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H∞ Control for Two-Dimensional Fuzzy Systems
with Interval Time-Varying Delays and Missing
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Abstract—In this paper, we consider theH∞ control problem
for a class of two-dimensional (2-D) Takagi-Sugeno (T-S) fuzzy
described by the second Fornasini-Machesini local state-space
model with time-delays and missing measurements. The state
delays are allowed to be time-varying within a known interval.
The measurement output is subject to randomly intermittent
packet dropouts governed by a random sequence satisfying the
Bernoulli distribution. The purpose of the addressed problem
is to design an output-feedback controller such that the closed-
loop system is globally asymptotically stable in the mean square
and the prescribed H∞ performance index is satisfied. By
employing a combination of the intensive stochastic analysis and
the free weighting matrix method, several delay-range-dependent
sufficient conditions are presented that guarantee the existence
of the desired controllers for all possible time-delays andmissing
measurements. The explicit expressions of such controllers are
derived by means of the solution to a class of convex optimization
problems that can be solved via standard software packages.
Finally, a numerical simulation example is given to demonstrate
the applicability of the proposed control scheme.

Index Terms—Fuzzy systems, Two-dimensional systems,H∞

control, output feedback, time-varying delays, missing measure-
ments.

I. I NTRODUCTION

Nonlinearity is a ubiquitous phenomenon in the natural
world that has been receiving ever-increasing research atten-
tion from a variety of subject areas. Traditionally, rigorous
mathematical analysis on nonlinear systems rely on precisede-
scription of the nonlinearities with some stringent assumptions,
and this sometimes hinders the nonlinear systems theory from
being applied to certain engineering practice, for example,
those data-based applications where an exact mathematical
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model is hard to be established [4], [16], [26], [29]–[31],
[38]. On the other hand, the fuzzy logic theory has proven to
be effective in handling reasoning that is approximate rather
than fixed and exact. Furthermore, after a decade of theoretical
and practical development, the Takagi-Sugeno (T-S) model has
been recognized as an efficient way to approximate certain
nonlinear systems. By using a set of local linear models
which are smoothly connected by nonlinear fuzzy member
ship functions to present a nonlinear plant, the T-S fuzzy
model has brought the analysis and synthesis of nonlinear
systems into a unified framework. Moreover, owing to the
peculiarity of the T-S model, a large portion of existing results
for linear systems can be readily extended for some nonlinear
systems. As pointed out in [12], [32], the T-S model is able
to approximate any smooth non-linear function to any degree
of accuracy in any convex compact region.

As is well known, many practical systems can be ideally
described by the two-dimensional (2-D) systems that have
received tremendous research attention because of their appli-
cations in thermal processes, seismic data sections, digitized
photographic data, digital filtering and magnetic maps, etc.
[11]. For four decades, the theoretical investigations on 2-D
systems have been attracting recurring research interestsand
fruitful research results have been available in the literature. As
early as in 1970s, some basic behaviors and modeling issues
were thoroughly examined for 2-D systems, see e.g. [11],
[18]. Parallel to the rapid research development of the tra-
ditional 1-D systems, in the past few years, some important
breakthroughs have been reported on the analysis and design
issues for the 2-D control systems. For example, the stability
analysis and stabilization problems for 2-D systems have been
addressed in [7], [13], and the filter/observer design problems
have been investigated in [25]. In particular, some new kinds
of 2-D models and new techniques have recently been put
forward in the literature. In [23], a state estimation problem for
2-D complex networks with randomly occurring nonlinearities
and randomly varying sensor delays has been considered, and
a new synchronization problem has been dealt with for an
array of 2-D coupled dynamical network in [24].

Given the practical importance of 2-D systems in represent-
ing two-dimensional evolutions and the technical convenience
of T-S fuzzy systems for handling affine nonlinearities, a
seemingly natural research issue would be to investigate the
dynamical behaviors as well as the estimator/controller design
problems of 2-D T-S fuzzy systems. Unfortunately, a literature
review has revealed that the corresponding results have been
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very few due primarily to the mathematical complexities for
2-D T-S fuzzy systems. On the other hand, time delays are
very often a major concern in many practical applications such
as communication line, electrical signal processing systems,
network transmission systems, seismic wave, urban traffic
management systems, etc. Time delays are well recognized
as one of the main sources for poor performance or even in-
stability of control systems. In the 1-D settings, the time-delay
systems have recently received considerable research attention
and a rich body of literature has appeared on this topic, see
e.g. [3], [17]. Moreover, among the existing works, plenty
of stability conditions are delay-dependent, which pose less
conservativeness, see e.g. [19], [20]. With respect to 2-D time-
delay systems, over the past few years, some initial results
have been reported on the control and filtering problems. For
example, the problem of delay-dependentH∞ control for 2-D
discrete state delay systems has been investigated in [22],and a
robustH∞ filter for 2-D discrete systems with time delays has
been designed in [34]. It should be noted that most available
results have been concerned with time-invariant delays.

As a matter of fact, the phenomenon of missing mea-
surements (packet losses or dropouts) is virtually inevitable
in measurement processes (particularly within a networked
environment), which is caused by some harsh working con-
ditions and imperfect communications. Many factors have
contributed to this kind of less-than-ideal situation. Such
factors include, but are not limited to, the limited bandwidth
of the communication channel, abnormity of swap device,
random network congestion, accidental loss of some collected
data in a very noisy environment. So far, the problem of
missing measurements has been well studied for 1-D systems
and a great deal of literature has been available, see e.g. [28],
[33]. Nevertheless, the relevant research for 2-D systems is
still in its early stage especially when both the time-varying
delays and missing measurements are simultaneously present,
not to mention the case when the 2-D systems are further
complicated by the T-S fuzzy model. As such, the stability
analysis and stabilization problem for 2-D time-delay fuzzy
systems with missing measurements remains a challenging
issue that motivates our current research, and the main task
of this paper is to propose a general framework for handling
such a challenge.

In this paper, we endeavor to research into theH∞ control
problem for a class of two-dimensional (2-D) Takagi-Sugeno
(T-S) fuzzy systems described by the second Fornasini-
Machesini local state-space model with time-delays and miss-
ing measurements. The main contributions of this paper can
be boiled down as follows. 1) A 2-D T-S fuzzy model is
considered, which is comprehensive to include time-varying
delays, bounded noises and probabilistic missing measure-
ments, thereby reflecting engineering practice more closely. 2)
For the purpose of stabilizing the addressed 2-D fuzzy systems,
an energy-like functional is constructed and several delay-
range-dependent stability criteria are obtained to accomplish
the design goal. 3) The close-loop system has the expected dis-
turbance attenuation level in terms of a prescribedH∞ perfor-
mance index.Compared with the existing delay-independent
or delay-dependent results for 1-D delayed systems, the delay-

range-dependent method addressed in this paper is of less
conservativeness. The adopted 2-D T-S model can be thought
to be a universal approximator for nonlinear 2-D systems, and
the corresponding controller can also be used to stabilize the
complicated 2-D nonlinear plant. Potential applications of the
investigated fuzzy control approach include the 2-D digital
systems, image processing and wireless communications, etc.
Especially for the case of interval time-varying delays andran-
domly missing measurements, the proposed fuzzy controller
will show its strength.

