estimation. We should stress

that an estimator that consistently selects the true underling model is not necessarily consistent in terms

of parameter estimation. [Zou, 2006] studies the low consistency of lasso in terms of prediction accuracy.

Then paper considers the variable selection and estimation properties of lasso and proposes a set of

conditions under which lasso enjoys the oracle property in low-dimensional cases, see also [Zou, 2006].

These conditions also were discovered by [Meinshausen and Bühlmann, 2006] and ensure consistency of

lasso, provided the number of variables is less than the sample size, or the number of variables increases

as a function of the number of observations in high-dimensional settings.

1.3.2 Bias in lasso

Beside the advantages of lasso, the method suffers a non-removable bias that is a direct result of the

bias-variance trade off. In other words, lasso adds some bias to the entire coefficient space at the price

of reducing variance that by itself leads to inconsistent estimation of the parameters. For the example

in (1.3) the bias is

(β− βmin) =

{ λ
2 sign (y) |y| > λ

2

y |y| ≤ λ
2

. (1.5)

Then, a line of research has focused on an extension of model to decrease this bias. To this end, [Zou,

2006] proposes a weighted version of lasso and introduces a new class of estimators called adaptive-lasso,

β̂(λ) = arg min
β
‖y− Xβ‖2

2 + λ
r

∑
i=1

wi|βi|

= arg min
β
‖y− Xβ‖2

2 +
r

∑
i=1

λi|βi|,

with weights different for each parameter. Adaptive lasso in particular has two advantages over ordinary

lasso: (i) for small coefficients, adaptive lasso solution is also small and (ii) when coefficients are relatively

large, then little shrinkage is imposed to make estimator has less bias. [Zou, 2006] also, proposes a simple

but efficient computation algorithm for adaptive-lasso. [Huang, 2008] proves the oracle property of this

regularization in high-dimensional setting; and [Qian, 2013] studies the effect of weights on variable

selection performance of adaptive-lasso.
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1.3.3 Essential theorems and proofs

In Chapter § 2 and § 3 of this work, we frequently refer to [Knight and Fu, 2000] for the asymptotic

properties of l1 regularized estimations in the linear framework. In this section we concisely review this

paper to provide a theoretical foundation for the rest of the current work.

Consider again the linear model in (1.1),

yi = β1x1i + . . . + βrxri + ei = xiβ + ei, (1.6)

where we assume all covariates are normalized to have zero means and unit variance, and the response to

have zero mean. Then lasso estimation of the parameters is the solution to the minimization problem in

(1.2). To find the limit distribution of the estimations, [Fan and Li, 2001] assume the following regularity

conditions:

1. ΣT = 1
T ∑T

i=1 x′i xi → Σ where Σ is the true covariance matrix of the variables and is assumed to be

non-singular and positive semi-definite

2. 1
T max1≤i≤r xix′i → 0.

The following theorem determines the limit distribution of the estimations.

Theorem 1.1. Under the regularity conditions (1,2) for model in (1.6), and given u ∈ Rr and λT/
√

T →
λ◦ ≥ 0 then

√
T(β̂− β)→ arg min

u
(Q),

where β̂ is the solution to the minimization problem in (1.2) and

Q(u) = −2u′N(0, σ2Σ) + u′Σu + λ◦Σr
j=1{uj sign (β j)I(β j 6= 0) + |uj|I(β j = 0)},

with N denoting a random variable with multivariate normal distribution.

Proof. [Fan and Li, 2001, Theorem 2]

We should stress that Theorem (1.1) for λ◦ = 0 results in arg minu Q = −2u′N + u′Σu that leads to

u = Σ−1N ∼ N(0, σ2Σ−1),

and
√

T(β̂− β) ∼ N(0, σ2Σ−1), which is in line with the classical results.

Using Theorem (1.1), one can explain the asymptotic bias of estimating non-zero coefficients under the

l1 regularization as it was previously shown in equation (1.5) for a simple case. To show the bias we

consider the example where all the coefficients are positive. Then,

∂Q(u)

du
= −2N + 2u′Σ + λ◦1 = 0,
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where 1 is a vector of ones. Solving the final equation with respect to u leads to u′ = Σ−1(N − λ◦1
2 ) ∼

Σ−1N(− λ◦1
2 , σ2Σ) that has non-zero mean. Thus, imposing an l1 constrain on the non-zero coefficients

results in a non-removable bias in the estimations, provided λ◦ > 0.

Further, if some of the coefficients are zero, one can show that the limiting distribution in (1.1) puts non-

zero probability at 0. To show this fact, without loss of generality we assume that the first m coefficients

are non-zero and the rest are zero and define the following notations,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, N =

(
N1

N2

)
, u =

(
u1

u2

)
,

where for example Σ11 is the m×m block matrix of Σ corresponding to non-zero coefficients. If Q(u) is

minimized at u2 = 0 then,

Σ11u1 − N1 = −λ◦
2

sign (β),

and

u1 = Σ−1
11

(
N1 −

λ◦
2

sign (β)

)
.

On the other hand,

−λ◦
2

1 ≤ Σ21u1 − N2 ≤
λ◦
2

1,

and

−λ◦
2

1 ≤ Σ21Σ−1
11

(
N1 −

λ◦
2

sign (β)

)
− N2 ≤

λ◦
2

1.

For the special case of β = 0 the final equation results in,

−λ◦
2

1 ≤ N2 ≤
λ◦
2

1,

that puts non-zero probabilities at zero for the zero estimations.

1.4 Implementation of lasso

In contrast to standard quadratic programming, the lasso solution needs to be computed over the entire

path of the tuning parameter λ. Then standard convex optimizers such as interior point [Chen et al.,

1998] may not be efficient for lasso. Fortunately, one can show that the optimal solution path in lasso is

piecewise linear, meaning,
∂β(λ)

dλ is piecewise constant [Rosset and Zhu, 2007]. In other words, for suffi-

ciently close values of λ, say λ1 and λ2, one can show that for any α ∈ (0, 1), β̂λ = αβ̂λ1 + (1− α)β̂λ2 ,

that is the regularization path between λ1 and λ2 is linear. Using this fact, the entire solution path of

lasso can be computed in a finite number of steps. Taking this property into account, several algorithms

have been proposed in the literature. For instance, pathwise coordinate optimization [Friedman et al.,

2007], Grafting algorithm [Perkins et al., 2003], homotopy algorithm [Michael R. Osborne et al., 1999,
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Turlach, 2005], iterative shrinkage-thresholding algorithms [Daubechies et al., 2004, Beck and Teboulle,

2009], shooting algorithm [Fu, 1998], and Least Angle Regression (LARS) [Efron et al., 2004]. Amongst

these algorithms, we briefly review LARS as it is well-studied in the literature and extensively used in

applications, see e.g., [Augugliaro et al., 2013, James et al., 2009, Hesterberg et al., 2008].

LARS is a multi-step algorithm that starts by finding the most correlated variable with the response.

Then it moves in the direction of this predictor until another predictor has as much correlation with the

current residuals. Next the algorithm moves ahead in a direction equiangular between the two predictors

until a third feature vector becomes equally correlated with the residuals. This procedure continues until

all variables are included in model.

The popularity of LARS is mainly due to three remarkable advantages:

• Finding the entire solution path in LARS is at the cost of solving OLS for r < n.

• With slight modifications, LARS can be used in stagewise regression, see [Rish and Grabarnik,

2014, p.85], [Hastie et al., 2013, p.60] and [An et al., 2008].

• Generally, the termination of the algorithm can be optimally determined by a closed form equation.

1.5 Bayesian variable selection

The regularized models described above were developed in a frequentist framework. Equivalent ap-

proaches can be developed in a Bayesian context. Here the idea is to recreate the penalised likelihood

by imposing a proper prior on the parameters. The advantage of Bayesian approaches is that the whole

posterior distribution of parameters would be returned, from which confidence/credible intervals can be

readily obtained.

In detail, let the general form of the posterior be

p(β|y, X) ∝ L(y, X|β)× p(β|λ),

where L(y, X|β) is the likelihood and p(β|λ) is the prior on the parameters. Assuming independent

Laplace densities for the prior, p(βi|λ) = λ
2 e−λ|βi |, i = 1, 2, . . . , r, and taking the log of the posterior

leads to,

log p(β|y, X) ∝ log L(y, X|β) + λ
r

∑
i
|βi|, (1.7)

which is equivalent to the l1 penalized likelihood. Similarly, a Gaussian prior acts like an l2 norm penalty,

log p(β|y, X) ∝ log L(y, X|β) +
λ

2

r

∑
i

β2
i . (1.8)

It is also convenient to assume a prior on the tuning parameter λ, called hyper-prior. Note that (1.7)

and (1.8) differ from lasso and ridge in the sense that the Bayesian approach aims to estimate the entire
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posterior and is not a point estimation procedure. One can connect the two techniques by estimating the

parameters using a chosen statistic from the posterior distribution e.g. mode, median, mean and so on.

Having the general form of the posterior in (1.7) and (1.8), there are some techniques to make inference

about the posterior from data and priors. One approach is directly sampling from the posterior, which

commonly uses a Metropolis–Hastings (MH) algorithm [Hastings, 1970]. Alternatively Gibbs samplers

uses the conditional posterior over the parameters. For example, [Park and Casella, 2008] suggest a

Gaussian-Exponential and [Hoerl and Kennard, 1970] propose a Gaussian-InverseGamma for lasso and

ridge penalties respectively. We refer to [Fahrmeir et al., 2013] for a comprehensive discussion about

Bayesian regularization in generalized linear models; also [Kyung et al., 2010a] for a discussion about

alternative approaches in Bayesian model selection including Spike-Slab [Ishwaran and Rao, 2005], Kuo

and Mallick [Kuo and Mallick, 1998], Gibbs Variable Selection (GVS) [Dellaportas et al., 2000], Stochas-

tic Search Variable Selection (SSVS) [George and McCulloch, 1993] and Reversible jump MCMC (RJM-

CMC) [Green, 1995]. Amongst these methods we focus on MH since we use it in Chapter § 4 of this thesis.

Metropolis–Hastings sampler was originally developed by [Metropolis et al., 1953] and then reformulated

and extended by [Hastings, 1970]. Given a set of random variables x = (x1, . . . , xr) under the likelihood

L(x|θ) and prior p(θ) where θ is the set of parameters, one can summarize the MH algorithm for

estimating posterior p(θ|x) = L(x|θ)p(θ) by repeating the following four steps for certain iterations.

1. Set a proposal distribution g(.) on the full set of parameters θ.

2. Draw a random sample from the proposal distribution, e.g. πk at iteration k.

3. Evaluate the acceptance probability

α = min
(

1,
L(x|πk)p(πk)g(πk−1|πk)

L(x|πk−1)p(πk−1)g(πk|πk−1)

)
.

4. Accept the proposal πk with probability of α.

Repeating the four steps above leads to an estimation for the posterior, provided the proposal distribution

is carefully chosen similar to the true distribution of the parameters.

1.6 Regression for counts

The previous sections have covered the case of the standard regression model, as defined in equation

(1.1). In this section we briefly review regression models for a discrete response, as we will refer to

these in Chapter § 4. Some examples of discrete data are the number of visits to a specialist [Machado

and Santos Silva, 2005], the number of cycles a machine break down [Nagakawa and Osaki, 1975] and

in criminology to count the number of offends [Parker, 2004, Osgood, 2000, Sampson and Laub, 1996,

Paternoster and Brame, 1997].

Translating the regression problem from a continuous response to a discrete response results in the general

family of Generalized Linear Models (GLM) [Cameron and Trivedi, 2013, Nelder and Wedderburn, 1972]
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that aims to estimate the conditional distribution of a discrete response variable given some covariates.

A typical example of GLM for discrete response is Poisson regression that models the conditional mean

of the counts as a linear function of covariates via a logarithmic link function. That is, for a set of

covariates, x = (1, x1, . . . , xr) and a discrete response y, then y|x ∼ Poisson(λ) under the link function,

log λ = β0 + β1x1 + . . . + βrxr = xβ.

The Poisson model has an obvious appeal, as it is relatively simple to interpret because the right hand

side of the log transformation is a linear combination of covariates and when exponentiated, the regression

coefficients are interpreted as multipliers [Berk and MacDonald, 2008].

We should stress that mean and variance in Poisson distribution are the same. This is commonly referred

to as the equi-dispersion property and it results in limited applicability of Poisson regression, as real data

usually have different mean and variance. Negative Binomial (NB) regression relaxes the assumption

of equi-dispersion and is often considered as the default choice for “over dispersed” data. Essentially

over-dispersion points to the fact that there is more variation in the data than allowed by the Poisson

model. In contrary, “under dispersion” is evident if there is less variation in data than captured by the

Poisson model.

Although NB regression is the default choice for many applications, it scarcely applies to power-law

data with long tails and highly skewed data with an excessive number of zeros. A general treatment

for the zero excessive data is applying zero-inflated [Lambert, 1992] and hurdle models [Hu et al., 2011].

Moreover, NB model is not capable of handling under-dispersion in data. Therefore, alternative models

such as generalised Poisson regression model [Efron, 1986], COMPoisson regression [Sellers and Shmueli,

2010] and hyper-Poisson [Sáez-Castillo and Conde-Sánchez, 2013] are developed in the literature to cope

with under dispersion.

Recently [Kalktawi et al., 2016] have proposed a Discrete Weibull (DW) [Khan et al., 1989] regression

model. In particular, they propose a double log transformation to link the covariates to the distribution

parameters. Precisely, the conditional probability mass function of a DW random variable y given

covariates x is defined over all non-negative integers by the following function,

f (y|q(x), β) =

{
q(x)yβ − q(x)(y+1)β

y = 0, 1, 2, 3, . . .

0 o.w.
,

where β > 0, 0 < q < 1 and the proposed link function is log(− log(q)) = xφ for unknown parameter

φ. [Kalktawi et al., 2016] show the successful application of DW regression for capturing power-law

behaviour, under-dispersion, excessive zeros or high skewness in the underlying conditional distributions

without the need for an additional mixture component.

1.7 Thesis outline and contribution

The outline of the thesis is as follows. In Chapter § 2, we develop a novel regularized regression model

for time-dependent data. This is beyond the independent framework which is common to many of

the developed regularized regression models. We propose to account for the time dependency in the
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data by explicitly adding to the model autoregressive terms to the response variable together with an

autoregressive process for the residuals. We derive the asymptotic properties of the estimators and assess

the performance of the model on simulations and real data application.

In Chapter § 3, we develop a new penalty function. Despite all the advantages of the l1 penalty, this

penalty is not differentiable at zero, and neither are the alternatives that are proposed in the literature.

The only exception is the ridge penalty, which does not lead to variable selection. Motivated by this

gap, and noting the advantages that a differentiable penalty can give, such as increased computational

efficiency in some cases and the derivation of more accurate model selection criteria, we develop a new

penalty function based on the error function. We study the theoretical properties of this function and of

the estimators obtained in a regularized regression context. Finally, we perform a simulation study and

use the new penalty to analyse a diabetes and prostate cancer dataset.

In Chapter § 4, we address the novel problem of variable selection in regression for counts when the

response variable follows a discrete Weibull distribution. In this chapter we introduce discrete Weibull

regression under two link functions, which connect the response distribution to the covariates. We

propose a Bayesian approach for estimating the parameters and for variable selection, followed by several

simulations and real data illustrations.

In Chapter § 5, we summarize and draw conclusions of the work conducted. This chapter also discusses

some suggestions for future work.



Chapter 2

Penalised inference for dynamic

regression in the presence of

autocorrelated residuals

2.1 Lasso and correlated framework

Traditional lasso approach relies on the assumption that samples are mutually independent. However,

this assumption is violated when there exists a structure in the variables, such as a dependency over time.

In recent years, a lot of efforts has been dedicated to lasso-like models in time dependent frameworks. For

instance, [Wang et al., 2007] show the successful application of lasso in the context of linear regression

with autocorrelated residuals (REGAR), given a fixed autoregressive order. They propose a model of

the form

yt =
r

∑
i=1

xtiβi + εt, εt =
q

∑
j=1

θjεt−j + et,

where εts are residuals from the regression term. [Wu and Wang, 2012] extend this model by assum-

ing an autoregressive-moving averages (ARMA) process for the residuals and call the resulting model

REGARMA. More precisely, their model is given by

yt =
r

∑
i=1

xtiβi + εt, εt =
q

∑
j=1

θjεt−j + et −
s

∑
k=1

θket−k,

where et are i.i.d Gaussian errors. [Y. Nardi, 2011] studies the lasso applications in autoregressive models

when the order of AR increases with the number of data points, T. [Suo and Tibshirani, 2015] study

regularized regression approaches when lags of covariates, x(t−j)i, j = 1, . . . , k , i = 1, . . . , r, are involved.

[Song and Bickel, 2011] study the estimation of vector AR (VAR) models. [Medeiros, 2012] studies the

asymptotic property of adaptive-lasso in high-dimensional time series when the number of variables

increases as a function of the number of observations and concludes that adaptive-lasso successfully

selects the relevant variables in high-dimensional settings, even when the errors do not follow a Gaussian

13
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distribution. The paper also discusses the advantages of adaptive-lasso in the situation where errors

are conditionally heteroskedastic. We refer to [Fan et al., 2011] for a review and recent developments in

high-dimensional time dependent penalized likelihood approaches.

In this chapter, we extend the idea of REGAR in [Wang et al., 2007] to include lags of response and call

the resulting model DREGAR, for dynamic regression and autocorrelated residuals. In the next section

we formulate the model as well as stating the necessary assumptions and notations. In Section § 2.3 we

compare the proposed model with existing ones in the literature followed by introducing likelihood, l1
and l2 regularized likelihood in Section § 2.4, § 2.5 and § 2.6 respectively. In Section § 2.7, we focus on the

special case of DREGAR(p, 0) and discuss the asymptotic properties of this model. An algorithm for

implementing DREGAR(p,q) is proposed in Section § 2.9. A simulation study, given in Section § 2.10,

will accompany the theoretical results. In Section § 2.11, we consider two applications of the model.

In the first one, we consider the pollution and climate data of [Wu and Wang, 2012] and compare our

results with theirs. In the second one, we consider stock market data. Finally, a discussion and pointers

to future work are given in Section § 2.12.

2.2 Introduction to DREGAR

The general form of DREGAR consists of a lagged response, covariates and autocorrelated residuals.

In particular, we define the model by:

yt =
p

∑
j=1

φjyt−j + x′tβ +
q

∑
i=1

θiεt−i + et. (2.1)

where εts are residuals at time t, x′t = (xt1, . . . , xtr) is the tth row of a T × r design matrix X.

Before introducing the assumptions of the model, we formally define a stationary and ergodic process as

well as the backward shift operator.

Definition 2.1 (Stationary process). A process {wt} is strictly stationary if for any set of indices

{t1, t2, . . . , tn}, the distribution of (wt1 , wt2 , . . . , wtn ) and (wt1+s, wt2+s, . . . , wtn+s) do not depend on the

time shift s. In other words,

f (wt1 , wt2 , . . . , wtn )
d
= f (wt1+s, wt2+s, . . . , wtn+s) ∀s ∈ Z.

Remark 2.1 (Weakly stationary). A process {wt} is weakly stationary if E(wt) < ∞ and Var(wt) < ∞

and they do not depend on t.

Definition 2.2 (Ergodic process). A stationary process is called ergodic if any two variables positioned far

apart in the sequence are almost independently distributed. Then, {wt} is ergodic if lim
j→∞

Cov(wt, wt+j)→

0.
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Remark 2.2 (Stationarity and ergodicity for Gaussian process). A Gaussian covariance stationary pro-

cess is ergodic if its covariances satisfy

∞

∑
j=0
|Cov(wt, wt+j)| < ∞.

Following the literature, we define the backward shift operator L by L(t) = t− 1 that is one-step backward

acting on the time index.

We summarize the necessary assumptions for DREGAR(p,q) as follows:

(a) The response variable is assumed to be stationary and ergodic with finite second order

moment. Further, we assume that the two polynomials 1−
p
∑

i=1
φiLi = 0 and 1−∑

q
i=1 θiLi

have all the roots unequal and outside the unit circle.

(b) The covariates are assumed to be mutually independent of each other and of the error term.

Following REGARMA [Wu and Wang, 2012] and REGAR [Wang et al., 2007], we assume

that covariates x.s, s = 1, . . . , r are generated from stationary and ergodic processes with

finite second-order moment.

(c) ets are i.i.d Gaussian random variables with finite fourth moments.

(d) 1
n X′X a.s→ E(X′X) < ∞ and max1≤i≤r xix′i < ∞.

The first three assumptions guarantee that the mean and variance of the entire system remain unchanged

over time. The last assumption guarantees the existence and convergence of the sample moments.

The assumption of normality for the errors may not hold in some applications. Then taking the

log [Hamilton, 1994, p. 126] or Cox-Box transformation [Box, 1964],

y(Λ)
t =

{ yΛ
t −1
Λ Λ 6= 0

log(yt) Λ = 0
,

is useful. The value of Λ ∈ R is chosen so that it maximizes the likelihood under the assumption that

y(Λ)
t is a Gaussian process. For the data that include negative values, a shift towards the positive side of

the axes prior to applying the transformations is necessary.
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2.2.1 Notation

In this section, we collect the necessary notations and conventions that will remain unchanged throughout

this chapter.

x′t = (xt1, xt2, xt3, . . . xtr) , vector of r independent covariates (1× r) at time t

β = (β1, β2, β3, . . . , βr)′ , vector of regression coefficients (r× 1)

φ = (φ1, φ2, φ3, . . . , φp)′ , vector of dynamic coefficients (p× 1)

θ = (θ1, θ2, θ3, . . . , θq)′ , vector of auroregressive coefficients (q× 1)

e iid∼ N(O, σ2) , vector of independent Gaussina errors (T × 1).

To remove the constant from the model, we follow [Knight and Fu, 2000, Tibshirani, 1996, Huang, 2008]

and normalize the covariates to zero-means and unit variance. In addition, we standardize the response,

y to zero mean and divide it by a known σy or its consistent estimator (σ̂y
p→ σy) where p denotes

convergence in probability. Finally, we define the full set of parameters by Θ = (β, φ, θ)′.

2.3 Link with existing methods

In order to compare DREGAR with the closest methods in literature, namely REGARMA [Wu and

Wang, 2012] and REGAR [Wang et al., 2007], we rewrite the three models using the backward shift

operator,

DREGAR : L(θ)L(φ)yt = L(θ)x′tβ + et,

REGARMA : L(θ)yt = L(θ)x′tβ + L(φ)et,

REGAR : L(θ)yt = L(θ)x′tβ + et,

where L(.) represents a stationary polynomial of L and L(θ)L(φ) represents a special case of an AR(p + q)

process. From these equations, one can see how REGAR and REGARMA impose the same autoregressive

structure on both response and covariates, whereas DREGAR assumes different structures on each of

them. We found this aspect to be particularly advantageous on a number of analyses of real datasets,

which we report at the end of this chapter, where DREGAR fits the data better than the two competitive

models. In contrast to REGAR and DREGAR, REGARMA contains a moving average process on the

errors. The MA component, however, induces a higher level of complexity in the parameter estimation

and in the proofs of the theoretical results.

Despite their differences, all three models belong to the general framework of ARMAX [Ljung, 1998,

Nelles, 2013], which is common in the system identification and signal processing literature [Zhu, 2001,

Nelles, 2013, Dos Santos, 2012, Keesman, 2011, Pintelon and Schoukens, 2004]. A general ARMAX model

is defined by

L(θ)yt = L(γ)x′t + L(φ)et,

where L(θ), L(γ) and L(φ) represent different structures on the corresponding parameters. Figure (2.1)

provides a schematic view of ARMAX, DREGAR, REGAR and REGARMA where A, C, D and S are

polynomials in the backward shift operator and B contains the regression coefficients. This figure shows
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Figure 2.1: Schematic illustration of ARMAX, DREGAR, REGAR and REGARMA.

that DREGAR and ARMAX impose an extra filter on yt whereas REGARMA and REGAR do not.

The focus of this chapter is on DREGAR and we consider in particular the high-dimensional case where

maximum likelihood estimation fails. We therefore devise a penalised likelihood approach for parameter

estimation, in the same spirit as in the REGAR and REGARMA contributions. Looking at the literature

on ARMAX, we found a small number of contributions to parameter estimation in high-dimensional cases.

In particular, [Chiuso and Pillonetto, 2012] and [Bańbura et al., 2010] discuss Bayesian approaches to

non-parametric identification and regularization for high-dimensional dynamical networks. [Pillonetto

and Chiuso, 2015], [Pillonetto et al., 2015] and [Pillonetto and Aravkin, 2014] discuss kernel-based

regularization in linear system identification via stable spline kernels [Aravkin et al., 2013].

2.4 Likelihood estimation for DREGAR

We now consider parameter estimation for a DREGAR model, starting from the traditional likelihood

estimation method. The conditional likelihood of the parameters given the prior information up to time
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t− 1 is given by,

f (y, x|Θ,F ) =
T

∏
t=T0+1

1√
2πσ2

e
−1
2σ2

(
yt−E(yt |Ft−1)

)2

, T◦ < T

where T◦ = p + q, Ft−1 denotes the σ-field consists of the information on x and y up to time t− 1 and

E(yt|Ft−1) = x′tβ +
p

∑
i=1

φiyt−i +
q

∑
j=1

θjεt−j,

Var(yt|Ft−1) = σ2.

Maximizing the log-likelihood is equivalent to minimizing,

LT(Θ) =
T

∑
t=T0+1

(yt − x′tβ−
p

∑
i=1

φiyt−i −
q

∑
j=1

θjεt−j)
2, (2.2)

where n = T − T◦ is the total number of observations in the likelihood. In matrix notation we define

H′(total) = (H(p), H(q), X) as a n× (p + q + r) matrix including dynamic lags (H(p)), residuals lags (H(q))

and design matrix. Then, the general form of the model is,

y = H(total)Θ + e.

Fixing the first (p + q) observations and assuming T ≥ (r + p + q), OLS estimation of the parameters is

given by

Θ̂ = (H(total)H′(total))
−1H(total)y, (2.3)

provided H(total)H′(total) is positive-definite.

2.4.1 Consistency of OLS estimations

In this section we focus on the limiting distribution of the estimators in equation (2.3) and show that

the OLS estimation of the parameters suffers a bias that is a direct result of autocorrelated residuals.

