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Abstract

Background: The planning problem for smooth paths for mobile robots has attracted particular research atten-

tion, but the strategy combining the heuristic intelligentoptimization algorithm (e.g. particle swarm optimization)

with smooth parameter curve (e.g. Bezier curve) for global yet smooth path planning for mobile robots has not

been thoroughly discussed because of several difficulties such as the local trapping phenomenon in the searching

process.

Methods: In this paper, a novel multimodal delayed particleswarm optimization (MDPSO) algorithm is

developed for the global smooth path planning for mobile robots. By evaluating the evolutionary factor in each

iteration, the evolutionary state is classified by equal interval division for the swarm of the particles. Then, the

velocity updating model would switch from one mode to another according to the evolutionary state. Furthermore,

in order to reduce the occurrence of local trapping phenomenon and expand the search space in the searching

process, the so-called multimodal delayed information (which is composed of the local and global delayed best

particles selected randomly from the corresponding valuesin previous iterations) is added into the velocity updating

model.

Results: A series of simulation experiments are implemented on a standard collection of benchmark functions.

The experiment results verify that the comprehensive performance of the developed MDPSO algorithm is superior

to other well-known PSO algorithms. Finally, the presentedMDPSO algorithm is utilized in the global smooth

path planning problem for mobile robots, which further confirms the advantages of the MDPSO algorithm over the

traditional genetic algorithm (GA) investigated in previous studies.

Conclusions: The multimodal delayed information in the MDPSO reduces the occurrence of local trapping

phenomenon and the convergence rate is satisfied at the same time. Based on the testing results on a selection of

benchmark functions, the MDPSO’s performance has been shown to be superior to other five well-known PSO

algorithms. Successful application of the MDPSO for planning the global smooth path for mobile robots further

confirms its excellent performance compared with the some typical existing algorithms.
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I. INTRODUCTION

The past few decades have seen the accelerated development in robotics due mainly to the wide

applications of mobile robots in a wide range of areas including agricultural production robotics, routine
material transport, indoor and outdoor security patrols, harsh material handling, harsh site cleanup and

underwater applications [19], [20], [48]. Among others, the path planning is a critical task in mobile

robotics whose objective is to look for a feasible yet optimal path from the start point to the target point.

Such an issue could be regarded as an optimization issue on certain indices (e.g. shortest distance and
minimum energy) with certain constraints (e.g. collision-free route), see, e.g. [4], [28], [29], [38]. Up to

now, researchers have developed many heuristic algorithmsto solve this problem (see, e.g. [10], [12],

[32], [35], [37], and the references cited therein), and particle swarm optimization (PSO) algorithm is
arguably the most studied algorithms which have been widelyemployed in the path planning for mobile

robots [49].

In the past few years, a large number of PSO-based approacheshave been proposed for the path
planning for mobile robots. For example, a study on the comparison of dynamic path planning has

been presented for mobile robots in [11] where the PSO algorithm has shown the better convergence

performance compared with the genetic algorithm (GA). In [31], A new method called biogeography
PSO (BPSO) has been developed by combining the biogeography-based optimization (BBO) and PSO

algorithm to tackle the path planning problem in static environments, where the BPSO algorithm is

employed to optimize the network of the paths through approximate voronoi boundary network (AVBN)
modeling. An accelerated PSO has been developed in [33] towards the global path planning for mobile

robots, where only the global best particle of the PSO is utilized and the local best particle is discarded

in the updating function. Furthermore, it has been shown by simulation that such a simplified PSO gives
the same order of convergence as the conventional PSO. In [14], a hybrid heuristic GA-PSO scheme has

been put forward to plan the paths for mobile robots in a grid environment, where crossover and mutation

operators of GA are applied to the evolution of the particlesof PSO, thereby avoiding the premature
convergence and time complexity in conventional GA and PSO algorithms. A parallel metaheuristic PSO

algorithm has been developed in [15] for the global path planning for mobile robots, in which three

parallel PSO algorithms combined with a communication operator are utilized to generate the feasible
line path, and the generated feasible line path is then smoothed by a cubic B-spline smoother. However,

the path planning algorithms proposed in the aforementioned papers have mainly been concerned with

certain simple optimal criterion (e.g. the minimum length of the path), while other important performances