The rest of this article is organized as follows. Section II
is devoted to the formulation of theH∞ control problem for
the addressed 2-D fuzzy systems with interval time-varying
delays, where the phenomenon of probabilistic missing mea-
surements is characterized by a Bernoulli distribution model,
and some notations and related definitions are also given.
In Section III, with the aid of an energy-like functional
and the delay-range-dependent method, both the analysis and
the synthesis problems of the 2-D fuzzy control system are
investigated. In Section IV, an example is given to validate
the design approach of the proposed fuzzy control scheme,
and some concluding remarks have been drawn in Section V.

Notation. In this paper,Rn, Rn×m andZ (Z+,Z−) denote,
respectively, then-dimensional Euclidean space, the set of all
n ×m real matrices and the set of all integers (nonnegative
integers, negative integers).‖·‖ refers to the Euclidean norm in
Rn. In represents the identity matrix of dimensionn×n. The
notationX ≥ Y (respectively,X > Y ), whereX andY are
symmetric matrices, means thatX−Y is positive semi-definite
(respectively, positive definite). For a matrixM ,MT andM−1

represent its transpose and inverse, respectively. The shorthand
diag{M1, M2, . . . , Mn} denotes a block diagonal matrix
with diagonal blocks being the matricesM1, M2, . . . , Mn.
In symmetric block matrices, the symbol ‘∗’ is used as an
ellipsis for terms induced by symmetry. Matrices, if they
are not explicitly stated, are assumed to have compatible
dimensions.

II. PROBLEM FORMULATION

Consider a 2-D discrete-time T-S fuzzy system with state-
delays and stochastic perturbations described by the following
Fornasini-Marchesini (FM) local state-space (LSS) second
model:

Plant Rule i:
IF θ

(k,l)
1 is Fi1, · · · , θ(k,l)j is Fij , · · · andθ(k,l)p is Fip,

THEN




x(k + 1, l + 1) = A1ix(k, l + 1) +A2ix(k + 1, l)

+D1ix(k − τ1(k, l), l + 1)

+D2ix(k + 1, l− τ2(k, l))

+B1iu(k, l+ 1) +B2iu(k + 1, l)

+ E1iω(k, l + 1) + E2iω(k + 1, l),

y(k, l) = Cix(k, l) +Hiω(k, l), i ∈ S

z(k, l) = Gix(k, l) + Liω(k, l),

(1)

where k, l ∈ Z+ and x(k, l) ∈ Rnx is the state vector;
y(k, l) ∈ Rny is the measured output;z(k, l) ∈ Rnz is the
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controlled output;u(k, l) ∈ Rnu is the control input vector;
ω(k, l) ∈ Rnω is the disturbance input which belongs to

l2 (Z
+,Z+), namely,

∞∑
l=0

∞∑
k=0

E
{
‖ω(k, l)‖2

}
< ∞; τ1(k, l)

and τ2(k, l) are interval time-varying delays along the hori-
zontal direction and the vertical direction, respectively, which
are subjected toτ1 ≤ τ1(k, l) ≤ τ1 and τ2 ≤ τ2(k, l) ≤ τ2;
the input vectorθ(k,l)j = [θj(k − 1, l), θj(k, l − 1)] (j =
1, 2, · · · , p) represents the spatial premise variable at the loca-
tion (k, l), which may be states or measurable variables, and
θj(k, l) is the corresponding component of the spatial input
vectorθ(k,l)j ; Fij is a spatial fuzzy set of rulei corresponding

to the spatial input vectorθ(k,l)j ; S = {1, 2, · · · , r} with
r being the number of IF-THEN rules;Asi, Bsi, Ci, Dsi,
Esi, Hi, Gi andLi(s = 1, 2) are known real constant system
matrices with compatible dimensions.

The initial boundary condition is given by

x(k, l) =





ψ1(k, l); if (k, l) ∈ [−τ1, 0]× [0, z1]

ψ2(k, l); if (k, l) ∈ [0, z2]× [−τ2, 0]

0; if (k, l) ∈ [−τ1, 0]× (z1, ∞)

0; if (k, l) ∈ (z2, ∞)× [−τ2, 0]

(2)

with ψ1(0, 0) = ψ2(0, 0), wherez1 and z2 are finite positive
integers,ψ1(k, l) and ψ2(k, l) are given vectors which are
independent of the stochastic input sequence{ω(k, l)}.

Let h(k,l)i = [hi(k − 1, l), hi(k, l − 1)], wherehi(k, l) is
the normalized membership function defined by

hi(k, l) =
Ψi(k, l)
r∑

i=1

Ψi(k, l)

, (3)

where,Ψi(k, l) =
p∏

j=1

Fij(θ
(k,l)
j ) and Fij(θ

(k,l)
j ) ≥ 0 is the

grade of membership ofθ(k,l)j in Fij , which is also called the
fuzzy basis function. It can be easily verified that

0 ≤ hi(k, l) ≤ 1,

r∑

i=1

hi(k, l) = 1, ∀ k, l ∈ Z+. (4)

Remark 1. Compared with the usual model rule for 1-D
systems, the premise variableθ(k,l)j of the 2-D systems is
actually in a spatial type. According to the FM model, the
value of the state at location(k+1, l+1) is related to those at
(k, l+1) and(k+1, l). Therefore, it is reasonable to define the
normalized membership function of the inferred fuzzy set tobe
a two-element vectorh(k,l)i , wherehi(k−1, l) andhi(k, l−1)
are deemed to be the scalar normalized membership function
regarding the premise variablesθj(k − 1, l) and θj(k, l − 1),
respectively. As pointed out in [1], [21], the membership
function satisfying (3) can be viewed as one of the vertices
of a polyhedron. It should be noted that the vector valued
normalized membership function comprises the main features
of the 2-D T-S fuzzy model, which is totally different from the
1-D case.

Subsequently, by fuzzy blending, the T-S fuzzy system (1)

can be transformed into



x(k + 1, l + 1) =

r∑

i=1

hi(k, l + 1)

r∑

i=1

hi(k + 1, l)

× {A1ix(k, l + 1) +A2ix(k + 1, l)

+D1ix(k − τ1(k, l), l+ 1)

+D2ix(k + 1, l− τ2(k, l))

+B1iu(k, l + 1) +B2iu(k + 1, l)

+ E1iω(k, l+ 1) + E2iω(k + 1, l)},

y(k, l) =

r∑

i=1

hi(k, l)
[
Cix(k, l) +Hiω(k, l)

]
,

z(k, l) =

r∑

i=1

hi(k, l)
[
Gix(k, l) + Liω(k, l)

]
.

(5)

The actual signal received by the designed controller may
contain missing measurements, which can be governed by

~y(k, l) = η(k, l)y(k, l), (6)

whereη(k, l) ∈ R is a random white sequence taking values
of 0 and 1 with

Prob{η(k, l) = 1} = α, Prob{η(k, l) = 0} = 1− α, (7)

and α ∈ [0, 1] is a known scalar. Throughout this paper,
we assume that the stochastic variablesη(k, l) and ω(i, j)
(k, l, i, j ∈ Z+) are mutually independent.

