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H., Control for Two-Dimensional Fuzzy Systems
with Interval Time-Varying Delays and Missing
Measurements

Yugiang Luo, Zidong Wang, Jinling Liang Guoliang Wei and &ua Alsaadi

Abstract—In this paper, we consider the H., control problem model is hard to be established [4], [16], [26], [29]-[31],
for a class of two-dimensional (2-D) Takagi-Sugeno (T-S) izy [38]. On the other hand, the fuzzy logic theory has proven to
described by the second Fornasini-Machesini local statgace be effective in handling reasoning that is approximateerth

model with time-delays and missing measurements. The state : .
delays are allowed to be time-varying within a known interva. than fixed and exact. Furthermore, after a decade of theateti

The measurement output is subject to randomly intermittent and practical development, the Takagi-Sugeno (T-S) maatel h
packet dropouts governed by a random sequence satisfying ¢h been recognized as an efficient way to approximate certain

Bernoulli_distribution. The purpose of the addressed probem nonlinear systems. By using a set of local linear models
is to design an output-feedback controller such that the clsed- which are smoothly connected by nonlinear fuzzy member

loop system is globally asymptotically stable in the mean sware . . ;
and the prescribed H. performance index is satisfied. By ship functions to present a nonlinear plant, the T-S fuzzy

employing a combination of the intensive stochastic analysand Model has brought the analysis and synthesis of nonlinear
the free weighting matrix method, several delay-range-degndent systems into a unified framework. Moreover, owing to the

sufficient conditions are presented that guarantee the exisnce peculiarity of the T-S model, a large portion of existinguks
of the desired controllers for all possible time-delays andnissing for linear systems can be readily extended for some norlinea

measurements. The explicit expressions of such controllgrare . . .
derived by means of the solution to a class of convex optimitian systems. As pointed out in [12], [32], the T-S model is able

problems that can be solved via standard software packages. 1O approxim(?lte any smooth non-linear f_unction to any degree
Finally, a numerical simulation example is given to demonstate  of accuracy in any convex compact region.

the applicability of the proposed control scheme. As is well known, many practical systems can be ideally
Index Terms—Fuzzy systems, Two-dimensional systemsd{., described by the two-dimensional (2-D) systems that have
control, output feedback, time-varying delays, missing masure- received tremendous research attention because of th@ir ap
ments. cations in thermal processes, seismic data sectionsjzeigit
photographic data, digital filtering and magnetic maps, etc
[11]. For four decades, the theoretical investigations €D 2
systems have been attracting recurring research intesiasts
Nonlinearity is a ubiquitous phenomenon in the naturﬂhljitful research results have been available in the liteea As
world that has been receiving ever-increasing researeim-attaarly as in 1970s, some basic behaviors and modeling issues
tion from a variety of subject areas. Traditionally, rigoso \yere thoroughly examined for 2-D systems, see e.g. [11],
mathematical analysis on nonlinear systems rely on preleise [18]. Parallel to the rapid research development of the tra-
scription of the nonlinearities with some stringent asstioms, ditional 1-D systems, in the past few years, some important
and this sometimes hinders the nonlinear systems theany frgreakthroughs have been reported on the analysis and design
being applied to certain engineering practice, for examplgsyes for the 2-D control systems. For example, the stabili
those data-based applications where an exact mathematigd]|ysis and stabilization problems for 2-D systems haes be

) ) i addressed in [7], [13], and the filter/observer design sl
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very few due primarily to the mathematical complexities forange-dependent method addressed in this paper is of less
2-D T-S fuzzy systems. On the other hand, time delays arenservativeness. The adopted 2-D T-S model can be thought
very often a major concern in many practical applicatiorghsuto be a universal approximator for nonlinear 2-D systemd, an
as communication line, electrical signal processing syste the corresponding controller can also be used to stabitiee t
network transmission systems, seismic wave, urban trafiomplicated 2-D nonlinear plant. Potential applicatiohshe
management systems, etc. Time delays are well recognizeestigated fuzzy control approach include the 2-D digita
as one of the main sources for poor performance or even gystems, image processing and wireless communicatians, et
stability of control systems. In the 1-D settings, the tideday Especially for the case of interval time-varying delays eant
systems have recently received considerable researctiiatte domly missing measurements, the proposed fuzzy controller
and a rich body of literature has appeared on this topic, se#él show its strength.
e.g. [3], [17]. Moreover, among the existing works, plenty The rest of this article is organized as follows. Section |l
of stability conditions are delay-dependent, which poss leis devoted to the formulation of thH., control problem for
conservativeness, see e.g. [19], [20]. With respect to Bri@-t the addressed 2-D fuzzy systems with interval time-varying
delay systems, over the past few years, some initial resultslays, where the phenomenon of probabilistic missing mea-
have been reported on the control and filtering problems. Fsurements is characterized by a Bernoulli distribution ebod
example, the problem of delay-dependéht control for 2-D and some notations and related definitions are also given.
discrete state delay systems has been investigated irdi22h In Section 1ll, with the aid of an energy-like functional
robustH ., filter for 2-D discrete systems with time delays haand the delay-range-dependent method, both the analydis an
been designed in [34]. It should be noted that most availalitee synthesis problems of the 2-D fuzzy control system are
results have been concerned with time-invariant delays. investigated. In Section IV, an example is given to validate