Precisely we show that
√

n(Θ̂−Θ)
d→ N(bias, σ2Q−1),

where

Q =


Ir×r E(xs3t(

Ls4
A x′tβ)|s3, s4, t) Or×q

E
(

( Ls7
A x′tβ)( Ls8

A x′tβ) + ( Ls7
AB et

Ls8
AB et)|s7, s8, t

)
E
(

( Ls1
A

1
B et)(

Ls2
B et)|s1, s2, t

)
E
(

Ls9
B et

Ls10
B et|s9, s10, t

)
 ,

with (s1, s4, s7, s8) ∈ {1, 2, . . . , p}, (s2, s9, s10) ∈ {1, 2, . . . , q}, s3 ∈ {1, 2, . . . , r}, A = (1 −
p
∑

i=1
Liφi),

B = (1−
q
∑

i=1
Liθi), t = T◦ + 1, . . . , T and O is the null matrix.
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To show the limit distribution we start with

Θ̂ = Θ + (H(total)H′(total))
−1H(total)e

= Θ +

(
(X′, H(p), H(q))

′(X′, H(p), H(q))

)−1

(X′, H(p), H(q))
′e, (2.4)

where the second term in the right hand side (RHS) of (2.4) is a stochastic process constituting of {y, X, e}
and follows a certain distribution. Considering the asymptotic form of the bias

√
n(EΘ̂−Θ),

√
n(EΘ̂−Θ) =

(
1
n

(X′, H(p), H(q))
′(X′, H(p), H(q))

)−1

× 1√
n

(X′, H(p), H(q))
′e.

= (H1)−1H′2e, (2.5)

where H1 = 1
n (X′, H(p), H(q))

′(X′, H(p), H(q)), H2 = 1√
n (X′, H(p), H(q)) and n = T − T◦. All we do in

the next paragraphs is simplifying H1 and H′2e and discussing their asymptotic distribution.

Starting with H1. Let us rewrite H1 as

H1 =
1
n


XX′ XH(p) XH(q)

H′(p)X′ H′(p)H(p) H′(p)H(q)

H′(q)X′ H′(q)H(p) H′(q)H(q)

 .

Then for the first block of this matrix we get,

1
n

XX′ =
1
n

n

∑
t=1

xtx′t =
1
n


x1x′1 x1x′2 . . . x1x′r
x2x′1 x2x′2 . . . x2x′r

...
...

. . .
...

xrx′1 xrx′2 . . . xrx′r

 = Σ→ I,

where I is identity matrix. This convergence is guaranteed by the assumption (d). Following a similar

approach, we expand other elements in H1. To keep this section simple, we report only the result and

refer to Appendix §A.0.1 for a complete proof of each block-matrix in H1. In particular we show that

H1 → Q =


Ir×r E(xs3t(

Ls4
A x′tβ)|s3, s4, t) Or×q

E
(

( Ls7
A x′tβ)( Ls8

A x′tβ) + ( Ls7
AB et

Ls8
AB et)|s7, s8, t

)
E
(

( Ls1
A

1
B et)(

Ls2
B et)|s1, s2, t

)
E
(

Ls9
B et

Ls10
B et|s9, s10, t

)
 ,

with (s1, s4, s7, s8) ∈ {1, 2, . . . , p}, (s2, s9, s10) ∈ {1, 2, . . . , q}, s3 ∈ {1, 2, . . . , r}, A = (1−
p
∑

i=1
Liφi) and

B = (1−
q
∑

i=1
Liθi).

For the second term in (2.5), H′2e, under assumptions [a-d], it is possible to derive an asymptotic distri-

bution.

Theorem 2.1 (Convergence of a stationary and ergodic process). Let St be a stationary process with

finite moments given by E(St) = µ and E(St − µ)(St−j − µ) = γj for all t and absolutely summable
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autocorrelations ∑∞
j=0 |γj| < ∞. Then,

S̄n =
1
n

n

∑
t=1

St
a.s→ µ,

lim
n→∞
{n×E(S̄n − µ)2} =

∞

∑
j=−∞

γj.

Proof. [Hamilton, 1994, proposition 7.5, p 188].

Theorem 2.2 (Convergence of inverse matrices). The matrix inverse function is continuous at every

point that represents a non-singular matrix. Then, for example, if X′X
n →

w.r.t n
M, a finite non-singular

matrix, then ( X′X
n )−1 →

w.r.t n
M−1.

Proof. [White, 2001, p 16].

Considering Theorem (2.1) and (2.2), and assuming that xi, i = 1, 2, . . . , r and y are stationary and

ergodic with finite second moments, Theorem (2.1) guarantees that asymptotic means of all elements in

H1 exist, E(H(total)H′(total)) → Q. If H1 and Q are positive definite, Theorem (2.2) leads to the fact

that Q−1 is non-singular and, H−1
1 → Q−1. Moreover, defining Ft−1 = {x(t−1)r, yt−1|r = 1, 2, . . . , r}

as a σ-field including the information up to time t− 1, then H′2e is a martingale difference sequence. If

et
iid∼ N(0, σ2) and E(e4

t ) < ∞, martingales central limit theorem results in,

Var(H′2e) = E(H2e′eH′2) = σ2Q

H′2e d→ N
(

bias, σ2Q
)

,

and

√
n(Θ̂−Θ)

d→ N(bias, σ2Q−1). (2.6)

The bias in equation (2.6) is a direct result of estimating εs from a primary step precisely from ε̂ =

y − H(p) θ̂ − X′ β̂ using OLS. We should stress that ε and θ in DREGAR are both unknown. As a

result, an extra step is needed for estimating the ε. In Appendix §A.0.1 we show that applying OLS to

estimating the parameters in y = H(p)θ− X′β + ε leads to a bias in the estimations. In the next section,

we show the bias theoretically and practically in DREGAR(1,1) model.

2.4.1.1 Case study : DREGAR(1,1)

In this section we make use of an illustrative example to show the bias in OLS estimation of DREGAR

parameters previously shown in equation (2.6). Moreover, we show that the model may have some

identifiability issues under some circumstances. To this end, we simulate 500 observations from the

following DREGAR(1,1) model,

yt = xt − 0.61yt−1 + εt

εt = 0.36εt−1 + et,
(2.7)
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where xt is a single covariate generated from an underlying Gaussian AR(1) process, with φ = 0.5 to

ensure stationarity. The parameters are estimated using OLS for an overall of 5000 repetitions. The

number of repetitions (5000) is intentionally chosen so that the variation in estimations can be clearly

observed from the histogram. The left panel of Figure (2.2) shows the OLS estimations and the bias,

whereas the right panel shows the corresponding histogram. From both plots a bias of (φ− φ̂) = 0.22 is

observed.

Due to the simplicity of DREGAR(1,1) model, we study this case in more details.
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Figure 2.2: Simulation result for DREGAR(1,1) with one explanatory variable. (Left) OLS estimation
of φ where dotted line denotes the true value of the parameter and solid line shows the median of the
estimations. (Right) Corresponding histogram where solid vertical line represents the mode of the

distribution.

Let the true underling model be

yt = x′tβ + φyt−1 + εt

εt = θεt−1 + et,

where φ and θ are time-dependent parameters and β is a single static parameter. Ordinary least squares

estimation of φ results in,

E(φ̂) =
∑t ytyt−1

∑t y2
t−1

T→∞
= φ +

Cov(yt−1, εt) + Cov(yt−1, x′tβ)

Var(yt−1)
,
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where the denominator equals to 1 as the response is standardized prior to analysis. On the other hand,

Cov(yt−1, εt) and Cov(yt−1, x′tβ) are not necessarily zero, as

Cov(yt−1, x′tβ) ∝ β2
∞

∑
k=1

γk, (2.8)

where γk denotes the kth autocorrelations between xt and xt−k that is not necessarily zero. Moreover,

Cov(yt−1, εt) = E(yt−1εt)

= φθE(εt−1yt−2) + θE(ε2
t−1).

But, E(ε2
t−1) = E(ε2

t ) and E(εt−1yt−2) = E(εtyt−1). Then,

Cov(yt−1, εt) =
θVar(εt)

1− θφ
. (2.9)

The last equality shows that the correlation between yt−1 and εt is zero iff θ = 0, that is when there is

no serial correlation among residuals.

Consequently, there is always a non-zero bias in the OLS estimation of the time dependent parameter

φ, provided the residuals are autocorrelated. In line with the theoretical results, estimating the bias

using equation (2.8) and (2.9) for the model in (2.7) results in (φ− φ̂) = 0.23 that is comparable to the

empirical result.

Moreover, to show the correlation between estimators, in particular between θ̂ and φ̂ we assume that

there is no covariate in a DREGAR(1,1) model. Thus, the model reduces to,

yt = φyt−1 + εt

εt = θεt−1 + et.

Given T is sufficiently large, (2.9) results in

E(φ̂) = φ +
θσ2

ε

1− θφ
,

and estimating εt by ε̂ = yt − φ̂yt−1 leads to,

ε̂t
T→∞
= εt +

θσ2
εt

1− θφ
yt−1.

Defining H = (yt−1, ε̂t−1) as the matrix of the first lags and using LS methods for estimating the

parameters Θ = (φ, θ) leads to

Θ̂ = (H′H)−1H′y,

so that,

√
nVar(Θ̂)

n→∞→
(

H′H
n

)−1

σ2,
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where n = T − (p + q) = T − 2. In what follows, we find the asymptotic covariance matrix of the

estimators,

(
H′H

n

)−1

=

[
1
n

(
∑t y2

t−1 ∑t yt−1ε̂t−1

∑t yt−1ε̂t−1 ∑ ε̂2
t−1

)]−1

,

where n = T − T◦ and the summations define over T◦ = p + q = 2 and T.

For n sufficiently large we have,

H′H
n

n→∞→
(

σ2
y

1
n ∑t yt−1ε̂t−1

1
n ∑t yt−1ε̂t−1 σ2

ε̂

)
,

where the first element of the matrix σ2
y = 1 by the assumption. Further,

1
n ∑

t
yt−1ε̂t−1 =

1
n ∑

t
yt−1

(
εt−1 +

θσ2
ε

1− θφ
yt−2

)
=

1
n ∑

t
yt−1εt−1 +

θσ2
ε

(1− θφ)

1
n ∑

t
yt−1yt−2. (2.10)

From equation (A.4) in the appendix, the first summation on the RHS of (2.10) tends to
σ2

ε
1−φθ and from

(2.9) the second one tends to φ + θσ2
ε

1−θφ . Consequently,

1
n ∑

t
yt−1ε̂t−1

n→∞
=

σ2
ε

1− θφ
+

θσ2
ε

1− θφ

(
φ +

θσ2
ε

1− θφ

)
=

σ2
ε

1− θφ

(
1 + θ(φ +

θσ2
ε

1− θφ
)

)
,

and,

(
H′H

n

)−1
n→∞
=

1

σ2
ε̂ −

[
σ2

ε
1−θφ

(
1 + θ(φ + θσ2

ε
1−θφ )

)]2

 σ2
ε̂ − σ2

ε
1−θφ

(
1 + θ(φ + θσ2

ε
1−θφ )

)
− σ2

ε
1−θφ

(
1 + θ(φ + θσ2

ε
1−θφ )

)
1

 .

From the last equality, the correlation between the estimations can be unstable, given θφ → 1 that is

both parameters are close enough to one on the same sign. Moreover, the determinant of the matrix

tends to zero, given the parameters are the roots of the second order polynomial in the denominator.

That is, there is the identifiability problem on some combination of the parameters. For a simple case

where σ2
ε = 1 it is θ = 2φ/(2φ2 − 1).

As it is pointed out, the source of the bias is the initial OLS that is used for estimating ε, see equation

(2.9). In other words, removing the autoregressive process over ε results in unbiased estimations for

the parameter φ. This motivates us to consider the case of DREGAR(p,0) in the theoretical sections.

However, we show that using iterative OLS results in improving estimations and decreasing the bias in

application. In the next two sections we introduce the l1 and l2 regularized likelihoods of DREGAR

followed by the theoretical properties of DREGAR(p,0) in Section § 2.7.
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2.5 L1 penalized likelihood for DREGAR

The estimation approach described in the previous section does not work when T < (r + p + q). In

addition, it does not perform variable selection, i.e. the estimates of the regression coefficients are not

necessarily zero. In the spirit of lasso methods, we impose an l1 penalty on the regression coefficients.

Thus, we propose minimizing

Qn(Θ) =
T

∑
t=T0+1

(
yt − x′tβ−

p

∑
i=1

φiyt−i −
q

∑
j=1

θjεt−j

)2

+
r

∑
i=1

λn|βi|+
p

∑
j=1

γn|φj|+
q

∑
k=1

τn|θk|,
(2.11)

where n = T− T◦ and λn, γn, τn are tuning parameters. Moreover, considering the superiority of adaptive

penalties [Zou, 2006], we propose an adaptive form of the likelihood as

Q∗n(Θ) =
T

∑
t=T0+1

(
yt − x′tβ−

p

∑
i=1

φiyt−i −
q

∑
j=1

θjεt−j

)2

+ n
r

∑
i=1

λ∗i |βi|+ n
p

∑
j=1

γ∗j |φj|+ n
q

∑
k=1

τ∗k |θk|,

where λ∗i , γ∗j , τ∗k , i = 1, . . . , r; j = 1, . . . , p; k = 1, . . . , q are tuning parameters.

In matrix form, we have

Qn(Θ) = Ln(Θ) + nλ′|β|+ nγ′|φ|+ nτ′|θ|,

where
Ln(Θ) = |y− H(total)Θ|22,

λ′ = {λ}1×r, γ′ = {γ}1×p, τ′ = {τ}1×q

β = (β1, β2, β3, . . . , βr)
′, φ = (φ1, φ2, φ3, . . . , φp)′, θ = (θ1, θ2, θ3, . . . , θq)′.

Similarly, the adaptive form of the regularized likelihood results in

Q∗n(Θ) = Ln(Θ) + nλ′∗|β|+ nγ′∗|φ|+ nτ′∗|θ|,

where
λ∗
′
= (λ∗i , i = 1, . . . , r)1×r = {λ∗1 , λ∗2 , . . . , λ∗r },

γ∗
′
= (γ∗j , j = 1, . . . , p)1×p = {γ∗1 , γ∗2 , . . . , γ∗p},

τ∗
′
= (τ∗k , k = 1, . . . , q)1×q = {τ∗1 , τ∗2 , . . . , τ∗q },

and λ∗, γ∗, τ∗ are tuning parameters.

2.6 L2-penalized solution to DREGAR

The l1 penalty discussed in the previous section has advantages and disadvantages. Although there is no

analytic solution to the DREGAR optimization problem in this case, the l1 penalty results in a sparse



Chapter 2. Penalised inference for lagged response ... 25

solution, thus it naturally leads to variable selection. However, the penalty indirectly penalises more the

coefficients with lower values. This fact may be important in some applications. For example, if we take

an AR(1) model, yt = φyt−1 + et, the stationarity condition requires that the root of the polynomial,

1− Lφ, lies outside the unit circle, that is |φ| < 1 i.e. the coefficient lies in the (−1, 1) interval. It can

be shown that for any stationary AR(p) process, all the coefficients must be in the (−1, 1) interval. This

limitation of the lasso approach can be addressed by considering an l2 penalty instead. In this case, there

is less penalty on low coefficients, to the expense of a non-sparse solution. In this section, we consider

the l2 penalty for the DREGAR model, an approach that goes under the name of ridge regression in the

case of linear regression.

The solution to minimizing the l2 regularized (log)likelihood

Qn,l2 (Θ) = Ln(Θ) + nλ′∗|β|22 + nγ′∗|φ|22 + nτ′∗|θ|22

is given by ,

Θ̂ = (H(total)H′(total) + nΛI)−1H(total)y,

where 0 < Λ = (λi, γj, τk)′; i = 1, 2, 3, . . . , r, j = 1, 2, 3, . . . , p ,k = 1, 2, 3, . . . , q and I = I(r+p+q)×(r+p+q).

Obviously Θ̂ is biased due to the existence of non-vanishing Λ as well as the estimation procedure.

As variable selection is desirable in many contexts, the chapter focuses mainly on the l1-penalised method.

In the next section, we consider the theoretical properties of the estimators that are derived from this

approach.

2.7 Theoretical properties of l1 penalized DREGAR(p,0)

In this section we focus on theoretical properties of l1 penalized DREGAR(p,0) including asymptotic

properties of the estimators. As it is evident from equation (2.6), the general form of a DREGAR(p,q)

model suffers from being biased that is due to using OLS for the estimation of the autoregressive co-

efficients when the disturbances are autocorrelated. Thus, we concentrate on the theoretical properties

of DREGAR(p,0) as there is asymptotically no bias in this model. This model differs from REGAR(p)

[Wang et al., 2007] as it imposes an autoregressive process on the response whereas REGAR(p) considers

the case of autocorrelated residuals (i.e. DREGAR(0,q)). In the upcoming subsection, we collect the

necessary notations and in the next subsection we discuss the asymptotic properties of DREGAR(p,0)

and adaptive-DREGAR(p,0).

2.7.1 Notations and Definitions

To study the theoretical properties of both, DREGAR(p,0) and adaptive-DREGAR(p,0), we make the

following assumptions:

1. There is a correct model with coefficients Θ◦ = (β◦ , φ◦ )′,

Θ◦ = (β◦1, β◦2, β◦3, . . . , β◦r , φ◦1 , φ◦2 , φ◦3 , . . . , φ◦p)′1×(r+p).
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2. There are r◦ < r, and p◦ < p non-zero parameters.

3. We define

i. s1 = {i ∈N, 1 ≤ i ≤ r; β◦i 6= 0} Indices for non-zero REG coefficients.

ii. s2 = {j ∈N, 1 ≤ j ≤ p; φ◦j 6= 0} Indices for non-zero DA coefficients.

sc
1 and sc

2 are complementary sets and containing zero indices. We also define β◦s1
, φ◦s2

and their cor-

responding (DREGAR(p,0)) estimations by β̂s1 , φ̂s2 . Similarly, adaptive-DREGAR(p,0) estimations by

β̂∗s1
, φ̂∗s2

. Finally, different combinations of parameters when needed e.g. β◦sc
1
, βsc

1
, β̂sc

1
, β∗sc

1
, β̂∗sc

1
. Further we

define,

I. Θ◦1 = {β◦′s1
, φ◦

′
s2
} , Θ◦2 = {β◦′sc

1
, φ◦

′
sc

2
} True non-zero (significant) and zero (insignificant) pa-

rameters respectively.

II. Θ̂1 = {β̂′s1
, φ̂
′
s2
} , Θ̂2 = {β̂′sc

1
, φ̂
′
sc

2
} DREGAR(p,0) non-zero and zero parameters respectively.

III. Θ̂∗1 = {β̂∗′s1
, φ̂∗

′
s2
} , Θ̂∗2 = {β̂∗′sc

1
, φ̂∗

′
sc

2
} Adaptive-DREGAR(0,p) non-zero and zero parameters

respectively.

2.7.2 Asymptotic properties of DREGAR(p,0)

Theorem 2.3 (Limit distribution of estimations). Assuming λn
√

n→ λ◦ , γn
√

n→ γ◦ , and λ◦, γ◦ ≥ 0.

Then under assumptions [a-d], it follows that
√

n(Θ̂−Θ◦) d→ arg min k(δ) where

k(δ) =− 2δ′W + δ′UBδ

+ λ◦
r

∑
i=1
{(ui sign (β◦i )I(β◦i 6= 0)) + |ui|I(β◦i = 0)}

+ γ◦
p

∑
j=1
{(vj sign (φ◦j )I(φ◦j 6= 0)) + |vi|I(φ◦j = 0)},

and δ = (u, v) is a vector of parameters in R(r+p), W ∼ MVN (O, σ2UB) and UB = Cov(X, H(p)).

Proof. Assuming λn
√

n→ λ◦, γn
√

n→ γ◦, and δ = (u′, v′). Define

kn(δ) = Qn(Θ◦ + n−(1/2)δ)−Qn(Θ◦). (2.12)

We should stress that kn reaches the minimum at
√

n(Θ̂−Θ◦). Using (2.2) and (2.11),

kn(δ) =(
Ln(Θ◦ +

δ√
n

)− Ln(Θ◦)
)

(2.13a)



Chapter 2. Penalised inference for lagged response ... 27

+ (nλ′n|β◦ +
u√
n
| − nλ′n|β◦|) (2.13b)

+ (nγ′n|φ◦ +
v√
n
| − nγ′n|φ◦|), (2.13c)

where the last two terms are

(nλ′n|β◦ +
u√
n
| − nλ′n|β◦|) =

(√
nuλ′n

|β◦ + u/
√

n| − |β◦|
u/
√

n

)
=

n→∞
λ◦

r

∑
i=1
{(ui sign (β◦i )I(β◦i 6= 0)) + |ui|I(β◦i = 0)}.

(2.13c) =
n→∞

γ◦
p

∑
j=1
{(vj sign (φ◦j )I(φ◦j 6= 0)) + |vj|I(φ◦j = 0)}.

(2.13a) is equal to:

(2.13a) =− e′e+(
(y− H(p)φ◦ − X′β◦)− (X′, H(p))

δ√
n

)

)′
×(

(y− H(p)φ◦ − X′β◦)− (X′, H(p))
δ√
n

)

)
.

Setting A = (X′, H(p)) and e = y− H(p)φ◦ − X′β◦,

Qn(Θ◦ +
δ√
n

)−Qn(Θ◦)

= (e′ − δ′√
n

A′)(e− A
δ√
n

)− e′e + (2.13b) + (2.13c),

which is equivalent to

(
δ′A′√

n
)(

Aδ√
n

)− (
δ′A′√

n
)e− e′(

Aδ√
n

) + (2.13b) + (2.13c). (2.14)

From left to right, we prove that the first term in (2.14) is bounded and the next two terms follow

(asymptotically) normal distributions:

(
δ′A′√

n
)(

Aδ√
n

) = Op(1) (2.15)

e′(
Aδ√

n
) = (

δ′A′√
n

)e = Sn, (2.16)

where Sn is a random variable that follows a normal distribution. Similar calculations to Section § 2.4.1

show that (2.15) tends to δ′UBδ where UB is the covariance matrix of (X′, H(p)) which is bounded, Op(1).

Recalling Sn from (2.16) as a function of n,

Sn = (
δ′A′√

n
)e =

1√
n

(u′X + v′H′(p))e,
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and using assumptions [a-d] and central limit theorem for martingales result in

Sn
a.s→ δ′W,

where δ = (u′, v′) and W ∼ MVN (O, σ2UB). Then

−(2.16)
n→∞→ −2δ′W.

Substituting all results in equation (2.12),

kn(δ)
n→∞→ −2δ′N(O, σ2UB) + δ′UBδ + λ◦

r

∑
i=1
{(ui sign (β◦i )I(β◦i 6= 0)) + |ui|I(β◦i = 0)}.

+ γ◦
p

∑
j=1
{(vj sign (φ◦j )I(φ◦j 6= 0)) + |vi|I(φ◦j = 0)}.

Note that UB is similar to Q in Appendix §A by removing the corresponding terms to H(q). Up to now,

we have proved kn(δ)
n→∞→ k(δ). To show that arg min kn(δ) =

√
n(Θ̂−Θ◦) d→ arg min k(δ) is enough

to prove that arg min{kn(δ)} = Op(1) [Kim and Pollard, 1990, Knight and Fu, 2000]. In order to do

this, note that

kn(δ) = (
δ′A′√

n
)(

Aδ√
n

)− (
δ′A′√

n
)e− e′(

Aδ√
n

)+

(nλ′n|β◦ +
u√
n
| − nλ′n|β◦|) + (nγ′n|φ◦ +

v√
n
| − nγ′n|φ◦|)

≥ (
δ′A′√

n
)(

Aδ√
n

)− (
δ′A′√

n
)e− e′(

Aδ√
n

)− (nλ′n|un−1/2| − (nγ′n|vn−1/2|)

≥ (
δ′A′√

n
)(

Aδ√
n

)− (
δ′A′√

n
)e− e′(

Aδ√
n

)− (λ′◦ + ε◦)|u| − (γ′◦ + ε◦)|v|

= k∗n(δ),

where ε◦ > 0 is a vector of positive constants. The fourth term in k∗n(δ) for example, comes from the

fact that ∀ε◦ > 0, ∃N , if n ≥ N, |λ◦ −
√

nλn| < ε◦. Then,
√

nλn < λ◦ + ε◦. In addition, kn(0) = k∗n(0)

and fn(δ) = op(1). As a result arg min{k∗n(δ)} = Op(1) and arg min{kn(δ)} = Op(1).

The proof of the theorem is completed.

This theorem shows that the DREGAR estimator has the [Knight and Fu, 2000] asymptotic property

and it implies that the tuning parameters in Qn(Θ) do not shrink to zero at the speed faster than n−1/2.

In the proof of theorem (2.3), the errors must be independent and identically distributed and we do not

make a specific assumption on the type of distribution. In other words, the central limit theorem for

martingale guarantees the convergence to the normal distribution. This implies that by increasing the

number of data points (n→ ∞), the errors can be weakly normally distributed.

As we showed in Chapter § 1 (Section § 1.3), lasso approaches to linear regression return biased estimates

of the non-zero parameters [Knight and Fu, 2000]. In the following remark, we show this also in the

context of the DREGAR model.
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Remark 2.3 (Asymptotic bias in estimations). We consider a special case, where β◦i > 0, 1 ≤ (∀i ∈
N) ≤ r and φ◦i2 = 0 for 1 ≤ j1 ≤ q, 1 ≤ j2 ≤ p, j1, j2 ∈ N and we assume that there are enough

observations and that the minimizer k(δ) correctly identifies coefficients. That is, u 6= 0 and v = 0.

Then, k(δ) must satisfy

∂k(δ)

∂u
=

∂k(u, 0)

∂u

=
∂

∂u

(
− 2(u′, 0)W + (u′, 0)′UB(u′, 0) + (2.13b) + (2.13c)

)
= −2W1:r + 2u′UB1:r + λ◦1r×1 = 0

→ u′ =
1
2

(2W1:r − λ◦1r×1)U−1
B1:r

Using Theorem (2.3):
√

n(β̂− β◦)
d→ arg min k(δ = u′) = MVN

(
E(u′) 6= 0, U−1

B1:r

)
,

where UB1:r is the first r rows of UB corresponded to r covariates. From the final equation, DREGAR(p,0)

suffers an asymptomatic bias, provided the tuning parameter is positive. In other words, lasso regular-

ization of DREGAR(p,0) is not asymptotically consistent. In the next section we discuss the adaptive-

DREGAR(p,0) where a fixed level penalty term is replaced by a weighted (adaptive) one. We show that

under certain conditions adaptive-DREGAR(p,0) is consistent and enjoys the oracle property.

2.7.2.1 Adaptive DREGAR(p,0) model

Recall from Section § 2.5 that parameter estimation in adaptive-DREGAR(p,q) involves the minimization

of

Q∗n(Θ) =
T

∑
t=T0+1

(
(yt − x′tβ)−

p

∑
i=1

φiyt−i −
q

∑
j=1

θjεt−j

)2

+ n
r

∑
i=1

λ∗i |βi|+ n
p

∑
j=1

γ∗j |φj|+ n
q

∑
k=1

τ∗k |θk|
,

where λ∗i , γ∗j , τ∗k are tuning parameters and Θ = (β, φ, θ)′ is parameter space.

To prove the asymptotic property of adaptive-DREGAR(p,0) we follow [Wang et al., 2007, Knight and

Fu, 2000] and define,

an = max(λ∗i1 , γ∗i2 ; i1 ∈ s1, i2 ∈ s2)

bn = min(λ∗ic1
, γ∗ic2

; ic
1 ∈ sc

1, ic
2 ∈ sc

2),

where an and bn are maximum and minimum penalties for non-zero and zero coefficients respectively.