In this paper, we are interested in designing a 2-D fuzzy
controller for system (1) of the following form:

Controller Rule i:
IF θ

(k,l)
1 is Fi1, · · · , θ(k,l)j is Fij , · · · andθ(k,l)p is Fip,

THEN

u(k, l) = Ki~y(k, l), (8)

whereKi is the gain matrix of the designed controller to be
determined. Similar to (5), the proposed 2-D fuzzy controller
can also be fuzzily blended as

u(k, l) =

r∑

i=1

hi(k, l)η(k, l)Kiy(k, l). (9)

In what follows, for brevity, we definéhi = hi(k, l + 1),
h̀i = hi(k + 1, l) and

r∑
i1,i2,··· ,is=1

hi1hi2 · · ·his =
r∑

i1=1

hi1

r∑
i2=1

hi2 · · ·
r∑

is=1

his

for s ∈ Z+.
Combining (9) with (5), the closed-loop 2-D fuzzy system

with the static output feedback controller is governed by (10),
shown at the top of the next page, which can be rewritten as




x(k + 1, l+ 1) =

r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀ ̥1
íj́ḿìj̀m̀

(k, l),

z(k, l) =

r∑

i=1

hi(k, l) [Gix(k, l) + Liω(k, l)] ,

(11)

where

̥1
íj́ḿìj̀m̀

(k, l) = A1́ix(k, l + 1) + A2̀ix(k + 1, l)
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



x(k + 1, l+ 1) =
r∑

i=1

h́i

{
A1ix(k, l + 1) +D1ix(k − τ1(k, l), l + 1) + E1iω(k, l+ 1) +

r∑
j,m=1

h́j h́mB1iη(k, l + 1)

×Kj [Cmx(k, l + 1) +Hmω(k, l + 1)]

}
+

r∑
i=1

h̀i

{
A2ix(k + 1, l) +D2ix(k + 1, l− τ2(k, l))

+E2iω(k + 1, l) +
r∑

j,m=1

h̀j h̀mB2iη(k + 1, l)×Kj [Cmx(k + 1, l) +Hmω(k + 1, l)]

}
,

z(k, l) =
r∑

i=1

hi(k, l) [Gix(k, l) + Liω(k, l)] ,

(10)

+D1́ix(k − τ1(k, l), l+ 1) +D2̀ix(k + 1, l− τ2(k, l))

+αB1́iKj́(Cḿx(k, l + 1) +Hḿω(k, l+ 1))

+(η(k, l + 1)− α)B1́iKj́(Cḿx(k, l + 1) + E1́iω(k, l+ 1)

+Hḿω(k, l+ 1)) + αB2̀iKj̀(Cm̀x(k + 1, l)

+Hm̀ω(k + 1, l)) + (η(k + 1, l)− α)B2̀iKj̀

×(Cm̀x(k + 1, l) +Hm̀ω(k + 1, l)) + E2̀iω(k + 1, l) .

Definition 1. The 2-D fuzzy system (10) withω(k, l) ≡ 0 is
said to be globally asymptotically stable in the mean-square
sense if

lim
k+l→∞

E

{∥∥x(k, l)
∥∥2
}
= 0 (12)

holds for all the initial condition in the form of (2). In this
case, the 2-D fuzzy controller (8) is said to be a globally
asymptotically stable fuzzy controller for the 2-D system (1).

Definition 2. Given scalarγ > 0, the controller (8) is said to
be anH∞ fuzzy controller for the 2-D system (1) with output
measurements (6) and disturbance attenuation levelγ if the
dynamics of system (10) is globally asymptotically stable in
the mean-square sense and, under the zero initial conditions,
the following performance constraint

∞∑

l=0

∞∑

k=0

E

{∥∥∥∥
[
z(k, l + 1)
z(k + 1, l)

]∥∥∥∥
2
}

≤ γ2
∞∑

l=0

∞∑

k=0

E

{∥∥∥∥
[
ω(k, l + 1)
ω(k + 1, l)

]∥∥∥∥
2
}

(13)

holds for all nonzero sequences{ω(·, ·)}.

III. M AIN RESULTS

Before proceeding, let us recall the following lemmas which
will be used in the sequel.

Lemma 1. Let R ∈ Rn×n be a symmetric positive definite
matrix. For any real vectorsXíj́ḿìj̀m̀ ∈ Rn andX

áb́ćàb̀c̀
∈ Rn

with í, j́, ḿ, ì, j̀, m̀, á, b́, ć, à, b̀, c̀ ∈ S, we have
r∑

í,j́,ḿ,á,b́,ć,̀i,j̀,m̀,à,b̀,c̀=1

h́íh́j́h́ḿh́áh́b́h́ćh̀ìh̀j̀h̀m̀h̀àh̀b̀h̀c̀

×XT

íj́ḿìj̀m̀
RX

áb́ćàb̀c̀

≤
r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀X
T

íj́ḿìj̀m̀
RXíj́ḿìj̀m̀,

whereh́t ≥ 0, h̀t ≥ 0,
r∑

t=1
h́t =

r∑
t=1

h̀t = 1 with t ∈ S.

Proof: Similar to the proof of Lemma 2 in [15], based
on the well-known inequality

2XTRY ≤ XTRX + Y TRY,

whereX and Y are any vectors belonging toRn, one can
easily have

2
r∑

í,j́,ḿ,á,b́,ć,̀i,j̀,m̀,à,b̀,c̀=1

h́íh́j́ h́ḿh́áh́b́h́ćh̀ìh̀j̀ h̀m̀h̀àh̀b̀h̀c̀

×XT

íj́ḿìj̀m̀
RX

áb́ćàb̀c̀

≤

r∑

í,j́,ḿ,á,b́,ć,̀i,j̀,m̀,à,b̀,c̀=1

h́íh́j́ h́ḿh́áh́b́h́ćh̀ìh̀j̀ h̀m̀h̀àh̀b̀h̀c̀

×(XT

íj́ḿìj̀m̀
RXíj́ḿìj̀m̀ +XT

áb́ćàb̀c̀
RX

áb́ćàb̀c̀
)

= 2

r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀X
T

íj́ḿìj̀m̀
RXíj́ḿìj̀m̀,

which completes the proof.

In this section, both the stability analysis and theH∞

performance for the 2-D closed-loop fuzzy system will be
discussed and then a detailed process for the design of the pro-
posedH∞ controller will be further presented. Finally, a cone
complementarity linearization (CCL) algorithm is employed to
overcome the numerical difficulty caused by the several matrix
equality constraints presented in the main results.

A. Stability analysis for the 2-D fuzzy system with missing
measurements

We begin with the stability analysis for the 2-D fuzzy
system (10) when the controller gainKi (i = 1, 2, · · · , r) are
given. The following theorem presents a sufficient condition
under which the closed-loop 2-D fuzzy system (10) is globally
asymptotically stable in the mean-square sense.