As a matter of fact, the phenomenon of missing me#e design approach of the proposed fuzzy control scheme,
surements (packet losses or dropouts) is virtually inbléta and some concluding remarks have been drawn in Section V.
in measurement processes (particularly within a networkedNotation. In this paperR®, R"*™ andZ (Z*,Z~) denote,
environment), which is caused by some harsh working corespectively, the:-dimensional Euclidean space, the set of all
ditions and imperfect communications. Many factors hawe x m real matrices and the set of all integers (nonnegative
contributed to this kind of less-than-ideal situation. Bucintegers, negative integerd}/| refers to the Euclidean normin
factors include, but are not limited to, the limited bandthid R™. I,, represents the identity matrix of dimensiarx n. The
of the communication channel, abnormity of swap deviceptationX > Y (respectively,X > Y), whereX andY are
random network congestion, accidental loss of some celfectsymmetric matrices, means th&t-Y is positive semi-definite
data in a very noisy environment. So far, the problem gfespectively, positive definite). For a matri%, M” andM —*
missing measurements has been well studied for 1-D systemagresent its transpose and inverse, respectively. Théhsimal
and a great deal of literature has been available, see &). [diag{M;, M>,..., M,} denotes a block diagonal matrix
[33]. Nevertheless, the relevant research for 2-D systamswith diagonal blocks being the matricéd;, M, ..., M,.
still in its early stage especially when both the time-vagyi In symmetric block matrices, the symbot'‘is used as an
delays and missing measurements are simultaneously preseltipsis for terms induced by symmetry. Matrices, if they
not to mention the case when the 2-D systems are furtte@®e not explicitly stated, are assumed to have compatible
complicated by the T-S fuzzy model. As such, the stabilitgimensions.
analysis and stabilization problem for 2-D time-delay fuzz
systems with missing measurements remains a challenging Il. PROBLEM FORMULATION
issue that motivates our current research, and the main tas
of this paper is to propose a general framework for handli
such a challenge.

In this paper, we endeavor to research into Ehg control

n Eonsider a 2-D discrete-time T-S fuzzy system with state-
o%lays and stochastic perturbations described by thenfwitp
Fornasini-Marchesini (FM) local state-space (LSS) second

problem for a class of two-dimensional (2-D) Takagi-Suge odel: .

(T-S) fuzzy systems described by the second Fornasini-PIan}kV%u.le b k1) (kD)
Machesini local state-space model with time-delays and-mis IF 0y is Fip, -0, 0577 s Fij, - and 7 is Fyp,
ing measurements. The main contributions of this paper canTHEN

be boiled down as follows.1) A 2-D T-S fuzzy model is [ x(k+ 1,1+ 1) = Ayx(k, 1+ 1) + Agz(k +1,1)
considered, which is comprehensive to include time-varyin + Dyja(k — (K, 1),1+ 1)
delays, bounded noises and probabilistic missing measure} . B

ments, thereby reflecting engineering practice more cjo! + Daga(k + 1,1 =7 (k1)

For the purpose of stabilizing the addressed 2-D fuzzy syste + Buiu(k, 1+ 1) + Baiu(k +1,1) (1)
an energy-like functional is constructed and several delay + Eyw(k, 1+ 1) + Eyw(k 4+ 1,1),
range-dependent stability criteria are obtained to accdisip y(k, 1) = Ciz(k,1) + Hiw(k, 1), iesS

the design goal. 3) The close-loop system has the expeated di 2(k,1) = Gaa(k, ) + Lico(k, 1),

turbance attenuation level in terms of a prescribiéd, perfor-
mance indexCompared with the existing delay-independenthere k,1 € Z* and z(k,l) € R"= is the state vector;
or delay-dependent results for 1-D delayed systems, tleydely(k,l) € R™v is the measured output(k,l) € R™= is the
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controlled outputu(k,!) € R™ is the control input vector; can be transformed into
w(k,l) € R™ is the disturbance input which belongs to

12 (2*,2°), namely, 3 3° E{Jw(kDIP} < oo mikl) | “ETLHD =2 el DY e 1D
=0k = i=

=0 k=0
and r»(k,1) are interval time-varying delays along the hori- x {Avz(k, 1+ 1) + Agsz(k + 1,1)
zontal direction and the vertical direction, respectiveffrich + Drix(k —1(k,1),1+ 1)
are subjected ta;, < 7y (k,l) <71 andr, < 72(k,1) < To; Dol 4 1.1 w
the input vectorej(.k’l) = [0;(k—1,1), 0;(k,1-1)] (j = + sz(( +11=m(kD)
u

1,2,---,p) represents the spatial premise variable at the locg- + Buu(k,l +1) + Byu(k +1,1)  (5)
tion (k, 1), which may be states or measurable variables, ar|d + Eriw(k, 1+ 1) + Eyw(k+1,1)},
6;(k,1) is the corresponding component of the spatial inpuf r

vectorej(.k’l); F;; is a spatial fuzzy set of rulecorresponding y(k, 1) = hi(k,1)[Ciz(k, 1) + Hiw(k,1)],

to the spatial input vecto@?“”; S = {1, 2,---, r} with =t

r being the number of IF-THEN rulesasi, B, C;, Dg;, Z(k,l) :Zh’l(k7l) [sz(k,l) +L1w(k,l)]

E,, H;, G; and L;(s = 1,2) are known real constant system =

matrices with compatible dimensions.

- L The actual signal received by the designed controller may
The initial boundary condition is given by

contain missing measurements, which can be governed by

wl(kal)a if (kal) € [_Flv O] X [O? Zl] g(kvl) = n(kal)y(kal)a (6)
x(k,l) = Yok, 1); 3 (k1) € [0, 22] X [T, 0] 2) wheren(k,l) € R is a random white sequence taking values
’ 0; if (k1) € [-71, 0] x (21, 00) of 0 and 1 with
0; if (k1) € (22, 00) X [T, 0] Prob{n(k,1) =1} =a, Prob{n(k,))=0}=1-qa, (7)

with +1(0,0) = ¢2(0,0), wherez; and z, are finite positive and o € [0,1] is a known scalar. Throughout this paper,
integers, 1 (k,1) and ¢ (k,1) are given vectors which arewe assume that the stochastic variabigs, ) and w(i, 5)