Theorem 2.4 (Existence of the minimizer). Let an = o(1) as n → ∞. Then under assumptions [a-d]

there is a local minimiser Θ̂∗ of Q∗n(Θ) so that

(Θ̂∗ −Θ◦) = Op(n−1/2 + an).
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Proof. Let αn = n−1/2 + an, and {Θ◦ + αnδ : ||δ|| ≤ d, δ = (u, v)′} be a ball around Θ◦. Then for

||δ|| = d we have

Rn(δ) = Q∗n(Θ◦ + αnδ)−Q∗(Θ◦)

≥ Ln(Θ◦ + αnδ)− Ln(Θ◦) + K1

≥ Ln(Θ◦ + αnδ)− Ln(Θ◦) + K2

≥ Ln(Θ◦ + αnδ)− Ln(Θ◦) + K3

where

K1 = n ∑
i∈s1

λ∗i (|β◦i + αnui| − |β◦i |) +n ∑
j∈s2

γ∗j (|φ◦j + αnvj| − |φ◦j |),

(Using triangular inequality) : K2 = −nαn ∑
i∈s1

λ∗i |ui| − nαn ∑
j∈s2

γ∗j |vj|,

(Penalties ≤ αn by definition) : K3 = −nα2
n(r◦ + p◦)d. (2.17)

Last equation holds because of the decreasing speed of αn. On the other hand, similar calculations to

Theorem (2.3) results in

Ln(Θ◦ + αnδ)− Ln(Θ◦) n→∞
= nα2

n{δ′UBδ + op(1)}. (2.18)

Because (2.18) dominates (2.17), then for any gives η > 0 , there is a large enough constant d so that

Pr[ in f
||δ||=d

{Q∗n(Θ◦ + αnδ)} > Q∗n(Θ◦)] ≥ 1− η.

This result shows that with probability at least 1− η, there is a local minimiser in the ball {Θ◦ + αnδ :

||δ|| ≤ d} and as a result a minimiser Q∗n(Θ), such that ||Θ̂∗ −Θ◦|| = Op(αn). (See [Wang et al., 2007,

Lemma 1], [Fan and Li, 2001])

The proof is completed.

Theorem (2.4) implies that there exist a
√

n− consistent local minimiser Q∗n(Θ), when tuning parameters

(for non-zero variables) in DREGAR(p,0) converge to zero at the speed faster than n−1/2.

In the next step we prove that under the case where the tuning parameter associated with zero variables

in DREGAR(p,0) shrink to zero at a speed slower than n−1/2, then their associate coefficients will be

estimated exactly equal to zero with probability tending to 1. Further, in the next theorem we show

that with increasing the penalties on the zero parameters at a certain speed, the probability of these

coefficients to be estimated exactly zero tends to one.

Theorem 2.5 (Penalty weights for zero parameters). Let bn
√

n→ ∞ and ||Θ̂∗−Θ◦|| = Op(n−1/2) then

Pr(β̂∗sc
1

= 0)→ 1, Pr(φ̂∗sc
2

= 0) → 1.

Proof. This proof follows from the fact that the Q∗n(Θ̂∗) must satisfy

∂Q∗n(Θ)

∂βi

∣∣∣∣
Θ̂∗

=
∂Ln(Θ̂∗)

∂βi
− nλ∗i sign (β̂∗i )
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=
∂Ln(Θ◦)

∂βi
+ nUi(Θ̂∗ −Θ◦){1 + op(1)} − nλ∗i sign (β̂∗i ) (2.19)

where Ui is th ith row of UB and i ∈ sc
1. The second term in (2.19) is a direct result of adding a

±X′β,±H(p)φ to Ln(Θ̂∗). By using the central limit theorem, the first term in equation (2.19), ∑t etx′ti,

is of order Op(n1/2) and the second term is Op(n1/2). Furthermore, both terms are dominated by nλ∗i
since bn

√
n → ∞ (Expansion of [Wang et al., 2007], [Knight and Fu, 2000]). Then sign of

∂Q∗n(Θ̂∗)
∂βi

is

dominated by the sign of β̂∗i . Then β̂∗i = 0 in probability. Analogously, we can show that Pr(φ̂∗sc
2
)

p→ 1.

The proof is completed.

Theorem (2.5) shows that adaptive-DREGAR(p,0) is capable of producing sparse solutions. Theorem

(2.4) and (2.5) indicate that a
√

n − consistent estimator Θ̂∗ must satisfy Pr(Θ̂∗2 = 0) → 1. Then,

adaptive-DREGAR(p,0) is a sparse model.

Theorem 2.6 (Consistency of adaptive-DREGAR(p,0)). Assume an
√

n → 0 and bn
√

n → ∞. Then,

under assumptions [a-d] we have

√
n(Θ̂∗1 −Θ◦1)

p→ MVN (O, σ2U−1
0 ),

where U0 is the sub-matrix UB corresponding to Θ◦1 , and Θ̂∗1 corresponds to non-zero elements of Θ̂∗.

Proof. It is concluded from Theorem (2.4) and (2.5) that Pr(Θ̂∗2 = 0)
p→ 1. Thus, the minimiser

Q∗n(Θ)
with pr→1
−−−−−−−→ Q∗n(Θ1). So it implies that the lasso estimator Θ̂∗1 satisfies the following equation

∂Q∗n(Θ1)

∂Θ1
|Θ1=Θ̂∗1

= 0.

From Theorem (2.4), Θ̂∗1 is a
√

n− consistent estimator. Thus a Taylor expansion of the above equation

yields

0 =
1√
n

∂Ln(Θ̂∗1)

∂Θ1
+ F(Θ̂∗1)

√
n

=
1√
n

∂Ln(Θ̂◦1)

∂Θ1
+ F(Θ̂◦1)

√
n + U0

√
n(Θ̂∗1 −Θ◦1) + op(1),

where F is the first-order derivation of the tuning function

∑
i∈s1

λi|βi|+ ∑
j∈s2

γj|φj|,

and for n sufficiently large, F(Θ̂∗1) = F(Θ◦1). Thus,

(Θ◦1 − Θ̂∗1)
√

n =
U−1

0√
n

∂Ln(Θ◦1)

∂Θ1
+ op(1)

d→ N(0, σ2U−1
0 ).

The proof is completed.
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Theorem (2.6) implies that, adaptive DREGAR(p,0) is asymptotically an oracle estimator provided an

tends to zero at the speed faster than
√

n (or an
√

n → 0) and simultaneously bn increase at the speed

slower than
√

n (or bn
√

n→ ∞).

2.8 Estimating the conditional variance of yt

In Section § 2.2.1 we assumed that yt has known conditional variance and established all the results using

this assumption. In this section we consider the estimation of this variance.

Recall the DREGAR model from (2.1),

yt =
r

∑
i=1

x′tiβi +
p

∑
j=1

φjyt−j +
q

∑
l=1

εt−lθl + et

(yt −
p

∑
j=1

φjyt−j) =
r

∑
i=1

x′tiβi +
q

∑
l=1

εt−lθl + et.

Using the backward shift operator,

(1−
p

∑
j=1

φjLj)yt =
r

∑
i=1

x′tiβi +
q

∑
l=1

(θl Ll)εt + et, (2.20)

where

εt = (1−
p

∑
j=1

φjLj)yt −
r

∑
i=1

x′tiβi. (2.21)

Substituting (2.21) in (2.20),(
(1−

q

∑
l=1

θl Ll)(1−
p

∑
j=1

φjLj)

)
yt =

r

∑
i=1

(1−
q

∑
l=1

θl Ll)x′tiβi + et.

Converting this equation to an infinite moving average results in

yt =
r

∑
i=1

1
L(φ)

xtiβi +
1

L(φ)L(θ)
et,

where

L(φ) = (1−
q

∑
l=1

φl Ll), L(θ) = (1−
p

∑
j=1

θjLj).

Let a1, a2, a3, . . . , ap and b1, b2, b3, . . . , bq be the roots of L(φ) and L(θ) respectively. Therefore, it is

possible to rewrite L(φ) and L(θ) as

L(φ) = (1−
p

∑
l=1

φl Ll) = (a1 − L)(a2 − L)(a3 − L) . . . (ap − L),



Chapter 2. Penalised inference for lagged response ... 33

L(θ) = (1−
q

∑
j=1

θjLj) = (b1 − L)(b2 − L)(b3 − L) . . . (bq − L),

and using 1
a−x = ∑∞

i=0
1
a ( x

a )i,

L(φ)−1 =

(
1−

p

∑
l=1

φl Ll

)−1

=
1

(a1 − L)(a2 − L)(a3 − L) . . . (ap − L)
=

p

∏
l=1

(
∞

∑
k=0

1
al

(
L
al

)k)

L(θ)−1 =

(
1−

q

∑
j=1

θjLj

)−1

=
1

(b1 − L)(b2 − L)(b3 − L) . . . (bq − L)
=

q

∏
j=1

(
∞

∑
k=0

1
bj

(
L
bj

)k).

Finally, the DREGAR model can be written as

yt =
r

∑
i=1

(
p

∏
j=1

(
∞

∑
k=0

1
aj

(
L
aj

)i)

)
xtiβi +

(
q

∏
j=1

(
∞

∑
i=0

1
bj

(
L
bj

)i)

)(
p

∏
l=1

(
∞

∑
k=0

1
al

(
L
al

)k)

)
et.

From this, the variance of yt is given by

Var(yt|x) = Var
[( q

∏
j=1

(
∞

∑
i=0

1
bj

(
L
bj

)i)

)(
p

∏
l=1

(
∞

∑
k=0

1
al

(
L
al

)k)

)
et

]
. (2.22)

This can be shown by a single geometric series

Var(yt|x) =
∞

∑
i=0

Ωiσ2,

where Ωs can be computed based on coefficients as in (2.22). In the special case where et = 0 for all

t ≤ 0 we get

Var(yt|x) =
t

∑
i=0

Ωiσ2,

that is a function of σ and the coefficients. σ is assumed to be known prior to the analysis and parameters

are estimated from the model. Then, an estimator for σ2
y is given by

V̂ar(yt|x) =
t

∑
i=0

Ω̂iσ2.

2.9 Implementation

The most trivial implementation of DREGAR can be performed by assuming a grid of three values for

λ, γ and τ and solving the penalized likelihood within the grid. However, in this section we propose two

algorithms for estimating the parameters in DREGAR and adaptive-DREGAR that are computationally

less complex than the naive way of grid search. To this end, we use LARS [Efron et al., 2004], which has

a good performance in the correlated frameworks [Hebiri and Lederer, 2013].

We should stress that ε is unknown in DREGAR and must be estimated from an auxiliary step. For

k = 0, 1, . . ., we propose the following 6-step algorithm for DREGAR:
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Step 1. Estimate φ(k)(γ(k)) by minimizing ||y− H(p)φ||22 + γ|φ|1 where the tuning parameter is selected

using BIC, AIC, GCV, CV etc. We assume that the model selection criteria is the same in all steps

below.

Step 2. Estimate β(k)(λ(k)) by minimizing ||(y− H(p)φ̂(k))− X′β||22 + λ|β|1.

Step 3. Estimate θ(k)(τ(k)) by minimizing ||(y− H(p)φ̂(k) − X′ β̂(k))− Ĥ(q)θ||22 + τ|θ|1.

Step 4. Update β(k) → β(k+1) and λ(k) → λ(k+1) by minimizing ||(y− Ĥ(q) θ̂(k))− X′β||22 + λ|β|1.

Step 5. Update φ(k) → φ(k+1) and γ(k) → γ(k+1) by minimizing ||(y− Ĥ(q) θ̂(k) − X′ β̂(k+1))− H(p)φ)||22 +

γ|φ|1.

Step 6. Update θ(k) → θ(k+1) and τ(k) → τ(k+1) by minimizing ||(y− H(p)φ̂(k+1) − X′ β̂(k+1))− Ĥ(q)θ)||22 +

τ|θ|1.

Step 7. Return to Step 4 provided the algorithm does not meet the stopping criteria.

The same algorithm can be used for adaptive-DREGAR. However, we propose a two-step algorithm based

on adaptive-lasso [Zou, 2006] for adaptive-DREGAR that is computationally less complex and involves

fewer steps (2 < 6) compared to the non-adaptive one. The algorithm assumes the same tuning parameter

for the entire parameter space, but with different weights. The first step provides an estimation for ε

from an auxiliary adaptive-DREGAR(p,0) whereas the second step leads to an estimation for the entire

parameter space, Θ. We propose that iterating these two steps refines the estimation of ε in the first

step and improves the estimation of the parameters in the final stage. The algorithm can be summarized

as following:

Step 1. For k = 0, 1, . . ., estimate ε from the DREGAR(p,0) model by solving iteratively for k

(β̂(k+1), φ̂(k+1)) = arg min
β,φ
||y− X′ β̂− H(p)φ̂||22 + λ∗(k)|β|1 + γ∗(k)|φ|1,

where λ∗(k) = ω1/|β(k)|, γ∗(k) = ω1/|φ(k)|. β(0) and φ(0) are initial estimations from OLS or lasso

and we assume the same ω1 for both terms to simplify the problem to the ordinary adaptive-

lasso problem. The procedure of estimating/re-estimating in this step is continued till a stopping

criterion e.g., minimum AIC, BIC, GCV or CV, is met.

Step 2. Estimate ε from ε̂ = y − X′ β̂ − H(p)φ̂ using the estimations provided from the first step, and

substituting in the full model,

y = X′β + H(p)φ + Ĥ(q)θ + e,

and re-estimating all parameters by:

Θ̂ = (β̂(k+1), φ̂(k+1), θ̂(k+1)) = arg min
β,φ,θ
||y− X′β− H(p)φ− Ĥ(q)θ||22 + λ∗|β|1 + γ∗|φ|1 + τ∗|θ|1,

where λ∗ = ω2/|β(k)|, γ∗ = ω2/|φ(k)| and τ∗ = ω2/|θ(k)| for k = 0, 1, . . .. Similar to the first step, the

parameters are estimated using an estimate/re-estimate procedure.

More formally we minimize the following penalized likelihoods with respect to the parameters:
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Step 1. Q∗S1
(Θ) = ∑

t

(
(yt − x′tβ)−

p

∑
i=1

φiyt−i

)2

+
r

∑
i=1

λ∗i,1|βi|+
p

∑
j=1

γ∗j,1|φj|

Step 2. Q∗S2
(Θ) = ∑

t

(
(yt − x′tβ)−

p

∑
i=1

φiyt−i −
q

∑
j=1

θj ε̂t−j

)2

+
r

∑
i=1

λ∗i |βi|

+
p

∑
j=1

γ∗j |φj|+
q

∑
k=1

τ∗k |θk|

,

or equivalently in matrix form,

Q∗S1
(Θ) = (y− X′β− H(p)φ)′(y− X′β− H(p)φ)

+ λ∗1 |β|+ γ∗1 |φ|

Q∗S2
(Θ) = (y− X′β− H(p)φ− Ĥ(q)θ)′(y− X′β− H(p)φ− Ĥ(q)θ)

+ λ∗|β|+ γ∗|φ|+ τ∗|θ|

.

The first step provides an initial guess for ε. Replacing the estimations from Step 2 in 1 and repeating

the steps iteratively provides a solution to adaptive-DREGAR.

In both algorithms we define the stopping criteria by either setting a tolerance on the difference of

consecutive estimations; or by fixing a maximum number of iterations and then taking the estimates that

achieve the minimum BIC or AIC,

BIC = −2loglik + p log(T)

AIC = −2loglik + 2p

where loglik, p, T are estimated (non-penalized) log-likelihood using the parameters that are estimated

from both algorithms, the number of non-zero parameters and total observations respectively.

2.9.1 Choosing the tuning parameters

All regularization methods rely heavily on the choice of the tuning parameters, as these control the amount

of regularization and sparsity in the estimations. Consequently, choosing a proper value for any tuning

parameter is crucial. A number of methods have been proposed in the literature to select the tuning

parameters and weights in adaptive-lasso. One can utilize Cross Validation (CV) or Generalized Cross

Validation (GCV), see e.g. [Arlot et al., 2010, Usai et al., 2009, Tibshirani, 1996] and citations therein.

Although these techniques are recommended and discussed in the original paper of [Tibshirani, 1996],

using cross validation for model selection in time-dependent frameworks is criticized by some authors

e.g., [Medeiros, 2012] and [Shao, 1993]. BIC and AIC are also extensively studied in the literature, e.g.

[Wang, 2007]. In particular, [Zhang, 2010] recommends using BIC and proves that it enjoys the oracle

property in sparse model selection. The paper proposes also a Generalized Information Criterion (GIC)

that encompasses both AIC and BIC. Finally, [Hirose et al., 2011] propose Mallows’s Cp criteria for

selecting tuning parameters.
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All AIC, BIC, GCV and Cp are implemented in the R package https://cran.r-project.org/web/

packages/DREGAR/index.html associated with the adaptive-DREGAR method, but we will consider

closely CV and BIC in our simulation and real data studies.

2.9.2 Choosing model orders p and q

Some notes are required for selecting the autoregressive orders p and q. We propose two general ap-

proaches:

1. Setting a grid of P and Q values and choosing the model with minimal BIC or AIC within the grid.

2. Setting an upper limit for P and Q and letting the model choose the optimal orders.

Although the two approaches above look similar, the main difference is that the second approach needs

to remove the first P + Q observations a priori. That may cause problems in high-dimensional cases

where (usually) the number of observations is rather small. Then a rule of thumb is to choose the first

approach for small datasets and the second one for large datasets.

2.9.3 R package

An implementation of (adaptive) DREGAR using (two) six-step algorithm and Mallows’s Cp, AIC, BIC

and GCV for model selection is provided in the complementary R package that accompanies this chapter.

This is performed by the function dregar2. Moreover, the six-step algorithm for DREGAR and adaptive-

DREGAR is implemented in the function dregar6. Both functions allow different combination of orders

for dynamic and AR orders as well as several options for standardizing the data and setting the number

of iterations prior to the analysis. This R package encompasses two more functions to simulating data

from an arbitrary DREGAR model and generating stationary autoregressive coefficients. We refer to the

R package manual (https://cran.r-project.org/web/packages/DREGAR/DREGAR.pdf) for a detailed

description of the package.

2.10 Simulation study

In this section we follow the general outline proposed in [Ulgen, 1994, Tibshirani, 1996, Lozano, 2013,

Y. Nardi, 2011] to simulate data from our models. In particular, simulations in this section are divided

into two groups. In the first group, data are generated from a DREGAR(p,q) model and the tuning

parameters are selected by minimizing the 10-fold cross validation error, while in the second one we

choose the tuning parameters corresponding to the minimum BIC.

Under assumptions [a-d], we design the simulation study with varying number of parameters and models

as following:

• The coefficients are sampled from a uniform distribution in (−1, 1), where time-dependent

parameters are chosen so that the stationary polynomials have all roots unequal and outside

the unit circle.

https://cran.r-project.org/web/packages/DREGAR/index.html
https://cran.r-project.org/web/packages/DREGAR/index.html
https://cran.r-project.org/web/packages/DREGAR/DREGAR.pdf
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• 90%, 70% and 10% percent of REG coefficients are set to zero.

• The covariates are generated independently from a random AR(1) Gaussian process.

• e iid∼ σ× N(0, 1) with varying levels of noise σ ∈ {0.5, 1, 1.5}.

• Data are simulated for a range of values of T and r as well as {p, q} ∈ {1, 2}.

• Each combination of parameters is repeated 25 times.

• Cross validation and BIC are used for choosing the optimal tuning parameters.

For all datasets, we fit lasso (L), adaptive-lasso (AD), DREGAR (D-L), and adaptive-DREGAR (D-AD).

The models are compared in terms of Mean Squared Error, MSE = 1
25 ∑25

i=1(Θ̂−Θ◦)2, and BIC.

2.10.1 Simulation results

Figure (2.3) shows the comparisons between lasso (adaptive-lasso) versus DREGAR (adaptive-DREGAR)

for varying number of covariates r = (20, 120, 540) (top label) and observations T = (20, 40, 60) (middle

label) and for different time-dependent parameters p ∈ {1, 2}, q ∈ {1, 2}(bottom labels). We propose the

ratio of MSE amongst models namely adaptive-lasso and lasso versus adaptive-DREGAR and DREGAR

respectively. Obviously, if this ratio takes a value greater than one, then the MSE in the denominator is

less than the nominator and consequently the model in the denominator outbids the other one.

Figure 2.3: Comparison of adaptive-lasso (lasso) and adaptive-DREGAR (DREGAR) with respect to
MSE ratio for varying number of covariates, observations, p and q. Tuning parameters for all models

are chosen by CV.

As it is evident from Figure (2.3), adaptive-DREGAR (D-AD) and DREGAR (D-L) perform better than

ordinary adaptive-lasso (AD) and lasso (L), respectively, in terms of MSE ratio and for all combinations

of p and q as well as for different values of r and T. With regards to the number of covariates, as

expected, the figures shows that an increase in r compared to p + q results in a decrease in the effect of
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DA and AR components in the model, as noted also by [Hibbs Jr, 1973]. In these cases, D-AD and R-L

tend to ordinal AD and L and their corresponding MSE ratios tend to one. The figure also shows that

DREGAR outperforms the opponent for T � r. However, DREGAR shows considerably better results

than AL and L when r/T decreases, as shown in Figure (2.4).

Figure 2.4: Comparison of DREGAR and Lasso (top) as well as adaptive-Lasso versus adaptive-
DREGAR (bottom) with respect to MSE ratio of estimations under σ = 0.5 and sliding (r/T).

Figure (2.5) and (2.6) show similar comparisons for the case when the tuning parameters are selected

by BIC. In particular, Figure (2.5) compares adaptive-DREGAR and adaptive-lasso in terms of BIC for

T = 50, 100, 150, 200, 250 and r = 25, 75, 200, 300, 400. The results show that, increasing the number of

data points, T, results in a significant improvement in BIC for adaptive-DREGAR compared to adaptive-

lasso. However, adaptive-DREGAR shows a slightly better performance than adaptive-lasso if T � r.

Figure (2.6) shows the comparison between the models in terms of the mean squared error of the regression

parameter estimates. As it is evident from this figure, adaptive-DREGAR estimates the coefficients with

a lower level of bias compared to adaptive-lasso for all combinations of T and r.
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Figure 2.5: Comparison of adaptive-lasso and adaptive-DREGAR in terms of BIC under different
values for r and T. The tuning parameters are chosen by BIC.

2.11 Real data illustration

2.11.1 Analysis of air pollution data

In this section, we show the performance of the model on the National Mortality, Morbidity and Air Pol-

lution Study (NMMAPS) dataset. This dataset is publicly available from http://www.ihapss.jhsph.

edu/data/NMMAPS/ and contains daily mortality, air pollution, and weather data for 108 cities in the US

from January 1, 1987 to December 31, 2000. The variables include six indicators for mortality (total

non-accidental, cardiovascular disease, respiratory, pneumonia, chronic obstructive pulmonary disease,

accidental), six indicators of air pollution (repairable particulates (PM10)/(PM25), carbon monoxide

(CO), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2)) as well as three indicators of weather

(temperature (T), dew point temperature (D), relative humidity (H)). Similar to [Wu and Wang, 2012]

we study the relationship between ground level of ozone and indicators of air pollution and weather con-

ditions in Chicago in 1995. Differently to [Wu and Wang, 2012], we take the effect of carbon monoxide

(CO) into account. The covariates in the model consist of NO2, SO2, CO, PM10, temperature and

relative humidity as well as all two-ways interactions. We show the interactions by initials, for instance

NS represents the interaction between NO2 and SO2. A total number of 365 observations and 21 co-

variates are included in the analysis. All covariates and response are normalized to zero mean and unit

http://www.ihapss.jhsph.edu/data/NMMAPS/
http://www.ihapss.jhsph.edu/data/NMMAPS/
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Figure 2.6: Comparison of adaptive lasso and adaptive-DREGAR in terms of mean squared error of
β̂ under varying values for r and T. The tuning parameters are chosen by BIC.

variance. We compare the DREGAR model with lasso, REGARMA(3,1) ([Wu and Wang, 2012] opti-

mal model), DREGAR(p+q,0), DREGAR(p,0), DREGAR(0,q+p) and DREGAR(0,q) on the basis of a

number of commonly used criteria: BIC, AIC, Quasi-likelihood Information Criteria (QIC) [Pan, 2001]

and Consistent AIC (CAIC) [Bozdogan, 1987].

Following the second approach in Section § 2.9.2, we propose P = 5 and Q = 5 for the autoregressive

orders. The parameters are estimated using the algorithm in Section § 2.9, setting a maximum of 15 for

the iterations and selecting the tuning parameters by CV. Table (2.1) provides a detailed illustration of

the parameter estimations as well as information for comparison of the models. Non-zero time series

coefficients in the middle-bottom of the table propose an order of four and three for DREGAR as

well as DREGAR(1,0) and DREGAR(0,3) for the other models. DREGAR(4,3) shows better results

than REGARMA, DREGAR(p,0) and DREGAR(0,q) with respect to model performance as shown in

the top panel of table (2.1). In line with [Wu and Wang, 2012], our results show several significant

interactions, especially those between sulphur dioxide-temperature (ST) and humidity (SH), as well

as between particulates and temperature (PT). However, there are also some differences: for example

DREGAR(5,5) assigns a zero or significantly low weight to PH, SP and NT where REGARMA does not.