Theorem 1. The closed-loop 2-D fuzzy system (10) with the
given controller structure (8) is globally asymptoticallystable
in the mean-square sense if there exist matricesQh > 0,Qv >

0, P h > 0, P v > 0, Rh > 0, Rv > 0, Jkl, Lkl (k, l = 1, 2)
and Kj (j ∈ S) such that the matrix inequalities (14) and
(15) hold,

Rh > P h, Rv > P v, (14)
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Ξ =

[
Λ ∗
Ξ1 Ξ2

]
< 0, (15)

where í, j́, ḿ, ì, j̀, m̀ ∈ S, ᾱ = α(1 − α), I =
diag{τ̃1Inx

, τ̃2Inx
}, τ̃1 = τ1 − τ1, τ̃2 = τ2 − τ2,

Ξ1 =
[
ΞT
2 ΞT

3 ΞT
4 ΞT

5 ΞT
67 ΞT

8

]T
, Ξ2 = diag{−IR2,

−IR2, −ᾱ
−1Q̃−1, −ᾱ−1Q̃−1, −R−1

1 , −Q̂−1},

R̂h
1 = τ̃1R

h + P h, R̂h
2 = Rh − P h, R̂v

1 = τ̃2R
v + P v,

R̂v
2 = Rv − P v, R2 = diag{R̂h

2 , R̂v
2}, Q̂ = Qh +Qv,

Q̃ = Q̂+ R̂h
1 + R̂v

1 , Ξ2 = IJT
Ξ , Ξ3 = ILT

Ξ ,

Ξ4 =
[
B1́iKj́Cḿ 0 0 0 0 0 0 0

]
,

Ξ5 =
[
0 B2̀iKj̀Cm̀ 0 0 0 0 0 0

]
,

Ξ6 =
[
Ξ6,1 Ξ6,2 0 0 D1́i D2̀i 0 0

]
,

Ξ7 =
[
Ξ7,1 Ξ7,2 0 0 D1́i D2̀i 0 0

]
,

Ξ67 =
[
ΞT
6 ΞT

7

]T
, Λ11 = −Qh, Λ33 = J11 + JT

11

Ξ8 =
[
Ξ7,1 Ξ6,2 0 0 D1́i D2̀i 0 0

]
,

R1 = diag{R̂h
1 , R̂

v
1}, Λ22 = −Qv, Λ44 = J21 + JT

21,

Ξ6,1 = A1́i − I + αB1́iKj́Cḿ, Λ53 = J12 − JT
11,

Ξ6,2 = A2̀i + αB2̀iKj̀Cm̀, Λ64 = J22 − JT
21

Ξ7,1 = A1́i + αB1́iKj́Cḿ, Λ75 = L12 − LT
11,

Ξ7,2 = A2̀i − I + αB2̀iKj̀Cm̀, Λ77 = −L12 − LT
12,

JΞ =

[
0 0 0 JT

21 0 JT
22 0 0

0 0 JT
11 0 JT

12 0 0 0

]T
,

LΞ =

[
0 0 0 0 0 LT

21 0 LT
22

0 0 0 0 LT
11 0 LT

12 0

]T
,

Λ55 = −J12 + L11 − JT
12 + LT

11, Λ86 = L22 − LT
21,

Λ66 = −J22 + L21 − JT
22 + LT

21, Λ88 = −L22 − LT
22.

Proof: In order to establish the globally asymptotic stabil-
ity of the closed-loop 2-D fuzzy system (10) withω(·, ·) = 0,
let us define the following energy-like functional

V (k, l) = V h
1 (k, l) + V h

2 (k, l) + V h
3 (k, l)

+V v
1 (k, l) + V v

2 (k, l) + V v
3 (k, l) (16)

with

V h
1 (k, l) = xT (k, l)Qhx(k, l), V v

1 (k, l) = xT (k, l)Qvx(k, l),

V h
2 (k, l) =

−1∑

τ=−τ1(k,l)

fT (k + τ, l)P hf(k + τ, l),

V v
2 (k, l) =

−1∑

τ=−τ2(k,l)

gT (k, l + τ)P vg(k, l+ τ),

V h
3 (k, l) =

−τ1−1∑

d=−τ1

−1∑

τ=d

fT (k + τ, l)Rhf(k + τ, l),

V v
3 (k, l) =

−τ2−1∑

d=−τ2

−1∑

τ=d

gT (k, l + τ)Rvg(k, l+ τ),

f(k + τ, l) = x(k + τ + 1, l)− x(k + τ, l),

g(k, l + τ) = x(k, l + τ + 1)− x(k, l + τ).

Define the following index

I(k, l) = Ih(k, l) + Iv(k, l), (17)

where the expressions ofIh(k, l) and Iv(k, l) are shown in
(18). Calculating along the trajectories of system (11), one
has (19)-(21). Similarly, it can be obtained (22)-(24) (Notice:
(18)-(24) are shown on page 6).

From the inequalities (19)-(21), we have

Ih(k, l) ≤ E

{(
xT (k + 1, l + 1)Qhx(k + 1, l+ 1)

−xT (k, l + 1)Qhx(k, l + 1) + fT (k, l + 1)R̂h
1

×f(k, l+ 1)−




−τ1−1∑

d=−τ1(k,l)

+

−τ1(k,l)−1∑

d=−τ1




×fT (k + d, l + 1)R̂h
2f(k + d, l + 1)

)∣∣∣∣∣~(k, l)
}

and, similarly, one has

Iv(k, l) ≤ E

{(
xT (k + 1, l+ 1)Qvx(k + 1, l+ 1)

−xT (k + 1, l)Qvx(k + 1, l) + gT (k + 1, l)R̂v
1

×g(k + 1, l)−




−τ2−1∑

d=−τ2(k,l)

+

−τ2(k,l)−1∑

d=−τ2




×gT (k + 1, l+ d)R̂v
2g(k + 1, l+ d)

)∣∣∣∣~(k, l)
}
.

Before proceeding further, it is easy to show that the
equalities (25) (shown on page 6) hold for any matrixesJ11,
J12, J21, J22, L11, L12, L21 andL22. Letting

J̄1 =
[
0 JT

11 JT
12 0

]T
, J̄2 =

[
0 JT

21 JT
22 0

]T
,

L̄1 =
[
0 0 LT

11 LT
12

]T
, L̄2 =

[
0 0 LT

21 LT
22

]T
,

I1 =
[
0 Inx

−Inx
0
]
, I2 =

[
0 0 Inx

−Inx

]
,

φ =




x(k, l + 1)
x(k − τ1, l + 1)

x(k − τ1(k, l), l + 1)
x(k − τ1, l + 1)


 , ϕ =




x(k + 1, l)
x(k + 1, l − τ2)

x(k + 1, l − τ2(k, l))
x(k + 1, l − τ2)


 ,

one obtains (26) and (27) (shown on page 6), where conditions
τ i ≤ τ(k, l) ≤ τ i (i = 1, 2) and (14) have been utilized in
the second step when deriving (26) and (27). It should be
noted that inequalities constrains (14) ensures thatR̂h

2 > 0
and R̂v

2 > 0.
Combining the inequalities (26) and (27) together and

noting thatf(k, l) = x(k + 1, l)− x(k, l), g(k, l) = x(k, l +
1)−x(k, l), it can be calculated along the closed-loop system
(11) that