independent of the stochastic input sequeficék,[)}. (k,1,4,7 € Z*) are mutually independent.
Let h\"" = [n;(k — 1,1), hi(k,1 — 1)), whereh;(k,1) is I this paper, we are interested in designing a 2-D fuzzy
the normalized membership function defined by controller for system (1) of the following form:
Controller Rule i:
ha(k,1) = L’”) @ FOis Fay e 0 is Fiy, oo andgyt is 7,
S Wi (k1) THEN
= u(k, 1) = Kig(k, 1), (8)

where, U, (k, 1) = lp—[ &.j(g;hl)) and Sij(9§-k’l)) > 0 is the WwhereK; is the gain matrix of the designed controller to be
j=1 determined. Similar to (5), the proposed 2-D fuzzy congroll

grade of membership aﬂf’” in F;;, which is also called the can also be fuzzily blended as

fuzzy basis function. It can be easily verified that

. u(k, 1) = ha(k, Dn(k, ) Ky (k, 1). €)
0<hi(k,1) <1, Y hi(kl)=1, YklcZ" (4) =1 )
i=1 In what follows, for brevity, we definéy, = h;(k,l + 1),

Remark 1. Compared with the usual model rule for 1.pli = hi(k+1,1) and

systems, the premise variabﬂék’l) of the 2-D systems is - hi hi, - h = ET: h; ET: i, - - ET: h;
actually in a spatial type. According to the FM model, the i, i, -, i,=1 ’ B R e T e R
value of the state at locatiofk+1,7+1) is related to those at ¢, ; - 7+

(k,l+1) and(k+1,1). Therefore, it is reasonable to define the Combining (9) with (5), the closed-loop 2-D fuzzy system

normalized members?}j;:l))function of the inferred fuzzy sbeto ,ith the static output feedback controller is governed b§)(1

a two-element vectar,”", whereh, (k—1,1) andh;(k,I—1)  shown at the top of the next page, which can be rewritten as
are deemed to be the scalar normalized membership function ,

regarding the premise variable® (k — 1,1) and 0;(k, 1 — 1), ek +1,1+1) = Zﬁfﬁfﬁmh*-h*-hm (kD)
respectively. As pointed out in [1], [21], the membershi ’ KA AP
function satisfying (3) can be viewed as one of the verticgs .
of a polyhedron. It should be noted that the vector value 2(k, 1) :Zhi(k,l) (Giz(k, 1) + Liw(k, )],
normalized membership function comprises the main fegtur

of the 2-D T-S fuzzy model, which is totally different from tr\/vhere
1-D case.

idahig =1 wyrhagh (11)

i=1

Fio(k0) = Apa(k,l+1) + Aga(k +1,1
Subsequently, by fuzzy blending, the T-S fuzzy system (1);5,,'157-,;1( ) 1i2( )+ Ayl )
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e(k+1,01+1) = ; h; {Aux(k, L+ 1)+ Dya(k — (k1)1 +1) + Byw(k, L+ 1)+ Y hjhmBiin(k,1+1)

Jm=1

XK; [Cpax(k,l + 1)+ Hypw(k, 1+ 1) ]} f: {Agz (k+1,0)+ Dok + 1,1 — 72(k, 1))

(10)
+Eywk+ 1,0+ Y hjhmBam(k +1,1) x K; [Croa(k +1,1) + Hpw(k +1,1)] }
j,m=1
z(k, 1) =Y hi(k, 1) [Gix(k, 1) + Liw(k,1)],

i=1
+Dy;a(k — 71(k, 1), 0+ 1) + Dya(k + 1,1 — 72(k, 1)) whereh,; >0, by > 0, Z hy = Z hy =1 with ¢ € S.
+aB K (Craa(k, 1+ 1) + Hpw(k, 1+ 1)) Proof: Similar to the proof of Lemma 2 in [15], based
+(n(k,l +1) — ) B K;(Crx(k, 1 + 1) + Ejw(k,l+1)  on the well-known inequality

+Hupw(k+1,0)+ (nk+1,1) — O‘)BQQKj‘

X (Conae(k + 1,0) + Hywo(k + 1,1)) + Epoo(k + 1,1) where X and Y are any vectors belonging t&", one can

easily have
Definition 1. The 2-D fuzzy system (10) with(k,l) = 0 is r
said to be globally asymptotically stable in the mean-squar 2 Z ﬁ;ﬁ;ﬁmﬁdﬁéﬁé%%hmhhhbhé
sense if {,j,m,d,é,é,‘i,j',m,a,é,a:l '
tim & {||e(k, )"} =0 (12) XX i P X e
k+l—o00 ’ ’

T

//////

holds for all the initial condition in the form of (2). In this h h huiha hgheh;hiha, ha h he

case, the 2-D fuzzy controller (8) is said to be a globally ;75,,;1,&,576,;7],,””0 1

asymptotically stable fuzzy controller for the 2-D systdm ( (X X. +XT . RX....)
) abéabet VT abéabe

zymz]m igrmigm abéabe

IN

Definition 2. Given scalary > 0, the controller (8) is said to
be anH,, fuzzy controller for the 2-D system (1) with output
measurements (6) and disturbance attenuation levél the &4t 5,m=1
dynamics of system (10) is globally asymptotically stahle |

2 Zhhh hhh XL . RX

ijrhijm igrijmo

Which completes the proof. [ ]
the mean-square sense and, under the zero initial condition
the following performance constraint In this section, both the stability analysis and thg,
5 performance for the 2-D closed-loop fuzzy system will be
Z Z E { (k1 + 1)} discussed and then a detailed process for the design ofdhe pr
=0 o k+1,0) posedH ., controller will be further presented. Finally, a cone
(el +1) complementarity linearization (CCL) algorithm is empldyte
< 722 Z E { H [ k1.1 ] } (13) overcome the numerical difficulty caused by the severalimatr
1=0 k=0 equality constraints presented in the main results.

holds for all nonzero sequencés(-,-)}.
A. Stability analysis for the 2-D fuzzy system with missing