The additional variable CO shows a significant effect on ground level of O3 and non-zero effect for the

interaction with weather indicators, CT and CH. We further report the Ljung-Box test [Box and Pierce,

1970] statistics in the bottom of the table (2.1). With the exception of lasso and DREGAR(10,0), all
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Model comparison
Model BIC AIC CAIC QIC
Lasso 15467.69 15385.79 15488.69 42.39
DREGAR(5,5) 10302.58* 10182.55* 10333.58* 29.11*
DREGAR(10,0) 11419.65 11299.61 11450.65 32.25
DREGAR(0,10) 10860.55 10740.51 10891.55 30.68
DREGAR(0,5) 10854.76 10753.72 10880.76 30.20
DREGAR(5,0) 11414.39 11313.36 11440.39 31.75

Parameter estimation
Variables Lasso REGARMA(3,1) DREGAR(5,5) DREGAR(10,0) DREGAR(0,10) DREGAR(0,5) DREGAR(5,0)
Temperature 5.29 4.14 4.67 3.66 5.33 5.36 3.56
PM10(P) 0 0 0 0 0 0 0
SO2(S) -10.53 -9.74 -11.49 -8.69 -12.46 -11.86 -8.49
NO2(N) -2.87 -1.81 -1.94 -1.37 -1.69 -2.10 -1.52
Humidity(H) -1.10 -1.94 -1.34 -1.18 -1.32 -1.23 -1.12
CO(C) -0.18 - -0.44 -1.55 -0.93 -0.32 -1.27
NS 0 0.89 0.42 0.55 0.06 0.22 0.62
NP -0.41 -1.26 -0.47 -0.98 -0.43 -0.56 -1.15
NT 0 -1.30 0 0 0 0 0
NH 1.08 -0.90 0.34 0.22 0.01 0.38 0.42
SP 0 0.77 0 0.42 0 0 0.59
ST 6.29 4.40 6.96 4.81 7.69 7.15 4.29
SH 5.34 6.55 5.63 4.59 5.91 5.89 4.95
PT 3.60 4.89 2.88 2.57 3.14 3.22 2.56
PH 0 -2.40 -0.08 0 0 0 0
TH 0 0 0 0 0.19 0.04 0
CN 0 - 0 0 0.25 0.25 0
CS 0 - 0 0 0 0 0
CP 0 - 0 0 0 0 0
CT -0.47 - -1.30 -0.41 -1.34 -1.13 -0.17
CH -1.61 - -0.57 0 -0.35 -1.22 -0.57

Time series coefficients
Lasso REGARMA(3,1) DREGAR(5,5) DREGAR(10,0) DREGAR(0,10) DREGAR(0,5) DREGAR(5,0)
- φ1 = 1.27 φ1 = 0.13 φ1 = 0.36 θ1 = 0.46 θ1 = 0.47 φ1 = 0.36
- φ2 = −0.28 φ2 = 0 φ2 = 0 θ2 = 0 θ2 = 0 φ2 = 0
- φ3 = 0 φ3 = 0 φ3 = 0 θ3 = 0.07 θ3 = 0.09 φ3 = 0
- θ1 = −0.88 φ4 = 0.036 φ4 = 0 θ4 = 0 θ4 = 0 φ4 = 0
- - φ5 = 0 φ5 = 0 θ5 = 0 θ5 = 0 φ5 = 0
- - θ1 = 0.31 φ6 = 0 θ6 = 0 - -
- - θ2 = 0.03 φ7 = 0 θ7 = 0 - -
- - θ3 = 0.14 φ8 = 0 θ8 = 0 - -
- - θ4 = 0 φ9 = 0 θ9 = 0 - -
- - θ5 = 0 φ10 = 0 θ10 = 0 - -

Ljung-Box statistic
Lasso REGARMA(3,1) DREGAR(5,5) DREGAR(10,0) DREGAR(0,10) DREGAR(0,5) DREGAR(5,0)

P-value 0 0.635 0.82 0.08 0.813 0.704 0.09

Table 2.1: (Top) comparing lasso, DREGAR and REGARMA with respect to BIC, AIC, CAIC and
QIC where the asterisk denotes the minimum value. (Middle-top) parameter estimation for regression
terms. (Middle-bottom) Corresponding estimation for time-dependent coefficients. (Bottom) Ljung-

Box p-value for the null hypothesis of residuals following white noise.

models show good fitting, i.e. no evidence against the white noise assumption. Figure (2.7) displays

the scatter plot of lasso and DREGAR(5,5) fitted versus observed response, the residuals from the

DREGAR(4,3) model and the corresponding sample ACF and PACF. The small curvature in the scatter

plot, mentioned also by [Wu and Wang, 2012], can be an indication of a particular weather condition

that results in an interaction between primary pollutants. The sample ACF and PACF plot suggest that

the residuals are indeed white noise as confirmed also by the p-value of the Ljung-Box test (0.82).

Finally, we have also compared the fit of the best DREGAR model, DREGAR(4,3), with a DREGAR(0,7)

model (the same as a REGAR(7) model), in order to assess the benefit in having different autoregressive

structures for the response and the predictors, a unique feature of the model that we propose in this

chapter. Without penalising the coefficients, the maximum likelihood for DREGAR(4,3) is -1106.884

and that of DREGAR(0,7) is -1110.832, suggesting an improved fit for the DREGAR(4,3) model.
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Figure 2.7: (a) scatter plot of DREGAR(4,3) and lasso fitted versus observed y, (b) DREGAR(4,3)
residuals, (c) sample ACF and PACF for DREGAR(4,3) residuals,(d) sample PACF for DREGAR(4,3)

residuals.

2.11.2 Analysis of stock market data

For the second real application we take an example from the stock market. To this end we apply

DREGAR(p,q), DREGAR(p,0) and DREGAR(0,q) to DowJones30 daily returns from 2015. Data are

collected from yahoo finance (https://finance.yahoo.com) and contain 251 closing prices for 30 indices

in the DowJones market. We take the IBM index as the response and the remaining 29 indices as the

covariates and study the correlations via the DREGAR family of models. The variables are listed as

follows: 3M (MMM), American Express (AXP), Alcoa (AA), AT&T (T), Bank of America (BAC),

Boeing (BA), Caterpillar (CAT), Chevron (CVX), Cisco Systems (C), Coca-Cola (KO), DuPont (DD),

ExxonMobil (XOM), General Electric (GE), Hewlett-Packard (HPQ), The Home Depot (HD), Intel

(INTC), IBM (IBM), Johnson & Johnson (JNJ), JPMorgan Chase (JPM), Kraft (KRFT), McDonald’s

(MCD), Merck (MRK), Microsoft (MSFT), Pfizer (PFE), Procter & Gamble (PG), General Motors

(GM), United Technologies (UTX), Verizon (VZ), Wal-Mart (WMT), Walt Disney (DIS ).

We apply first differences of the log-prices to get stationary returns [Kwiatkowski et al., 1992]. DREGAR(5,5),

DREGAR(10,0), DREGAR(0,10), DREGAR(5,0) and DREGAR(0,5) are applied to the data and the

tuning parameter is selected using CV. The models are compared on the basis of BIC, AIC, CAIC, QIC,

Ljung-Box statistic and sparsity. The results are shown in Table (2.2).

This tables shows that DREGAR(5,5) is the winner amongst other methods with respect to BIC, AIC

and CAIC as well as sparsity. Fitting DREGAR(5,5) to data results in an order of 3 for the dynamic

term and an order of 4 for the residuals. So the final selected model is DREGAR(3,4). Among the most

https://finance.yahoo.com
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significant (non-zero) variables, the model selects: MSFT (coefficient 0.3), HPQ (0.23), VZ (0.20), MMM

(0.14), MRK (0.13) and CVX (0.10). Figure (2.8) top shows observed y versus fitted values for lasso

and DREGAR(3,4). From this figure, DREGAR(3,4) has a better fit compared to lasso in terms of the

correlation between the observed and fitted values (ρy,ŷDREGAR(3,4)
= 0.831, ρy,ŷLasso = 0.819). Finally, the

sample ACF and PACF at the bottom of figure (2.8) confirm the results from the Ljung-Box statistic,

showing that the residuals from DREGAR(3,4) are white noise.

Following the same steps as the previous section, we compare the fit of the best DREGAR(3,4) with

DREGAR(0,7) model. Without penalising the coefficients, the maximum likelihood for DREGAR(3,4)

is −243.98 and that of DREGAR(0,7) is −251.41, suggesting an improved fit for the DREGAR(4,3)

model.

Model BIC AIC CAIC QIC Ljung-Box p-value #Non-zero
Lasso 600.74 547.84 615.72 2.4 0.52 15
DREGAR(5,5) 575.10* 528.91* 598.43* 2.3 0.83 13
DREGAR(10,0) 585.94 542.61 610.10 2.4 0.56 14
DREGAR(0,10) 589.70 536.82 604.70 2.3 0.54 15
DREGAR(5,0) 590.46 537.58 605.47 2.4 0.58 15
DREGAR(0,5) 596.08 543.19 611.10 2.3 0.65 15

Table 2.2: Comparison of lasso and DREGAR for the DowJones30 dataset on the basis of BIC, AIC,
CAIC, QIC, sparsity and Ljung-Box statistic. For the information criteria, the asterisk denotes the

minimum.
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2.12 Conclusion remarks

This chapter addressed the problem of dynamic regression in the presence of autocorrelated residuals

by proposing an extension of the regression model of [Wang et al., 2007]. The extension allows lags

of the response. We showed that adding this dynamic term results in a structure more similar to a

general ARMAX than REGAR and REGARMA, and with fewer difficulties in parameter estimations

than REGARMA. Further, we proposed an l1 penalized likelihood approach for variable selection for

both regression and time-dependent coefficients. Additionally, we discussed the theoretical properties of

the regularized estimators of a special case of the model, the one without the autocorrelated residuals,

as the general form of the model suffers an OLS bias. We proposed a two-step iterative algorithm for

parameter estimation and provided an R package for the implementation and simulation of data from

the model. Finally, we show the applicability of the model and comparison with existing approaches by

means of two simulation studies as well as two real data applications.

2.12.1 Future study

For future work, we plan to extend the methods presented in this chapter by estimating DREGAR

coefficients using penalties that strike a trade-off between l1 and l2, such as elastic-net [Zou and Hastie,

2005]. We expect these methods to work well, as the l2 penalty imposes less weight on small coefficients

compared to the l1 penalty. In addition, the covariance matrix of the regressors in DREGAR is not

diagonal, thus violating the assumption of orthogonal predictors. In other words, there are always some

correlations amongst the predictors. In this situation lasso algorithm, in particular LARS, chooses one of

the regressors and ignores the other correlated ones. A weighted sum of l1 and l2 penalties can preserve

the collinearity in time-dependent lags and is thus expected to lead to more accurate estimations.



Chapter 3

A differentiable alternative to l1
lasso penalty

3.1 Main question

Let the underlying model be y = Xβ + e where y, X , β and e are response, covariates, unknown vector

of regression coefficients and i.i.d Gaussian error ∼ N(0, σ2). In the previous chapter we imposed l1
penalties on the (log)likelihood to derive a constrained estimation of the parameters. In other words, we

imposed the constraint ∑i |βi| ≤ K, K ≥ 0 on the parameters, as there is a one-to-one correspondence

between K in this definition and λ in the previous chapter. In this chapter we discuss a differentiable

replacement for the l1 penalty that is capable of producing similar results to lasso as well as Ridge and

a range of smooth regularizations.

3.2 Introduction

We start with proposing a smooth alternative to the absolute value function that applies in the l1
penalized likelihood, lasso. The main idea of a smooth penalty is introduced by some authors [Hebiri

et al., 2011, Hebiri, 2008, Fan and Li, 2001, Zou and Hastie, 2005] and consists in adding a differentiable

term to the likelihood or l1 penalized likelihood, resulting in a trade off between maximum sparsity in

lasso and increasing the number of selected covariates. It should be stressed that the maximum sparsity

of lasso is min(r, T) where r is the number of covariates and T is total observations. Then, for r � T lasso

is limited to T variables that is a limitation for a variable selection method. Ridge [Hoerl and Kennard,

1970], elastic-net [Zou and Hastie, 2005], smoothly clipped absolute deviation (SCAD) [Fan and Li, 2001]

and smooth lasso [Hebiri et al., 2011] are four well known examples of smooth models. For instance,

the amount of smoothness in elastic-net is controlled by the l2 term; or similarly in smooth-lasso it is

controlled by the second norm over the consecutive difference of the coefficients. Amongst these models,

ridge is differentiable at zero whereas SCAD, elastic-net and smooth-lasso are not. We should stress

that non-smooth penalties can lead to some limitations in certain cases, such as computational efficiency

for non-linear models [Schmidt et al., 2007a] or derivation of the degrees of freedom for model selection

45
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criteria, such as the generalised information criterion [Konishi and Kitagawa, 1996], as pointed out by

[Abbruzzo et al., 2014]. It is worth noting that in strictly smooth models like ridge sparsity suffers,

whereas models like elastic-net and smooth-lasso require a separate tuning parameter to be optimized.

In this chapter, we propose a differentiable penalty that allows choosing from a nearly flat to a very

sharp regularization. The use of a differentiable term results in reducing the optimization problem to an

ordinary minimization problem that can be implemented by a broad range of algorithms in the literature.

In other words, the proposed differentiable penalty removes the dependency of the method to specialized

optimization algorithm, e.g. LARS, as well as providing more flexibility than l1 penalized likelihood by

covering l0, l1, l2 and more norms.

3.3 Our proposal: dlasso

Looking at the literature for differentiable alternatives to the absolute value, a number of proposals have

been made, such as

|x| ≈
√

x2 + ε, ε ∈ R+, (3.1)

x2
√

x2 + u2
≤ |x| ≤

√
x2 + u2, u ∈ R+. (3.2)

|x| ≈ |x|α =
1
α

[log(1 + e−αx) + log(1 + eαx)], α ∈ R+ (3.3)

Equation (3.1) is studied in details by [Ramirez et al., 2014]. It is a special case of (3.2) and it is

straightforward to show that the length of the interval in (3.2) is always less than u [Nesterov, 2005]. The

approximation in (3.3) has been used by [Schmidt et al., 2007b] in a penalized likelihood context. This

function is twice differentiable and |x| = lim
α→∞
|x|α with the maximum absolute deviance of

∣∣|x| − |x|α∣∣ ≤
2 log(2)

α , but it does not pass through zero.

In this chapter, we propose the following penalty function

f (x, s) = x(
2√
π

∫ x/s

0
e−t2

dt), s ∈ R+, (3.4)

which we call it dlasso for differentiable lasso. The second term in RHS of (3.4) is so called error function,

erf(x/s), and can be considered as a probability distribution, see [Olver et al., 2010] for a comprehensive

discussion about error function. The accuracy of approximating |x| by this function increases as s tends

to zero.

For brevity, in the rest of this chapter we call ε, u, α and s in (3.1-3.4) precision values. Figure (3.1)

compares these functions for different values of precision. As is evident from this graph, for the same

value of the precision, dlasso converges to |x| at the speed faster than the other opponents. Moreover,

function in (3.4) passes the origin regardless of the value of precision that is of interest for a loss function.

All these properties motivate us to utilize this function in linear regularization problems as a replacement

to l1 norm. To this end, we borrow the definition of a smooth function in [Ramirez et al., 2014] and show
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that all proposed functions in (3.1-3.4) are smooth approximations of absolute value function.

Definition 3.1 (Smooth approximation of |x|). A function f : R→ R is a smooth approximation of |x|
if it is differentiable and the following limits hold,

lim
x→±∞

f (x)

|x| = 1, lim
x→±∞

f ′(x)

sign (x)
= 1.

Having Definition (3.1) and using simple algebra,one can show that all functions in (3.1-3.4) are smooth.

This chapter is arranged as follows. In Section § 3.4 we prove some key properties of dlasso. Next, the

application of dlasso in penalized likelihood is discussed in Section § 3.5. Theoretical properties of a linear

model under this new penalty are studied in § 3.6. A discussion about computation complexity of the

dlasso penalty as well as proposing a simple approximation for Gaussian CDF are provided in Section

§ 3.7. Algorithm and selection of the tuning parameter are discussed in Section § 3.8. Finally, simulations

and real data illustrations in Section § 3.11 accompany the theoretical results.

3.4 Some key properties of dlasso

The proposed function in equation (3.4) is a special case of a general family of functions as follows,

f (x, s, α, γ) = x
[

2√
π

( x
s )α∫

0

e−t2
dt
]γ

= x×
[

erf

(
(

x
s

)α

)]γ

, {γ, α} ∈ R, s > 0, x ≥ 0,

so that α = γ = 1 results in the function in (3.4), dlasso. We focus entirely on this case and leave the

general form of the function for the future studies. Figure (3.2) shows a three dimensional demonstration

for the behaviour of dlasso for different values of s. As it is evident from this figure, the proposed

function shows a variety of geometric shapes as the values of s changes. For instance, (a), (c) and (d)

are corresponded to similar penalties to lasso, ridge and flat (OLS).

We should stress that dlasso is not convex. To show this fact, we find the second derivative of the

function,

d2

dx
f (x, s) =

d
dx

(
erf (

x
s

) + 2(
x
s

)φ

(
x
s

, 0,
1√
2

))
=

2
s

φ(
x
s

, 0,
1√
2

) +
2
s

φ(
x
s

, 0,
1√
2

)− 4
x

(
x
s

)3φ(
x
s

, 0,
1√
2

)

= 4φ(
x
s

, 0,
1√
2

)(
1
s
)

(
1− (

x
s

)2
)

,

and see that the function is not necessarily positive (or negative). For example the second derivative is

positive if

(
1− ( x

s )2
)
> 0 or equivalently |x| < s.
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Figure 3.1: Comparison of the different alternatives to absolute value function. From up-left to the
down-right the precision values decrease at the same rate.

Further, for a fixed value of s = 2√
π

and small values of x dlasso behaves like x2. This fact, as illustrated

in Figure (3.3), shows that the function has a similar behaviour to x2 for small (x, s = 2√
π

). This

correspondence motivates the case of the second norm, ridge penalties.

Former can be shown by fixing s and focusing on the small values for x. Thus

2√
π

x
∫ x/s

0
e−t2

dt x→0
=

2√
π

x2

s
e−( x

s )2
= x2 2

s
φ(

x
s

, µ = 0, σ =
1√
2

),

where φ(.) is the density function for normal distribution. By setting s = 2√
π

, the limit becomes

√
πx2 φ(

√
πx
2 , 0, 1√

2
). On the other hand, φ(

√
πx
2 , 0, 1√

2
)

x→0≈ 1√
π

and
√

πx2φ(
√

πx
2 , 0, 1√

2
) ≈ x2, that is

an approximation for x2. We should stress that, to reduce computation time of 2√
π

= 1.128379, we set
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Figure 3.2: 3D demonstration and countor plot for the dlasso under s = 0.01, 0.5, 1, 10.

s = 1 in applications.

Moreover, one can derive an identical form of dlasso using the concept of normal density and distribution.

To this end, we use the concept of half normal density HN(z, 0, σ) =
√

2
σ
√

π
e
−z2

2σ2 , z ≥ 0 in [Ahsanullah

et al., 2014, p.18]. Denote the cumulative distribution function of this density by CHN(z, 0, σ). Then,
2√
π

∫ x/s
0 e−t2

dt can be replaced by CHN( x
s , 0, 1√

2
). Further,

CHN(z, 0, σ) =

√
2

σ
√

π

∫ z

0
e
−t2

2σ2 dt = 2
∫ z

0

1√
2πσ

e
−t2

2σ2 dt

= 2Φ(z, 0, σ)− 1, (3.5)

where Φ(z, 0, σ) is the cumulative normal distribution with mean of zero and variance equals to σ2.

Consequently, erf ( x
s ) = 2√

π

∫ x/s
0 e−t2

dt = CHN( x
s , 0, 1√

2
) = 2Φ( x

s , 0, 1√
2
)− 1.

Finally, we show that the maximum deviance of the function from |x| decreases exponentially with s.

Obviously for x = 0 the difference is zero. Then we prove
∣∣|x| − x(2Φ( x

s , 0, 1√
2
)− 1)

∣∣ ≤ 2sφ( x
s , 0, 1√

2
) for
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x

f(
x,

s)

x erf(x s) , s=2 π
x erf(x s) , s=0.01
x2

x

Figure 3.3: Comparison of x2 and |x| with limit behaviour of x (2Φ(x/s, 0, 1/
√

2)− 1) for s = 0.01
and s = 2√

π
over the small values for x.

all x 6= 0 and s > 0. To this end, we have

Φc(
x
s

, 0,
1√
2

) = 1−Φ(
x
s

, 0,
1√
2

) =
∫ ∞

x
s

1√
π

e−t2
dt

[ from (
t

( x
s )

> 1) ] <
∫ ∞

x
s

(
t

( x
s )

)
1√
π

e−t2
dt

= (
1

2( x
s )

)
1√
π

e−( x
s )2

.

Using the equation g(t) = Φc( x
s , 0, 1√

2
)− 1√

π

( x
s )

1+2( x
s )2 e−( x

s )2
, one can prove that Φc( x

s , 0, 1√
2
) > 1√

π

( x
s )

1+2( x
s )2 e−( x

s )2

[Chang et al., 2011]. Then,

1√
π

( x
s )

1 + 2( x
s )2 e−( x

s )2
< Φc(

x
s

, 0,
1√
2

) < (
1

2( x
s )

)
1√
π

e−( x
s )2

.

Referring to [Abramowitz and Stegun, 2012], a tighter bound is given by

e−( x
s )2

( x
s ) +

√
( x

s )2 + 2
<
∫ ∞

x
s

e−t2
dt ≤ e−( x

s )2

( x
s ) +

√
( x

s )2 + 4
π

Or:
1√
π

e−( x
s )2

( x
s ) +

√
( x

s )2 + 2
< Φc(

x
s

, 0,
1√
2

) ≤ 1√
π

e−( x
s )2

( x
s ) +

√
( x

s )2 + 4
π

.
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Using the inequalities above we get,

x > 0→
∣∣x− x(2Φ(

x
s

, 0,
1√
2

)− 1)
∣∣ =

∣∣2x(1−Φ(
x
s

, 0,
1√
2

))
∣∣

= 2x(1−Φ(
x
s

, 0,
1√
2

))

≤ 2x√
π

e−( x
s )2

( x
s ) +

√
( x

s )2 + 4
π

=
2s√

π
e−( x

s )2 1

1 +
√

1 + 4s2

πx2

= φ(
x
s

, 0,
1√
2

)
2s

1 +
√

1 + 4s2

πx2

≤ 2s√
π

e−( x
s )2

= 2sφ(
x
s

, 0,
1√
2

).

Following a similar approach for x < 0 leads to the same result. Consequently,

∣∣|x| − x(2Φ(
x
s

, 0,
1√
2

)− 1)
∣∣ ≤ 2φ(

x
s

, 0,
1√
2

)
s

1 +
√

1 + 4s2

πx2

≤ 2sφ(
x
s

, 0,
1√
2

).

The final equation tends to zero as s→ 0 at an exponential speed.

3.5 Regularized regression based on dlasso

Let X = (x1, x2, x3, . . . , xr) be a known design matrix where xi, i = 1, 2, . . . , r are independent column

vectors of length T and the corresponding ratio r/T can be much greater than 1. We assume linearity

for the link function y = Xβ + e where β = (β1, β2, . . . , βr) are regression coefficients and e = {ei, i =

1, 2, . . . , T} i.i.d∼ N(0, σ2) are independent fixed-level noise. Then ML estimation of the parameters is

equivalent to minimizing 1
2 (y− Xβ)′(y− Xβ) with respect to β.

As discussed in Chapter § 1, given T < r, a standard approach to cope with high dimensionality is by

imposing a penalty term on the likelihood that results in a constrained minimization problem 1
2 (y −

Xβ)′(y− Xβ) + λ ∑r
i=1 |βi| where λ is the tuning parameter and controls the amount of sparsity in the

solutions. Replacing the absolute value function with dlasso leads to

Q(β, s) =
1

2σ2 (y− Xβ)′(y− Xβ) + λ
2√
π

r

∑
i=1

βi

∫ βi/s

0
e−t2

dt, s > 0, λ ≥ 0.

Without loss of generality we assume that σ2 = 1 in the entire chapter. Rewriting this equation using

(3.5) leads to

Q(β, s) =
1
2

(y− Xβ)′(y− Xβ) + λ
r

∑
j=1

βi

(
2Φ(

βi
s

, 0,
1√
2

)− 1
)

s > 0, λ ≥ 0. (3.6)
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Consequently, the problem reduces to minimizing (3.6) with respect to β. Without loss of generality we

define λ∗ = 2λ and remove the multiplier from the first equation in the RHS of (3.6). Then,

L(β) = (y− Xβ)′(y− Xβ) + λ∗
r

∑
j=1

βi

(
2Φ(

βi
s

, 0,
1√
2

)− 1
)

s > 0, λ∗ ≥ 0. (3.7)

We should stress that the dlasso penalty together with the tuning parameter λ can be seen as a function

of two tuning parameters,

P(λ, s) = λβ

(
2Φ(

β

s
, 0,

1√
2

)− 1
)

where there is some redundancy between those two tuning parameters, i.e.

{
P(λ, s)→ 0 if λ→ 0

P(λ, s)→ 0 if s→ ∞.

We should notice that fixing λ and sliding s → ∞ compared to fixing s and sliding λ → 0 has different

effect on the shape of the final function, so that for the first case s → ∞ would flatten the curvature

of the function at zero whereas λ → 0 flatten the gradient of the function, given s is close enough to

zero. In this chapter we do not follow this idea and assume that s is a fixed quantity that controls the

sharpness of the penalty function at zero.

It should be noticed that (3.6) is differentiable with respect to β. In particular, the first derivative is,

∂L
∂β

= −X′(y− Xβ) + λ∗
(

Ir×r(2Φ(
β

s
, 0,

1√
2

)− 1) + 2
[

φ(
β

s
, 0,

1√
2

)

]
r×r

β

s

)
,

where

[
φ( β

s , 0, 1√
2
)

]
r×r

is a diagonal matrix consists of derivatives. Given X is normalized so that

X′X/T → Ir×r,

∂L
∂β

= −X′y + Tβ + λ∗
(

2Ir×rΦ(
β

s
, 0,

1√
2

)− 1 + 2
[

φ(
β

s
, 0,

1√
2

)

]′
r×r

β

s

)
,

which exists for any β.

For an illustrative example, take the linear function y = xβ and assume that x = 1 as well as the

following constrained minimization problem,

L(β) = (y− β)2 + λ∗β

(
2Φ(

β

s
, 0,

1√
2

)− 1
)

, s > 0, λ∗ ≥ 0.

Finding the derivative with respect to β results in

d
dβ

L(β) = λ∗
(

2Φ(
β

s
, 0,

1√
2

)− 1 + 2(
β

s
)φ(

β

s
, 0,

1√
2

)

)
− (y− β) = 0,
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for which there is no close form solution. Thus, we numerically find the root of this equation for different

values of s and show the corresponding effect on the estimation. Results for s ∈ {0.01, 0.5, 1, 20}, y ∈
(−1.5, 1.5) and λ∗ = 1 are shown in Figure (3.4). As it is evident from this plot, (a), (c) and (d) show

similar regularization to lasso, ridge and non-penalized linear regression respectively.

3.6 Theoretical properties of dlasso estimator

In this section we concentrate on the theoretical properties of the penalized likelihood under the dlasso

penalty. For this purpose, we show that the estimators asymptotically reach the similar bias to lasso,

given s→ 0. To this end we follow a similar approach to [Knight and Fu, 2000] also introduced in Section

§ 1.3.1 and define a loss function so that it reaches the minimum at the estimators, β̂.

Theorem 3.1 (Similarity to lasso). For any u ∈ Rr, λ∗ ≥ 0 and s > 0 define,

k(u, s) = L(β + u)− L(β),

where L(β) is the penalized (log)likelihood in equation (3.7). Then,

lim
s→0

k(u, s) = u′X′Xu− 2u′N
(

0, σ2(X′X)

)
+ λ∗

r

∑
i=1

(
|ui|I(βi = 0) + ui sign (βi + ui)

)
,

where N denotes a normally distributed random variable.

Proof. Recall from equation (3.7)

L(β) = (y− Xβ)′(y− Xβ) + λ∗
r

∑
i=1

βi

(
2Φ(

βi
s

, 0,
1√
2

)− 1
)

s > 0, λ∗ ≥ 0.