I(k, l) ≤

r∑

í,j́,ḿ,á,b́,ć,̀i,j̀,m̀,à,b̀,c̀=1

h́íh́j́h́ḿh́áh́b́h́ćh̀ìh̀j̀h̀m̀

×h̀àh̀b̀h̀c̀E

{(
̥1

íj́ḿìj̀m̀

T
(k, l)Q̂ ̥1

áb́ćàb̀c̀

(k, l)

+ ̥2
íj́ḿìj̀m̀

T
(k, l)R̂h

1 ̥2
áb́ćàb̀c̀

(k, l)



FINAL VERSION 6





I
h(k, l) = E

{(
∆V h

1 (k, l) + ∆V h
2 (k, l) + ∆V h

3 (k, l)
)∣∣∣~(k, l)

}
,

Iv(k, l) = E

{(
∆V v

1 (k, l) + ∆V v
2 (k, l) + ∆V v

3 (k, l)
)∣∣∣~(k, l)

}
,

∆V h
i (k, l) = V h

i (k + 1, l+ 1)− V h
i (k, l + 1), ι = 1, 2, 3,

∆V v
j (k, l) = V v

j (k + 1, l + 1)− V v
j (k + 1, l), κ = 1, 2, 3,

~(k, l) = {x(k, l + 1), x(k − 1, l + 1), x(k − 2, l+ 1), · · · , x(k − τ1, l + 1) ,

x(k + 1, l), x(k + 1, l − 1), x(k + 1, l− 2), · · · , x(k + 1, l− τ2)} ,

(18)

∆V h
1 (k, l) = xT (k + 1, l + 1)Qhx(k + 1, l+ 1)− xT (k, l + 1)Qhx(k, l + 1), (19)

∆V h
2 (k, l) ≤ fT (k, l + 1)P hf(k, l + 1) +




−τ1−1∑

τ=−τ1(k,l)

+

−τ1(k,l)−1∑

τ=−τ1


 fT (k + τ, l + 1)P hf(k + τ, l + 1), (20)

∆V h
3 (k, l) = τ̃1f

T (k, l + 1)Rhf(k, l+ 1)−




−τ1−1∑

d=−τ1(k,l)

+

−τ1(k,l)−1∑

d=−τ1


 fT (k + d, l + 1)Rhf(k + d, l + 1). (21)

∆V v
1 (k, l) = xT (k + 1, l+ 1)Qvx(k + 1, l+ 1)− xT (k + 1, l)Qvx(k + 1, l), (22)

∆V v
2 (k, l) ≤ gT (k + 1, l)P vg(k + 1, l) +




−τ2−1∑

−τ2(k,l)

+

−τ2(k,l)−1∑

τ=−τ2


 gT (k + 1, l+ τ)P vg(k + 1, l + τ), (23)

∆V v
3 (k, l) = τ̃2g

T (k + 1, l)Rvg(k + 1, l)−




−τ2−1∑

d=−τ2(k,l)

+

−τ2(k,l)−1∑

d=−τ2


 gT (k + 1, l+ d)Rvg(k + 1, l+ d). (24)

[
xT (k − τ1, l + 1)J11 + xT (k − τ1(k, l), l + 1)J12

]
[
x(k − τ1, l+ 1)− x(k − τ1(k, l), l + 1)−

−τ1−1∑

d=−τ1(k,l)

f(k + d, l + 1)

]
= 0,

[
xT (k − τ1(k, l), l + 1)L11 + xT (k − τ1, l + 1)L12

]
[
x(k − τ1(k, l), l + 1)− x(k − τ1, l + 1)−

−τ1(k,l)−1∑

d=−τ1

f(k + d, l + 1)

]
= 0,

[
xT (k + 1, l− τ2)J21 + xT (k + 1, l− τ2(k, l))J22

]
[
x(k + 1, l− τ2)− x(k + 1, l− τ2(k, l))−

−τ2−1∑

d=−τ2(k,l)

g(k + 1, l + d)

]
= 0,

[
xT (k + 1, l− τ2(k, l))L21 + xT (k + 1, l − τ2)L22

]
[
x(k + 1, l− τ2(k, l))− x(k + 1, l− τ2)−

−τ2(k,l)−1∑

d=−τ2

g(k + 1, l+ d)

]
= 0.

(25)

Ih(k, l) ≤ E

{(
xT (k + 1, l+ 1)Qhx(k + 1, l+ 1)− xT (k, l + 1)Qhx(k, l + 1) + fT (k, l + 1)R̂h

1f(k, l + 1)

+2φT J̄1I1φ+ 2φT L̄1I2φ+ τ̃1 φ
T

(
J̄1

(
R̂h

2

)
−1

J̄T
1 + L̄1

(
R̂h

2

)
−1

L̄T
1

)
φ

)∣∣∣∣∣~(k, l)
}
, (26)

Iv(k, l) ≤ E

{(
xT (k + 1, l+ 1)Qvx(k + 1, l+ 1)− xT (k + 1, l)Qvx(k + 1, l) + gT (k + 1, l)R̂v

1g(k + 1, l)

+2ϕT J̄2I1ϕ+ 2ϕT L̄2I2ϕ+ τ̃2 ϕ
T

(
J̄2

(
R̂v

2

)
−1

J̄T
2 + L̄2

(
R̂v

2

)
−1

L̄T
2 ϕ

) )∣∣∣∣∣~(k, l)
}
. (27)
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+τ̃1φ
T
(
J̄1(R̂

h
2 )

−1J̄T
1 + L̄1(R̂

h
2 )

−1L̄T
1

)
φ

+τ̃2ϕ
T
(
J̄2(R̂

v
2)

−1J̄T
2 + L̄2(R̂

v
2)

−1L̄T
2

)
ϕ

+ ̥3
íj́ḿìj̀m̀

T
(k, l)R̂v

1 ̥3
áb́ćàb̀c̀

(k, l) + i(k, l)
)∣∣∣∣~(k, l)

}
, (28)

where i(k, l) = −xT (k, l + 1)Qhx(k, l + 1) − xT (k +

1, l)Qvx(k + 1, l) + 2φT
(
J̄1I1 + L̄1I2

)
φ + 2ϕT

(
J̄2I1 +

L̄2I2

)
ϕ, ̥2

íj́ḿìj̀m̀

(k, l) = ̥1
íj́ḿìj̀m̀

(k, l)− x(k, l + 1),

̥1
íj́ḿìj̀m̀

(k, l) =
(
A1́i + αB1́iKj́Cḿ

)
x(k, l + 1)

+
(
A2̀i + αB2̀iKj̀Cm̀

)
x(k + 1, l)

+D1́ix(k − τ1(k, l), l + 1)

+D2̀ix(k + 1, l− τ2(k, l))

+(η(k, l + 1)− α)B1́iKj́Cḿx(k, l + 1)