[1l. MAIN RESULTS measurements
Before proceeding, let us recall the following lemmas which We begin with the stability analysis for the 2-D fuzzy
will be used in the sequel. system (10) when the controller gaky; (i =1,2,---,r) are

Lemma 1. Let R € R"*" be a symmetric positive deﬁnitegiven. The following theorem presents a sufficient conditio

matrix. For any real vectorsy - cR™ and X cR" under which the closed-loop 2-D fuzzy system (10) is glgball

Lijrhijm abéabe asymptotically stable in the mean-square sense.
with ¢, 7,10, 1, j,m, 4, b, ¢,a,b,¢ € S, we have

Theorem 1. The closed-loop 2-D fuzzy system (10) with the

Z bbb BB bochs b bos, Bis B Bus given controller structure (8) is globally asymptoticafitable
3! vyttt lbplect v ity limitaloylbe A . . . v
P EE T in the mean-square sense if there exist matrigés> 0, Q¥ >
' T px. . 0, P" >0, P" >0, R" >0, R" >0, Ju, Ly (k,1 =1,2)
ijrijim” < abéabe and K; (j € S) such that the matrix inequalities (14) and
" T (15) hold,
< Y hihshalihyha X5 RX s

i Gahig el R"> Pt RV > PY, (14)
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— A %
== [: = ] <0, (15)

=1 Do
where i,j,1h,4,5,m € S, a = a(l —a), I =
diag{?llnz, ?glnz}, 7A:1 = T — T]T, T2 = T2 — To,
=2 = [Eg 53T =7 :g Eg7 :8] ,H2 = diag{—ZRs,

_IRQ; _o_éiléila - 71Q ! _Rl 7_Q 1}

Rl =7 R"+P", Ry =R"-P", RY=%R"+P",
Ry = R — P', Ry =diag{R}, Ry}, Q=Q"+Q",
Q=Q+RI +RY, S,=1J%, 55=1LL,
00000 0 0,

Dy; 0 0}7

. 0 0 Dy Dy 0 0],
_ 7 T
Ser =[5 EF] . Aun=-Q", Asz=Ju+J,
Z2 0 0 Dy Dy O O},

Ry = diag{R}', RV}, Aoz = —Q", Aua = Joy +J7,

Er2

Z61 = Ay; — 1+ aB;K;Cp, Asz = Jia — Jh,

— 2:A21+OéBQ:LKJCﬁL7 A64:J22_ng

Er1 = Ay +aBK;C, Ags = L1y — L,

57’2 = AQ% -1+ OLB%K}C’V\?M A77 = _L12 - L,{g,
L_foo o un o Jf 007"
==ooun 0 an 000 |
L::OOOOOLQTI()L2T2T
==loooo L, 0 LT, 0 )

Ji5+ LYy, Ase= Lo — L3,
—JL+ LY, Agg = —Lyo—LL,.

Ass = —Jio+ L1 —
Aes = —Jaz + Loy

Proof: In order to establish the globally asymptotic stabil-7,; =

ity of the closed-loop 2-D fuzzy system (10) with(-,-) = 0,
let us define the following energy-like functional

V(kD) = V{"(k 1)+ V5" (k, 1) + V' (K, 1)
VY (k1) + V' (k, 1) + Vi (k,1) - (16)
with

VIE 1) = 2T (k,D)Q" x(k, 1), V¥ (k,1) = 2T (k,)QVx(k, 1),

—1
Vi) = > fTk+m)P"f(k+71),
T=—T11(k,l)
—1
V(b )= Y g"(kl+7)Pg(k,l+7),
T=—m12(k,l)
—r;—1 1
Vi) = > > T (k+1,OR"f(k+7,0),
d=—7T1 7=d
—T,—1 -1
Vi(k )= Y > g"(k,1+71)Rg(k, 1 +7),
d=—T2 7=d

flk+n)=ak+17+1,1) —x(k+11),
gk, l+7)=akl+7+1)—x(k,l+71).

Define the following index
J(k, 1) = 3" (k,1) + 3°(K, 1),

where the expressions 6f*(k,1) and 3°(k,l) are shown in
(18). Calculating along the trajectories of system (11) on
has (19)-(21). Similarly, it can be obtained (22)-(24) (et
(18)-(24) are shown on page 6).

From the inequalities (19)-(21), we have

(17)

(k1) <E { <IT(1<: + 1,1+ 1)Q"x(k + 1,1+ 1)

2T (k, 1+ 1)Q (k1 +1) + fT(k, 1+ 1)R!

—7,—1 —71(k,)—1
<fi+1) = >+ >
d=—7i(kl)  d=—T

xfT(k+d, 0+ )REf(k +d, 1 + 1))

h(k, 1) }

3Y(k,1) < IE{ (wT(k + 1L+ 1D)Q%(k+1,1+1)

and, similarly, one has

—T(k+ 1,0)Qx(k +1,1) + g7 (k + 1,1)RY

—T,—1 —72(k,l)—1
xgk+1,0— Y+ >
d=—m7(k,l) d=—Ta

g (k+ 1,1+ d)Ryg(k + 1,1+ d)) ‘h(k,w}.

Before proceeding further, it is easy to show that the
equalities (25) (shown on page 6) hold for any matrides,
Ji2, J21, J22, L1, L2, Loy and Lay. Letting

Jio=[0 Jh Jh o', h=1[0 JL J& o,
0 o o, L], L.=[0 o L% LL)",
S =0 I, —I, 0], %H=[0 0 L, -I.],
a(k, 1+ 1) z(k+1,10)
x(k—14,14+1) z(k+1,1—15)
T etk =m0+ D)0 P T |alk+ 1,0 = (k)|
x(k—=71,14+1) x(k+ 1,1 —79)

one obtains (26) and (27) (shown on page 6), where conditions
7, < 7(k,1) <7; (i = 1,2) and (14) have been utilized in
the second step when deriving (26) and (27). It should be
noted that inequalities constrains (14) ensures fb@t> 0
and R” > 0.