of the path (e.g. the smoothness of the path) are seldom considered in the path planning [44]. Usually,
a traditional path planning algorithm could generate a pathcomposed of several polygonal lines which

involve inevitable sharp turns sometimes. Moving along such a path would cause frequent switches for

a mobile robot between different modes (e.g. stop, rotate and restart) which leads to unnecessary waste
on time and energy. Furthermore, the jerk resulting in the state switching is not permissible when the

smoothness of the movement is required to ensure service quality [45]. Therefore, in addition to the path

length, the path smoothness has been considered as another important criterion for its close relation to
other optimization criteria [5].

So far, the planning problem for smooth paths for mobile robots has attracted particular research

attention. For example, Bezier curve has been applied to plan paths of a robot soccer system modeled
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as multi-agents considering velocity and acceleration limits [16]. A smooth path planning approach has

been proposed in [13] to generate a feasible path composed ofpiecewise Bezier curve with curvature
constraint. A so-called A* algorithm has been introduced in[34] to find the minimum-cost path from the

starting node to a given target node over a directed graph, and the arc-line approach is utilized to smooth

the generated path. In [55], the Voronoi diagram and Dijkstra algorithm have been employed to plan a
piecewise line path, where the endpoints of the lines in the path have been exploited as the control points

of the smooth Bezier curve path. A stochastic PSO has been proposed in [7] to optimize certain cubic

spline described by polynomials whose coefficients are set as variables/free parameters to form the swarm

of particles. An approach based on the radial basis function(RBF) neural networks has been presented
in [3] to deal with the smooth path planning of mobile robots where a Bezier curve has been trained

to realize the local path planning processes. Nevertheless, the strategy combining the heuristic intelligent

optimization algorithm (e.g. PSO) with smooth parameter curve (e.g. Bezier curve) for global yet smooth
path planning for mobile robots has not been adequately discussed in the literature because of several

difficulties such as the local trapping phenomenon in the searching process.

In this paper, we aim to develop a novel multimodal delayed PSO (MDPSO) algorithm combining
with the Bezier curve to handle the global smooth planning for mobile robot paths. The multimodal

delayed information adopted in the proposed MDPSO would decrease the trapping possibility to the local

minimum and hence help explore the whole search space thoroughly. The main contributions of this paper
are outlined as threefold.(1) A novel multimodal delayed PSO (MDPSO) with adaptive multimodal delayed

information is proposed to overcome the local trapping phenomenon frequently appearing in the global

smooth planning for mobile robot paths. (2) The performanceof the MDPSO is shown, via comprehensive

simulation experiments, to outperform the other well-known PSO algorithms on a standard collection of

benchmark functions. (3) The developed MDPSO is successfully applied to globally smoothly planning

paths for mobile robots and the derived smooth path performsbetter than the one generated by GA in

the previous studies.

The remainder of this paper is organized as follows. In Section II, the particle swarm optimization and

its developments are briefly introduced. In Section III, thenovel multimodal delayed PSO is proposed
and discussed in great detail. In Section IV, we conduct the simulation experiments in order to compare

and contrast the performances of the MDPSO with several existing PSO algorithms. In Section V, the

strategy of MDPSO combining with Bezier curve is exploited to the global smooth planning for mobile
robot paths and the performance is then discussed. Finally,concluding remarks are given and future work

is pointed out in the last section.

II. PARTICLE SWARM OPTIMIZATION AND ITS DEVELOPMENTS

A. Traditional PSO Algorithm

As a heuristic intelligent optimization algorithm, PSO wasdeveloped by Kennedy and Eberhart to

simulate the swarm behaviors of birds flocking or fish schooling, where each particle of the swarm acts

as a potential solution of certain optimization problem [17].
For PSO, the swarm consisting of particles moves around at certain velocity in the search space of

D-dimension. At thekth iteration in the searching process, the position of theith particle (denoted by

a vectorxi(k) = (xi1(k), xi2(k), · · · , xiD(k)) will be updated to reach the global optimum based on the
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corresponding velocity vector (denoted byvi(k) = (vi1(k), vi2(k), · · · , viD(k))). Moreover, the velocity

vector of theith particle at thekth iteration will be updated according to 1) the historical best position of
the ith particle, which is also called local best particle (pbest) as denoted bypi = (pi1, pi2, · · · , piD); and

