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On Global Smooth Path Planning for Mobile
Robots Using A Novel Multimodal Delayed PSO
Algorithm
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Abstract

Background: The planning problem for smooth paths for neolbots has attracted particular research atten-
tion, but the strategy combining the heuristic intelligeptimization algorithm (e.g. particle swarm optimizafion
with smooth parameter curve (e.g. Bezier curve) for glokel gmooth path planning for mobile robots has not
been thoroughly discussed because of several difficultiek as the local trapping phenomenon in the searching
process.

Methods: In this paper, a novel multimodal delayed part®igarm optimization (MDPSO) algorithm is
developed for the global smooth path planning for mobileotebBy evaluating the evolutionary factor in each
iteration, the evolutionary state is classified by equatrvel division for the swarm of the particles. Then, the
velocity updating model would switch from one mode to anotiexording to the evolutionary state. Furthermore,
in order to reduce the occurrence of local trapping phenameand expand the search space in the searching
process, the so-called multimodal delayed informationi¢tviis composed of the local and global delayed best
particles selected randomly from the corresponding valuesevious iterations) is added into the velocity updating
model.

Results: A series of simulation experiments are implenteotea standard collection of benchmark functions.
The experiment results verify that the comprehensive perdnce of the developed MDPSO algorithm is superior
to other well-known PSO algorithms. Finally, the presemt®dPSO algorithm is utilized in the global smooth
path planning problem for mobile robots, which further comé the advantages of the MDPSO algorithm over the
traditional genetic algorithm (GA) investigated in prewsostudies.

Conclusions: The multimodal delayed information in the MEWP reduces the occurrence of local trapping
phenomenon and the convergence rate is satisfied at the sameBased on the testing results on a selection of
benchmark functions, the MDPSOQO's performance has beenrshiovibe superior to other five well-known PSO
algorithms. Successful application of the MDPSO for plagnihe global smooth path for mobile robots further
confirms its excellent performance compared with the somidy existing algorithms.
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I. INTRODUCTION

The past few decades have seen the accelerated developmestatics due mainly to the wide
applications of mobile robots in a wide range of areas indgiGgricultural production robotics, routine
material transport, indoor and outdoor security patro&gsh material handling, harsh site cleanup and
underwater applications [19], [20], [48]. Among otherse thath planning is a critical task in mobile
robotics whose objective is to look for a feasible yet optipeth from the start point to the target point.
Such an issue could be regarded as an optimization issuertmncedices (e.g. shortest distance and
minimum energy) with certain constraints (e.g. collisio@e route), see, e.g. [4], [28], [29], [38]. Up to
now, researchers have developed many heuristic algoritbns®lve this problem (see, e.g. [10], [12],
[32], [35], [37], and the references cited therein), andtipl@ swarm optimization (PSO) algorithm is
arguably the most studied algorithms which have been wideiployed in the path planning for mobile
robots [49].

In the past few years, a large number of PSO-based approdewvesbeen proposed for the path
planning for mobile robots. For example, a study on the campa of dynamic path planning has
been presented for mobile robots in [11] where the PSO dhgorhas shown the better convergence
performance compared with the genetic algorithm (GA). 14][3A new method called biogeography
PSO (BPSO) has been developed by combining the biogeogtzgsed optimization (BBO) and PSO
algorithm to tackle the path planning problem in static emwments, where the BPSO algorithm is
employed to optimize the network of the paths through apprate voronoi boundary network (AVBN)
modeling. An accelerated PSO has been developed in [33]rdswthe global path planning for mobile
robots, where only the global best particle of the PSO iszetil and the local best particle is discarded
in the updating function. Furthermore, it has been shownitmlsition that such a simplified PSO gives
the same order of convergence as the conventional PSO. Indtbrid heuristic GA-PSO scheme has
been put forward to plan the paths for mobile robots in a gndrenment, where crossover and mutation
operators of GA are applied to the evolution of the partidéPSO, thereby avoiding the premature
convergence and time complexity in conventional GA and POrahms. A parallel metaheuristic PSO
algorithm has been developed in [15] for the global path milasp for mobile robots, in which three
parallel PSO algorithms combined with a communication afmerare utilized to generate the feasible
line path, and the generated feasible line path is then dmaddly a cubic B-spline smoother. However,
the path planning algorithms proposed in the aforementiqregppers have mainly been concerned with
certain simple optimal criterion (e.g. the minimum lengthhe path), while other important performances
of the path (e.g. the smoothness of the path) are seldomdsesi in the path planning [44]. Usually,
a traditional path planning algorithm could generate a gattmposed of several polygonal lines which
involve inevitable sharp turns sometimes. Moving alonghsagath would cause frequent switches for
a mobile robot between different modes (e.g. stop, rotaterastart) which leads to unnecessary waste
on time and energy. Furthermore, the jerk resulting in tlaesswitching is not permissible when the
smoothness of the movement is required to ensure servideeyqdd]. Therefore, in addition to the path
length, the path smoothness has been considered as anofhantant criterion for its close relation to
other optimization criteria [5].