Combmlng the inequalities (26) and (27) together and
noting thatf(k,!) = z(k + 1,1) — z(k,1), g(k,l) = x(k,l +
1) —z(k, 1), it can be calculated along the closed-loop system
(11) that

> hihshunhahghehy by

,3,m,G,b,¢,4,5,™m,a,b,6=1

J(k,1) <

T(k,)Q F1 (k1)

abéabe

xhhhbhéﬂi{( Fl
ijrhiym

abéabe

+F2

ijrhijm
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(k1) =E {(Avlh(kl)JrAV;(kl)JrAv?ﬁkz)‘hkl}
30 (k, 1) = {(mfl(szAVQ(kl)JrAVg kl)’ﬁkl}
AVIME D) =V +1,14+1) =V (k1+1), 1=1,2,3, (18)
AVP (k1) = VP(k+ L1+ 1) = VP(k+1,0), x=1,2,3,
Rk, 1) = {a(k, 0+ 1), 2k — LI+ 1), 2k —2,0+1), -, a(k -7l +1),
(+11) k+1,1-1), z(k+1,1—2), - ,x(k+ 1,1 —T2)},

AVIE D = 2T+ 1,1+ 1)Q"e(k + 1,1+ 1) — 2T (k, 1 + 1)Q"x(k, 1 + 1), (19)
—r,—1 —11(k,l)—1

AVIED < fT(k 1+ 1P f(k,1+1) + ( oo+ > )ka—l—Tl—l—l)th(k-l-T,l-l-l), (20)
T=—T11(k,l) T=—T1

—7,—1 —71(k,l)—1

AVIED = FfT(k 1+ DR f(k1+1) - ( oo+ > )ka+dl+1)Rhf(k+dl+1). (21)

d=—m11(k,0) d=—7T1

AVP(k) = 2P (k+1,1+1)Q%(k+1,14+1) —a' (k+1,D)Q%z(k + 1,1), (22)
—T,—1 —72(k,l)—1

AVR (kD) < g"(k+1L,DPgk+ 1,0+ [ Y + > T(k+1,147)Pg(k+1,1+7), (23)
—72(k,l) T=—T2

—71,—1 —7o(k,l)—

AVL (k1) = 7ogT(k+1,0)Rg(k+1,1) — ( DY ) (k+1,0+dRg(k+1,1+d).  (24)
d=—73(k,l) d=—"T2

—7,—1
[xT(k—zl,l+1)J11+xT(k—Tl(k,l),H—1)J12][x(k—zl,l+1)—:z:(k—Tl(k,l) 14+1) - Zf (k+d,l+1)|=0,
d=—71(k,l)
—Tl(kl,l)—l
(2" (k — 7i(k, 1), 1+ 1) L1y + 2" (k — 71,0 + 1) Lio||x(k — 7 (k, 1), 1+ 1) — 2(k — 71,1+ 1) — Zf(k:+d,l+1) =0,
o (25)
To—
(2" (k+ 1,0 = 15)Jo1 + 2 (k + 1,1 = ma(k, 1) Joa ]| w(k + 1,1 — 7,) — 2(k + 1,1 = 7o (k, 1)) = Y _g(k+1,14d)|=0,
d=—7a(k,l)
77’2(}6,[)71
[.’L‘T(k-i-l,l—Tg(k,l))Lzl+£CT(]€+1,1—?2)L22} .’L‘(k—i—l,l—Tg(k,l))—.’L‘(k—i—l,l—?g)— Zg(k+1,l+d) =
d:—?g
(k1) < E{ <IT(1<:+ LI+ 1D)Q" sk + 1,1+ 1) —aT (kI + D)Q (k. L+ 1) + fT(k, L+ )R} f(k, 1+ 1)
T 7 T7 ~ (7 (s i, 7 (Br) T
1267 1516+ 20T L1556+ T <J1 (R) 7 +Li(B) L1)¢ Bk, 1) (26)
3%(k,1) < E{ <xT(k:+ LI+ 1)Q z(k+1,04+1) — 2T (k+1,0)Q%(k + 1,1) + g7 (k + 1,))RVg(k + 1,1)
T § TF ~ 17 (po\ 7 (Be) T
1207 Ty I1p + 20T Lo Iop + 72 <J2 (R;) JT + L (Rg) L2<p> h(k,0) b 27)
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+719" (Jl(fzg)*ljf + El(ﬁg)*li{ﬂ ma(k,1)) aT(k =71, +1) 27(k+ 1,1 —72)]", it can be
observed from (29) that
Ik, D)

< Amax(é) iﬁ;ﬁjﬁmh%hﬁhmE{Hi(k, l)\ﬂh(k, 1)} (29)

+706" (Ta(R5) 7V + La(Ry) 'L ) o

+ T3 " DR T (k,1>+3<k,1>)‘h(k,l)}, (28)
iirhijm abéabe

§,4,170,1,7,m=1

where J(k,l) = —2T(k,l + 1)Q"x(k,l + 1) — 2T (k + N N
LOQa(k + 10) + 267 (1151 + Lis )¢ + 267 (ot + WhereS = A+E25 Ry T 15,4 E{ Ry 17125 +a5] Q+
_ _ o a=TQ=s + EL R g7 + ELQEs, (k1) = [zT(k,l +
LQ‘%)% {jgé.m(k’l) B chr';li.m(k’l) —alk 4+ 1), 1) 2"(k+1,0)]" and /\maX(E) is the maximal eigenvalue
. of Z. It should be noted that the Schur Complement Lemma
(kD)= (Auf + 0‘B1{chrh)x(kvl+ 1) has been utilized to g&& < 0 from the inequality condition
wgrhigin = < 0in (15).
+(A2~Z. +aB2~iK30m):z:(k+ 1,1) For any integerM > 1 and N > 1, summing up both

sides of the inequality (29) fok and! varying from0 to,

D,x(k—1(k, 1), l+1
+Dyx(k — 7k, 1), 1+ 1) respectively, M and N, we obtain

+Dyx(k+ 1,1 — 12(k, 1))