2) the historical best position of the entire swarm, which isalso named as global best particle (gbest) as

represented bypg = (pg1, pg2, · · · , pgD). The details of the updating models for velocity and position of
the ith particle at the next iteration is given as follows:

vi(k + 1) = wvi(k) + c1r1(pi(k)− xi(k)) + c2r2(pg(k)− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1),
(1)

wherek is the number of the current iteration;w is the inertia weight; the acceleration coefficientsc1 and

c2 are called, respectively, cognitive and social parameters; and r1 and r2 are two uniformly distributed
random numbers on[0, 1].

B. Developments of Traditional PSO

The traditional PSO scheme described above has widely been used in various optimization problems

for its simple concept and efficient implementation, and a variety of approaches have been proposed to
improve the capability of the traditional PSO [46].

PSO with linearly decreased inertia weightw on iteration generations (PSO-LDIW) has been introduced

by Shi and Eberhart [40]–[42], the inertia weight of the current iterationw is calculated as follows:

w = (w1 − w2)×
itermax − iter

itermax

+ w2, (2)

wherew1 andw2 are, respectively, the initial value and the final value of the inertia weight;iter denotes
the number of current iteration anditermax is the number of maximum iteration. Generally speaking, a

larger inertia weight would make the PSO tend to the global exploration and, on the other hand, a smaller

one could achieve the local exploitation. Therefore, the initial and final valuesw1 andw2 are customarily

set as0.9 and0.4, respectively. Furthermore, PSO with time-vary acceleration coefficients (PSO-TVAC)
has been proposed in [39] as computed by the following equations:

c1 = (c1i − c1f )×
itermax − iter

itermax

+ c1f , (3)

c2 = (c2i − c2f )×
itermax − iter

itermax

+ c2f , (4)

wherec1i (c2i) is the initial value, andc1f (c2f ) is the final value of the acceleration coefficientc1 (c2).

Usually, we setc1i = 2.5 (c2i = 0.5) and c1f = 0.5 (c2f = 2.5) in this strategy. Additionally, PSO

with constriction factor (PSO-CK) has been proposed by Clerc and Kennedy to enhance the searching
performance of PSO, wherew = 0.729 and c1 = c2 = 1.49 are recommended [9]. The improvement

strategies of the traditional PSO mentioned above are mainly concerning with the parameter studies,

while other strategies including combination with auxiliary operations and topological structures have

also been constructed to enhance the capability of PSO [51].One of the most remarkable research trends
is the hybrid PSO, which combines some auxiliary operationswith the traditional PSO, e.g., selection

[2], crossover [8], mutation [1], local search [22] and differential evolution [54], etc. A fully informed

particle swarm optimization (FIPSO) scheme has been developed to guide the particles of the swarm using
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the information of entire neighborhood [30]. A comprehensive-learning PSO (CLPSO) introduced in [23]

employs local best particle from different neighbors to update the swarm flying at different dimensions so
as to improve the performance in the case of multimodal optimizations. The analyses and experiments have

shown that the performance of the traditional PSO has been promoted greatly by using these strategies.

Recently, an adaptive PSO (APSO) has been put forward by Zhanet al., which introduces an evolutionary
factor to quantify the mean distance (between the global best particle and other particles). By a series of

fuzzy membership functions according to the evolutionary factor, four states have been defined, which are

the exploration state, the exploitation state, the convergence state and the jumping out state. These four

states have been used to adaptively control the inertia weight and the acceleration coefficients in each
iteration [51]. A switching PSO (SPSO) has been proposed by Tang et al. to overcome the shortcomings of

Zhan’s algorithm. A Markov chain is used to predict the next state according to the current state as decided

by the evolutionary factor, and the velocity updating rule is switched from one mode to another depending
on the evolutionary state [46]. Moreover, a switching delayed PSO (SDPSO) has been proposed more

recently, which could switch the velocity updating model according to the evolutionary state predicted

by a Markov chain. In the SDPSO, in addition to the inertia weight and acceleration coefficients that
are adaptively adopted based on the evolutionary factor andthe evolutionary state, the local/global best

particles are randomly chosen based on the corresponding values from previous iterations [50].