So far, the planning problem for smooth paths for mobile tebmas attracted particular research
attention. For example, Bezier curve has been applied to péhs of a robot soccer system modeled
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as multi-agents considering velocity and accelerationtsifl6]. A smooth path planning approach has
been proposed in [13] to generate a feasible path composeikoéwise Bezier curve with curvature
constraint. A so-called A* algorithm has been introducedi34] to find the minimum-cost path from the
starting node to a given target node over a directed graghthenarc-line approach is utilized to smooth
the generated path. In [55], the Voronoi diagram and Digstigorithm have been employed to plan a
piecewise line path, where the endpoints of the lines in tth pave been exploited as the control points
of the smooth Bezier curve path. A stochastic PSO has begioged in [7] to optimize certain cubic
spline described by polynomials whose coefficients are sgadables/free parameters to form the swarm
of particles. An approach based on the radial basis fundRBF) neural networks has been presented
in [3] to deal with the smooth path planning of mobile roboteene a Bezier curve has been trained
to realize the local path planning processes. Neverthellessstrategy combining the heuristic intelligent
optimization algorithm (e.g. PSO) with smooth parametewveye.g. Bezier curve) for global yet smooth
path planning for mobile robots has not been adequatelyusissa in the literature because of several
difficulties such as the local trapping phenomenon in thecbéag process.

In this paper, we aim to develop a novel multimodal delaye® RBIDPSO) algorithm combining
with the Bezier curve to handle the global smooth planning fmbile robot paths. The multimodal
delayed information adopted in the proposed MDPSO wouldedse the trapping possibility to the local
minimum and hence help explore the whole search space thlaisod’he main contributions of this paper
are outlined as threefol@l) A novel multimodal delayed PSO (MDPSO) with adaptivaimoldal delayed
information is proposed to overcome the local trapping mimeanon frequently appearing in the global
smooth planning for mobile robot paths. (2) The performanicdhe MDPSO is shown, via comprehensive
simulation experiments, to outperform the other well-knd®&0O algorithms on a standard collection of
benchmark functions. (3) The developed MDPSO is succhssafylied to globally smoothly planning
paths for mobile robots and the derived smooth path perfdoetter than the one generated by GA in
the previous studies

The remainder of this paper is organized as follows. In $aditi, the particle swarm optimization and
its developments are briefly introduced. In Section Ill, tlevel multimodal delayed PSO is proposed
and discussed in great detail. In Section IV, we conduct imellation experiments in order to compare
and contrast the performances of the MDPSO with severatiegi$SO algorithms. In Section V, the
strategy of MDPSO combining with Bezier curve is exploitedtite global smooth planning for mobile
robot paths and the performance is then discussed. Ficalhgluding remarks are given and future work
is pointed out in the last section.