N M N M T
+(n(k, 1+ 1) — a)B; K;Cpa(k,l + 1) (k1) < )\max(é) Z Z Zﬁ;fz;fzmh%h}hm
+(n(k +1,1) — a) By Ky Cpa(k + 1,1) 1=0 k=0 1=0 k=07 1713 J =1
Fs (D)= F1 (k1) —zk+1,10), _ 2
Y Jmlgm( ) ) <E { |2k, 0|k, 0)} (30)
and 7, (k1) (i=1,2,3) have the similar representations a@hich immediately infers the following inequality by fugth
abéabe o . considering the nonnegativeness of the energy-like fanati
Fi1 (k1) (i=1,2,3) by just substituting, 7, 1, 7, j andm Vv (k,1):
ijrijm
with 4, b, ¢, a, b and¢, respectively. N M LR B 9
Subsequently, it follows from Lemma 1 that Z Z Zhiha‘hmh‘ihﬁhmE {H:v(k, l)H ‘h(k’ l)} <
1=0 k=07 j 11,3}, m=1
j(ka Z) S 1 N
N S —— = {2 E{ (O ) + V(0,14 1)
S hsh b b E { < Ak, 1) + 76T (Jl(R’g)*JlT Amax (E) {; (31)
i,4,1h,1,,m=1 M
+Li(RY) T )6 +7” (Ta(R) VT + La(By)'LE ) FVO, 04+ 1) [ak D b+ S E LV (k4 1,0)
k=0
T
+a [BléKijw(ka I+ 1)} Q [Bngijw(k, I+ 1)} +V3 (k4 1,0) + V¥ (k 4+ 1,0)) ‘h(k, Z)}} .
T
+a [BQQ.Kj.me(k +1, l)} Q [BQEKj.me(k +1, z)} Taking the mathematical expectation on both sides of (31)
. 7 o - 7 N and further considering the finite initial boundary coratiti
+ P2 (KD Ry Fa (kD)+ Fa o (KDERY (2), we conclude that
1jmegm 1jmigm 1jmaigm N u . .
x Ty (D+ F1 "(6DQ F1 (kD) ) h(k,m} XY YhidhakidhaE {0} < oo, (32)
1jregm ijrivigm ijrivigm =0 k=0 1,7,m7,1,5,m=1

where the relationship (7) is utilized in the last step whe\R}hiCh implies that lim E{Hfﬂ(kﬁ,l)HQ} — 0. According to
k+l—

deriving the above inequality, in which e o
Definition 1, it is concluded that the closed-loop 2-D fuzzy

Fio (k) = (Al,. +QBI<K<CM) a(k, 1+ 1) system (10) is globally asymptotically stable in the mean-
ijmijm ’ t square sense. The proof is complete. ]
+ (Ag; + OZBQ;Kjom) z(k+1,1) Remark 2. As is well known, delay-independent condition will

4Dk — 71 (k, 1), 1+ 1) + Dya(k + 1,1 — (k. 1)), ?nevitably bring conservativeness, especially when thayde
is very large. Here, we choose a delay-dependent Lyapunov

;jzg-m(k’l) - {jﬁzgm(k,l)—x(k,l+1), functional associated with both the lower and the upper
~ B ~ bound of the time-varying delay;(k,l) (i = 1,2), which
ﬁﬁ’iﬁm(k’l) - Z,,],,n’;l},m(k’l) —a(k+ L) will undoubtedly lead to less conservativeness. Moreover,

B the matrix inequality constraint (15) derived by introdogi
Defining((k,1) = [2T(k,1+1) 2T (k+1,1) 2T (k—1,,l+ the free-weighting matrix method is actually a delay-range
) 2T (k+ 1,1 —15) 2T(k—7(k,01), 1 +1) 2T(k+ 1,1 — dependent stability criterion, which has proven to be an
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effective approach in stability analysis of time-delaytegss, Substitutingz(-,-) anda(-, -) into the equality (35) and using
see e.g. [35]. Lemma 1, we obtain

N M
B. H.., performance analysis for the 2-D fuzzy system withJ < ZZ{ I(k, 1) + Z hihyE {{ V2w (k,1+1)
missing measurements 1=0 k=0

In Theorem 1, a general condition has been derived to ~ xw(k,l+1) =W’ (k+1,Dw(k +1,1)
guarantee the globally asymptotic stability of the closed- +(G{x(k,l+1)+Léw(k,l+1))T (Gix(k,1+1)
loop 2-D fuzzy system (10). Based upon the above stability Lok l+1 Goalk+ 1.1 + Lok + 1.0
analysis, we now deal with the capacity of disturbance at- FLiwlk 1+ 1) + (Galk+ 1,0+ Liw(k + 1,1))
tenugtion and rejection as well as the tolerance level to the (Gsa(k + 1,1) + Lyw(k + 171))] ’ h(k,l)} '
missing measurements with the designed 2-D controller (8).
The sufficient condition obtained in the following theorem _ ~
is to make sure that the fuzzy system (10) is asymptoticallyLetting ¢(k,0) = [¢*(k,1) w(k,i+1) w'(k+ 1,17,
stable with a prescribed,. performance index for non-zeroalong the similar lines for the proof of Theorem 1, it can be
exogenous disturbances and possible missing measuremégtéed that

zzl

under the zero-initial condition. N M

Theorem 2. The closed-loop 2-D fuzzy system (10) with the E{7} <= Z Z Zh ih; jlanhihyhon
designed controller structure (8) is globally asymptoliga 1=0 R=04,jrsi,5,m=1

stable with disturbance attenuation level if there exist xE{ CT(k,l)ﬁg(k,l) }7 (36)

matricesQ" > 0, Q* > 0, P* > 0, P* > 0, R" > 0,

RY >0, Jii, Ly (k,1 =1,2) and K; (j € S) such that the where
matrix inequality (14) and the matrix inequalities (33) tpl ~
quality (14) B a (33) Q=A+QI R, ' 7710 + QT R, 17710