III. A N OVEL MULTIMODAL DELAYED PSO ALGORITHM

The main purpose of this section is to develop a novel multimodal delayed PSO (MDPSO) so as to

improve the searching performance further. The main novelty of such a new PSO algorithm is to add two

delayed terms in the traditional velocity updating model ofthe PSO algorithm. The new terms, composed
of both the local and global delayed best particles selectedfrom the corresponding values in the previous

iterations stochastically, are added into the velocity updating model according to the evaluated evolutionary

state. This improvement strategy aims to reduce the convergence speed of the traditional PSO and thereby
decreasing the likelihood of converging to local minimum. As such, the entire search space could be

explored more thoroughly.

A. Framework of MDPSO

The updating equations for the velocity and the position of the novel MDPSO algorithm are presented
by:

vi(k + 1) = wvi(k) + c1r1(pi(k)− xi(k)) + c2r2(pg(k)− xi(k))

+ si(k)c3r3(pi(k − τi(k))− xi(k))

+ sg(k)c4r4(pg(k − τg(k))− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1),

(5)

wherew is the inertia weight determined by equation (2);c1 and c2 are the coefficients for acceleration
updated by equations (3) and (4), andc3 and c4 are equal toc1 and c2 without loss of generality, i.e.

c1 = c3 andc2 = c4, respectively;ri(i = 1, 2, 3, 4) are the random uniformly distributed numbers in[0, 1];

τi(k) andτg(k) are the random delays uniformly distributed in[0, k] for the local and the global delayed
best particle, respectively;si(k) andsg(k) are the intensity factor of the newly added terms in the velocity

updating model depending on the evolutionary factor.
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In the novel MDPSO algorithm, the newly added terms in the velocity updating model is closely related

to the evolutionary factor (EF) defined in [51] to describe the swarm distribution properties. According
to the EF in the searching process, the four states (i.e. the exploration state, the exploitation state, the

convergence state and the jumping out state) are denoted byξ(k) = 1, ξ(k) = 2, ξ(k) = 3 andξ(k) = 4,

respectively. The mean distance between theith particle and the other particles in the swarm denoted as
di could be calculated by

di =
1

S − 1

S
∑

j=1,j 6=i

√

√

√

√

D
∑

k=1

(xik − xjk)2, (6)

whereS andD denote the swarm size and the particle dimension, respectively. Accordingly, the evolu-

tionary factor denoted asEf could be calculated by

Ef =
dg − dmin

dmax − dmin

, (7)

where dg is the mean distance between the global best particle and theother particles in the swarm.

dmax and dmin are the maximum and minimum ofdi in the swarm, respectively. The evolutionary state
are classified according to the evolutionary factor by a series of fuzzy functions in [51], equal division

strategy is used for the evolutionary state classification in [46], [50] for the state prediction depending on

a Markov chain. In this paper, the formulation of evolutionary state classification in [46], [50] has been
adopted and expressed as follows:

ξ(k) =



















1, 0 ≤ Ef < 0.25,

2, 0.25 ≤ Ef < 0.5,

3, 0.5 ≤ Ef < 0.75,

4, 0.75 ≤ Ef ≤ 1.

(8)

B. Strategies for Multimodal Delayed Information

PSO-TVAC is one of the most successful improvements of the traditional PSO, in which the linear

varied acceleration coefficients are used in the searching process. Four evolutionary states are classified

by a series of fuzzy functions according to the evolutionaryfactor, and different acceleration coefficients
are recommended for each state in APSO. In SPSO, the same strategy for selecting the varied accel-

eration coefficients is adopted according to the switching evolutionary state based on a Markov chain.