[I. PARTICLE SWARM OPTIMIZATION AND |ITS DEVELOPMENTS
A. Traditional PSO Algorithm

As a heuristic intelligent optimization algorithm, PSO wasveloped by Kennedy and Eberhart to
simulate the swarm behaviors of birds flocking or fish schaplwhere each particle of the swarm acts
as a potential solution of certain optimization problem][17

For PSO, the swarm consisting of particles moves around rédicevelocity in the search space of
D-dimension. At thekth iteration in the searching process, the position of itheparticle (denoted by
a vectorz; (k) = (xa(k), xin(k), -+, x;p(k)) will be updated to reach the global optimum based on the
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corresponding velocity vector (denoted byk) = (vi1(k),via(k), - ,v;p(k))). Moreover, the velocity
vector of theith particle at thekth iteration will be updated according to 1) the historicakbposition of
the ith particle, which is also called local best particibés) as denoted by, = (pi1, pi2, - -+ , pip); and

2) the historical best position of the entire swarm, whiclalso named as global best partictghés) as

represented by, = (pg1,pg2, -+ ,Pgp). The details of the updating models for velocity and positid

the ith particle at the next iteration is given as follows:

vi(k 4+ 1) = wv; (k) + e1r1(pi(k) — xi(k)) + cara(py(k) — xi(E)),
wherek is the number of the current iteratiom; is the inertia weight; the acceleration coefficieatsand

¢, are called, respectively, cognitive and social paramggerd ; andr, are two uniformly distributed
random numbers ofv, 1].

(1)

B. Developments of Traditional PSO

The traditional PSO scheme described above has widely b&eoh in various optimization problems
for its simple concept and efficient implementation, and aetsa of approaches have been proposed to
improve the capability of the traditional PSO [46].

PSO with linearly decreased inertia weighbn iteration generations (PSO-LDIW) has been introduced
by Shi and Eberhart [40]-[42], the inertia weight of the emtriterationw is calculated as follows:

1termax — tter
w=(w; —wy) X —

+ wa, (2)

1termax
wherew; andw, are, respectively, the initial value and the final value & thertia weight;iter denotes
the number of current iteration anéer,,., is the number of maximum iteration. Generally speaking, a
larger inertia weight would make the PSO tend to the globplaration and, on the other hand, a smaller
one could achieve the local exploitation. Therefore, thigainand final valuesv; andw, are customarily
set as0.9 and 0.4, respectively. Furthermore, PSO with time-vary accelenatoefficients (PSO-TVAC)
has been proposed in [39] as computed by the following eopstti

ttermax — tter

c1 = (e —c1f) ¥ + ¢y, (3)

1termax

itermax — tter

Cy = (Cg3 — Cgf) X - Cof, 4
2 = (2 2f) itero— + cof 4)

wherec;; (cy;) is the initial value, and:;; (cay) is the final value of the acceleration coefficient(c,).
Usually, we setc;; = 2.5 (co; = 0.5) and ciy = 0.5 (coy = 2.5) in this strategy. Additionally, PSO
with constriction factor (PSO-CK) has been proposed by cCard Kennedy to enhance the searching
performance of PSO, where = 0.729 and¢; = ¢, = 1.49 are recommended [9]. The improvement
strategies of the traditional PSO mentioned above are gnaiohcerning with the parameter studies,
while other strategies including combination with auxyisoperations and topological structures have
also been constructed to enhance the capability of PSO (&18. of the most remarkable research trends
is the hybrid PSO, which combines some auxiliary operatieith the traditional PSO, e.g., selection
[2], crossover [8], mutation [1], local search [22] and eiféntial evolution [54], etc. A fully informed
particle swarm optimization (FIPSO) scheme has been dpedlto guide the particles of the swarm using
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the information of entire neighborhood [30]. A comprehgadearning PSO (CLPSO) introduced in [23]
employs local best particle from different neighbors to atedthe swarm flying at different dimensions so
as to improve the performance in the case of multimodal dp#étions. The analyses and experiments have
shown that the performance of the traditional PSO has beemgied greatly by using these strategies.

Recently, an adaptive PSO (APSO) has been put forward by &ten which introduces an evolutionary
factor to quantify the mean distance (between the global fiesicle and other particles). By a series of
fuzzy membership functions according to the evolutionactdr, four states have been defined, which are
the exploration state, the exploitation state, the coramrg state and the jumping out state. These four
states have been used to adaptively control the inertiahtv@igd the acceleration coefficients in each
iteration [51]. A switching PSO (SPSO) has been proposeddmng Et al. to overcome the shortcomings of
Zhan's algorithm. A Markov chain is used to predict the ne¢atesaccording to the current state as decided
by the evolutionary factor, and the velocity updating rdewitched from one mode to another depending
on the evolutionary state [46]. Moreover, a switching detayPSO (SDPSO) has been proposed more
recently, which could switch the velocity updating modet@ding to the evolutionary state predicted
by a Markov chain. In the SDPSO, in addition to the inertiagheiand acceleration coefficients that
are adaptively adopted based on the evolutionary factortlamdevolutionary state, the local/global best
particles are randomly chosen based on the correspondingsvitom previous iterations [50].