0= {QA 5 ] <0, (33) +a0 Q0 + a0l Qs
o +OL R Qo7 + QT Q05 + QT Qg + QT000. (37)

where  4,7,1h,1,J, ™ € S, o) — _ _

[QT o of of oL of of Q __ Taking advantage of the Schur Complement again, one knows
67 910 ’ 282 o < . . .

diag{~TRs, —TRy. —a-10- s a1, R, —0, thatE {7} < 0 can be inferred by the conditidh < 0 in (33),

which immediately implies that inequality (13) in Definitio
(2) holds by further utilizing (34). Moreover, sincg is a
Q= [E4 By;KHy, 0, % =[5 0 BQ%Kme} . principal submatrix of2, = < 0 can also be inferred b < 0
Q=[5 © ], Q=[5 Q.10] in the inequalitieg33). To this end, it follows from Theorem 1
6= [=6 %69 2%6,10], 207 = =7 26,9 276,101 that the closed-loop 2-D system (10) is globally asympéditic

—Izn_}, Qo =TJ7,

Qg7 = [Qg Q?]T, Qg = [Eg Qg9 96,10] ) stable in the mean-square sense. The proof is now complete.
Q=[G; 0000000 L 0], u
Qo=1[0 G, 000000 0 L],

Qoo = [Qg QiFO]T7 Qo0 = aByK Hy + By, C. H,, fuzzy controller Design for the 2-D system with

missing measurements

Q6,10 = aBy, KiHyn + By, J = [OQHJjM ]a In this subsection, we are in the position to seek the
I- B A . S parameters of the concerned static output feedback ctarsol
L= [O = } , A= [O 27 ] , Qs =7LT, for the discussed 2-D T-S fuzzy system (10). By the aid of
21 X 210 T Matlab tool box, gain matrices in (8) can be readily obtained
and other symbols are the same as defined in Theorem 1.by solving the LMIs in the following theorem.

Proof: First of all, let us recall the relationship exposedheorem 3. For the closed-loop system (10) with missing
in (30). In view of the zero initial condition, one can readil measurements (6), the 2-D controller (8) is a globally asymp

know totically stable H,, fuzzy controller if there exist matrices
N M 92" >0,2° >0, 2" >0 2" >0 %" >0 %2 >0,
Z J(k,1) (34) Q" >0,Q">0,P">0,P" >0, R" >0, R" >0, Ju,
=0 k=0 Ly (k,1=1,2) and K; (j € S) such that the linear matrix

[ lity (14) and the i lities/ lities (38)-4Id,
Now, define the following index function inequality (14) and the inequalities/equalities (38)-X

N 2"Qh =1, phPh=1 Z"RM=1, (38)
J = Z Z {3(k, 1) + E { (2" (k,1)2(k, 1) Qv =1, P'P'=1, R'R’=1I, (39)

1=0 k=0 A
—2&" (k, )@ (k, 1)) | Ak, 1)} } (35) [El EJ <0, (40)
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where 7,j,m,1,5,m € S, [} = [Q] QF (1g®Q)T  dimension of the 2-D system on the computational complexity

(162 Q)T QL QI (1, @ Q)7 leo]T’ L, = diag{ @s relatively §mal|. N(_)te that res_garch on L_MI optimizati(_)n

— TRy, —TR,, _d—lé’ _a_1£§’ —p, @I, —9, IS a}v.ery.actlve area in <_:0mmun|t|es of applied mat_hematlcs,

Ly} le=[11111 1]T’ 9 — diag{2, 2@, #T '), optimization and operation research, and substantial gpee
ups can be expected in the near future.

2 = diag{2", 2}, 2 =diag{2", 2"}, 1,=[11]",

N Remark 4. For the H,, control problem for a class of 2-D T-
X = diag{%#", #"}.

S fuzzy systems described by the second Fornasini-Machesin

Proof: Rewrite &) in (37) as follows local state-space model \_/vith time-dela_ys and mi_ssing measu
o ments, there are four main aspects which complicate thgdesi
Q=A+ QTR T + QYR 1T710 of the output controller, i.e. interval time-varying defay

+a (1 ®Q4)T diag{Qh7 Q, P", P, 7 R". FQR”} randomly missing measurements, twol—gﬁmgnsional dynami.cs
~ T b e b evolutions and T-S model-based fuzzifications. In our main

x (16® Q) + a6 (16 ® Q5)” diag{Q", Q", P", P, results (Theorems 1-3), sufficient conditions, which idelall

AR", R} (16 ® Q5) + QFzdiag {P", P"} Qg7 of the information on these four aspects, are establishedrfo

+ QL7 diag {Rh7 Rv} Qo7 + (12 ® Qs)T output feedback controller to satisfy the prescritiéd perfor-

) b o T mance requirement. The corresponding solvability coadgi
x diag {Q", Q"} (12 ® Q) + Q9100010 < 0. for the desired controller gains are expressed in terms ef th

Noting that equalities (38)-(39) are equivalent 8" — feasibility of a series of LMIs with equality constraintsaath
Q")1, 20 = (QV)"!, #h = (Ph)1, v = (pv)-1, can be solved by the well-known CCL algorithm. It should

Z" = (R")~', %* = (R")"!, and by using the Schur be pointed out that an energy-like functional is constrdcte

Complement again, it can be observed that 0 holds if © derive several delgy—range-depe_ndent stability cidtemnd
and only if the LMIs in the inequalities (38)-(40) hold, and®u" developed algorithm would enjoy the advantage of less

the proof is then complete. m conservatism since more information about the delays is
_ o _ _ employed.