Furthermore, the switching evolutionary state is employedto switch the velocity updating model with
delayed information from one mode to another in SDPSO. The main idea in the above strategies is to

adjust the velocity updating model in an adaptive mode according to the evaluated evolutionary state. In

this paper, a novel strategy with multimodal delayed information is developed to adaptively adjust the
velocity updating model and introduced as follows:

• In the convergence state (ξ(k) = 1), the particles in the swarm are expected to fly into the region
around the global optimum as soon as possible. Hence, only the normal terms in the velocity updating

model are remained and the delayed information is ignored, i.e. both ofsi(k) and sg(k) are set to

zero.
• In the exploitation state (ξ(k) = 2), the particles in the swarm are willing to exploit the region around

the local best particles. So that, the local delayed information is added into the velocity updating
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model, i.e. only the local best particles in the previous iterations are randomly selected for the velocity

updating with the intensity factorsi(k) = Ef (k).
• In the exploration state (ξ(k) = 3), it is important to search the optima as many as possible. Therefore,

the global delayed information is added to explore the wholesearch space in a more thorough way,

that is, the global best particles in the previous iterations are randomly selected for the velocity
updating with the intensity factorsg(k) = Ef (k).

• In the state of jumping out (ξ(k) = 4), the local best particles are eager to jump out from the region

around the local optima. Thus, it is necessary to provide more power for these particles to escape

from this region, so that both of the local and global delayedinformation are used for this purpose
with the intensity factorsi(k) = Ef(k) andsg(k) = Ef (k), respectively.

The above discussed strategies for multimodal delayed information can be summarized in Table I, where
si(k) andsg(k) are the intensity factor determined by the evolutionary state and evolutionary factorEf (k)

in each iteration;rand is the function to generate a randomly uniformly distributed number in[0, 1]; the

delay τi(k) and τg(k) are randomly selected integer uniformly distributed in[0, k], wherek denotes the
number of the current iteration and⌊·⌋ means the round down function.

Remark 1:Note that the delayed information stems from the randomly selected previous local and
global particles, both of which would bring some kind of “turbulence” to the convergence process in the

traditional PSO. Such a novel strategy would, without any doubt, reduce the convergence rate slightly, yet

the entire search space could be explored more thoroughly and the global optima could be more likely to
be obtained. This superiority is crucial for the global planning of smooth paths for mobile robots where

traditional planning algorithms suffer typically from thelocal trapping problems leading to the infeasibility

of the planning problems.
The flowchart of our novel multimodal delayed PSO (MDPSO) algorithm is depicted as in Fig. 1.

TABLE I
STRATEGIES FOR MULTIMODAL DELAYED INFORMATION

State Mode si(k) sg(k) τi(k) τg(k)

Convergence ξ(k) = 1 0 0 – –

Exploitation ξ(k) = 2 Ef (k) 0 ⌊k · randτi⌋ –

Exploration ξ(k) = 3 0 Ef (k) – ⌊k · randτg⌋
Jumping-out ξ(k) = 4 Ef (k) Ef (k) ⌊k · randτi⌋ ⌊k · randτg⌋

IV. SIMULATION EXPERIMENTS

A. Configuration of Benchmark Functions

In the following simulation examples, some frequently usedbenchmark functions are employed to
evaluate the performance of the novel MDPSO scheme. The benchmark functions are given by equation

(9) to (14), where the Sphere functionf1(x) is a typical unimodal optimization problem usually utilized

to examine the convergence rate of the optimization algorithm; the Rosenbrock functionf2(x) can be
regarded as a multimodal function because it is hard to obtain the optimum in the narrow banana-like

valley; f3(x) to f6(x) are other typical unimodal and multimodal functions undoubtedly very hard to

obtain the optimum. To this end, the configuration of the benchmark functions are shown in Table II,



REVISED VERSION 8

Fig. 1. Flowchart of MDPSO algorithm
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where the fourth column indicates the search space of each dimension; the fifth column is the threshold to

determine whether a searching process is successful or not;and the optima of all the benchmark functions
are zero as given in the sixth column of the table [46].

Sphere : f1(x) =

D
∑

i=1

x2

i . (9)

Rosenbrock : f2(x) =

D−1
∑

i=1

(100(xi+1 − xi)
2 + (xi − 1)2). (10)

Ackley : f3(x) = −20e−0.2
√

1

D

∑
D

i=1
x2

i − e
1

D

∑
D

i=1
cos 2πxi + 20 + e. (11)

Rastrigin : f4(x) =
D
∑

i=1

(x2

i − 10 cos 2πxi + 10). (12)

Schwefel 2.22 : f5(x) =

D
∑

i=1

| xi | +
D
∏

i=1

| xi | . (13)