[1l. ANoVEL MuLTIMODAL DELAYED PSO ALGORITHM

The main purpose of this section is to develop a novel multiahalelayed PSO (MDPSO) so as to
improve the searching performance further. The main npwlsuch a new PSO algorithm is to add two
delayed terms in the traditional velocity updating modetha PSO algorithm. The new terms, composed
of both the local and global delayed best particles seleftted the corresponding values in the previous
iterations stochastically, are added into the velocityaijpy model according to the evaluated evolutionary
state. This improvement strategy aims to reduce the coemeegspeed of the traditional PSO and thereby
decreasing the likelihood of converging to local minimuns such, the entire search space could be
explored more thoroughly.

A. Framework of MDPSO

The updating equations for the velocity and the positiorhef hovel MDPSO algorithm are presented
by:
vi(k + 1) = wvi(k) + c1r1(pi(k) — xi(k)) + cara(pg(k) — x:(k))
si(k)esrs(pi(k — 7i(k)) — 2i(k))
+ sg( Jeara(pg(k — 7g(k)) — 2:i(k)),
ri(k+1)=x;(k) +v(k+ 1),

wherew is the inertia weight determined by equation (2);and ¢, are the coefficients for acceleration
updated by equations (3) and (4), andand ¢, are equal toc; and ¢, without loss of generality, i.e.
c1 = c3 andey = ¢4, respectivelyy; (i = 1,2, 3,4) are the random uniformly distributed numbersin1];
7;(k) and 7, (k) are the random delays uniformly distributed[ink] for the local and the global delayed
best particle, respectively;(k) ands,(k) are the intensity factor of the newly added terms in the vstoc
updating model depending on the evolutionary factor.

()
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In the novel MDPSO algorithm, the newly added terms in thesigy updating model is closely related
to the evolutionary factor (EF) defined in [51] to describe #warm distribution properties. According
to the EF in the searching process, the four states (i.e.xXpration state, the exploitation state, the
convergence state and the jumping out state) are denotédkby= 1, (k) = 2, (k) = 3 and{(k) = 4,
respectively. The mean distance betweenitheparticle and the other particles in the swarm denoted as
d; could be calculated by

1 S D
d; = ﬁj:%j:# ;(%k - xjk:)Z, (6)

where S and D denote the swarm size and the particle dimension, respéctikccordingly, the evolu-
tionary factor denoted a&; could be calculated by

dy — dpin,
r—— ")
where d, is the mean distance between the global best particle andtties particles in the swarm.
dmax andd,,;, are the maximum and minimum @f in the swarm, respectively. The evolutionary state
are classified according to the evolutionary factor by aeseaof fuzzy functions in [51], equal division
strategy is used for the evolutionary state classificatiof#6], [50] for the state prediction depending on
a Markov chain. In this paper, the formulation of evolutipnatate classification in [46], [50] has been
adopted and expressed as follows:

E; =

0< E; <0.25,
0.25 < E; < 0.5,
0.5 < E; < 0.75,
0.75 < E; < 1.

E(k) = (8)

el I NI

B. Strategies for Multimodal Delayed Information

PSO-TVAC is one of the most successful improvements of tadittonal PSO, in which the linear
varied acceleration coefficients are used in the searchiogeps. Four evolutionary states are classified
by a series of fuzzy functions according to the evolutiorfactor, and different acceleration coefficients
are recommended for each state in APSO. In SPSO, the santeggtfar selecting the varied accel-
eration coefficients is adopted according to the switchingjugionary state based on a Markov chain.
Furthermore, the switching evolutionary state is emplotedwitch the velocity updating model with
delayed information from one mode to another in SDPSO. Thin naga in the above strategies is to
adjust the velocity updating model in an adaptive mode aliogrto the evaluated evolutionary state. In
this paper, a novel strategy with multimodal delayed infation is developed to adaptively adjust the
velocity updating model and introduced as follows:

¢ In the convergence staté(f) = 1), the particles in the swarm are expected to fly into the regio
around the global optimum as soon as possible. Hence, oalgdimal terms in the velocity updating
model are remained and the delayed information is ignotedbith ofs;(k) and s, (k) are set to
zero.