Remark 3. It is worth pointing out that there are six matrix

equality constraints in Theorem 3, and this gives rise to V. | LLUSTRATIVE EXAMPLE

considerable difficulty for numerical computation. Forately,
the cone complementarity linearization (CCL) algorithneds feasibility of the proposed control algorithm for the dissad
pable of resolving this problem tactically. The CCL algbnit fuzzy system.

has been well developed and applied to solve non-stricatine  ~gnsider the 2-D
matrix inequalities, see e.g. [8], [10], [36]. Similar to ¢h o, (1) with the
approaches used in [9], [14], [37], the non-convex feasthil (k1)

In this section, an example is presented to illustrate the

discrete T-S  fuzzy sys-
interval time-varying delays
= 7, + (F1—1;—2)|cos(kl)] and

problem in Theorem 3 can be converted to the followingz(k 1) = 1, + (T2 — 1, — 2)|sin(kl)|, wherer, = 2
nonlinear minimization problem 71 = 16, 7, = 4 and7, = 18. Take the number of IF-THEN
min tr(ggth +2°QV + phph rulesr = 2 and the other parameters are giyen as fqllows (to
+ P°PY 4 ph R +%’”R”) conserv_e space, here only_ part of the_matnces are listed out
—0.6754 —0.3021 0.0024 0.00251
h h h — —_
20T o 17 T s |7 5o, AT coasit 01003 |0 P17 00001 0.0145 |
I Q"= "1 P|\T7 | I RN . . :
A —0.2001 —0.2861 D 0.0254 —0.0040}
t. v v v 21 = ) 21 = )
sty |2 Iv >0 |7 Iv >0, |7 Iv >0, 01230 —0.0123] 00044 0.0541
I Q I P I R B _ [F04601 —0.3032] . [-0.3244 0210
(14) and (40). " -0.4241 0.0205 | M T 01824 0.1023]°

According to the idea of CCL algorithm, we know that the Taking the probability of the missing measurements as
conditions in Theorem 3 are satisfied whein tr(2"Q" + « = 0.42 and the disturbance attenuation level-as- 0.28,
2°QY + P"Ph 4 PVPY + Z"RM + %M RY) = 6n, (named the feasible solution of the LMIs in Theore® can be
Cymin). FOr more discussions on the nonlinear minimizatiofbtained readily by employing the LMI toolbox, where the
problem, we refer the readers to [8], [9], [14], [37] and gain matrices of the desired 2-D fuzzy controller are olgdin
references listed therein. It can be seen that the LMIs (48 follows
with the equality constraints (38)-(39) have been sucodgsf
transformed into a set of strict LMIs by the adopted CCL
procedure, where a minimization problem with extra LMI con- —0.0267 0.0822
straints is induced. Fortunately, the newly formed optéation Ky = [ 0.1121 _0_3095} :
problem can be easily solved via mincx solver in the standard
MATLAB LMI toolbox. The resulting computation burden is
mainly dependent on the iteration precision of CCL and the
prescribed maximum iteration times, and the impact from the

Ky = [—0.0269 0.0818 } 7

0.1127  —0.3068
(41)

Choose the fuzzy basis functions as

B (k) = sin?(k + 1 + z1(k, 1))
N T o Y cos(k + L+ xy (K, 1))
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andhq(k,l) =1— hq(k,1), and the exogenous disturbance as
Y __Ym g
w(k,l) = [sin(kl)e =D cos(kl)e =»*G:0]" . The bound-

ary condition is assumed to be
_ [sin®(k) ~ [eos?(®)
antd = (D] vt = [21)].
with 21 =35 and z9 = 30.

In the simulation study, the corresponding state evolstion
of the closed-loop 2-D fuzzy system are shown in Fig. 1
and Fig. 2, respectively. Fig. 3 and Fig. 4 depict the states
of the uncontrolled system, from which we can see that the
original system is clearly unstable. As is indicated in Higind
Fig. 2, the designed fuzzy controller can stabilize thedtrg
2-D system very well. Additionally, it is also demonstrated
that the expected performance of disturbance attenuatidn a
rejection has been achieved. Furthermore, in spite of a high
probability for the missing measurements, the fuzzy rudsdal
controller can perform satisfactorily. However, if we igadhe
fuzzy rules and just impose the controller with the same gain
as in (41), the corresponding results in Fig. 5 and Fig. 6 ympl
the invalidity of the control law. To check the sensitiviti/the
design parameters, we intentionally adjust the initialdittons
and the exogenous disturbance, and the results have shown
that the controlled system can also be stabilized well by the
proposed fuzzy controller.

V. CONCLUSIONS

In this paper, the static output feedback control probles ha
been studied for a class of 2-D fuzzy system with bounded
disturbances. The system model contains time-varyingydela
in both horizontal- and the vertical directions. Considgri
the realistic situation of sensors and complicated trassiom
condition, a mathematic model reflecting the practical mea-

surement outputs has been proposed to depict the phenomena

of missing measurements. By constructing an energy-like
quadratic functional, a set of delay-range-dependengraait

in the form of matrix inequalities has been derived to make
the 2-D fuzzy system asymptotically stable in the mean-
square sense. With the help of the CCL algorithm, parameters
of the desired fuzzy controller have been obtained readily.
Finally, the stabilization of the discussed closed-looptam

can be realized by the IF-THEN rules based fuzzy controller[.]
The feasibility of the suggested design method has been
checked by the simulation results. It should be pointed ou#!
that the main results in this paper can be extended to the 2-D
networked systems. Our most promising direction for future
research concerns the estimation problem for 2-D networkdél
systems with a variety of incomplete measurements such as
sensor quantization, sensor saturation and fading channg
[5], [6]. Moreover, due to the superiority of the piecewise
Lyapunov function in terms of reducing conservativeness, s
e.g. [27], we will discuss the performance tracking controlg)
of complicated networked systems based on the piecewise
Lyapunov functions in the future.
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