+(η(k + 1, l)− α)B2̀iKj̀Cm̀x(k + 1, l) ,

̥3
íj́ḿìj̀m̀

(k, l) = ̥1
íj́ḿìj̀m̀

(k, l)− x(k + 1, l) ,

and ̥i

áb́ćàb̀c̀

(k, l) (i=1,2,3) have the similar representations as

̥1
íj́ḿìj̀m̀

(k, l) (i=1,2,3) by just substitutinǵi, j́, ḿ, ì, j̀ andm̀

with á, b́, ć, à, b̀ and c̀, respectively.
Subsequently, it follows from Lemma 1 that

I(k, l) ≤
r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀E

{ (
i(k, l) + τ̃1φ

T
(
J̄1(R̂

h
2 )

−1J̄T
1

+L̄1(R̂
h
2 )

−1L̄T
1

)
φ +τ̃2ϕ

T
(
J̄2(R̂

v
2)

−1J̄T
2 + L̄2(R̂

v
2)

−1L̄T
2

)
ϕ

+ᾱ
[
B1́iKj́Cḿx(k, l + 1)

]T
Q̃
[
B1́iKj́Cḿx(k, l + 1)

]

+ᾱ
[
B2̀iKj̀Cm̀x(k + 1, l)

]T
Q̃
[
B2̀iKj̀Cm̀x(k + 1, l)

]

+ ˜̥ 2
íj́ḿìj̀m̀

T
(k, l) R̂h

1
˜̥ 2

íj́ḿìj̀m̀

(k, l) + ˜̥ 3
íj́ḿìj̀m̀

T
(k, l)R̂v

1

× ˜̥ 3
íj́ḿìj̀m̀

(k, l) + ˜̥1
íj́ḿìj̀m̀

T
(k, l)Q̂ ˜̥1

íj́ḿìj̀m̀

(k, l)

)∣∣∣∣∣~(k, l)
}
.

where the relationship (7) is utilized in the last step when
deriving the above inequality, in which

˜̥1
íj́ḿìj̀m̀

(k, l) =
(
A1́i + αB1́iKj́Cḿ

)
x(k, l + 1)

+
(
A2̀i + αB2̀iKj̀Cm̀

)
x(k + 1, l)

+D1́ix(k − τ1(k, l), l + 1) +D2̀ix(k + 1, l − τ2(k, l)),

˜̥2
íj́ḿìj̀m̀

(k, l) = ˜̥ 1
íj́ḿìj̀m̀

(k, l)− x(k, l + 1) ,

˜̥3
íj́ḿìj̀m̀

(k, l) = ˜̥ 1
íj́ḿìj̀m̀

(k, l)− x(k + 1, l) .

Defining ζ̄(k, l) = [xT (k, l+1) xT (k+1, l) xT (k−τ1, l+
1) xT (k + 1, l − τ2) xT (k − τ1(k, l), l + 1) xT (k + 1, l −

τ2(k, l)) xT (k − τ1, l + 1) xT (k + 1, l − τ2)]
T , it can be

observed from (29) that

I(k, l)

≤ λmax

(
Ξ̃
) r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀E

{∥∥x̄(k, l)
∥∥2
∣∣∣~(k, l)

}
(29)

whereΞ̃ = Λ+ΞT
2 R2

−1I−1Ξ2+ΞT
3 R2

−1I−1Ξ3+ᾱΞ
T
4 Q̃Ξ4+

ᾱΞT
5 Q̃Ξ5 + ΞT

67R1Ξ67 + ΞT
8 Q̂Ξ8, x̄(k, l) = [xT (k, l +

1) xT (k + 1, l)]T and λmax

(
Ξ̃
)

is the maximal eigenvalue

of Ξ̃. It should be noted that the Schur Complement Lemma
has been utilized to get̃Ξ < 0 from the inequality condition
Ξ < 0 in (15).

For any integerM > 1 and N > 1, summing up both
sides of the inequality (29) fork and l varying from 0 to,
respectively,M andN , we obtain

N∑

l=0

M∑

k=0

I(k, l) ≤ λmax

(
Ξ̃
) N∑

l=0

M∑

k=0

r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́h́ḿh̀ìh̀j̀ h̀m̀

×E

{∥∥x̄(k, l)
∥∥2
∣∣∣~(k, l)

}
, (30)

which immediately infers the following inequality by further
considering the nonnegativeness of the energy-like functional
V (k, l):

N∑

l=0

M∑

k=0

r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀E

{∥∥x̄(k, l)
∥∥2
∣∣∣~(k, l)

}
≤

−1

λmax

(
Ξ̃
)
{

N∑

l=0

E
{(
V h
1 (0, l + 1) + V h

2 (0, l+ 1)

+V h
3 (0, l + 1)

) ∣∣∣~(k, l)
}
+

M∑

k=0

E {(V v
1 (k + 1, 0)

+V v
2 (k + 1, 0) + V v

3 (k + 1, 0))
∣∣∣~(k, l)

}}
.

(31)

Taking the mathematical expectation on both sides of (31)
and further considering the finite initial boundary condition
(2), we conclude that

N∑

l=0

M∑

k=0

r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀h̀m̀E

{∥∥x̄(k, l)
∥∥2
}
<∞, (32)

which implies that lim
k+l→∞

E

{∥∥x(k, l)
∥∥2
}
= 0. According to

Definition 1, it is concluded that the closed-loop 2-D fuzzy
system (10) is globally asymptotically stable in the mean-
square sense. The proof is complete.

Remark 2. As is well known, delay-independent condition will
inevitably bring conservativeness, especially when the delay
is very large. Here, we choose a delay-dependent Lyapunov
functional associated with both the lower and the upper
bound of the time-varying delayτi(k, l) (i = 1, 2), which
will undoubtedly lead to less conservativeness. Moreover,
the matrix inequality constraint (15) derived by introducing
the free-weighting matrix method is actually a delay-range-
dependent stability criterion, which has proven to be an
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effective approach in stability analysis of time-delay systems,
see e.g. [35].

B. H∞ performance analysis for the 2-D fuzzy system with
missing measurements

In Theorem 1, a general condition has been derived to
guarantee the globally asymptotic stability of the closed-
loop 2-D fuzzy system (10). Based upon the above stability
analysis, we now deal with the capacity of disturbance at-
tenuation and rejection as well as the tolerance level to the
missing measurements with the designed 2-D controller (8).
The sufficient condition obtained in the following theorem
is to make sure that the fuzzy system (10) is asymptotically
stable with a prescribedH∞ performance index for non-zero
exogenous disturbances and possible missing measurements
under the zero-initial condition.