¢ In the exploitation statef(k) = 2), the particles in the swarm are willing to exploit the regaround
the local best particles. So that, the local delayed inftionais added into the velocity updating
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model, i.e. only the local best particles in the previousatiens are randomly selected for the velocity
updating with the intensity factos;(k) = Ef(k).

¢ In the exploration state (k) = 3), it is important to search the optima as many as possiblerefore,

the global delayed information is added to explore the wisel@rch space in a more thorough way,
that is, the global best particles in the previous iteratiane randomly selected for the velocity
updating with the intensity factos, (k) = E¢(k).

¢ In the state of jumping out(k) = 4), the local best particles are eager to jump out from theoregi

around the local optima. Thus, it is necessary to provideenpmwer for these particles to escape
from this region, so that both of the local and global delaygdrmation are used for this purpose
with the intensity factors; (k) = Ef(k) ands,(k) = Ef(k), respectively.

The above discussed strategies for multimodal delayednrgtion can be summarized in Table I, where
s;(k) ands,(k) are the intensity factor determined by the evolutionaryestad evolutionary factaf ; (k)
in each iterationyrand is the function to generate a randomly uniformly distrititesmber in[0, 1]; the
delay 7;(k) and 7,(k) are randomly selected integer uniformly distributed(nk], wherek denotes the
number of the current iteration arjd] means the round down function.

Remark 1:Note that the delayed information stems from the randomlgcsed previous local and
global particles, both of which would bring some kind of ‘hutence” to the convergence process in the
traditional PSO. Such a novel strategy would, without anyldpreduce the convergence rate slightly, yet
the entire search space could be explored more thoroughlyhenglobal optima could be more likely to
be obtained. This superiority is crucial for the global pleng of smooth paths for mobile robots where
traditional planning algorithms suffer typically from thecal trapping problems leading to the infeasibility
of the planning problems.

The flowchart of our novel multimodal delayed PSO (MDPSO)&tgm is depicted as in Fig. 1.

TABLE |
STRATEGIES FOR MULTIMODAL DELAYED INFORMATION

State Mode si(k)  sq(k) 7 (k) 74 (k)
Convergence (k) =1 0 - -
Exploitation &(k) =2 Ey(k) |k - rand, | -
Exploration  £(k) =3 0 E(k) - |k - rand,, |
Jumping-out &(k) =4 Ef(k) Ey(k) |k-rand,] [k-rand,, |

0
0

V. SIMULATION EXPERIMENTS
A. Configuration of Benchmark Functions

In the following simulation examples, some frequently useshchmark functions are employed to
evaluate the performance of the novel MDPSO scheme. Thehbeark functions are given by equation
(9) to (14), where the Sphere functigin(z) is a typical unimodal optimization problem usually utilize
to examine the convergence rate of the optimization algoritthe Rosenbrock functiof,(z) can be
regarded as a multimodal function because it is hard to olite optimum in the narrow banana-like
valley; f3(x) to fs(x) are other typical unimodal and multimodal functions undedly very hard to
obtain the optimum. To this end, the configuration of the bemark functions are shown in Table II,
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Start

Initialize the parameters of the
MDPSO routine

I

Evaluate the fitness value of each particle, update pbest
and ghest and then save as historical information

¥

Compute the mean distance d; of each
particle according to (6)

Compute evolutionary factor E; according to (7)

Classity the evolutionary state ¢ (k) according to (8)

Compute the inertia weight according to (2)

Compute the acceleration coefficient according to

(3) and (4)

Y

Update the multimodal delayed information

according to Table |

Update the velocity and position according to (5)

Fig. 1. Flowchart of MDPSO algorithm

fe=k+1

Yes

If k& < maximum iteration?
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where the fourth column indicates the search space of eacndion; the fifth column is the threshold to
determine whether a searching process is successful cambthe optima of all the benchmark functions
are zero as given in the sixth column of the table [46].