Then,

lim
s→0

k(u) = lim
s→0

L(β + u)− lim
s→0

L(β)

= (e− Xu)′(e− Xu)− e′e + lim
s→0

{
2λ∗

r

∑
i=1

βi

∫ βi+ui
s

βi
s

1√
π

e−t2
dt

+ λ∗
r

∑
i=1

ui

(
2Φ(

βi + ui
s

, 0,
1√
2

)− 1
)}

= u′X′Xu− 2u′N
(

0, σ2(X′X)

)
+ lim

s→0
λ∗

r

∑
i=1

(
2βi

ui
s

φ(
ui
s

, 0,
1√
2

) + lim
s→0

{
ui

(
2Φ(

βi + ui
s

, 0,
1√
2

)− 1
)})

= u′X′Xu− 2u′N
(

0, σ2(X′X)

)

+ lim
s→∞

λ∗
r

∑
i=1


ui

(
2Φ( ui

s , 0, 1√
2
)− 1

)
βi = 0

2βi
ui
s φ( ui

s , 0, 1√
2
) + ui

(
2Φ( βi+ui

s , 0, 1√
2
)− 1

)
βi 6= 0

= u′X′Xu− 2u′N
(

0, σ2(X′X)

)
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Figure 3.4: The estimation of β in linear function y = xβ for x = 1 results from imposing

λ∗β
(
2Φ(

β
s , 0, 1√

2
)− 1

)
constrain on the minimization problem minβ(y− β)2 under different values of s

as well as fixed λ∗ = 1. The gray solid line shows the y = β line and dotted vertical lines show ± λ∗

2 .
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+ λ∗
r

∑
i=1


|ui| βi = 0

ui βi + ui > 0

−ui βi + ui < 0

,

and

k(u) = u′X′Xu− 2u′N
(

0, σ2(X′X)

)
+ λ∗

r

∑
i=1

(
|ui|I(βi = 0) + ui sign (βi + ui)

)
.

Proof is completed.

Theorem (3.1) shows that the limit distribution of estimator under the dlasso penalty is similar to lasso,

provided s is close enough to zero. That is, the penalization is capable of producing sparse estimations.

This theorem guarantees that the estimations are similar to lasso (provided s is close enough to zero)

but does not provide any optimal value for s to ensure this convergence. Then, in the next theorem we

show that the minimum speed of s that guarantees the convergence of estimations to lasso is T−(1/2+ε)

for any ε > 0.

Theorem 3.2 (Optimal speed of s for reproducing lasso). Let β be a sparse set of coefficients, u ∈ Rr,

sT = s/(T1/2+ε) → 0, ε > 0, λ∗T/
√

T → λ◦ ≥ 0, max1≤i≤r xix′i < ∞ and X′X/T
p→ Σ where Σ is

non-singular. Then, (a)
√

T(β̂T − β)
d→ arg minu k(u) where,

k(u) = −2u′N(O, σ2Σ) + u′Σu + λ◦
r

∑
i=1
{ui sign (βi)I(βi 6= 0) + |ui|I(βi = 0)},

(b) this configuration guarantees obtaining the sparse estimation of the parameters.

Proof. We define,

kT(u) = L(β +
u√
T

)− L(β).

Then

kT(u) = (e− X
u√
T

)′(e− X
u√
T

)− e′e + 2λ∗T

r

∑
i=1

βi

∫ βi+
ui√

T
s

βi
s

1√
π

e−t2
dt

+ λ∗T

r

∑
i=1

ui√
T

(
2Φ(

βi + ui√
T

s
, 0,

1√
2

)− 1
)

T→∞
= u′Σu− 2u′N(0, σ2Σ) + lim

T→∞
2λ∗T

r

∑
i=1

βi

∫ βi+
ui√

T
s

βi
s

1√
π

e−t2
dt

+ lim
T→∞

λ∗T

r

∑
i=1

ui√
T

(
2Φ(

βi + ui√
T

s
, 0,

1√
2

)− 1
)

= u′Σu− 2u′N(0, σ2Σ) + 2λ◦
r

∑
i=1

βi
ui

s
√

π
lim

T→∞
e−(

βi+
ui√

T
s )2

+ λ◦
r

∑
i=1

ui

(
lim

T→∞
2Φ(

βi + ui√
T

s
, 0,

1√
2

)− 1
)
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= u′Σu− 2u′N(0, σ2Σ)

+ lim
T→0


λ◦ ∑r

i=m+1 ui

(
2Φ(

ui√
T

s , 0, 1√
2
)− 1

)
βi ∈ S◦

2λ◦ ∑m
i=1

(
βi

ui
s
√

π
e−(

βi+
ui√

T
s )2

+ ui

(
2Φ(

βi+
ui√

T
s , 0, 1√

2
)− 1

))
βi ∈ Sc

◦

,

where S◦ and Sc
◦ are sets of zero and non-zero coefficients respectively. This completes the first part of

the theorem. For the second part of theorem, we follow a similar approach to Section § 1.3.3 and assume

that m− first coefficients are non-zero whereas the rest r−m coefficients are zero and define the following

splits,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, N =

[
N1

N2

]
, u =

[
u1

u2

]
,

where Σ11, Σ22, Σ21 = Σ′12 are m×m, (r−m)× (r−m) and (r−m)×m block matrices corresponding to

non-zero and zero coefficients. Further, u1 and N1 are vectors of the length m corresponded to non-zero

coefficients, respectively. Finding the derivative of kT(u) with respect to u leads to

∂

∂u
k(u) =

∂

∂u

(
u′Σu − 2u′N + 2λ◦

r

∑
i=1

βi
ui

s
√

π
e−(

βi
s )2

dtλ◦
r

∑
i=1

ui

(
2Φ(

βi
s

, 0,
1√
2

)− 1
))

= 2u′Σ− 2N(0, σ2Σ)

+
∂

∂u


λ◦ ∑r

i=m+1 ui

(
2Φ(

ui√
T

s , 0, 1√
2
)− 1

)
β ∈ S◦

2λ◦ ∑m
i=1 βi

ui
s
√

π
e−(

βi+
ui√

T
s )2

+ λ◦ ∑m
i=1 ui

(
2Φ(

βi+
ui√

T
s , 0, 1√

2
)− 1

)
β ∈ Sc

◦

.

Using the assumption that s → 0 at the speed faster than
√

T, the above equation results in a sparse

estimation of the parameter because,

∂

∂u
k(u) = 2u′Σ− 2N(0, σ2Σ)

+
∂

∂u


λ◦ ∑r

i=m+1 ui

(
2Φ(

ui√
T

s , 0, 1√
2
)− 1

)
β ∈ S◦

2λ◦ ∑m
i=1 βi

ui
s
√

π
e−(

βi+
ui√

T
s )2

+ λ◦ ∑m
i=1 ui

(
2Φ(

βi+
ui√

T
s , 0, 1√

2
)− 1

)
β ∈ Sc

◦

= 2u′Σ− 2N(0, σ2Σ) +
∂

∂u


λ◦ ∑r

i=m+1 |ui| β = 0

λ◦ ∑m
i=1 ui β > 0

λ◦ ∑m
i=1−ui β < 0

,

and

u′1Σ11 − N1 +
λ◦
2

sign (β1:m) = 0, u′1Σ12 − N2 ±
λ◦
2

1 = 0,

that is similar to Theorem (1.1) (See further [Knight and Fu, 2000, Eq. 9 and 10]). Then solving the

equations with respect to u1 results in,

−λ◦
2

1 ≤ Σ21Σ−1
11 (N1 −

λ◦
2

sign (β1:m))− N2 ≤
λ◦
2

1,
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where 1 is a vector of 1’s.

Proof is completed.

For the special case of β1 = β2 = . . . = βr = 0 the final inequality results in − λ◦
2 1 ≤ N2 ≤ λ◦

2 1 that is

non-zero probability at 0 for zero coefficients.

In the proof of Theorem (3.2), we assumed that sT
√

T → 0. This gives a way for determining the

optimal value of s to get similar results to lasso. In other words, if one chooses any s less than 1/
√

T

then Theorem (3.2) guarantees the similarity of results to the lasso in terms of the distribution of the

estimations, provided that there are enough observations.

On the other hand, in the following corollary we discuss the asymptotic property of penalized likelihood

under a vector of precisions s∗ so that s∗i
√

T → qi ∈ [0, ∞), i = 1, 2, . . . , r. This case can be considered

as an adaptive form of penalization.

Corollary 3.1 (Arbitrary value for s). Under similar conditions to Theorem (3.2) but given a vector of

precisions sT,i = s∗i /
√

T → qi ≥ 0, i = 1, 2, . . . , r, and,

u′2
s∗

φ(
u2

s∗
, 0,

1√
2

)
T→∞
= 0

and u2 represents near-zero estimations, then, minimizing (3.7) results in less sparse estimation of the

parameters than lasso.

Proof. Similar to Theorem (3.2) we define kT(u) = L(β + u/
√

T)− L(β). Then,

kT(u) = (e− X
u√
T

)′(e− X
u√
T

)− e′e + 2λ∗n
r

∑
i=1

βi

∫ βi+
ui√

T
s∗i√

T
βi
s∗i√

T

1√
π

e−t2
dt

+ λ∗T

r

∑
i=1

ui√
T

(
2Φ(

βi + ui√
T

s∗i√
T

, 0,
1√
2

)− 1
)

= u′Σu− 2u′N(0, σ2Σ) + 2λ∗T

r

∑
i=1

βi

∫ βi+
ui√

T
s∗i√

T
βi
s∗i√

T

1√
π

e−t2
dt

+ λ∗T

r

∑
i=1

ui√
T

(
2Φ(

βi + ui√
T

s∗i√
T

, 0,
1√
2

)− 1
)

= u′Σu− 2u′N(0, σ2Σ) + 2λ◦
r

∑
i=1

βi
ui

s∗i√
T

√
π

e
−(

βi+
ui√

T
s∗i√

T

)2

+ λ◦
r

∑
i=1

ui

(
2Φ(

βi + ui√
T

s∗i√
T

, 0,
1√
2

)− 1
)
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= u′Σu− 2u′N(0, σ2Σ) +


λ◦ ∑r

i=m+1 ui

(
2Φ( ui

s∗i
, 0, 1√

2
)− 1

)
β = 0

λ◦ ∑m
i=1 ui β > 0

λ◦ ∑m
i=1−ui β < 0

.

Then, u′1 =

(
λ◦
2 sign (β) + N1

)
Σ−1

11 and

u′1Σ12 − N2 = λ◦
∂

∂u2
u′2

(
Φ(

u′2
s∗i

, 0,
1√
2

)− 0.5
)

.

In addition,

∂

∂u2
u′2

(
Φ(

u′2
s∗i

, 0,
1√
2

)− 0.5
)

=

(
Φ(

u′2
s∗i

, 0,
1√
2

)− 0.5
)

+
u′2
s∗i

φ(
u′2
s∗i

, 0,
1√
2

),

where the first term in the RHS is always bounded to (−0.5, 0.5). Then,

|u′1Σ12 − N2 − λ◦
u′2
s∗i

φ(
u′2
s∗i

, 0,
1√
2

)| < λ◦
2

1,

that again can produce sparse estimations.

Proof is completed.

3.7 Computational complexity

The only challenging term in the proposed penalty is the error function, erf (x) ∝
∫ x

0 e−t2
dt, as there is

no closed form for it. Then, alternative techniques such as Taylor approximation provide high precision

approximation of this function. For instance, two examples are

erf (x) =
∫ x

0
e−u2

du

=
2x√

π

∞

∑
j=0

(−1)jx2j

j!(2j + 1)
(3.8)

Or =
2xe−x2

√
π

∞

∑
j=0

2jx2j

1 · 3 · 5 · · · (2j + 1)
. (3.9)

For small |x|, series in (3.8) is slightly faster than series (3.9) because there is no need to compute

an exponential. However, series (3.9) is preferable to (3.8) for moderate |x| because it involves no

cancellation. For large |x|, neither series are satisfactory and in this case it is preferable to use the

asymptotic expansion for complementary error function erf c(x) = 1− erf (x),

erf c(x) ≈ e−x2

x
√

π

k

∑
j=0

(−1)j (2j)!
j!

(2x)−2j. (3.10)

Beside these complicated algorithms, based on Taylor approximations, there are fast algorithms that ap-

proximate the error function with quite high precision, see for example [Vazquez Leal et al., 2012], [Olver
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et al., 2010], [Chevillard and Revol, 2008] [Cody, 1969], [Press, 1992], [Lee, 1992], [Cody, 1990], [Borjes-

son et al., 1979] for a range of fast methods. To increase the speed of the algorithm, we focus on fast

algorithms such as,

erf (x) ≈ tanh
(

39x
2
√

π
− 111

2
arctan(

35x
111
√

π
)

)
,

that provides reliable results. For fast and reliable results a combination of methods in equation (3.8),

(3.9), (3.10) and fast methods can provide fast and precise enough results. In this chapter we propose

the following approximation for standard normal distribution that is fast enough for our purpose,

Φ(x) =

(
1

1.9
√

π

(
sin(

πx
10

) + sin(x)

)
+ .5

)
I(|x|≤1.513859)+(

1− e−1.78 +
x

ex+10

)
I(x>1.513859)+(

e−1.78|x| − |x|
e|x|+10

)
I(x<−1.513859),

where Φ denotes the cumulative Gaussian density. The maximum absolute error of this function is 10−4

that is suitable in many cases, including ours.
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Figure 3.5: Visual illustration of the true value of Φ(x) (dashed line) versus the proposed approxima-
tion (dotted line) for a range of values for x in (−3.5, 3.5) interval.
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3.8 Algorithm

In this section we propose an algorithm for dlasso. To this end, we follow the literature in [Fan and Li,

2001] and define the iterative algorithm as,

β(k) =

(
X′X + Σ(β(k−1), λ∗, s)

)−1

X′y, k = 1, 2, . . . (3.11)

where β(0) is an initial estimation for the parameters and Σ(β(k−1), λ∗, s) is defined by,

Σ(β(k−1), λ∗, s) = λ∗Diag

[(
2Φ(

β
(k−1)
i

s
, 0,

1√
2

)− 1 + 2
β

(k−1)
i

s
φ(

β
(k−1)
i

s
, 0,

1√
2

)

)
/β

(k−1)
i , i = 1, . . . , r

]
.

In what follows we show the derivations of the equation (3.11) from the Taylor expansion of the penalized

likelihood in (3.7).

Recalling the log-likelihood from (3.7),

T

∑
i=1

(yi − xiβ)2 + λ∗
r

∑
j=1

β j

(
2Φ(

β j

s
, 0,

1√
2

)− 1
)

. (3.12)

Let β(0) be an initial estimation of the parameters. Since the function is differentiable in any point, the

first order Taylor approximation of the penalty function around β(0) is given by,

β(2Φ(
β

s
, 0,

1√
2

)− 1) ≈ β(0)(2Φ(
β(0)

s
, 0,

1√
2

)− 1)+(
2Φ(

β(0)

s
, 0,

1√
2

)− 1 +
2β(0)

s
φ(

β(0)

s
, 0,

1√
2

)
(β− β(0)).

We should recognize that this approximation is always possible since the dlasso is differentiable in any

value of β.

Given β ≈ β(0) it leads to,

β(2Φ(
β

s
, 0,

1√
2

)− 1) ≈ β(0)(2Φ(
β(0)

s
, 0,

1√
2

)− 1)+

1
β(0)

(
2Φ(

β(0)

s
, 0,

1√
2

)− 1 +
2β(0)

s
φ(

β(0)

s
, 0,

1√
2

)
(β2 − β(0)2

). (3.13)

Substituting (3.13) in (3.12) results in

T

∑
i=1

(yi − xiβ)2 + λ∗
r

∑
j=1

[
β

(0)
j (2Φ(

β
(0)
j

s
, 0,

1√
2

)− 1)+

1

β
(0)
j

(
2Φ(

β
(0)
j

s
, 0,

1√
2

)− 1 +
2β

(0)
j

s
φ(

β
(0)
j

s
, 0,

1√
2

)
(β2

j − β
(0)2

j )

]
,

that minimizing with respect to β leads to the iterative function in (3.11).
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3.9 Model selection using generalized information criteria

In this section we derive the Generalized Information Criteria (GIC) in [Konishi and Kitagawa, 1996] for

dlasso by,

GICs(λ) = −2logLik + 2 tr
[

X
(

X′X + λ diag(
∂2

∂β2 β̂′(2Φ(
β̂

s
, 0,

1√
2

)− 1)

)−1

X′
]

, (3.14)

where loglik denotes the non-penalized likelihood evaluated at dlasso estimations. We should recognize

that the differentiability of the penalty term is a necessary condition for deriving GIC as pointed out in

[Konishi and Kitagawa, 1996, Section 3.3].

In what follows we show the derivation of GIC in (3.14) from the penalized likelihood in (3.6)

Q(β, s) =
1

2σ2 (y− Xβ)′(y− Xβ) + λβ′ sign s(β),

where sign s(β) = 2Φ( β
s , 0, 1√

2
)− 1. Without loss of generality we assume that σ2 = 1. The first two

derivatives of the penalized likelihood with respect to the parameters are given by,

ψ(X, y, β, λ, s) =
∂

∂b
logLik = −2X′(y− Xβ) + λ

(
sign s(β) + β ◦ ∂

∂β
sign s(β)

)
, (3.15)

∂

∂β
ψ(X, y, β, λ, s) = 2X′X + λdiag

(
∂2

∂β2 β′ sign s(β)

)
, (3.16)

where (◦) is Hadamard product and ∂2

∂β2
j
β j sign s(β j) = 4

s3 φ(
β j
s , 0, 1√

2
)(s2− β2

j ) for j = 1, 2, . . . , r. Referring

to [Konishi and Kitagawa, 1996], the general form of GIC is given by

GICs(λ) = −2logLik (β̂) + 2tr
(

R−1
s,λUs,λ

)
,

with

Rs,λ = − 1
T

T

∑
i=1

∂ψ(Xi., yi, β, λ, s)
∂β

∣∣∣∣
β̂

Us,λ =
1
T

T

∑
i=1

ψ(Xi., yi, β, λ, s).
∂

∂β
logLik ′

∣∣∣∣
β̂

,

where Xi. denotes the ith row of X for i = 1, 2, . . . , T, β̂ is dlasso estimation of the parameters and ψ(.)

is given in (3.15). In particular, we show that for the dlasso case Rs,λ and Us,λ are given by,

Rs,λ = − 1
T

(
2X′X + λdiag

(
∂2

∂β2 β′ sign s(β)

))
,

Us,λ =
1
T

X′X.

In the first step we find Us,λ = ψ(Xi., yi, β, λ, s)ψ′(Xi., yi, β, 0, s) with ψ(.) is given in (3.15). Then,

Us,λ =

[
X′(y− Xβ)− λ

(
sign s(β) + β ◦ sign

(1)
s (β)

)][
X′(y− Xβ)

]′
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= X′(y− Xβ)(y− Xβ)′X− λ

(
sign s(β) + β ◦ sign

(1)
s (β)

)
(y− Xβ)′X. (3.17)

where the superscripts denotes the order of the derivatives. Let β◦ be the true (but unknown) parameter

and taking the expectation of (3.17) with respect to the true generating distribution of the data denoted

by g leads to

Eg

(
X′(y− Xβ)(y− Xβ)′X− λ

(
sign s(β) + β ◦ sign

(1)
s (β)

)
(y− Xβ)′X

)
=

X′Eg(ee′)X− λ

(
sign s(β◦) + β◦ ◦ sign

(1)
s (β◦)

)
Eg(e)′X.

The first expectation on the right hand side of this equation is I since errors are assumed to be indepen-

dent, and the second term is zero. Then the equation reduces to, Uλ,s = X′X.

For the second term, Rs,λ, we have

Rs,λ = X′X + λdiag
(

∂2

∂β2 β′ sign s(β)

)
.

Putting altogether, GICs(λ) is given by

GICs(λ) = −2logLik + 2 tr
[

X
(

X′X + λ diag(
∂2

∂β2 β′ sign s(β))

)−1

X′
]

.

3.9.1 Tuning parameter

In this section we focus on selecting the optimum value for the tuning parameter λ∗. To this end, we

set an upper and lower bound for λ∗ denoted by λ∗max and λ∗min respectively and make a grid of values.

Then a value of λ∗ that minimizes GIC, AIC, BIC, GCV, MSPE etc. in the grid is the choice for λ∗opt.

As it is pointed out, choosing a proper value for the tuning parameter requires an upper bound for λ∗

that is by itself a challenging question. Obviously choosing a value less than λ∗max result in losing a set

of estimations. In contrast, choosing a value greater than λ∗max results in an increase in computational

time and cost. Referring to [Friedman et al., 2010, Donoho and Johnstone, 1994, Friedman, 2012] in

elastic-net with standardized variables we have

Tαλ∗max = max
p=1,...,r

|〈xp, y〉|, for fixed α, (3.18)

where 〈xp,y〉 denotes the inner product of two variables, 〈xj, y〉 = ∑T
i=1 xijyi and α is the proportion of l1

norm in the elastic-net penalty, ∑i(α|βi|+ (1− α)β2
i ). Setting α = 1 in (3.18) results in λ∗max,lasso that is

the quantity of interest. On the other hand λ∗min can be chosen arbitrary close to zero λ∗min = ελ∗max for

small ε. Then, constructing a sequence of k values decreasing from λ∗max to λ∗min on the log scale provides

the requirements for model selection criteria. Following [Friedman et al., 2010] we choose ε = 0.001 and

k = 50 in real applications. Similarly, one can form a two dimensional grid for s and λ∗ and choose the

value of s and λ∗ that minimize GIC, AIC, BIC, GCV, MSPE etc. in the grid.
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3.10 R package

A complete implementation of dlasso using GIC, AIC, BIC and GCV for model selection is provided in

the R package DLASSO that accompanies this chapter. The main function dlasso allows different options

including setting the precision digits and performing a grid search over the value of s and/or λ∗. This

package encompasses two more functions to extract coefficients, coef, and providing visual illustration

of the outputs, plot. We refer to the manual https://cran.r-project.org/web/packages/DLASSO/

DLASSO.pdf for more details and examples.

3.11 Simulation study

In this section, we design three scenarios similar to [Zou, 2006] where the tuning parameters are selected

by minimizing CV error. The purpose of the scenarios is to show that dlasso provides similar or better

results to lasso, ridge, elastic-net, SCAD and OLS in terms of prediction accuracy by gradually increasing

the level of complexity in the simulations. We estimate parameters using the msgps package in R for

lasso, ridge, elastic-net over a grid of 50 values for α and ncvreg package for SCAD.

In all scenarios, data are simulated from the linear model, y = Xβ + σe, e ∼ N(0, 1). In each simulation

we divide the data into training and test. Parameter estimation and tuning parameter selection are on

the basis of 10-fold cross validation over the training set. Then mean square prediction error (MSPE) is

computed over the test data. Here are the details for the three scenarios:

Scenario 1. We set β = (3, 1.5, 0, 0, 2, 0, 0, 0) and generate 50 datasets containing 240 observations under the

pairwise correlation Cov(xi, xj) = 0.5|i−j| and σ2 = 3. 40 observations are assigned to the training

set and the rest of 200 are assigned to the test set.

Scenario 2. This is the same as the first scenario except that β j = 0.85, j = 1, 2, . . . , 8.

Scenario 3. In this scenario we consider a group structured data generating procedure. The 15 coefficients are di-

vided into three groups, β(1) = c(1, 2, 3, 4, 5), β(2) = c(0.5, 0.5, 0.5, 0.5, 0.5) and β(3) = c(0, 0, 0, 0, 0).

We consider a high correlation of 0.9 amongst the first five covariates corresponding to β(1). Fur-

ther, we assume 0.5 correlation in the second group and generate the covariates in the third group

https://cran.r-project.org/web/packages/DLASSO/DLASSO.pdf
https://cran.r-project.org/web/packages/DLASSO/DLASSO.pdf
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independently. Then, the final correlation matrix is

ρ =



|1.0 0.9 0.9 0.9 0.9| 0 0 0 0 0 0 0 0 0 0

|0.9 1.0 0.9 0.9 0.9| 0 0 0 0 0 0 0 0 0 0

|0.9 0.9 1.0 0.9 0.9| 0 0 0 0 0 0 0 0 0 0

|0.9 0.9 0.9 1.0 0.9| 0 0 0 0 0 0 0 0 0 0

|0.9 0.9 0.9 0.9 1.0| 0 0 0 0 0 0 0 0 0 0

|1.0 0.5 0.5 0.5 0.5| 0 0 0 0 0

|0.5 1.0 0.5 0.5 0.5| 0 0 0 0 0

|0.5 0.5 1.0 0.5 0.5| 0 0 0 0 0

|0.5 0.5 0.5 1.0 0.5| 0 0 0 0 0

|0.5 0.5 0.5 0.5 1.0| 0 0 0 0 0

|1 0 0 0 0|
|0 1 0 0 0|
|0 0 1 0 0|
|0 0 0 1 0|
|0 0 0 0 1|



.

To make the situation more complex, we set σ2 = 15. Similar to Scenario 1 and 2, 240 observations

are generated and divided into 40 and 200 for training and test respectively.

From Table (3.1) and Figure (3.6), dlasso shows slightly better or similar results to lasso and elastic-net

in the second and third scenarios where the coefficients are small and there is grouped structure in data.

Lasso shows the best result in Scenario 1. From this table, ridge and OLS show the worse results in all

scenarios. Dlasso shows significantly better results compared to ridge, the only differentiable penalty,

and SCAD, which is the only non-convex opponent.

Method MSPE
Scenario 1 Scenario 2 Scenario 3

dlasso 3.23(0.046) 3.49*(0.11*) 18.71*(0.39)
lasso 3.21*(0.043*) 3.71(0.11*) 18.80(0.39)
elastic-net 3.24(0.048) 3.51(0.11*) 18.85(0.35*)
ridge 3.63(0.057) 4.50(0.20) 26.30(0.94)
SCAD 3.29(0.053) 3.55(0.15) 23.58(1.48)
OLS 3.31(0.056) 3.56(0.12) 22.69(0.51)

Table 3.1: Comparing dlasso, lasso, ridge, elastic-net, SCAD and OLS from three scenarios on the
basis of median of MSPE over the test set. The values in parentheses are the corresponding standard
errors of the medians result from bootstrap with 5000 iterations. The asterisk denotes the minimum

value.

3.12 Real data illustration

For the first real data demonstration we use the Diabetes dataset that is previously studied in [Efron

et al., 2004]. This dataset contains 442 measurements on 10 variables, namely age, sex, body mass index,

average blood pressure and six blood serum measurements as well as a quantitative measure of disease

progression, which is the response. We normalize all the covariates to have zero mean and unit variance

and the response to have zero mean.
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Figure 3.6: Comparing dlasso, lasso, elastic-net, ridge, SCAD and OLS estimations with respect to
means square prediction error over the test set in the three scenarios.