Schwefel 1.2 : f6(x) =

D
∑

i=1

(

i
∑

j=1

xj)
2. (14)

TABLE II

CONFIGURATION OF BENCHMARK FUNCTIONS

Functions Name Dimension Search space Threshold Minimum

f1(x) Sphere 20 [−100, 100]D 0.01 0

f2(x) Rosenbrock 20 [−30, 30]D 100 0

f3(x) Ackley 20 [−32, 32]D 0.01 0

f4(x) Rastrigin 20 [−5.12, 5.12]D 50 0

f5(x) Schwefel 2.22 20 [−10, 10]D 0.01 0

f6(x) Schwefel 1.2 20 [−100, 100]D 0.01 0

B. Simulation and Discussion

A series of simulations are implemented to 1) test the performance of our novel MDPSO scheme and 2)
compare with some other standard PSO algorithms in order to demonstrate the advantages of the MDPSO.

The parameter settings are given as follows: the populationof the swarmS = 20, the dimension of the

particleD = 20, the maximum iteration numberN = 20000, and each experiment is repeated 50 times
independently in one routine for the subsequent statistical analysis. The proposed MDPSO algorithm is

compared with five other rather standard PSO algorithms, including the PSO-LDIW [40], PSO-TVAC

[39], PSO-CK [9], SPSO [46] and SDPSO [50].
The mean fitness values of the above PSO algorithms for each benchmark function are shown in Fig.

2 to Fig. 7, where the horizontal coordinate indicates the iteration number and the values of the vertical
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Fig. 2. Performance test for Sphere functionf1(x)

coordinate are represented in logarithmic formation. The statistical comparisons of the optimization results
listed in Table III are also presented to demonstrate the minimum, the mean value and the standard

deviation of the fitness values as well as the success ratio ofeach PSO algorithm on the benchmark

functions. Note that some of the success ratios are very low as shown in the table, i.e. not all the optimal
solutions of the algorithms could converge to the fitness value below the threshold with the increasing

iteration generation, so that some of the mean values are extremely large in comparison with the proposed

MDPSO algorithm as shown in the figures. It is illustrated that the random initialization could not ensure
the successful convergence for all the algorithms and the premature convergence could not be avoided.

However, the MDPSO algorithm could be able to tend to the optimum robustly for all the benchmark

functions. Besides, the convergence performances of the algorithms are quite different from each other.
Obviously, the convergence rate of the proposed MDPSO is slightly slower than some of the other PSO

algorithms, e.g. PSO-CK and SPSO on the Sphere function, yetbetter solutions could be achieved for

all the other benchmark functions. It is worthwhile to note that the multimodal delayed information in
the MDPSO make it not easy to converge to the local minima, andthus the whole search space could be

explored more thoroughly as a result of the super capabilityof escaping from the local optima. Hence,

the proposed MDPSO algorithm outperforms the other PSO algorithms for both unimodel and multimodel
benchmark functions in a series of criteria such as success ratio and mean fitness value.

V. SMOOTH PATH PLANNING FOR MOBILE ROBOTS

A. Preliminary of Bezier curve

As a parametric curve, the Bezier curve has been successfully used in practice such as computer
graphics. Different from the traditional interpolation-based curves such as polynomials and cubic splines,

the Bezier curve consists of a number of control points, which are not in the curve except the start and

end points. Let a set of control point vectorsP0,P1, · · · ,Pn be given. In this case, the Bezier curve

denoted asP(t) is defined as
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Fig. 3. Performance test for Rosenbrock functionf2(x)
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Fig. 4. Performance test for Ackley functionf3(x)
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Fig. 5. Performance test for Rastrigin functionf4(x)
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Fig. 6. Performance test for Schwefel 2.22 functionf5(x)
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Fig. 7. Performance test for Schwefel 1.2 functionf6(x)

P(t) =
n
∑

i=0

Bn
i (t)Pi, 0 ≤ t ≤ 1, (15)

wheret is the normalized time variable;Pi = (xi, yi)
T stands for the coordinate vector of theith control

point with xi andyi asX andY coordinate components, respectively;Bn
i (t) is the Bernstein polynomial

expressed as:

Bn
i (t) =

(

n

i

)

ti(1− t)n−i, i = 0, 1, . . . , n. (16)

The smoothness of a Bezier curve based path is closely related to the curvature function of the path.