D
Sphere : fi(z) = Z 2. 9)
i=1
D-1
Rosenbrock : fo(z) = Z(lOO(xiH — )+ (2 — 1)?). (10)
i=1
Ackley : fi(z) = —20e 02V b Xt _ op Tilicos2mei 4 o0 4 o (11)
D
Rastrigin : fy(z) = Z(m? — 10 cos 2mx; + 10). (12)
i=1
Schwefel 2.22 : f5(x Z | z; | + H | z; | . (13)
D
Schwefel 1.2 : fg(x Z ij . (14)
=1 j=1
TABLE I

CONFIGURATION OF BENCHMARK FUNCTIONS

Functions Name Dimension Search space Threshold  Minimum
fi(z) Sphere 20 [~100,100)”  0.01 0
fa(x) Rosenbrock 20 [-30,30]P 100 0
f3(x) Ackley 20 [-32,32]P 0.01 0
fa(zx) Rastrigin 20 [-5.12,5.12]P 50 0
f5(2) Schwefel 2.22 20 [-10,10]" 0.01 0
fo() Schwefel 1.2 20 [-100,100)”  0.01 0

B. Simulation and Discussion

A series of simulations are implemented to 1) test the pevémce of our novel MDPSO scheme and 2)
compare with some other standard PSO algorithms in ordegrtmdstrate the advantages of the MDPSO.
The parameter settings are given as follows: the populaifaihe swarmS = 20, the dimension of the
particle D = 20, the maximum iteration numbe¥ = 20000, and each experiment is repeated 50 times
independently in one routine for the subsequent statlsticalysis. The proposed MDPSO algorithm is
compared with five other rather standard PSO algorithmgudng the PSO-LDIW [40], PSO-TVAC
[39], PSO-CK [9], SPSO [46] and SDPSO [50].

The mean fitness values of the above PSO algorithms for eaathimark function are shown in Fig.

2 to Fig. 7, where the horizontal coordinate indicates theatton number and the values of the vertical
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Fig. 2. Performance test for Sphere functifir(z)

coordinate are represented in logarithmic formation. Tthastical comparisons of the optimization results
listed in Table Il are also presented to demonstrate theimmuim, the mean value and the standard
deviation of the fitness values as well as the success rateadh PSO algorithm on the benchmark
functions. Note that some of the success ratios are very foshawn in the table, i.e. not all the optimal
solutions of the algorithms could converge to the fitnessievddelow the threshold with the increasing
iteration generation, so that some of the mean values arenegly large in comparison with the proposed
MDPSO algorithm as shown in the figures. It is illustrated th& random initialization could not ensure
the successful convergence for all the algorithms and teengture convergence could not be avoided.
However, the MDPSO algorithm could be able to tend to thenoytn robustly for all the benchmark
functions. Besides, the convergence performances of tfaitdms are quite different from each other.
Obviously, the convergence rate of the proposed MDPSO ghthfi slower than some of the other PSO
algorithms, e.g. PSO-CK and SPSO on the Sphere functionbstter solutions could be achieved for
all the other benchmark functions. It is worthwhile to nobattthe multimodal delayed information in
the MDPSO make it not easy to converge to the local minima,tand the whole search space could be
explored more thoroughly as a result of the super capalwlitgscaping from the local optima. Hence,
the proposed MDPSO algorithm outperforms the other PSCrittigas for both unimodel and multimodel
benchmark functions in a series of criteria such as suceggsand mean fitness value.