We compare dlasso to lasso, SCAD, OLS and elastic-net on the basis of AIC, BIC and the number of

non-zero estimations. We should stress that GIC is not defined for lasso, elastic-net and SCAD. Then

we compare the results on the basis of AIC and BIC. For dlasso and elastic-net we consider a sequence

of 50 values for s, α in (0.001, 1) interval. The tuning parameter in all models is selected by minimizing

BIC. The results are shown in Table (3.2).

Comparing BIC and AIC and the number of non-zero coefficients presented in Table (3.2) shows that

dlasso for s = 0.001, lasso and elastic-net for selected α = 0.001 perform similarly and better than SCAD.

Further dlasso, lasso and elastic-net select sex, bmi, map, tc, hdl, ltg and glu whereas SCAD does not

select the last one, glu. We should stress that the selection of the tuning parameter in dlasso is on the

basis of a sequence of discrete values for λ∗, precisely 100 values, that results in slightly different results

to lasso. We should stress that the solution path for lasso and dlasso are highly similar (except tch)

regardless of the tuning parameter selection criteria as it is shown in Figure (3.7). Then the different

estimations from both methods differ mainly based on the selection of tuning parameter.

For the second application, we apply the new penalty to the prostate data previously studied in the

original paper of elastic-net [Zou and Hastie, 2005]. Prostate data is first introduced by [Stamey et al.,

1989] to examine the correlation between the level of prostate specific antigen and a number of clinical

measurements in 97 men who were about to receive a radical prostatectomy and includes eight covari-

ates: log cancer volume (lcanvol), log prostate weight (lweight), log benign prostatic hyperplasia amount

(lbph), log capsular penetration (lcp), age, Gleason score (gleason), percentage Gleason scores 4 or 5

(pgg45), seminal vesicle invasion (svi) as well as prostate specific antigen (lpsa) for the response.

Lasso, ridge, SCAD, OLS, elastic-net for a range of α in (0.001, 1) interval as well as dlasso for s ∈
(0.001, 1.5), s = 1 and s = 100 are applied to the data. Covariates are normalized to have zero mean and

unit variance and the response to have zero mean. BIC is used to select the tuning parameters. Results
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Figure 3.7: Comparison of lasso and dlasso in term of solution path for Diabetes dataset. The right
plot is drawn by DLASSO package whereas the left one is drawn by MSGPS package in R

Model Comparison
Method Final precision AIC BIC df

dlasso s = 10−3 4786.4 4808.2 7
lasso - 4784.7 4806.4 7

elastic-net α = 10−3 4784.9 4806.5 7
SCAD - 4792.2 4825.5 6
OLS - 4794.0 4839.0 10

Parameter Estimation
Method age sex bmi map tc ldl hdl tch ltg glu
dlasso 0 -6.9 24.6 12.8 -1.9 0 -9.9 0 22.7 1.3
lasso 0 -7.3 24.6 13.0 -2.2 0 -9.8 0 23.0 1.5
elastic-net 0 -7.2 24.5 13.0 -2.1 0 -10.0 0 22.7 1.6
SCAD 0 -10.9 25.3 15.6 -4.0 0 -12.3 0 25.0 0
OLS -0.47 -11.4 24.8 15.5 -37.7 22.7 4.8 8.3 35.8 3.2

Table 3.2: Comparing dlasso, lasso, OLS, elastic-net and SCAD on the basis of BIC and AIC and the
number of non-zero estimations for the diabetes dataset.

are provided in Table (3.3).

Dlasso for s = 0.001 shows the best result amongst the rest of the values for s and it is the same as

both lasso and optimal elastic-net (α = 0.001) with respect to AIC, BIC and df, and all three models are

better than SCAD. Dlasso for s = 1 performs similar to ridge as it is shown in the middle of the table

and predicted in theory. It shows better BIC compared to OLS that can be due to existence of (small)

regularization in dlasso. In terms of the number of non-zero estimations, dlasso, lasso and elastic-net

select the same number of covariates whereas SCAD selects 4 variables. Similar to previous example,

Figure (3.8) show the similarity in solution path of dlasso and lasso.
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Lasso
Method Precision AIC BIC df Non-zero variables
dlasso s=0.001 207.6 216.1 5 lcavol, ibph, lweight, pgg45,svi
lasso - 206.7 215.3 5 lcavol, ibph, lweight, pgg45,svi
elastic-net α=0.001 206.8 215.3 5 lcavol, ibph, lweight, pgg45,svi
SCAD - 214.6 231.0 4 lcavol, ibph, lweight, svi

Ridge
dlasso 1 207.4 227 8 all variables
ridge - 207.1 226 8 all variables

OLS
dlasso 100 204 228 8 all variables
OLS - 202 233 8 all variables

Table 3.3: Comparison of lasso, ridge, SCAD, OLS, elastic-net and new penalty for s = 0.001, 1, 100
and the result from a grid search over s, λ∗ ∈ (10−3, 1) for Prostate dataset. Methods are compared

based on AIC, BIC and sparsity.
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Figure 3.8: Comparison of lasso and dlasso in term of solution path for Prostate dataset.

3.13 Conclusion remarks

In this chapter we have proposed a novel differentiable penalty term that is capable of producing similar

results to lasso, ridge and to some extent elastic-net. That is, this new penalty can be used in smooth

situations to select more variables than lasso. We discussed this new penalty from a theoretical point

of view, computational complexity and practical perspective by proposing an efficient algorithm and

providing an R package. We have shown the applicability of this new penalty by means of simulations
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and real applications in Diabetics and Prostate datasets, and compared the results to well-known models

such as lasso, ridge, elastic-net and SCAD.

3.13.1 Future study

In Section § 3.4 we focused on a special case of the following function,

f (x, s, α, γ) = x
[

2√
π

( x
s )α∫

0

e−t2
dt
]γ

= x×
[

erf

(
(

x
s

)α

)]γ

, {γ, α} ∈ R, s > 0, x ≥ 0,

for α = γ = 1. We suggest setting γ = 1 and an odd value for α to preserve symmetry of the entire

function over the vertical axis. Then, studying this function in the context of penalized likelihood can

be an interesting subject for future research.



Chapter 4

A Bayesian approach to discrete

Weibull regression for counts

4.1 Introduction

Data in the form of counts appear in many application areas, from medicine, social and natural sciences

to econometrics, finance and industry [Cameron and Trivedi, 2013]. In medicine, two examples of this

are the number of days that patients stay in hospital, commonly used as an indicator of the quality

of care and planning capacity within a hospital [Atienza et al., 2008, Carter and Potts, 2014], and the

number of visits to a specialist [Machado and Santos Silva, 2005], often taken as a measure of demand in

healthcare. Other examples are high-throughput genomic data generated by next generation sequencing

experiments [Ozsolak and Milos, 2011, Bao et al., 2014, Robinson and Smyth, 2008] or lifetime data, such

as the number of cycles before a machine breaks down [Nagakawa and Osaki, 1975].

Similar to Weibull regression, which is widely used in lifetime data analysis and survival analysis for

continuous response variables, [Kalktawi et al., 2016] have recently proposed a regression model for a

discrete response based on the discrete Weibull distribution. A number of studies have found a good

fit of this distribution in comparison to other distributions for count data [Bracquemond and Gaudoin,

2003, Englehardt and Li, 2011, Lai, 2013]. In the context of regression, [Kalktawi et al., 2016] show two

important features of a discrete Weibull (DW) distribution that make this a valuable alternative to the

more traditional Poisson and Negative Binomial distributions and their extensions such as Poisson mix-

tures [Hougaard et al., 1997], Poisson-Tweedie [Mikel Esnaola et al., 2013], zero-inflated regression[Lam

et al., 2006] and COMPoisson [Sellers and Shmueli, 2010]: the ability to capture over or under-dispersion

and a closed-form analytical expression of the quantiles of the conditional distribution.

In [Kalktawi et al., 2016], maximum likelihood is used for the estimation of the parameters. This is in

general the most common approach for parameter estimation in regression analysis of counts. Among

the contributions to Bayesian estimation of discrete regression models, [El Sayyad, 1973] consider the

case of Poisson regression, [Zhou et al., 2012] provide an efficient Bayesian implementation of negative

Binomial regression, [Mohebbi et al., 2014] develop Bayesian estimation for a Poisson and negative

Binomial regression with a conditional autoregressive correlation structure whereas [Angers and Biswas,

69
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2003, Ghosh et al., 2006, Neelon et al., 2010, Liu and Powers, 2012] study zero-inflated Poisson regression.

In this chapter, we contribute to this literature, by providing the first Bayesian approach for parameter

estimation in discrete Weibull regression. For the choice of prior distributions, we consider both the case

of non-informative priors and the case of Laplace priors with a hyper penalty parameter. The choice of

Laplace priors induces parameter shrinkage [Park and Casella, 2008, Kyung et al., 2010b], and, with the

use of Bayesian credible intervals, leads to variable selection, similar to alternative approaches such as

reversible jumps Markov chain Monte Carlo [Green, 1995] and spike and slab [Ishwaran and Rao, 2005].

The aim of this chapter is two-fold. Firstly, we highlight the role that the discrete Weibull distribution

has in modelling count data from a variety of applications, beyond its current limited use to lifetime

data. We particularly emphasize applications in the medical domain, using several datasets of medical

records. Secondly, we present a novel Bayesian regression model for counts based on the assumption

of a discrete Weibull conditional distribution. The remainder of this chapter is organized as follows.

Section § 4.2 describes the discrete Weibull regression model, with a more general parametrization than

that presented in the literature. Section § 4.3 describes Bayesian parameter estimation for a discrete

Weibull regression model. Theoretical properties of the posterior under non-informative uniform priors

is discussed in Section § 4.4. Section § 4.6 presents an extensive simulation study, whereas Section § 4.7

shows the analysis of real data via Bayesian discrete regression model and a comparison with existing

approaches. Finally, we draw some conclusions in Section § 4.8.

4.2 Discrete Weibull regression

4.2.1 Discrete Weibull distribution

The discrete Weibull distribution was introduced by [Nagakawa and Osaki, 1975], as a discretized form of

a continuous Weibull distribution, similarly to the geometric distribution, which is the discretized form

of the exponential distribution, and the negative Binomial, which is the discrete alternative of a Gamma

distribution. In some papers, this is referred to as a type I discrete Weibull, as two other distributions

were subsequently defined,

Type I : F(y; q, β) = 1− q(y+1)β
q ∈ (0, 1), β > 0, y = 0, 1, 2, . . .

Type II : F(y; c, β) = ∑
y<m
k=1 ckβ−1 ∏k−1

j=1 (1− cjβ−1) c ∈ (0, 1), β > 0, y = 1, 2, . . . , m

Type III : F(y; c, β) = 1− e−c ∑
y+1
i=0 iβ

c > 0, β ≥ −1, y = 0, 1, 2, . . . .

[Bracquemond and Gaudoin, 2003] review the three different distributions and point out the advantages

of using the type I distribution: It has an unbounded support, differently than the type II distribution,

and it has a more straightforward interpretation, differently than the type III distribution.

Throughout this chapter, we will refer to the Type I discrete Weibull distribution as DW(q, β). A similar

definition can be given on the support 1, 2, . . .. In this case, F(y; q, β) = 1 − qyβ
, for y = 1, 2, . . ..

Comparing this cdf with that of a continuous Weibull distribution with parameters α and γ,

F(y; α, γ) =

{
1− e−αyγ

if y ≥ 0

0 if y < 0
,
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one can see that there is a direct correspondence between β and γ, whereas q in the discrete case

corresponds to exp(−α) in the continuous case [Khan et al., 1989].

Given the form of the cumulative distribution function, the DW distribution has the following probability

mass function:

p(y; q, β) = qyβ − q(y+1)β
, y = 0, 1, 2, ...

with q and β denoting the shape parameters.

4.2.2 Inference for Discrete Weibull: Existing Approaches

[Khan et al., 1989] derive estimators of DW parameters q and β using the method of moments and a

new method which they call the method of proportions, and they find a good performance for the latter.

Let y1, . . . , yn be a random sample from a DW(q, β) distribution and denote z = ∑n
i=1 I(yi = 0) and

u = ∑n
i=1 I(yi = 1). Using the method of proportions, the following estimators of q and β are proposed:

q̂ = 1− z
n

β̂ = ln
[

ln
(

1− z
n
− u

n

)
/ ln

(
1− z

n

)]
/ ln(2).

These estimators use only the zeros and ones in the sample. [Araújo Santos and Fraga Alves, 2013]

derive an improved estimator of β, by taking all observations into account. In particular, let dm be the

maximum observed value of y and let k = dm − 1. If dm > 2, then the following improved estimator is

proposed:

β̂ =
1
k

k

∑
d=1

ln
[

ln
(

1− F̂(d)
)

/ ln(q̂)
]
/ ln(d + 1),

where F̂ denotes the empirical cdf. When dm = 2, this estimator is equivalent to the one from [Khan

et al., 1989]. Note that in both cases, no estimates of β can be obtained when q̂ = 1, i.e. there are no

zero counts in the observed data, or q̂ = 0, i.e. all counts are zero.

[Kulasekera, 1994] considers maximum likelihood for the estimation of q and β. The likelihood function

for a discrete Weibull sample is given by:

L(q, β) =
n

∏
i=1

(
qyβ

i − q(yi+1)β
)

,

the maximum of which can be found numerically.

There is no explicit work in the literature for building confidence intervals for discrete Weibull parameters,

although standard asymptotic likelihood and bootstrap approaches can be used. The Bayesian approach

that we devise in this chapter will lead naturally to credible intervals for the parameters.

4.2.3 Regression via a discrete Weibull distribution

Let y be the response with possible values 0, 1, . . ., and let X = (x1, . . . , xp) be a vector of p covariates.

We assume that the conditional distribution of y given X follows a DW distribution with parameters
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q and β. There are a number of possible choices to link the parameters q and β to the covariates. In

particular, we propose the following link functions:

1. q dependent on X via

log(− log(q)) = Xθ or

log
( q

1− q

)
= Xθ,

where θ = (θ0, . . . , θp)′. Both transformations restrict the value of q to lie in (0, 1) interval. How-

ever, the log-log transformation is asymmetric while the logit is symmetric around q = 0.5. More-

over, log-log transformations contains two logarithm operators that leads to numerical instability

for q close to 0 and 1. The applicability of log-log transformation is motivated by continuous-time

models for the occurrence of events including continuous Weibull regression [Hosmer et al., 2011,

Cox, 1992, Gimenez et al., 1997] whereas the logit transformation is motivated by the applications

in bounded outcome scores and has proved to be rather effective for statistical inference, see e.g.

[Hosmer et al., 2011, Lesaffre et al., 2007].

2. We assume a logarithmic link for the second parameter β and the covariates, in order to capture

more complex dependencies. Thus, β dependent on X via

log(β) = Xγ,

where γ = (γ0, γ1, . . . , γp)′ contains the same number of parameters as θ.

In general, there are no identifiability issues in the model, as the part of the likelihood from zero observa-

tions depends only on q. However, in our simulation and real data analyses, we found the logit function

to be only marginally superior to the log-log transformation, whereas the additional β parametrization

is often not selected due to over-parametrization.

4.3 Bayesian inference for discrete Weibull regression

In this section, we discuss Bayesian estimation of the regression parameters θ = (θ0, . . . , θp)′ and

γ = (γ0, . . . , γp)′. The advantage of choosing Bayesian approaches over classical maximum likelihood

inference is two-fold. Firstly, the possibility of taking prior information into account, such as sparsity or

information from historical data and, secondly, the procedure returns credible intervals for all parameters.

Given n observations yi and (xi1, . . . , xip), i = 1, . . . , n, for the response and the covariates, respectively,

and letting xi. be the row vector xi. = (1, xi1, . . . , xip), the likelihood for the most general case under a

logit transformations is given by

L(X, y|θ, γ) =
n

∏
i=1

(
(

exi.θ

1 + exi.θ
)yi

xi.γ − (
exi.θ

1 + exi.θ
)(yi+1)xi.γ

)
,

where we allow the same xi. for both xi.θ and xi.γ. Following the same procedure, one can form the

corresponding likelihood under the log-log transformation. We consider different prior distributions on
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θ and γ. Unfortunately, in the context of discrete Weibull regression, there are no conjugate priors.

However, we will show theoretically how a uniform non-informative prior leads to posterior distribution

which is proper with finite moments and, in simulation and real data study, we show how this prior

achieves an acceptable rate of mixing as well as comparable estimation to maximum likelihood. In

addition, we consider a prior on the regression coefficients that encourages sparsity. In particular, we

consider a Laplace prior for θ and γ, of the form

p(θ|λ) =
λ

2
e−λ|θ|, λ ≥ 0,

p(γ|τ) =
τ

2
e−τ|γ|, τ ≥ 0.

(4.1)

For a given choice of λ and τ, maximising the posterior probability under these priors corresponds to

maximising the l1 penalised log-likelihood

log L(X, y|θ, γ)− λ
p

∑
j=1
|θj| − τ

p

∑
k=1
|γk|,

as in the traditional lasso approach [Park and Casella, 2008, Tibshirani, 1996]. We further assume an

InverseGamma(a,b) hyper prior for both λ and τ, leading to the posterior distribution

p(θ, γ|y, X) ∝ L(y, X|θ, γ)× p(θ|λ)× p(γ|τ)× p(λ)× p(τ).

Since conditional posterior of DW distribution given the parameters is not belonging to a class of known

distributions, Gibbs sampler is not applicable. Alternatively, we choose a Metropolis-Hastings (MH)

sampler [Hastings, 1970] to draw samples from the full conditional posterior. However, this does not lead

to exactly zero estimation of the parameters. But imposing Laplace priors shrink the marginal posterior

of the parameters and using HPD interval encourages the sparsity.

Reviewing the literature reveals that MCMC samplers have been used before in the continuous Weibull

regression context by [Newcombe et al., 2014], which utilizes a Reversible Jump MCMC, and [Soliman

et al., 2012] which uses a hybrid method consisting of Metropolis-Hastings and Gibbs sampler to esti-

mate parameters in a three parameters continuous Weibull distribution. Moreover, [Polpo et al., 2009]

make use of a Metropolis-Hasting sampler to make inference for a continuous two-parameters Weibull

distribution in a censoring framework.

We use MH algorithm in the following steps:

Step 1. Initializing the algorithm with MLE estimation of the parameters or random values within the

space of the parameters.

Step 2. Set a proposal distribution g(.) on the full set of parameters π = (θ, γ). We choose a multivariate

normal proposal with covariance matrix set to the fisher information matrix of the likelihood, but

other choices are possible.

Step 3. Draw a random sample from the proposal distribution, e.g. πk at iteration k.
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Step 4. Evaluate the acceptance probability

α = min
(

1,
L(X, y|πk)p(πk)g(πk−1|πk)

L(X, y|πk−1)p(πk−1)g(πk|πk−1)

)
,

where L(X, y|πk) is the conditional DW likelihood given the proposal values and p(.) is the prior.

Step 5. Accept the proposal πk with probability of α.

Step 6. Following the adaptive-MH in [Haario et al., 2001], we update the covariance of the proposal by

computing the sample covariance of the chain.

Step 7. Stop if the algorithm is met the maximum iterations.

Step 8. If required, adjust the initial scale of the proposal so that the acceptance rate lies in the recom-

mended (20, 30)% interval [Bedard, 2008] for non-adaptive proposals.

Step 9. Remove ω% of the estimation chain for burn-in, e.g. ω = 10%, 25%, . . .

To reduce the computational time of the algorithm, Step 6 can be performed regularly on specific itera-

tions, e.g., every 20, 50 iteration and so on. Further, the burn-in procedure in Step 9 removes the effect

of randomly chosen initial values. Adjusting the proposal scale in Step 8 guarantees that the chain is not

stationary in one state. Alternatively Step 3 can be written as,

πk =I
(

u, min
(

1,
L(X, y|πk)p(πk)g(πk−1|πk)

L(X, y|πk−1)p(πk−1)g(πk|πk−1)

))
πk+

Ic
(

u, min
(

1,
L(X, y|πk)p(πk)g(πk−1|πk)

L(X, y|πk−1)p(πk−1)g(πk|πk−1)

))
πk−1

(4.2)

where u is a random sample from uniform distribution over (0, 1) and I(., .) is the indicator function,

I(a, b) =

1 b < a

0 o.w.
,

and Ic = 1− I is the complementary indicator function. [Hastings, 1970] shows that repeating Step 2 to

4 leads to an estimation for the posterior, provided the proposal is carefully configured in Step 5. We

should stress that for a symmetric distribution, P(a|b) = P(b|a) in mean. As a result, normal proposals

can be cancelled in Step 3 that leads to an improvement in the algorithm speed. From the posterior

distribution, the mode of the marginal densities can be used as point estimate of the parameters, whereas

the whole distribution is used for building credible intervals. In the case of Laplace priors, the inclusion

or not of zero in the Highest Posterior Density (HPD) interval is used for variable selection. In terms of

computational complexity, DW and NB distributions have the same number of parameters, but there are

fewer operations involved in the evaluation of the DW distribution than in the NB distribution, leading

to an expected lower computational complexity for DW.

4.4 Some key theoretical results

Although a standard conjugate prior distribution is not available for the discrete Weibull regression

model, MCMC methods can be used to draw samples from the posterior distributions, as described in
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the previous section. This, in principal, allows us to use virtually any prior distribution. However, in the

case of non-informative priors, we should select only those that yield proper posteriors. In this section,

we show some key theoretical results on this. In particular, we prove that the choice of uniform non-

informative priors on the parameters, i.e. p(θ) ∝ 1 and p(γ) ∝ 1, leads to a proper posterior distribution

with finite moments.

Thus, as a first result, we show that, under uniform non-informative priors, the posterior is proper, that

is

0 <
∫

θ

∫
γ

L(x, y|θ, γ)dγ dθ < ∞.

For simplicity, we consider the case where there is no regression model on β, i.e. p(β) ∝ 1 for β > 0. In

addition, we consider the logit link for q, although the proof will cover also the log-log case.

Lemma 4.1. Let

f (y) = 1− (e−a)yβ − (
a

1 + a
)yβ

,

and assuming y > 0, β > 0 and a > 0, then f (y) is an increasing function of y.

Proof. The derivative of f with respect to y is

d f (y)

dy
= −βyβ−1e−ayβ

log(e−a)− βyβ−1(
a

1 + a
)yβ

log(
a

1 + a
)

= βyβ−1
(

ae−ayβ − (
a

1 + a
)yβ

log(
a

1 + a
)

)
.

Since a > 0 and log( a
1+a ) < 0, the derivative is always positive.

Theorem 4.1 (Proper posterior). Let y = (y1 . . . yn), x = (1 x1 . . . xp) and θ = (θ0 . . . θp)′ be re-

sponse, covariates and regression parameters, respectively. Under the DW regression model Y|x ∼

DW
( exθ

1 + exθ
, β
)

and choosing non-informative priors on θ and β, the posterior distribution is proper,

i.e.

∫
β

∫
θ

n

∏
i=1


(

exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β
 dθ dβ < ∞.

Proof. Let S = {i; yi 6= 0, yi 6= 1} be the set of indices for which the response y is different from zero

and one. Let m ≤ n be the cardinality of S and assuming S 6= ∅. This excludes the case where the

data contain only zeros and ones, a special case that is normally modelled by a Bernoulli conditional

distribution.

Under this assumption, it follows that

n

∏
i=1


(

exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β
 ≤∏

i∈S


(

exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β
 .
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Choosing any k ∈ S, such that min |xkj| 6= 0, j = 1, . . . , p, results in

∏
i∈S


(

exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β
 ≤

(
e|xk |θ

1 + e|xk |θ

)yβ
k
−
(

e|xk |θ

1 + e|xk |θ

)(yk+1)β

=

(
e|xk |θ

1 + e|xk |θ

)yβ
k
(

1−
(

e|xk |θ

1 + e|xk |θ

)(yk+1)β−yβ
k
)

≤
(

e|xk |θ

1 + e|xk |θ

)yβ
k
.

Without loss of generality we assume p = 1 so, θ = (θ0, θ1) and xk = (xk0, xk1). Then we consider the

cases where θj > 0 or θj ≤ 0 for j = 0, 1. Then we consider the four cases where the θs are both positive,

negative or of different signs, respectively.

Assuming θj ≤ 0, j = 0, 1 we get,

(
e|xk |θ

1 + e|xk |θ

)yβ
k
≤ (e|xk |θ)yβ

k ,

where the integral over θ and β is bounded (≤ 1
2|xk0xk1| log(yk)

).

Similarly, for θ0 ≤ 0 and θ1 > 0 we have,

(
e|xk |θ

1 + e|xk |θ

)yβ
k
≤ (e|xk0|θ0 )yβ

k

(
1 + e−|xk1|θ1

)−β

,

and

∫ ∞

0

∫ ∞

θ1=0

∫ 0

θ0=−∞
(e|xk0|θ0 )yβ

k

(
1 + e−|xk1|θ1

)−β

dθ0dθ1dβ =

∫ ∞

θ1=0

∫ ∞

β=0

1

yβ
k

(
1 + e−|xk1|θ1

)−β

dβ dθ1

=
∫ ∞

θ1=0

1

log
(

yk(1 + e−|xk1|θ1 )

)dθ1.

The function log−1
(

yk(1 + e−|xk1|θ1 )

)
is continuous and bounded over the domain of θ1, provided yk > 1.

Thus, the integral is bounded. A similar derivation would hold for the case θ0 > 0, θ1 ≤ 0.

For the final case, θj > 0, j = 0, 1, we have

n

∏
i=1

{(
exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β}
≤
(

1 + e−|xk |θ
)−yβ

k
−
(

1 + e−|xk |θ
)−(yk+1)β

≤ e−e|xk |θ(yk+1)β − e−e|xk |θ yβ
k
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= e−e|xk0 |θ0 (yk+1)β
e−e|xk1 |θ1 (yk+1)β − e−e|xk0 |θ0 yβ

k e−e|xk1 |θ1 yβ
k

≤ e−|xk0|θ0(yk+1)β
e−|xk1|θ1(yk+1)β − e−|xk0|θ0yβ

k e−|xk1|θ1yβ
k ,

where the last term is a direct result of Lemma (4.1) with a = e|xkj |θj , j = 0, 1. Thus,

∫ ∞

θ1=0

∫ ∞

θ0=0
e−e|xk0 |θ0 (yk+1)β

e−e|xk1 |θ1 (yk+1)β − e−e|xk0 |θ0 yβ
k e−e|xk1 |θ1 yβ

k dθ0 dθ1

≤
∫ ∞

θ1=0

∫ ∞

θ0=0
e−|xk0|θ0(yk+1)β

e−|xk1|θ1(yk+1)β − e−|xk0|θ0yβ
k e−|xk1|θ1yβ

k dθ0 dθ1

=
1

|xk0xk1|

(
1

(yk + 1)2β
− 1

y2β
k

)
,

and

∫ ∞

β=0

1
|xk0xk1|

(
1

(yk + 1)2β
− 1

y2β
k

)
dβ =

1
|xk0xk1|

(
−(yk + 1)−2β

2 log(yk + 1)
+

y−2β
k

2 log(yk)

)∣∣∣∣β=∞

β=0

=
1

2|xk0xk1|
log( yk+1

yk
)

log(yk) log(yk + 1)
< ∞,

which completes the proof. Similar derivations can be carried out in the general case of p > 1.