In the two-dimensional plane, the Bezier curve’s curvaturecan be expressed as:

κ(t) =
1

R(t)
=

Ṗx(t)P̈y(t)− Ṗy(t)P̈x(t)

(Ṗ2
x(t) + Ṗ2

y(t))
3/2

, (17)
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TABLE III

STATISTICAL COMPARISONS OF THE OPTIMIZATION RESULTS

PSO-TVAC PSO-LDIW PSO-CK SPSO SDPSO MDPSO

f1(x) Minimum 2.53× 10−145 2.49× 10−201 0.0000 0.0000 1.23× 10−12 2.72× 10−94

Mean 3.03× 10−67 3.07× 10−191 0.0000 0.0000 3.09× 10−9 4.50× 10−64

Std. Dev. 2.14× 10−66 0.0000 0.0000 0.0000 1.00× 10−8 3.10× 10−63

Ratio 100% 100% 100% 100% 100% 100%

f2(x) Minimum 2.21× 10−4 1.85× 10−2 4.45× 10−12 2.23× 10−3 3.5339 2.70× 10−5

Mean 1.17× 101 7.41× 103 5.47× 103 3.79× 103 1.67× 101 7.7743

Std. Dev. 1.48× 101 2.46× 104 2.15× 104 1.77× 104 1.52× 101 5.1952

Ratio 100% 80% 90% 88% 100% 100%

f3(x) Minimum 2.66× 10−15 2.66× 10−15 6.21× 10−15 2.66× 10−15 1.99× 10−7 2.66× 10−15

Mean 5.64× 10−15 4.72× 10−15 2.0694 7.91× 10−1 2.14× 10−5 6.64× 10−15

Std. Dev. 1.81× 10−15 1.77× 10−15 2.2971 2.3036 5.03× 10−5 2.22× 10−15

Ratio 100% 100% 18% 72% 100% 100%

f4(x) Minimum 5.9697 3.9798 2.78× 101 2.18× 101 2.9852 1.9899

Mean 1.12× 101 1.46× 101 5.86× 101 5.16× 101 2.08× 101 9.1337

Std. Dev. 3.4876 1.26× 101 1.95× 101 1.90× 101 1.26× 101 2.8119

Ratio 100% 100% 32% 48% 98% 100%

f5(x) Minimum 3.86× 10−43 7.84× 10−120 5.68× 10−31 1.63× 10−162 1.04× 10−7 6.50× 10−40

Mean 6.00× 10−1 1.26× 101 8.40 1.05× 108 2.4000 3.10× 10−29

Std. Dev. 2.3989 1.21× 101 9.33 1.67× 108 4.7638 1.14× 10−28

Ratio 94% 32% 46% 2% 78% 100%

f6(x) Minimum 1.31× 10−29 2.63× 10−28 1.05× 10−106 2.83× 104 2.64× 10−1 1.41× 10−30

Mean 1.00× 102 2.43× 103 2.70× 103 7.26× 104 6.04× 102 3.77× 10−18

Std. Dev. 7.07× 102 4.01× 103 3.57× 103 2.46× 104 2.39× 103 1.67× 10−17

Ratio 98% 66% 58% 0% 0% 100%

whereR(t) is the curvature’s radius;̇Px(t), Ṗy(t), P̈x(t) andP̈y(t) are the coordinate components onX

andY of the first and second derivatives of the Bezier curveP(t), which are expressed as the following
equations:

Ṗ(t) =
dP(t)

dt
= n

n−1
∑

i=0

Bn−1

i (t)(Pi+1 −Pi), (18)

P̈(t) = n(n− 1)
n−2
∑

i=0

Bn−2

i (t)(Ṗi+2 − 2Ṗi+1 + Ṗi). (19)