V. SMOOTH PATH PLANNING FOR MOBILE ROBOTS
A. Preliminary of Bezier curve

As a parametric curve, the Bezier curve has been successfséld in practice such as computer
graphics. Different from the traditional interpolatioad®d curves such as polynomials and cubic splines,
the Bezier curve consists of a number of control points, Wwildce not in the curve except the start and
end points. Let a set of control point vectd?s, Py, .-, P, be given. In this case, the Bezier curve
denoted a®(t) is defined as
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P(t)=Y Bl t)P; 0<t <1, (15)
=0
wheret is the normalized time variabl@®; = (z;, y;)* stands for the coordinate vector of tfith control
point with z; andy; as X andY coordinate components, respectivel:(¢) is the Bernstein polynomial
expressed as:

Brity= " e -0, i=0,1,...,n (16)

]

The smoothness of a Bezier curve based path is closely defatéhe curvature function of the path.
In the two-dimensional plane, the Bezier curve’s curvatae be expressed as:

IR X0 NORS X0\ X0
MR T B By .
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TABLE 11l
STATISTICAL COMPARISONS OF THE OPTIMIZATION RESULTS

PSO-TVAC PSO-LDIW PSO-CK SPSO SDPSO MDPSO
fi(z) Minimum 253 x 10715 2,49 x 1072°1  0.0000 0.0000 1.23x 10712 2,72 x 1079
Mean 3.03 x 10757 3.07 x 107" 0.0000 0.0000 3.09 x 107 4.50 x 107%4
Std. Dev. 2.14 x 10756 0.0000 0.0000 0.0000 1.00 x 107%  3.10 x 10763
Ratio 100% 100% 100% 100% 100% 100%
fo(z)  Minimum 221 x107%  1.85x 1072  445x 107! 223 x 1073  3.5339 2.70 x 107°
Mean 1.17 x 10 7.41 x 103 5.47 x 103 3.79 x 103 1.67 x 10 7.7743
Std. Dev. 1.48 x 10! 2.46 x 10* 2.15 x 104 1.77 x 104 1.52 x 10 5.1952
Ratio 100% 80% 90% 88% 100% 100%
fa(z) Minimum 2.66 x 107'*  2.66 x 107*  6.21 x 107*  2.66 x 107 1.99x 1077  2.66 x 1071°
Mean 5.64 x 1071 472 x 107 2.0694 791 x 1071 214x107°  6.64 x 1071°
Std. Dev. 1.81 x 107'  1.77 x 1071%  2.2971 2.3036 5.03 x 107° 222 x 1071°
Ratio 100% 100% 18% 72% 100% 100%
fa(z) Minimum 5.9697 3.9798 2.78 x 10* 2.18 x 10! 2.9852 1.9899
Mean 1.12 x 10! 1.46 x 10! 5.86 x 10 5.16 x 10 2.08 x 10! 9.1337
Std. Dev. 3.4876 1.26 x 10* 1.95 x 10 1.90 x 10* 1.26 x 10 2.8119
Ratio 100% 100% 32% 48% 98% 100%
fs(x)  Minimum 3.86 x 107%%  7.84 x 107120 568 x 1073!  1.63 x 107162 1.04 x 10~7  6.50 x 10740
Mean 6.00 x 107%  1.26 x 10* 8.40 1.05 x 10® 2.4000 3.10 x 1072°
Std. Dev. 2.3989 1.21 x 10! 9.33 1.67 x 10® 4.7638 1.14 x 10728
Ratio 94% 32% 46% 2% 78% 100%
fo(z) Minimum 131 x 1072 263 x 1072®  1.05 x 10719 2.83 x 10* 2.64 x 1071 1.41 x 10730
Mean 1.00 x 102 2.43 x 103 2.70 x 103 7.26 x 104 6.04 x 102 3.77 x 10718
Std. Dev. 7.07 x 102 4.01 x 103 3.57 x 103 2.46 x 10* 2.39 x 103 1.67 x 10717
Ratio 98% 66% 58% 0% 0% 100%

where R(t) is the curvature’s radiud®,(t), P,(t), P.(t) andP,(t) are the coordinate components &n
andY of the first and second derivatives of the Bezier cuR{g), which are expressed as the following

equations:
() = T =n B P P (18)
n—2
P(t) =n(n—1)) B (t)(Pi2 — 2Pis + P)). (19)
=0

B. Optimization model of smooth path planning

A two-dimensional workspace with several obstacles is sspg to be the working environment of
a mobile robot, and the purpose of planning the smooth path seek a feasible and optimal Bezier
curve path from the start to the target points. The whole gake is divided into many square grids
according to the requirement of the smooth path plannirgy,Feg. 8 shows the workspace of a mobile
robot with numbered grids. For each grid, it is defined to libeeiempty (denoted as the white square
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Fig. 8. Workspace of a mobile robot with numbered grids

grid) or occupied (denoted as the black square grid), whsctletermined by whether the boundary of
the obstacles is within the square grid. A mobile robot in wWwkspace could be treated as a point. In
terms of the size of a mobile robot, the boundary of the olbssdtas been constructed from 1) the actual
boundary; and 2) the minimum safety distance.