Having proved that the posterior is proper, in the following remark we show that the posterior moments

exist and are finite.

Remark 4.1. (Proper moments) Under the same conditions of Theorem (4.1), the posterior distribution

of (θ, β) has finite (m0, m1, . . . , mp, mβ) moments, that is

∫
β

∫
θ

n

∏
i=1

{(
exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β}
θm0

0 . . . θ
mp
p βmβ dθdβ < ∞.

Proof. This proof is similar to the proof of theorem (4.1). Without loss of generality, we consider p = 1.

Then, for example in the last case, assuming θj > 0, j = 0, 1,

∫
β

∫
θ=(θ0,θ1)>0

n

∏
i=1

{(
exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β}
θm0

0 θm1
1 βmβ dθdβ ≤

( 1

∏
i=0

Γ(mi + 1)

|xmi+1)
ki |

)
1

(m0 + m1 + 2)mβ+1

(
1

logmβ+1(yk)
− 1

logmβ+1(yk + 1)

)
.

In general, for p + 2 parameters (θ0, . . . , θp, β) and corresponding moments (m0, . . . , mp, mβ) we have,

∫
β

∫
θ=(θ0,...,θp)>0

n

∏
i=1

{(
exiθ

1 + exiθ

)yβ
i
−
(

exiθ

1 + exiθ

)(yi+1)β}
θm0

0 . . . θ
mp
p βmβ dθdβ ≤( p

∏
i=0

Γ(mi + 1)

|xmi+1)
ki |

)
1

(∑
p
i=0 mi + 1)mβ+1

(
1

(log(yk))mβ+1 −
1

(log(yk + 1))mβ+1

)
,

which completes the proof.
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Theorem (4.1) and Remark (4.1) refer to the model with logit link on q and constant β. In fact, the results

apply also to the case of log-log link, given Lemma (4.1). In the next sections, we consider empirical

results on simulated and real data using non-informative priors. Of course, any proper prior distribution

can also be used when prior information is available. In particular, in the next sections, we consider the

case of sparsity and variable selection. In this case, we use Laplace priors as defined in Equation 4.1.

4.5 R package

The R package that accompany this chapter provides Bayesian implementation of the discrete Weibull

(BDWreg) regression under both transformations, logit and log-log . Estimating the marginal densities

is fulfilled in the main function of the package, bdw. Several options including arbitrary penalizations via

different priors on parameters as well as different hyper priors are implemented in this package. In par-

ticular, this package contains the routines to run Reversible Jumps Metropolis Hastings (RJMH) [Green,

1995] for simultaneous model selection and parameter estimation. To take the benefit of multicore pro-

cessing, a multicore routine is implemented in this package. The aim is simultaneously generating several

Markov chains that lead to increasing precision of the final results. Two extra functions for producing

visual illustrations and summary help diagnostic checking and comparison among different models. This

package is publicly available in https://cran.r-project.org/web/packages/BDWreg/index.html.

4.6 Simulations study

In this section, we perform a simulation study where we show the effectiveness of the Bayesian estima-

tion procedure, both in the case of data drawn from a DW regression model and in the case of model

misspecification, where the generating model is that of Poisson or Negative Binomial (NB). Finally, we

test the use of Laplace priors in a variable selection scenario.

4.6.1 Simulation from a DW regression model

Table (4.1) shows six configurations of parameters used in the simulation, where we consider the two link

functions for q, and the link function for β described in Section § 4.2, i.e. imposing a linear model on

logit (q) or log-log (q), and on log(β). We choose the regression and distribution parameters in such a

way to obtain different shapes of the distribution. For Case 2 to 6, we generate 500 observations from

Case Model True Parameters
1 DW(q, β) q = .41 β = 1.1
2 DW(q, log : regβ) q = .8 γ0 = .1 , γ1 = −.15 , γ2 = .5
3 DW(logit : regQ, β) θ0 = .4 , θ1 = −.1 , θ2 = .34 β = .7
4 DW(logit : regQ, log : regβ) θ0 = .4 , θ1 = −.1 , θ2 = .34 γ0 = .1 , γ1 = −.15 , γ2 = .5
5 DW(log-log : regQ, β) θ0 = .4 , θ1 = −.1 , θ2 = .34 β = .7
6 DW(log-log : regQ, log : regβ) θ0 = .4 , θ1 = −.1 , θ2 = .34 γ0 = .1 , γ1 = −.15 , γ2 = .5

Table 4.1: The configuration of DW regression models used in the simulations.

uniform distribution U(−1.5, 1.5) for each predictor. For the Bayesian estimation of the parameters,

https://cran.r-project.org/web/packages/BDWreg/index.html
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we use non-informative priors, p(x) ∝ 1, and make use of a Metropolis-Hastings algorithm with an

independent Gaussian proposal to draw samples from the posterior. The scale of the proposal is adjusted

so that a recommended acceptance rate lies in the interval (22, 25)% [Bedard, 2008]. We consider 25,000

iterations of the sampler that is far more than enough for some cases, e.g. Case 1, and remove the first

25% of the chains for burn-in.

Figure (4.1) shows the posterior distribution of the parameters and the chain convergence in the first

case, when no exogenous variables are presented. Similar plots are obtained for the other cases. From

this figure, the sampler shows a promising mixing and rapid convergence as confirmed by the chains and

sample ACF plot respectively. Similar plots are obtained for the other cases. Figure (4.2) shows the

marginal densities of the parameters and the 95% HPD interval for all six cases, as well as the maximum

likelihood point estimate and the true value of the parameters. Overall, the plots show convergence of

the chains and accurate estimation for the parameters.

Posterior of  q

y

D
en

si
ty

0.30 0.35 0.40 0.45 0.50 0.55

0
5

10
15

True          0.41
 MLE         0.4 
Bayesian  0.41

0 5000 10000 15000

0.
25

0.
35

0.
45

0.
55

Convergence q chain

Index

E
st

im
at

io
n

 True        0.41
 MLE        0.4
Bayesian  0.41

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of q chain

           Posterior of  β  

y

D
en

si
ty

0.8 1.0 1.2 1.4

0
1

2
3

4
5

6
7 True       : 1.1

MLE       : 1.05
Bayesian  1.06

0 5000 10000 15000

0.
8

1.
0

1.
2

1.
4

Convergence β chain

Index

E
st

im
at

io
n

True      1.1 
MLE      1.05 
Bayesian  1.06

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of β chain

Figure 4.1: Marginal densities and chain convergence for q (top) and β (bottom), for Case 1 where
there are no exogenous variables in model.

4.6.2 Simulation from a Poisson and NB regression model

The aim of this section is to test the fitting of a DW regression model to data generated from a Poisson and

NB regression. To this end, we design two experiments using two explanatory variables, x = (x1, x2),

and n = 500 data points. We simulate data for the predictors from uniform distributions, namely

x1 ∼ U(0, 1) and x2 ∼ U(0, 1.5). In the first experiment, we assume that the conditional distribution of

y given x is Poisson(eXα), whereas in the second experiment, we assume it to be a NB distribution with

mean µ = eXα and variance µ + µ2/θ with θ = 4.5. We fix the intercept and the regression parameters

to α = (−0.5, 4.3,−2.2), with values chosen to cover a wide range of shapes for the target distribution.

Figures (4.3) shows the conditional distribution fitted by DW(regQ, β) for a fixed value of x1 = 0.5 and

sliding values of x2 in the [0, 0.7] interval. The figure shows how the estimation improves as the mean of

the target distribution decreases, both for Bayesian and frequentist approaches. In addition, the logit

link shows a better fit compared to the log-log link in both Poisson and NB experiments that can be
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Figure 4.2: Marginal densities and 95% high probability density interval for Cases 1-6 in Table (4.1).
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a consequence of numerical instability in log-log transformation. For the frequentist estimation, we use

the R package DWreg [Kalktawi et al., 2016].
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Figure 4.3: Fitting Poisson (top) and NB (bottom) by DW(regQ, β) for a range of values of x2 and
fixed x1 = 0.5. The plots show the true conditional pmf (black) together with the conditional pmf fitted
by the Bayesian DW model proposed in this chapter, with the logit (q) (red) and log-log (q) (blue)

links, and by the corresponding frequentist approaches (green and light blue, respectively).
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4.6.3 Simulation on Variable Selection

In this simulation, we show the performance of DW regression for variable selection. To this end, we

consider a simulation with 50 predictors and assume that 75% of the parameters, 37 out of 50, are zero.

We generate the remaining non-zero parameters uniformly in the [−0.5, 0.5] interval. We simulate 500

observations for each predictor from a U(−1.5, 1.5) distribution, and the response variable from a DW

distribution using a logit link for q or the log link for β. Similar results are obtained with the log-log link

function. For parameter estimation, we keep the average rate of acceptance in the (20, 30)% interval for

a total of 50, 000 iterations. We choose an InverseGamma(2,1) hyper prior for the penalty parameters.

This prior allows to cover a large range of penalties, in the (0.02,70) interval, with a tendency to small

penalties (i.e. sparsity) due to a mean of 1 and a median of 0.5. Variable selection is performed by

considering the 95% HPD interval for each parameter.

Table (4.2) shows the performance of the method in terms of selection of variables under six different

generating models. In particular, the table reports the True Negative Rate (TNR), Recall
( TP

TP + FN

)
,

Precision
( TP

TP + FP

)
and F1 score

( 2TP
2TP + FN + FP

)
, averaged over 20 simulations. The table shows a

good performance overall, particularly for the BDW(regQ, β) models. The model with the log(β) link

does not perform very well when q decreases, i.e. when the number of zeros in the sample increases. In

these cases, the models show a low recall, that is a high false negative rate.

Model Avr.TNR Avr.Recall Avr.Precision Avr.F1
BDW(logit : regQ, β = .1) 93% 90% 93% 91%
BDW(logit : regQ, β = .8) 95% 89% 95% 92%
BDW(logit : regQ, β = 1.6) 93% 91% 93% 92%

BDW(logit : regQ, regβ) 97% 68% 96% 79%

BDW(q = .85, regβ) 90% 92% 91% 91%
BDW(q = .50, regβ) 93% 37% 84% 52%

Table 4.2: Performance of BDW with Laplace priors. Variables are selected based on the 95% HPD
interval and the selection is compared to the truth on the basis of the average True Negative Rate

(TNR), recall, precision and F1 score.

4.7 Real data illustration

In this section, we show the performance of the Bayesian discrete Weibull regression model on real datasets

from the medical domain. We compare the proposed model with the Bayesian Poisson (BPoisson),

Bayesian Negative Binomial (BNB) and in the case of excessive zeros with Bayesian zero-inflated Poisson

(BZIP) and negative binomial (BZINB) on the basis of a number of commonly used criteria: BIC [Dayton,

2003], AIC [Dayton, 2003], Deviance Information Criterion (DIC) [Spiegelhalter et al., 2002], Quasi-

likelihood Information Criteria (QIC) [Pan, 2001], Consistent AIC (CAIC) [Bozdogan, 1987], Bayesian

Predictive Information Criterion (BPIC) [Ando, 2007] and the Prior Predictive Density (PPD) used in

the Bayes factor [Kass, 1993].

Since BIC, AIC, QIC and CAIC are commonly used in the frequentist framework, we adopt them to

the Bayesian framework by estimating the parameters using the mode of the marginal densities of the

parameters that corresponded to MLE estimations. Next HPD interval is applied to identifying the
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insignificant (zero) parameters. Then the likelihood is re-estimated and degree of freedom is defined by

the number of non-zero estimations.

4.7.1 Comparison with Bayesian generalised linear models

To show the ability of BDW to estimate parameters in the presence of under-dispersion, over-dispersion

and excessive zeros in count data, we choose the following three medical datasets:

1. The data on inhaler usage from [Grunwald et al., 2011], with 5209 observations. The response

is the daily counts of inhalers usage, whereas the covariates are humidity, barometric pressure,

daily temperature, air particles level. The sample mean and variance of the data are 1.3 and 0.8

respectively, so this is a case of under-dispersion relative to Poisson [Kalktawi et al., 2016].

2. The German health survey dataset available in the R package COUNT under the name badhealth,

with 1127 observations. The response is the number of visits to doctors during the year 1988 and

the predictors are whether the patient claims to be in bad health or not, and the age of the patient.

The response variable ranges from 0 to 40 visits and has a sample mean of 2.4 and variance of 12,

suggesting over-dispersion relative to Poisson.

3. The German health registry dataset available in the R package COUNT under the name rwm, with

27326 observations. The response is the number of visits to doctors for the years 1984-1988 and the

predictors are age, years of education and household yearly income. The response variable, number

of visits, has about 37% of zeros, a sample mean of 3.2 and a variance of 32.4, pointing again to a

case of over-dispersion and excessive zeros.

We fit a BDW model with a non-informative prior on the regression parameters, 25,000 iterations for

the Metropolis-Hastings algorithm and an acceptance rate in the (20, 30)% interval. For the case of

BPoisson, BNB, BZIP and BZINB, we make use of the MCMCpack R package [Martin et al., 2011] using

the same configurations as with our approach. Table (4.3) shows a comparison of the models on the three

datasets. We only report the results of the BDW(regQ,β) models, which show superior performance to

the other BDW models on these datasets. Of the two links on q, the logit (q) link performs better than

the log-log (q) link with respect to BIC, AIC, CAIC, DIC, BPIC and log(PPD) in Table (4.3). As for

a comparison with the other models, Poisson has the worst performance for all cases, while NB has

a performance comparable to the logit -BDW model in the over-dispersed scenario, while it does not

perform well in the under-dispersed and excessive zero scenario. In the latter case, zero-inflated negative

Binomial has a performance comparable to DW. This is promising and it points to a future extension of

DW to a zero-inflated DW model.

4.7.2 Comparison with Bayesian penalised regression

In this section, we compare the performance of BDW to BPoisson and BNB regression for variable

selection on a dataset with several variables. In particular, we consider the multivariate data of [Machado

and Santos Silva, 2005]. The data consist of 5096 observations from the 1985 wave of the German

Socioeconomic Panel. As in [Machado and Santos Silva, 2005], we measure the demand in healthcare
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by the number of visits to a specialist (except gynecology or pedriatics) in the last quarter. The 20

covariates are listed in full in Table (4.4) and they are the same considered in [Machado and Santos Silva,

2005]. This is an extreme example of excessive zeros as the response variable contains 67.82% of zeros.

We fit a BDW model with a Laplace prior on the regression parameters and an InverseGamma(2,1)

hyper-prior on the shrinkage parameters. We consider 175000 iterations for the MCMC routine and

similar configurations for the Bayesian Poisson and NB models. We also extend the comparison by

including Bayesian zero-inflated models and frequentist L1 regularized models. For the latter, we use the

glmnet package [Friedman et al., 2010] to fit regularized Poisson regression and the glm.nb R function

to fit regularized negative Binomial regression. In both cases, the penalty parameter is chosen by BIC.

According to the results in Table (4.5), DW(regQ, β) with the log-log link achieves overall the best

performance compared with the others BDW models and with NB and Poisson models.

Figure (4.4) shows the marginal densities of the parameters for the DW(regQ, β) with the log-log link.

Highlighted in red are those variables that are found to be significant based on the 95% HPD interval.

The selection is overall in accordance with the results obtained by [Machado and Santos Silva, 2005]

using a jittering approach, with variables such as gender, chronic complaints, sick leave and disability

found to be significant, and other variables like unemployment, private insurance and those related to

job characteristics, such as heavy labor, stress, variety on job, self-determined and control found not

to be significant. Figure (4.5) shows the effect of the variable chronic complaints on the conditional

distribution, suggesting that the probability of a large number of visits is higher for the case of chronic

complaints than for the case of no complaints. Table (4.6) further compares the selection of variables

with those selected by Poisson and NB regression models. Overall, there is high agreement between DW

and NB, with the exception of the variable control which is found significant by NB (both in the Bayesian

and frequentist estimation) but not by DW. Poisson and BPoisson tend to select many more variables.

4.8 Conclusion remarks

In this chapter we have proposed a novel Bayesian regression model for count data, by assuming a

discrete Weibull conditional distribution. A discrete Weibull regression model was originally proposed by

[Kalktawi et al., 2016] in a frequentist context and a number of desirable features of the model compared

to existing ones were highlighted. The Bayesian implementation in this chapter is based on a more

general model, where both parameters can be linked to the predictors. We have experimented with

different link functions and have found the models with the link on q and constant β to work particularly

well, with the logit (q) link displaying superior performance than the log-log (q) link in the simulations

and in three of the four applications considered in this chapter. Including a link to both q and β was

found to lead to over-parametrization for the applications considered, but it may be useful for other

applications showing more complex dependencies. In terms of the Bayesian inferential approach, we have

shown theoretically how the posterior is proper and with finite moments under a uniform non-informative

prior on the parameters.

We have shown the applicability of the Bayesian discrete Weibull model to count data from the medical

domain. In particular, we have analysed datasets on the number of visits to doctors/specialists, a quantity

that is often used as an indicator of healthcare demand. The response variable in the examples considered
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Model AIC BIC CAIC QIC DIC BPIC log(PPD) df
Inhaler Use (under-dispersed)
log-log : BDW 13497.22 13536.57 13542.57 2.59* 13487.63 13493.88 -6745.93 6
logit : BDW 13494.19* 13533.54* 13539.54* 2.59* 13484.92* 13490.49* -6739.41* 6
BPoisson 14009.01 14041.80 14046.80 2.69 13822.54 13734.31 -6960.64 5
BNB 13952.85 13992.33 13998.20 2.68 13771.0 13686.47 -6960.81 6
German Health Survey (over-dispersed)
log-log : BDW 4478.9 4499.0 4502.0 3.98 4474.60 4478.33 -2245.75 4
logit : BDW 4475.2* 4495.3* 4449.3* 3.97* 4474.16* 4477.70* -2242.23* 4
BPoisson 5638.9 5654.02 5656.10 5.01 5638.14 5641.18 -2826.88 3
BNB 4475.9 4495.9 4499.97 3.97* 4474.66 4478.10 -2243.87 4
German Health Registry (excessive zeros)
log-log : BDW 120340.1 120381.2 120386.2 4.4* 120334.6 120339.2 -60187.6 5
logit : BDW 120339.2* 120380.3* 120385.3* 4.4* 120327.0* 120331.9* -60181.8* 5
BPoisson 209636.4 209669.2 209673.2 7.7 209635.8 209639.6 -104836.7 4
BNB 120658.7 120708.0 120714.0 4.4* 129125.8 133365.3 -60344.0 5
BZIP 169417.7 169450.6 169454.6 6.2 169402.1 169398.3 -83522.3 5
BZINB 120649.5 120682.4 120686.4 4.4* 120629.1 120622.9 -60245.2 6

Table 4.3: Comparison of Bayesian DW, Poisson, Zero-Inflated Poisson, Negative Binomial and Zer-
Inflated Negative Binomial on three datasets and under a number of information criteria. (*) denotes

the minimum value.

Variable Description
Age Age in decades
Chronic complaints 1 if has chronic complaints for at least 1 year
Control 1 if has a job where work performance is strictly controlled
Degree of disability > 20% 1 if the degree of disability is greater than 20%
Education Number of years in education after age 16
HH-income Net monthly household income
Hospitalized > 7 days 1 if was more than 7 days hospitalized in the previous year
Marital Status 1 if single
Month of unemployment Number of months of unemployment in the previous year
Physically heavy labour 1 if has a job in which physically heavy labour is required
Physician density Number of physicians per 100,000 inhabitants in the place of residence
Population < 5000 1 if place of residence has less than 5,000 inhabitants
Population 20000-100000 1 if place of residence has between 20,000 and 100,000 inhabitants
Population 5000-20000 1 if place of residence has between 5,000 and 20,000 inhabitants
Private insurance 1 if had private medical insurance in the previous year
Self-determined 1 if has a job where the individual can plan and carry out job tasks
Sex 1 if female
Sick leave > 14 days 1 if missed more than 14 work days due to illness in the previous year
Stress 1 if has a job with high level of stress
Variety on job 1 if job offers a lot of variety

Table 4.4: List of the variables and descriptions in the number of visits to a specialist dataset [Machado
and Santos Silva, 2005].
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Model AIC BIC CAIC QIC DIC BPIC log(PPD) df
logit :BDW(regQ,β) 12720.4 12864.2 2.5* 12886.2 12710.8 12731.5 -6392.3 11
log-log :BDW(regQ,β) 12698.5* 12842.3* 2.5* 12864.3* 12693.3* 12713.6* -6383.3* 11
BDW(q,regβ) 13256.0 13399.8 2.6 13421.8 13250.4 13270.3 -6665.8 6
logit :BDW(regQ,regβ) 12750.3 12920.7 2.5* 12951.7 12713.0 12744.9 -6516.3 19
log-log :BDW(regQ,regβ) 12748.9 12924.1 2.5* 12955.2 12715.4 12741.3 -6519.1 19
BPoisson 21588.2 21705.8 4.2 21723.8 21594.6 21615.8 -10832.6 17
BNB 12867.3 12939.2 2.5* 12950.2 12838.3 12834.8 -6452.3 11
BZIP 16677.1 16760.1 3.2 16760.0 16698.7 16720.6 -8385.6 15
BZINB 12850.0 12921.1 2.5* 12932.2 12872.0 12894.1 -6456.8 13
Poisson (glmnet) 21571.1 21706.1 4.2 21724.1 - - - 17
NB (glm.nb) 12839.3 12911.2 2.5* 12922.6 - - - 12

Table 4.5: Comparison of BDW with Bayesian and regularized NB and Poisson on the number of
visits to a specialist dataset of [Machado and Santos Silva, 2005]. (∗) denotes the minimum value,
whereas df is the number of non-zero coefficients. For the Bayesian models, these are based on the 95%

HPD interval.
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Figure 4.4: Marginal densities of the parameters for the BDW(regQ, β) model with log-log (q) link on
the number of visits to a specialist dataset. The red lines are for the cases where the 95% HDP interval

does not contain zero (significant variable). Green dotted lines for the opposite.
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Variable BDW(regQ,β) NB BNB BZINB Poisson BPoisson BZIP
Sex * * * * * * *
Marital status * * * * * *
Age *
HH-income * *
Chronic complaints * * * * * * *
Private insurance
Education * *
Physically heavy labour * * *
Stress * * *
Variety on job * * *
Self-determined
Control * * * * * *
Population < 5000 * * * * * * *
Population 5000-20000 * * * * * *
Population 20000-100000 * * * * * *
Physician density *
Months of unemployment * * *
Hospitalized > 7 days * * * * * * *
Sick Leave > 14 days * * * * * * *
Degree of disability > 20 * * * * * *

Table 4.6: Significant (non-zero) covariates that are selected by BDW(regQ, β) with log-log link,
Bayesian and regularized NB and Poisson regression models, and Bayesian zero-inflated Poisson and

NB, for the number of visits to a specialist dataset. An (∗) indicates a non-zero coefficient.
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Figure 4.5: Effect of the variable Chronic Complaints on the conditional distribution for the healthcare
data, when all other variables are held constant.

is discrete and is characterized by a skewed distribution, making the whole conditional distribution of

interest and not only the conditional mean. We have tested the inference procedure on simulated and real

data with various characteristics, such as under-dispersion, over-dispersion and excess of zeros. Overall,

we have found a good performance of the method in comparison with Poisson and NB regression models,

on the basis of a number of information criteria and of the selection of influential variables.
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4.8.1 Future study

Future work will explore an extension of the approach proposed in this chapter to more flexible DW

regression models, such as zero-inflated, multilevel and mixture DW models, in a similar spirit to the

existing models for continuous responses [Dunson et al., 2007]. Moreover, an interesting topic for future

work can be performing the Bayesian optimization methods such as simulated annealing [Hwang, 1988]

for estimating the DW regression parameters. We expect that using the maximum posterior methods

(MAP) can lead to exactly zero estimation of the parameters.



Chapter 5

Conclusions

This thesis has focused on the problem of variable selection and parameter estimation within both fre-

quentist and Bayesian frameworks. Clear advantages over existing methods include proposing a penalized

estimation of the parameters in a time-dependent framework in Chapter § 2, proposing a differentiable

penalty term and discussing its theoretical properties in Chapter § 3, and proposing Bayesian solution to

discrete response regression under discrete Weibull distribution in Chapter § 4. The main contributions

are listed below.

5.1 Main Contributions

1
A l1 penalized approach for estimating parameters in the dynamic regression in the presence of

autocorrelated residuals is proposed in Chapter § 2. This model is extensively discussed from both

a theoretical and practical point of view and by means of simulations and real data applications.

The proposed two-step algorithm for estimating the parameters shows promising results and low bias.

Comparisons with the existing methods in the literature have also shown that this model is beneficial

in real applications. An R package that accompanies this chapter provides an implementation of the

method, for other statisticians and practitioners. The inferential procedure presented in this chapter can

be extended to cover a wider range of penalty functions, including l2 and a combination of l1 and l2
penalties.

2
A fully differentiable and novel penalty is proposed in Chapter § 3. This penalty allows to go

from a flat (OLS) to a very sharp (lasso) regularization of the parameters. We have discussed this

novel penalty theoretically, including asymptotic properties in regularized linear regression, and

practically by proposing an efficient algorithm as well as preparing an R package. We have discussed

this penalty from a computation point of view, and proposed a simple approximation for it. Simulation

studies and real data applications confirm the advantage of this penalty over the competitors in the

literature. We keep the research open by proposing a more general form of this penalty as well as ex-

ploring different scenarios where the differentiability of the penalty function is particularly advantageous.

89
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3
Chapter § 4 of this thesis has addressed the problem of regression for discrete response within a

Bayesian framework. We have introduced the discrete Weibull distribution and the corresponding

regression model. Two link functions are proposed for connecting the distribution parameters to

exogenous variables, precisely a log-log and logit transformations. Then a fully Bayesian approach is

applied in order to estimate the posterior conditional distribution of the response given the covariates

and over a range of priors. We have proved that under the non-informative prior, the DW posterior and

the moments are bounded. In other words, we have proved that the DW posterior is proper under the

non-informative prior for the parameter and for any moment. We have shown the usefulness of the new

regression model in a number of applications and by comparing it to the existing methods in the literature.

The results of this chapter show that imposing independent Laplace priors on the parameters encourage

shrinking parameters toward zero that by itself leads to model selection in frequency domain. The

former is discussed numerically using simulations and in a number of real data applications. Further, the

R package that accompanies this chapter provides a Bayesian solution to the problem of DW regression.

The provided R package covers the whole contents that are discussed in this chapter and some extras

for implementing RJMCMC and parallel processing. The latter results in a significant improvement in

estimations by simultaneously estimating several Markov chains at the same time.