Theorem 2. The closed-loop 2-D fuzzy system (10) with the
designed controller structure (8) is globally asymptotically
stable with disturbance attenuation levelγ if there exist
matricesQh > 0, Qv > 0, P h > 0, P v > 0, Rh > 0,
Rv > 0, Jkl, Lkl (k, l = 1, 2) andKj (j ∈ S) such that the
matrix inequality (14) and the matrix inequalities (33) hold,

Ω =

[
Λ̄ ∗
Ω1 Ω2

]
< 0, (33)

where í, j́, ḿ, ì, j̀, m̀ ∈ S, Ω1 =[
ΩT

2 ΩT
3 ΩT

4 ΩT
5 ΩT

67 ΩT
8 ΩT

910

]T
, Ω2 =

diag{−IR2, −IR2, −ᾱ
−1Q̃−1, −ᾱ−1Q̃−1, −R−1

1 , −Q̂−1,

−I2nz
}, Ω2 = IJT ,

Ω4 =
[
Ξ4 B1́iKj́Hḿ 0

]
, Ω5 =

[
Ξ5 0 B2̀iKj̀Hm̀

]
,

Ω6 =
[
Ξ6 Ω6,9 Ω6,10

]
, Ω7 =

[
Ξ7 Ω6,9 Ω6,10

]
,

Ω67 =
[
ΩT

6 ΩT
7

]T
, Ω8 =

[
Ξ8 Ω6,9 Ω6,10

]
,

Ω9 =
[
Gí 0 0 0 0 0 0 0 Lí 0

]
,

Ω10 =
[
0 Gì 0 0 0 0 0 0 0 Lì

]
,

Ω910 =
[
ΩT

9 ΩT
10

]T
, Ω6,9 = αB1́iKj́Hḿ + E1́i,

Ω6,10 = αB2̀iKj̀Hm̀ + E2̀i, J =

[
JΞ

02nω×2nω

]
,

L =

[
LΞ

02nω×2nω

]
, Λ̄ =

[
Λ ∗
0 −γ2I2nω

]
, Ω3 = ILT ,

and other symbols are the same as defined in Theorem 1.

Proof: First of all, let us recall the relationship exposed
in (30). In view of the zero initial condition, one can readily
know

N∑

l=0

M∑

k=0

I(k, l) ≥ 0. (34)

Now, define the following index function

J =

N∑

l=0

M∑

k=0

{
I(k, l) + E

{(
z̃T (k, l)z̃(k, l)

−γ2ω̃T (k, l)ω̃(k, l)
)∣∣ ~(k, l)

}}
. (35)

Substitutingz̃(·, ·) and ω̃(·, ·) into the equality (35) and using
Lemma 1, we obtain

J ≤

N∑

l=0

M∑

k=0

{
I(k, l) +

r∑

í,̀i=1

h́íh̀ìE
{[

− γ2ωT (k, l+ 1)

×ω(k, l+ 1)− γ2ωT (k + 1, l)ω(k + 1, l)

+ (Gíx(k, l + 1) + Líω(k, l + 1))
T
(Gíx(k, l + 1)

+Líω(k, l + 1)) + (Gìx(k + 1, l) + Lìω(k + 1, l))T

× (Gìx(k + 1, l) + Lìω(k + 1, l))
]∣∣∣~(k, l)

}}
.

Letting ζ(k, l) = [ζ̄T (k, l) ωT (k, l + 1) ωT (k + 1, l)]T ,
along the similar lines for the proof of Theorem 1, it can be
derived that

E {J } ≤

N∑

l=0

M∑

k=0

r∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀h̀m̀

×E

{
ζT (k, l)Ω̃ζ(k, l)

}
, (36)

where

Ω̃ = Λ̄ + ΩT
2 R2

−1I−1Ω2 +ΩT
3 R2

−1I−1Ω3

+ᾱΩT
4 Q̃Ω4 + ᾱΩT

5 Q̃Ω5

+ΩT
67R1Ω67 +ΩT

8 Q̂Ω8 +ΩT
9 Ω9 +ΩT

10Ω10. (37)

Taking advantage of the Schur Complement again, one knows
thatE {J } ≤ 0 can be inferred by the conditionΩ < 0 in (33),
which immediately implies that inequality (13) in Definition
(2) holds by further utilizing (34). Moreover, sinceΞ is a
principal submatrix ofΩ, Ξ < 0 can also be inferred byΩ < 0
in the inequalities(33). To this end, it follows from Theorem 1
that the closed-loop 2-D system (10) is globally asymptotically
stable in the mean-square sense. The proof is now complete.

C. H∞ fuzzy controller Design for the 2-D system with
missing measurements

In this subsection, we are in the position to seek the
parameters of the concerned static output feedback controllers
for the discussed 2-D T-S fuzzy system (10). By the aid of
Matlab tool box, gain matrices in (8) can be readily obtained
by solving the LMIs in the following theorem.

Theorem 3. For the closed-loop system (10) with missing
measurements (6), the 2-D controller (8) is a globally asymp-
totically stableH∞ fuzzy controller if there exist matrices
Q

h > 0, Q
v > 0, P

h > 0, P
v > 0, R

h > 0, R
v > 0,

Qh > 0, Qv > 0, P h > 0, P v > 0, Rh > 0, Rv > 0, Jkl,
Lkl (k, l = 1, 2) andKj (j ∈ S) such that the linear matrix
inequality (14) and the inequalities/equalities (38)-(40) hold,

Q
hQh = I, P

hP h = I, R
hRh = I, (38)

QvQv = I, PvP v = I, RvRv = I, (39)[
Λ̄ ∗
Γ1 Γ2

]
< 0, (40)
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where í, j́, ḿ, ì, j̀, m̀ ∈ S, Γ1 =
[
ΩT

2 ΩT
3 (16 ⊗ Ω4)

T

(16 ⊗ Ω5)
T ΩT

67 ΩT
67 (12 ⊗ Ω8)

T ΩT
910

]T
, Γ2 = diag{

−IR2, −IR2, −ᾱ−1Q̃, −ᾱ−1Q̃, −P, −RI−1, −Q,

−I2nz
}, 16 = [1 1 1 1 1 1]T , Q̃ = diag{Q, P, RI−1},

Q = diag{Qh, Q
v}, P = diag{Ph, P

v}, 12 = [1 1]
T
,

R = diag{Rh, R
v}.

Proof: Rewrite Ω̃ in (37) as follows

Ω̂ = Λ̄ + ΩT
2 R2

−1I−1Ω2 +ΩT
3 R2

−1I−1Ω3

+ ᾱ (16 ⊗ Ω4)
T diag

{
Qh, Qv, P h, P v, τ̃1R

h, τ̃2R
v
}

× (16 ⊗ Ω4) + ᾱ (16 ⊗ Ω5)
T
diag

{
Qh, Qv, P h, P v,

τ̃1R
h, τ̃2R

v
}
(16 ⊗ Ω5) + ΩT

67diag
{
P h, P v

}
Ω67

+ΩT
67I diag

{
Rh, Rv

}
Ω67 + (12 ⊗ Ω8)

T

× diag
{
Qh, Qv

}
(12 ⊗ Ω8) + ΩT

910Ω910 < 0.

Noting that equalities (38)-(39) are equivalent toQh =
(Qh)−1, Qv = (Qv)−1, Ph = (P h)−1, Pv = (P v)−1,
Rh = (Rh)−1, Rv = (Rv)−1, and by using the Schur
Complement again, it can be observed thatΩ < 0 holds if
and only if the LMIs in the inequalities (38)-(40) hold, and
the proof is then complete.