In this paper, the proposed MDPSO is combined with the Beziere for planning the smooth path of a
mobile robot by considering feasibility, smoothness arsfagice of the path at the same time. Generally, a
Bezier curve path comprises several segments denoted gsi@nse of control points. Hence, the smooth
path planning is to find a sequence of control points that dedifieasible and shortest Bezier curve path
by using the MDPSO algorithm. The objetive function is gianfollows:

min J =Y " |[Pi(t)]| + N, x P, (20)
=1

where||P;(t)|| denotes the length of théh segment of a Bezier curve patN; and P, denote the amount
of the occupied grids in the path and the penalty ratio foheaerupied grid, respectively.

C. Results and analyses

In this section, the algorithm of planning smooth path basedMDPSO and Bezier curve has been
applied to the workspace in Fig. 8 in order to show the usefsgrof the proposed approach. The parameters
of the experiments are given as follows: the population efgtvarm is set a$00, the maximum of the
iteration generation is set d90, the dimension of the particle that denotes the amount ofrabpoints
of the Bezier curve is taken @& and the experimental penalty ratio is taken5asfor each occupied
obstacle.

Two results of numerous simulation experiments have béastihted in Fig. 9, where the start position
and target position arg, 5) to (155, 155) and (155, 5) to (5, 155), respectively; blue circles indicate the
control points of the Bezier curve path, blue solid lines pose the convex hull and red solid curve
depicts the optimum smooth path. Obviously, it is really all@mging issue for the path planner to find a
satisfied path in these two cases for at least two reasorsdlyFFthe acceptable path must pass through a
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Fig. 10. Smooth path planning from (155, 5) to (5, 155)

few narrow gaps formed by the nearby obstacles. Secon@lygtimal solution is very easy to be attracted
into the surrounding traps, i.e. several infeasible patitis suboptimal objective function value. However,
the MDPSO algorithm could accomplish the difficult task o&noling smooth path successfully, which
profits from its ability of escaping from the local optima bging the multimodal delayed information. In
comparison with the approach proposed in [44] where geradgiorithm (GA) is combined with Bezier
curve for planning the smooth path for a mobile robot, the @imgath produced in this paper has a
smaller curvature as shown in Fig. 11, which means a smogttérfor the movement of a mobile robot.
The best objective function value of the optimum particleeach iteration is shown in Fig. 13, which
demonstrates the fast convergence rate of the MDPSO digofir this problem.

VI. CONCLUSIONS

A novel multimodal delayed particle swarm optimization (M80O) has been developed in this paper
for planning the global smooth path for mobile robots. In gneposed MDPSO algorithm, the delayed
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information composed of local and global delayed best gartiwhich are chosen randomly from the
previous iterations, have been added into the velocity tipglanodel according to the evolutionary state
and evolutionary factor. The multimodal delayed inforraatin the MDPSO reduces the occurrence of
local trapping phenomenon and the convergence rate idisdtest the same time. Based on the testing
results on a selection of benchmark functions, the MDPS@rfopmance has been shown to be superior
to other five well-known PSO algorithms. Finally, the sustekapplication of the MDPSO for planning
the global smooth path for mobile robots further confirmseitsellent performance compared with the
one generated by GA in the previous studies.

In the future work, the focus will be on 1) how to develop nevatggy to further enhance/improve the
performance of the developed PSO (e.g. the approach toiaelgpgelect the delayed information) and
2) how to apply the proposed algorithms to more complicayestiesns (see e.g. [6], [18], [21], [24]-[27],
[43], [47], [52], [53]).
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