Appendix A

Asymptotic properties of

non-penalized DREGAR

A.0.1 Asymptotic properties of non-penalized DREGAR

In this section we focus on the limiting distribution of OLS estimations in a non-penalized DREGAR

given T > r + p + q. In particular, this section provides essential proofs that are used in Chapter § 2 of

the thesis.

We start with the product of two infinite geometric series.

Lemma A.1 (Product of two infinite geometric series). Let S1 = ∑∞
i=0( L

a )i, a > 1 and S2 = ∑∞
i=0( L

b )i, b >

1 be two geometric series, then S1S2 is a linear function of S1 and S2, provided a 6= b.

Proof.

S1S2 =
∞

∑
i=0

(
L
a

)i
∞

∑
i=0

(
L
b

)i

=
∞

∑
i=0

i

∑
k=0

(
L
a

)k(
L
b

)i−k

=
∞

∑
i=0

(
L
b

)i
i

∑
k=0

(
b
a

)k

=
∞

∑
i=0

(
L
b

)i(
1− ( b

a )i+1

1− ( b
a )

)

=
a

a− b

∞

∑
i=0

(
L
b

)i +
b

b− a

∞

∑
i=0

(
L
a

)i a 6= b.
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By induction one can extend the result of Lemma (A.1) to m geometric series, S1S2S3 . . . Sm. The rest

of this section is focused on the block matrices in H1 and limit distribution of H′2e in equation (2.5),

H1 =

(
1
n

(X′, H(p), H(q))
′(X′, H(p), H(q))

)−1

H′2e =
1√
n

(X′, H(p), H(q))
′e.

Recall the general form of (non-penalized) DREGAR(p,q),

yt =
p

∑
i=1

φiyt−i + x′tβ + εt

εt =
q

∑
j=1

θjεt−j + et.

Using backward shift operator,

(1−
p

∑
i=1

Liφi)yt = x′tβ + εt → yt =
1
A

x′tβ +
1
A

εt

(1−
q

∑
l=1

Llθl)εt = et → εt =
1
B

et,

where A = (1−
p
∑

i=1
Liφi) and B = (1−

q
∑

i=1
Liθi).

From H1, 1
n H′(p)H(q) is

1
n

H′(p)H(q) =
1
n


∑T

i=T0+1 yi−1εi−1 ∑T
i=T0+1 yi−1εi−2 . . . ∑T

i=T0+1 yi−1εi−q

∑T
i=T0+1 yi−2εi−1 ∑T

i=T0+1 yi−2εi−2 . . . ∑T
i=T0+1 yi−2εi−q

...
...

. . .
...

∑T
i=T0+1 yi−pεi−1 ∑T

i=T0+1 yi−pεi−2 . . . ∑T
i=T0+1 yi−pεi−q


p×q

,

where each element of this matrix comes from 1
n ∑T

i=T0+1 yi−s1 εi−s2 for s1 ∈ {1, 2, 3, . . . , p} and s2 ∈
{1, 2, 3, . . . , q}. Thus,

1
n ∑

t
yt−s1 εt−s2 =

1
n ∑

t
(

Ls1

A
x′tβ +

Ls1

A
εt)Ls2 εt

where : εt =
1
B

et.

Then,

1
n ∑

t
yt−s1 εt−s2 =

1
n ∑

t
(

Ls1

A
x′tβ +

Ls1

A
1
B

et)Ls2
1
B

et

=
1
n ∑

t
(

Ls1

A
x′tβ)(

Ls2

B
et) +

1
n ∑

t
(

Ls1

A
1
B

et)(
Ls2

B
et). (A.1)

x.i, i = 1, 2, . . . , r are independent of the error term by the assumptions, then the first term in (A.1)

tends to have zero mean. If E{( Ls1
A x′t)(

Ls1
A xt)} < ∞, then the variance of the first term in (A.1)
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tends to zero at the speed of n. Consequently, the first term in (A.1) tends to zero, op(1). More-

over, ∀i ∈ {1, 2, 3, . . . , r}, x.is are mutually independent and covariance stationary with finite moments

and in particular satisfying the conditions in Theorem (2.1). From this, E{( Ls1
A x′t)(

Ls1
A xt)} < ∞.

For the second term, by assumptions t 6= t′, Cov(et, et′) = 0. As a result, this term is non-zero in

similar orders of ( Ls1
A

t
B ) and ( Ls2 t

B ). Precisely, let a1, a2, a3, . . . , ap and b1, b2, b3, . . . , bq be the roots for

1−∑
p
i=1 φiLi and 1−∑

q
i=1 θiLi respectively. Then,

Ls1

AB
=

(
p

∏
j=1

∞

∑
i=0

(
L
aj

)i

)(
q

∏
k=1

∞

∑
i=0

(
L
bk

)i

)
Ls1 (A.2)

Ls2

B
=

(
q

∏
j=1

∞

∑
i=0

1
bj

(
L
bj

)i

)
Ls2 . (A.3)

Using remark (A.1), given i, i′ ∈ {1, 2, 3, . . . , p} and j, j′ ∈ {1, 2, 3, . . . , q}; ai 6= ai′ , bj 6= bj′ and ai 6= bj,

then all terms in RHS of (A.2) and (A.3) can be rewritten in the form of linear functions of individual

elements. As a result, there are infinite terms with similar orders between (A.2) and (A.3), provided the

process is started from −∞. Consequently, the second term in the RHS of equation (A.1) is a non-zero

function of σ2. Clearly, the model orders p, q do not affect (A.2) and (A.3), provided there are enough ob-

servations. On the other hand, if the process starts at zero, then, [H′(p)H(q)]s1s2 = 0 for min(s1, s2) ≥ n.

As a result, p and/or q can freely tend to infinity, provided H1 is non-singular and there are enough

observations.

For a simple example, let the true underlying model be DREGAR(1,1). Then,

(A.2) = Ls1 (
∞

∑
i=0

φiLi)(
∞

∑
i=0

θiLi)

(A.3) = Ls2 (
∞

∑
i=0

θiLi).

If θ 6= φ,

(A.2) = Ls1 (
∞

∑
i=0

φiLi)(
∞

∑
i=0

θiLi)

= Ls1

(
(

φ

φ− θ
)

∞

∑
i=0

φiLi + (
θ

θ − φ
)

∞

∑
i=0

θiLi

)

(A.3) = Ls2 (
∞

∑
i=0

θiLi).

Then,

Cov

(
Ls1

(
(

φ

φ− θ
)

∞

∑
i=0

φiLi + (
θ

θ − φ
)

∞

∑
i=0

θiLi

)
et, Ls2 (

∞

∑
i=0

θiLi)et

)
=

Cov

(
Ls1 (

φ

φ− θ
)

∞

∑
i=0

φiLiet, Ls2 (
∞

∑
i=0

θiLi)et

)
+

Cov

(
Ls1 (

θ

θ − φ
)

∞

∑
i=0

θiLiet, Ls2 (
∞

∑
i=0

θiLi)et

)
.
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But s1 = s2 = 1 then,

Cov

(
Ls1

(
(

φ

φ− θ
)

∞

∑
i=0

φiLi + (
θ

θ − φ
)

∞

∑
i=0

θiLi

)
et, Ls2 (

∞

∑
i=0

θiLi)et

)

= σ2(
φ

φ− θ

∞

∑
i=0

(θφ)i) + σ2(
θ

θ − φ

∞

∑
i=0

θ2i)

= σ2
(

φ

(φ− θ)(1− θφ)
+

θ

(θ − φ)(1− θ2)

)
=

σ2

(1− θφ)(1− θ2)
. (A.4)

Moreover, in DREGAR(1,1), E{( Ls1
A x′t)(

Ls1
A xt)} is,

E

{
(

Ls1

A
x′t)(

Ls1

A
xt)

}
= E

{
(Ls1

∞

∑
i=0

φiLix′t)(Ls1
∞

∑
i=0

φiLixt)

}
,

where s1 = 1. Then,

E

{
(

Ls1

A
x′t)(

Ls1

A
xt)

}
= E

{
(

∞

∑
i=0

φiLi+1x′t)(
∞

∑
i=0

φiLi+1xt)

}
= E

{
(

∞

∑
i=0

φix′t−i−1)(
∞

∑
i=0

φixt−i−1)

}

= E

( ∞

∑
i=0

φi
i

∑
k=0

x′t−k−1xt−(i−k)−1

)

=
∞

∑
i=0

φi
i

∑
k=0

E(x′t−k−1xt−(i−k)−1)

=
∞

∑
i=0

φi
i

∑
k=0

γ(x)i−2k
,

where γ(x)k
= γ(x)−k

is the kth order auto-covariance of x′i. By assumptions, in particular ergodicity,

∀z ∈N, ∑z
i=0 γ(x)i

< M < ∞, then

E{
∞

∑
i=0

φix′t−i−1

∞

∑
i=0

φixt−i−1} <
M

1− φ
< ∞.

For the second block matrix in H1, 1
n XH(p), we have

1
n

XH(p) =
1
n


∑T

t=T0+1 x1tyt−1 ∑T
t=T0+1 x1tyt−2 . . . ∑T

t=T0+1 x1tyt−p

∑T
t=T0+1 x2tyt−1 ∑T

t=T0+1 x2tyt−2 . . . ∑T
t=T0+1 x2tyt−p

...
...

. . .
...

∑T
t=T0+1 xrtyt−1 ∑T

t=T0+1 xrtyt−2 . . . ∑T
t=T0+1 xrtyt−p

 .

Considering the case 1
n ∑T

t=T0+1 xs3tyt−s4 where s3 ∈ {1, 2, 3, . . . , r} and s4 ∈ {1, 2, 3, . . . , p}.

1
n

T

∑
t=T0+1

xs3tyt−s4 =
1
n

T

∑
t=T0+1

xs3t(
Ls4

A
x′tβ +

Ls4

AB
et)
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=
1
n

T

∑
t=T0+1

xs3t(
Ls4

A
x′tβ) +

1
n

T

∑
t=T0+1

xs3t
Ls4

AB
et. (A.5)

Since x.i, i = 1, 2, . . . , r is independent of the error, the final term in (A.5) tends to zero, 1
n xs3 e =

N(0,
E(x′s3

xs3 )

n )→ op(1). For the first term,

1
n

T

∑
t=T0+1

xs3t(
Ls4

A
x′tβ) = g(γx)β < ∞,

where g(.) is a bounded function. This is due to the fact that ∀i = 1, 2, 3, . . . , r ; x.is are mutually inde-

pendent and the entire process is stable. As a result, autocorrelations of x.i, 1 ≤ i ≤ r die quickly after

a finite number of lags, provided the coefficients are far from the boundary of stationarity. Otherwise,

the decreasing speed of auto-covariances may take longer. In a special case where xtr, t = 1, 2, 3, . . .

are a random sample from x.r, the inner correlation is zero and the last equation is zero provided

∀i ∈ {1, 2, 3, . . . , r}, βi < ∞.

For 1
n XH(q),

1
n

XH(q) =
1
n


∑T

t=T0+1 x1tεt−1 ∑T
t=T0+1 x1tεt−2 . . . ∑T

t=T0+1 x1tεt−q

∑T
t=T0+1 x2tεt−1 ∑T

t=T0+1 x2tεt−2 . . . ∑T
t=T0+1 x2tεt−q

...
...

. . .
...

∑T
t=T0+1 xrtεt−1 ∑T

t=T0+1 xrtεt−2 . . . ∑T
t=T0+1 xrtεt−q

 .

Taking 1
n ∑T

t=T0+1 xrtεt−q for example. If E(x′rxr) < ∞,

1
n

T

∑
t=T0+1

xrtεt−q =
1
n

T

∑
t=T0+1

xrt
Lq

B
et ∝ N

(
0,

E(x′rxr)

n

)
p→ op(1).

It is straightforward to show that 1
n X′X → σ2

x Ir×r = Ir×r as data are assumed to be normalized prior to

the analysis.

Finally for 1
n H′(p)H(p) and 1

n H′(q)H(q) we have

1
n

H′(p)H(p) =
1
n


∑T

i=T0+1 yi−1yi−1 ∑T
i=T0+1 yi−1yi−2 . . . ∑T

i=T0+1 yi−1yi−p

∑T
i=T0+1 yi−2yi−1 ∑T

i=T0+1 yi−2yi−2 . . . ∑T
i=T0+1 yi−2yi−p

...
...

. . .
...

∑T
i=T0+1 yi−pyi−1 ∑T

i=T0+1 yi−pyi−2 . . . ∑T
i=T0+1 yi−pyi−p

 .

Each element of this matrix belongs to a general form of 1
n ∑T

i=T0+1 yi−s7 yi−s8 where s7, s8 ∈ {1, 2, 3, . . . , p}.
Thus,

1
n

T

∑
i=T0+1

yi−s7 yi−s8 =
1
n

T

∑
t=T0+1

(
Ls7

A
x′tβ +

Ls7

AB
et)(

Ls8

A
x′tβ +

Ls8

AB
et)
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=
1
n

T

∑
t=T0+1

(
Ls7

A
x′tβ)(

Ls8

A
x′tβ) +

1
n

T

∑
t=T0+1

(
Ls7

AB
et

Ls8

AB
et), (A.6)

where the cross terms tend to zero. The second term in (A.6) is non-zero because there is an infinite

number of common terms, provided the process is started from −∞. The first term in (A.6) tends to

E

(
( Ls7

A x′t)(
Ls8
A x′t)

′
)

, provided the expectation exists. If s7 = s8, the formula above produces the diagonal

elements with the same values (remembering that all exogenous variables are independent and have unit

variance). As it is pointed out, covariance stationary of {xt} is sufficient for the last expectation to be

bounded. In the special case of DREGAR(1,1), it results in

E

(
(

Ls7

A
x′t)(

Ls8

A
x′t)
′
)

= E

(
(

∞

∑
i=0

φiLix′t−1)(
∞

∑
i=0

φiLix′t−1)′
)

= E(
∞

∑
i=0

φix′t−i−1

∞

∑
i=0

φix′t−i−1)

= E(
∞

∑
i=0

φi
i

∑
k=0

x′t−k−1xt−(i−k)−1)

=
∞

∑
i=0

φi
i

∑
k=0

γ(x)i−2k
< ∞.

For E( Ls7
AB et

Ls8
AB et),

E(
Ls7

AB
et

Ls8

AB
et) = E

{
(

∞

∑
i=0

φiLi
∞

∑
j=0

θiLiet−1)(
∞

∑
i=0

φiLi
∞

∑
j=0

θiLiet−1)

}

= E

{
(

φ

φ− θ

∞

∑
i=0

φiLi +
θ

θ − φ

∞

∑
i=0

θiLi)et−1(
φ

φ− θ

∞

∑
i=0

φiLi +
θ

θ − φ

∞

∑
i=0

θiLi)et−1

}
= σ2

(
(

φ

φ− θ
)2 1

1− φ2 + (
θ

θ − φ
)2 1

1− θ2 + 2(
θ

θ − φ
)(

φ

φ− θ
)

1
1− θφ

)
=

σ2

(φ− θ)2

(
φ2

1− φ2 +
θ2

1− θ2 − 2
φθ

1− φθ

)
< ∞.

Finally, a similar calculation for 1
n H′(q)H(q) results in

1
n

H′(q)H(q) =
1
n


∑T

i=T0+1 εi−1εi−1 ∑T
i=T0+1 εi−1εi−2 . . . ∑T

i=T0+1 εi−1εi−q

∑T
i=T0+1 εi−2εi−1 ∑T

i=T0+1 εi−2εi−2 . . . ∑T
i=T0+1 εi−2εi−q

...
...

. . .
...

∑T
i=T0+1 εi−qεi−1 ∑T

i=T0+1 εi−qεi−2 . . . ∑T
i=T0+1 εi−qεi−q

 .

Every element of this matrix is of the form 1
n ∑T

i=T0+1 εi−s9 εi−s10 where s9, s10 ∈ {1, 2, 3, . . . , q}. Following

the previous proofs, one can show that 1
T ∑T

t=T0+1
Ls9
B et

Ls10
B et is non-zero.

All in all, H1 tends to Q that is,

Q =


Ir×r E(xs3t(

Ls4
A x′tβ)|s3, s4, t) Or×q

E
(

( Ls7
A x′tβ)( Ls8

A x′tβ) + ( Ls7
AB et

Ls8
AB et)|s7, s8, t

)
E
(

( Ls1
A

1
B et)(

Ls2
B et)|s1, s2, t

)
E
(

Ls9
B et

Ls10
B et|s9, s10, t

)
 , (A.7)
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with (s1, s4, s7, s8) ∈ {1, 2, . . . , p}, (s2, s9, s10) ∈ {1, 2, . . . , q} and s3 ∈ {1, 2, . . . , r}. We should stress that

Q consists of only x′ti and et, t = T0 + 1, T0 + 2, T0 + 3, . . . , T and i = 1, 2, 3, . . . , r. Furthermore, in all

discussed cases p and q can freely increase to infinity, provided H1 is non-singular and there are enough

observations.

In the following lines, we focus on H′2e and introduce the central limit theorem for martingales and find

the limit distribution of H2e.

Theorem A.1 (Central limit theorem for martingales). If {yt} is a martingale difference sequence with

mean and variance given by

ȳ =
1
n

n

∑
t=1

yt, σ̄2 =
1
n

n

∑
t=1

σ2
t ,

and provided that higher order moments are bounded,

E(|yt|2+δ) < ∞, δ > 0,

and

1
n

n

∑
t=1

y2
t − σ̄2

n
p→ 0.

Then

√
n(

ȳ
σ̄

)
d→ N(0, 1).

Proof. [Martin et al., 2012, p.51].

Let H◦t be 1√
n H′2e,

H◦t =
1√
n

(X′, H(p), H(q))
′e.

H◦t is a martingale difference sequence (MDS) because

E

(
H◦t

∣∣∣∣t = t− 1, t− 2, . . . , t− (p + q)

)
= E

(
(X′t, H(p)t

, H(q)t
)′et

∣∣∣∣Ft−1

)
,

= (X′t, H(p)t
, H(q)t

)′E(et) = 0,

where Ft−1 contains the information up to time t− 1. We show that the central limit theorem for MDS

holds for H◦,

µ̄ =
1
n

T

∑
t=T0+1

H◦t

σ̄2 =
1
n

T

∑
t=T0+1

Var(H◦t ) = σ4Q.
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To establish the boundedness condition in the martingales central limit theorem, a convenient option is

choosing δ = 2 so that

E(|H◦t |4) = E(e4
t )E

(
X′t, H(p)t

, H(q)t

)4
.

Using assumption [a], E(e4
t ) < ∞ and it can be shown that E

(
X′t, H(p)t

, H(q)t

)4
< ∞, provided yt and

x′.i, i = 1, 2, . . . , r are stationary and ergodic. Moreover,

1
n

T

∑
t=T0+1

e2
t

(
Xt, H′(p)t

, H′(q)t

)2
=

1
n

T

∑
t=T0+1

(e2
t − σ2)

(
X′t, H(p)t

, H(q)t

)2
+ σ2 1

n

T

∑
t=T0+1

(
X′t, H(p)t

, H(q)t

)2
. (A.8)

The first term in (A.8) is a mean zero MDS. Using the weak law of large numbers (WLLN), we have

1
n ∑T

t=T0+1(e2
t − σ2)

(
X′t, H(p)t

, H(q)t

)2 d→ 0. The second term in RHS of (A.8) tends to σ2Q where Q is

defined in (A.7). As a result

1
n

T

∑
t=T0+1

e2
t

(
Xt, H′(p)t

, H′(q)t

)2 d→ σ2Q.

Therefore, the central limit theorem for martingales results in 1√
n H′2e d→ N(0, σ2Q).

A.0.2 Source of the bias

In the previous section, we relied on the assumption that εt, and as a result H(q), are known, whereas

this is not the case in reality. In fact both ε and θ are unknown in real applications. Consequently, ε

must be estimated from a primary step precisely from (Y − H(p)φ− Xβ). Then we concentrate on the

theoretical properties of estimating φ in the presence of autocorrelated residuals.

Let the initial model be

y = H(p)φ + X′β + ε,

where we assume an AR(q) process for ε. Estimating parameters using OLS leads to

φ̂ =

(
H′(p)H(p) H′(p)X

X′H(p) X′X

)−1

p
H′(p)y

= φ +

(
H′(p)H(p) H′(p)X

X′H(p) X′X

)−1

p
H′(p)ε, (A.9)

where (M)p represents the first p rows of the corresponding matrix M. The second term in RHS of (A.9)

is the source of the bias, which we show by using asymptotic results. To this end, the asymptotic form
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of the estimations is defined by:

√
n(φ̂− φ) = n

(
H′(p)H(p) H′(p)X

X′H(p) X′X

)−1

p

1√
n

H′(p)ε
n→∞
= (Σy)−1 1√

n
H′(p)ε

∝
√

nH′(p)ε,

where Σy is the covariance matrix of the corresponding element in the inverse term. On the other hand,

H′(p) and ε are not independent because of the inner-correlations in εs. For instance the first column of

H′(p) and εt are correlated via θεk−1 and all former lags. As a result
√

nH′(p)ε is not a proper martingale

and this results in a bias and complicated structure for the distribution of estimations.
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in Probability. Birkhäuser Boston, 2012. ISBN 9781468485745. (Cited on page 2.)

Borjesson, P. S. et al. Simple approximations of the error function Q (x) for communications applications.

Communications, 1979. (Cited on page 59.)

Box, C. D. R., George EP. An analysis of transformations. Journal of the Royal Statistical Society,

Series B, 26(2):211–252, 1964. (Cited on page 15.)

Box, G. E. and Pierce, D. A. Distribution of residual autocorrelations in autoregressive-integrated moving

average time series models. Journal of the American Statistical Association, 65(332):1509–1526, 1970.

(Cited on page 40.)

Bozdogan, H. Model selection and Akaike’s information criterion (AIC): The general theory and its

analytical extensions. Psychometrika, 52(3):345–370, 1987. (Cited on pages 40 and 82.)

Bracquemond, C. and Gaudoin, O. A survey on discrete lifetime distributions. International Journal of

Reliability, Quality and Safety Engineering, 10(1):69–98, 2003. (Cited on pages 69 and 70.)

Cameron, A. C. and Trivedi, P. K. Regression analysis of count data. Cambridge university press, 2013.

(Cited on pages 10 and 69.)

Candes, E. and Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. The

Annals of Statistics, pages 2313–2351, 2007. (Cited on page 4.)

Carroll, R., Ruppert, D., Stefanski, L., and Crainiceanu, C. Measurement error in nonlinear models:

A modern perspective, Second Edition. Chapman & Hall/CRC Monographs on Statistics & Applied

Probability. CRC Press, 2006. ISBN 9781420010138. (Cited on page 2.)

Carter, E. and Potts, H. Predicting length of stay from an electronic patient record system: A primary

total knee replacement example. BMC Medical Informatics and Decision Making, 14(26), 2014. (Cited

on page 69.)

Chang, S.-H., Cosman, P. C., and Milstein, L. B. Chernoff-type bounds for the Gaussian error function.

Communications, IEEE Transactions on, 59(11):2939–2944, 2011. (Cited on page 50.)

Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic decomposition by basis pursuit. SIAM journal

on scientific computing, 20(1):33–61, 1998. (Cited on page 8.)



Bibliography 102

Chevillard, S. and Revol, N. Computation of the error function erf in arbitrary precision with correct

rounding. JD Bruguera et M. Daumas (editeurs): RNC, 8:27–36, 2008. (Cited on page 59.)

Chiuso, A. and Pillonetto, G. A Bayesian approach to sparse dynamic network identification. Automatica,

48(8):1553–1565, 2012. (Cited on page 17.)

Cody, W. J. Performance evaluation of programs for the error and complementary error functions. ACM

Trans. Math. Softw., 16(1):29–37, March 1990. ISSN 0098-3500. doi: 10.1145/77626.77628. (Cited on

page 59.)

Cody, W. J. Rational Chebyshev approximations for the error function. Mathematics of Computation,

23(107):631–637, 1969. (Cited on page 59.)

Cox, D. R. Regression models and life-tables. In Breakthroughs in statistics, pages 527–541. Springer,

1992. (Cited on page 72.)

Daubechies, I., Defrise, M., and De Mol, C. An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint. Communications on pure and applied mathematics, 57(11):1413–1457, 2004.

(Cited on page 9.)

Davino, C., Furno, M., and Vistocco, D. Quantile Regression: Theory and applications. Wiley Series in

Probability and Statistics. Wiley, 2013. ISBN 9781118752715. (Cited on page 2.)

Dayton, C. M. Model comparisons using information measures. Journal of modern applied statistical

methods, 2(2):2, 2003. (Cited on page 82.)

Dellaportas, P., Forster, J. J., and Ntzoufras, I. Bayesian variable selection using the Gibbs sampler.

BIOSTATISTICS-BASEL, 5:273–286, 2000. (Cited on page 10.)

Donoho, D. L. and Johnstone, J. M. Ideal spatial adaptation by Wavelet shrinkage. Biometrika, 81(3):

425–455, 1994. (Cited on page 62.)

Dos Santos, P. Linear parameter-varying system identification: New developments and trends. Ad-

vanced series in electrical and computer engineering. World Scientific Publishing Company, 2012. ISBN

9789814355452. (Cited on page 16.)

Du, D. and Pardalos, P. Minimax and applications. Nonconvex Optimization and Its Applications.

Springer US, 2013. ISBN 9781461335573. (Cited on page 2.)

Dunson, D. B., Pillai, N., and Park, J.-H. Bayesian density regression. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 69(2):163–183, 2007. (Cited on page 88.)

Efron, B. Double exponential families and their use in generalized linear regression. Journal of the

American Statistical Association, 81(395):709–721, 1986. (Cited on page 11.)

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least angle regression. The Annals of statistics,

32(2):407–499, 2004. (Cited on pages 9, 33, and 64.)

El Sayyad, G. Bayesian and classical analysis of Poisson regression. Journal of the Royal Statistical

Society. Series B (Methodological), pages 445–451, 1973. (Cited on page 69.)



Bibliography 103

Englehardt, J. D. and Li, R. The discrete Weibull distribution: An alternative for correlated counts with

confirmation for microbial counts in water distributions. Risk Analysis, 31(3):370–381, 2011. (Cited

on page 69.)

Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. Regression: Models, methods and applications. Springer

Berlin Heidelberg, 2013. ISBN 9783642343339. (Cited on page 10.)

Fan, J. and Li, R. Variable selection via Nonconcave penalized likelihood and its Oracle properties.

Journal of the American Statistical Association, 96(456):1348–1360, 2001. (Cited on pages 5, 7, 30,

45, and 60.)

Fan, J., Lv, J., and Qi, L. Sparse High-Dimensional models in economics. Annual review of economics,

3:291, 2011. (Cited on page 14.)

Fan, L. R., Jianqing. Variable selection via nonconcave penalized likelihood and its oracle properties.

Journal of the American Statistical Association, 96(456):1348–1360, 2001. (Cited on page 4.)

Frank, L. E. and Friedman, J. H. A statistical view of some chemometrics regression tools. Technometrics,

35(2):109–135, 1993. (Cited on page 2.)
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