B. Optimization model of smooth path planning

A two-dimensional workspace with several obstacles is supposed to be the working environment of

a mobile robot, and the purpose of planning the smooth path isto seek a feasible and optimal Bezier
curve path from the start to the target points. The whole workspace is divided into many square grids

according to the requirement of the smooth path planning, e.g. Fig. 8 shows the workspace of a mobile

robot with numbered grids. For each grid, it is defined to be either empty (denoted as the white square
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Fig. 8. Workspace of a mobile robot with numbered grids

grid) or occupied (denoted as the black square grid), which is determined by whether the boundary of

the obstacles is within the square grid. A mobile robot in theworkspace could be treated as a point. In
terms of the size of a mobile robot, the boundary of the obstacles has been constructed from 1) the actual

boundary; and 2) the minimum safety distance.
In this paper, the proposed MDPSO is combined with the Beziercurve for planning the smooth path of a

mobile robot by considering feasibility, smoothness and distance of the path at the same time. Generally, a

Bezier curve path comprises several segments denoted as a sequence of control points. Hence, the smooth
path planning is to find a sequence of control points that define a feasible and shortest Bezier curve path

by using the MDPSO algorithm. The objetive function is givenas follows:

min J =

n
∑

i=1

‖Pi(t)‖+No × Pr, (20)

where‖Pi(t)‖ denotes the length of theith segment of a Bezier curve path;No andPr denote the amount

of the occupied grids in the path and the penalty ratio for each occupied grid, respectively.

C. Results and analyses

In this section, the algorithm of planning smooth path basedon MDPSO and Bezier curve has been

applied to the workspace in Fig. 8 in order to show the usefulness of the proposed approach. The parameters

of the experiments are given as follows: the population of the swarm is set as100, the maximum of the
iteration generation is set as100, the dimension of the particle that denotes the amount of control points

of the Bezier curve is taken as7, and the experimental penalty ratio is taken as50 for each occupied

obstacle.
Two results of numerous simulation experiments have been illustrated in Fig. 9, where the start position

and target position are(5, 5) to (155, 155) and (155, 5) to (5, 155), respectively; blue circles indicate the
control points of the Bezier curve path, blue solid lines compose the convex hull and red solid curve

depicts the optimum smooth path. Obviously, it is really a challenging issue for the path planner to find a

satisfied path in these two cases for at least two reasons. Firstly, the acceptable path must pass through a
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Fig. 9. Smooth path planning from (5, 5) to (155, 155)
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Fig. 10. Smooth path planning from (155, 5) to (5, 155)

few narrow gaps formed by the nearby obstacles. Secondly, the optimal solution is very easy to be attracted

into the surrounding traps, i.e. several infeasible paths with suboptimal objective function value. However,
the MDPSO algorithm could accomplish the difficult task of planning smooth path successfully, which

profits from its ability of escaping from the local optima by using the multimodal delayed information. In

comparison with the approach proposed in [44] where geneticalgorithm (GA) is combined with Bezier
curve for planning the smooth path for a mobile robot, the smooth path produced in this paper has a

smaller curvature as shown in Fig. 11, which means a smootherpath for the movement of a mobile robot.

The best objective function value of the optimum particle ineach iteration is shown in Fig. 13, which
demonstrates the fast convergence rate of the MDPSO algorithm for this problem.

VI. CONCLUSIONS

A novel multimodal delayed particle swarm optimization (MDPSO) has been developed in this paper

for planning the global smooth path for mobile robots. In theproposed MDPSO algorithm, the delayed
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Fig. 11. Path curvature in the case of Fig. 9
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Fig. 12. Path curvature in the case of Fig. 10
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Fig. 14. Optimum objective function value in the case of Fig.10

information composed of local and global delayed best particle, which are chosen randomly from the

previous iterations, have been added into the velocity updating model according to the evolutionary state
and evolutionary factor. The multimodal delayed information in the MDPSO reduces the occurrence of

local trapping phenomenon and the convergence rate is satisfied at the same time. Based on the testing

results on a selection of benchmark functions, the MDPSO’s performance has been shown to be superior

to other five well-known PSO algorithms. Finally, the successful application of the MDPSO for planning
the global smooth path for mobile robots further confirms itsexcellent performance compared with the

one generated by GA in the previous studies.

In the future work, the focus will be on 1) how to develop new strategy to further enhance/improve the
performance of the developed PSO (e.g. the approach to adaptively select the delayed information) and

2) how to apply the proposed algorithms to more complicated systems (see e.g. [6], [18], [21], [24]–[27],

[43], [47], [52], [53]).
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