Remark 3. It is worth pointing out that there are six matrix
equality constraints in Theorem 3, and this gives rise to
considerable difficulty for numerical computation. Fortunately,
the cone complementarity linearization (CCL) algorithm isca-
pable of resolving this problem tactically. The CCL algorithm
has been well developed and applied to solve non-strict linear
matrix inequalities, see e.g. [8], [10], [36]. Similar to the
approaches used in [9], [14], [37], the non-convex feasibility
problem in Theorem 3 can be converted to the following
nonlinear minimization problem

min tr
(
Q

hQh + Q
vQv + P

hP h

+ P
vP v + R

hRh + R
vRv

)

s.t.





[
Qh I

I Qh

]
≥ 0,

[
Ph I

I P h

]
≥ 0,

[
Rh I

I Rh

]
≥ 0,

[
Qv I

I Qv

]
≥ 0,

[
Pv I

I P v

]
≥ 0,

[
Rv I

I Rv

]
≥ 0,

(14) and (40).

According to the idea of CCL algorithm, we know that the
conditions in Theorem 3 are satisfied whenmin tr(QhQh +
QvQv +PhP h + PvP v + RhRh + RhRv) = 6nx (named
Cmin). For more discussions on the nonlinear minimization
problem, we refer the readers to [8], [9], [14], [37] and
references listed therein. It can be seen that the LMIs (40)
with the equality constraints (38)-(39) have been successfully
transformed into a set of strict LMIs by the adopted CCL
procedure, where a minimization problem with extra LMI con-
straints is induced. Fortunately, the newly formed optimization
problem can be easily solved via mincx solver in the standard
MATLAB LMI toolbox. The resulting computation burden is
mainly dependent on the iteration precision of CCL and the
prescribed maximum iteration times, and the impact from the

dimension of the 2-D system on the computational complexity
is relatively small. Note that research on LMI optimization
is a very active area in communities of applied mathematics,
optimization and operation research, and substantial speed-
ups can be expected in the near future.

Remark 4. For theH∞ control problem for a class of 2-D T-
S fuzzy systems described by the second Fornasini-Machesini
local state-space model with time-delays and missing measure-
ments, there are four main aspects which complicate the design
of the output controller, i.e. interval time-varying delays,
randomly missing measurements, two-dimensional dynamics
evolutions and T-S model-based fuzzifications. In our main
results (Theorems 1-3), sufficient conditions, which include all
of the information on these four aspects, are established for an
output feedback controller to satisfy the prescribedH∞ perfor-
mance requirement. The corresponding solvability conditions
for the desired controller gains are expressed in terms of the
feasibility of a series of LMIs with equality constraints that
can be solved by the well-known CCL algorithm. It should
be pointed out that an energy-like functional is constructed
to derive several delay-range-dependent stability criteria and
our developed algorithm would enjoy the advantage of less
conservatism since more information about the delays is
employed.

IV. I LLUSTRATIVE EXAMPLE

In this section, an example is presented to illustrate the
feasibility of the proposed control algorithm for the discussed
fuzzy system.

Consider the 2-D discrete T-S fuzzy sys-
tem (1) with the interval time-varying delays
τ1(k, l) = τ1 + (τ1 − τ1 − 2) |cos(kl)| and
τ2(k, l) = τ2 + (τ2 − τ2 − 2) |sin(kl)|, where τ1 = 2,
τ1 = 16, τ2 = 4 andτ2 = 18. Take the number of IF-THEN
rulesr = 2 and the other parameters are given as follows (to
conserve space, here only part of the matrices are listed out):

A11 =

[
−0.6754 −0.3021
−0.1511 0.1003

]
, D11 =

[
0.0024 0.00251
0.0001 0.0145

]
,

A21 =

[
−0.2001 −0.2861
−0.1230 −0.0123

]
, D21 =

[
0.0254 −0.0040
0.0044 0.0541

]
,

B11 =

[
−0.4601 −0.3032
−0.4241 0.0205

]
, E11 =

[
−0.3244 0.210
0.1824 0.1023

]
.

Taking the probability of the missing measurements as
α = 0.42 and the disturbance attenuation level asγ = 0.28,
the feasible solution of the LMIs in Theorem3 can be
obtained readily by employing the LMI toolbox, where the
gain matrices of the desired 2-D fuzzy controller are obtained
as follows

K1 =

[
−0.0269 0.0818
0.1127 −0.3068

]
,

K2 =

[
−0.0267 0.0822
0.1121 −0.3095

]
.

(41)

Choose the fuzzy basis functions as

h1(k, l) =
sin2(k + l + x1(k, l))

2 + cos(k + l + x1(k, l))
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andh2(k, l) = 1− h1(k, l), and the exogenous disturbance as

ω(k, l) =
[
sin(kl)e

−

5√
kl

cos2(kl) cos(kl)e
−

5√
kl

sin2(kl)
]T

. The bound-
ary condition is assumed to be

ψ1(k, l) =

[
sin3(k

l
)

sin3( l
k
)

]
, ψ2(k, l) =

[
cos3(k

l
)

cos3( l
k
)

]
,

with z1 = 35 andz2 = 30.
In the simulation study, the corresponding state evolutions

of the closed-loop 2-D fuzzy system are shown in Fig. 1
and Fig. 2, respectively. Fig. 3 and Fig. 4 depict the states
of the uncontrolled system, from which we can see that the
original system is clearly unstable. As is indicated in Fig.1 and
Fig. 2, the designed fuzzy controller can stabilize the target
2-D system very well. Additionally, it is also demonstrated
that the expected performance of disturbance attenuation and
rejection has been achieved. Furthermore, in spite of a high
probability for the missing measurements, the fuzzy rule-based
controller can perform satisfactorily. However, if we ignore the
fuzzy rules and just impose the controller with the same gains
as in (41), the corresponding results in Fig. 5 and Fig. 6 imply
the invalidity of the control law. To check the sensitivity of the
design parameters, we intentionally adjust the initial conditions
and the exogenous disturbance, and the results have shown
that the controlled system can also be stabilized well by the
proposed fuzzy controller.

V. CONCLUSIONS

In this paper, the static output feedback control problem has
been studied for a class of 2-D fuzzy system with bounded
disturbances. The system model contains time-varying delays
in both horizontal- and the vertical directions. Considering
the realistic situation of sensors and complicated transmission
condition, a mathematic model reflecting the practical mea-
surement outputs has been proposed to depict the phenomena
of missing measurements. By constructing an energy-like
quadratic functional, a set of delay-range-dependent criteria
in the form of matrix inequalities has been derived to make
the 2-D fuzzy system asymptotically stable in the mean-
square sense. With the help of the CCL algorithm, parameters
of the desired fuzzy controller have been obtained readily.
Finally, the stabilization of the discussed closed-loop system
can be realized by the IF-THEN rules based fuzzy controller.
The feasibility of the suggested design method has been
checked by the simulation results. It should be pointed out
that the main results in this paper can be extended to the 2-D
networked systems. Our most promising direction for future
research concerns the estimation problem for 2-D networked
systems with a variety of incomplete measurements such as
sensor quantization, sensor saturation and fading channels
[5], [6]. Moreover, due to the superiority of the piecewise
Lyapunov function in terms of reducing conservativeness, see
e.g. [27], we will discuss the performance tracking control
of complicated networked systems based on the piecewise
Lyapunov functions in the future.
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