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Composite Control of Linear Quadratic Games
in Delta Domain with Disturbance Observers

Yuan Yuan, Lei Guo*, and Zidong Wang

Abstract

In this paper, the disturbance-observer-based composite control problem is investigated for a class of delta domain
linear quadratic game with both matched and unmatched disturbances. In the presence of the disturbances, the ϵ-
Nash Equilibrium (ϵ-NE) is proposed to describe the outcome of the game. We aim to develop a composite control
strategy integrating the disturbance-observer-based control and the feedback Nash strategies such that the matched
disturbance is compensated and the individual cost function of each player is optimized. Sufficient conditions are
given to ensure the existence of both the desired disturbance observer and the feedback Nash strategies in the delta
domain, and then the explicit expressions of the observer gain and Nash strategies are provided. An upper bound
for the ϵ-NE is given analytically which demonstrates the robustness of the Nash equilibrium. Finally, a simulation
example on the two-area load frequency control problem is provided to illustrate the effectiveness of the proposed
design procedure.

Index Terms

Linear quadratic (LQ) game, delta operator, disturbance observer, ϵ-Nash Equilibrium (ϵ-NE)

I. INTRODUCTION

It is well known that the game theory is arguably one of the most active research areas in operation research and
control, and many different types of game theoretic methods have been developed in the literature, see e.g. [1]–[8]
and the references therein. Among various types of games, the so-called linear quadratic (LQ) difference/differential
games have gained particular attention since they are powerful in characterizing cooperation and confliction among
different decision makers in a dynamic environment. On the other hand, the sampling rate of industrial systems is
usually high due mainly to the rapid development of the sensing techniques, and the sampled-data issue becomes
a major concern in the design of control systems. The delta operator theory is recognized as an effective tool in
dealing with sampling issues in the sense that 1) it can overcome numerical illness resulting from fast sampling
discrete-time system described by the z-operator; and 2) it can unify the analysis results in both continuous- and
discrete-time settings [9]. To be more specific, it is essential to formulate the delta domain analogue of the traditional
discrete system if the sampling rate is high. Owing to its theoretical significance and practical importance, the delta
operator approach has been extensively exploited in studying the filtering and control problems, see e.g. [9]–[11].
Comparing with the vast literature with respect to the control of delta operator systems with a single decision
maker, the corresponding results for control issue of dynamic games in the delta domain have been very few due
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probably to the technical difficulties, see [10]. It should be mentioned that the control of delta domain dynamic
games requires the utilization of delta domain Riccati equations, which makes it different from most of the existing
work on delta operator within the framework of linear matrix inequality (LMI), see e.g. [9], [12], [13].

Virtually almost all real-time control systems operate in the presence of certain types of disturbances due to a
variety of reasons such as load variations and friction in electrical and mechanical systems, measurement noise, errors
caused by actuators and sensors, network fluctuations and environmental disturbance, see e.g. [14]–[20]. In recent
years, systems with simultaneous multi-source disturbances have stirred considerable research attention because
of its practical significance, see e.g. [21]–[23]. Among various anti-disturbance control methods, the disturbance-
observer-based control is capable of achieving fast dynamic response when dealing with disturbances since it
provides a feedforward compensation patch directly counteracting the disturbance [24]. In most existing literature
concerning the multi-player dynamic game, however, it has been implicitly assumed that no disturbance exists or
all the disturbances can be fully estimated and compensated, which is impractical in most cases. For systems with
immeasurable and unpredictable disturbances, pure Nash Equilibrium (NE) cannot be used as the final outcome
of the game [25], [26] since it will also be affected by such disturbances. Very recently, the continuous LQ game
affected by immeasurable disturbances has been considered in [27] and [28], where the adaptation and sliding mode
mechanisms have been employed for the compensation. Unfortunately, to the best of the author’s knowledge, the
composite control problem of LQ game using disturbance observer technique has not been adequately investigated,
not to mention the case where the system is in the discrete or delta domain setting. It is, therefore, the purpose of
this paper to shorten such a gap.

In this paper, we aim to investigate the composite control problem of disturbance-observer-based control and LQ
games in the delta domain. Note that the underlying dynamic model of the game is quite comprehensive to cover
both matched and unmatched disturbances, thereby reflecting the reality closely. The problem addressed represents
the first of few attempts to address the anti-disturbance control of delta domain LQ games with disturbances. The
technical challenge lies in how to define the LQ games in the delta domain and how to describe the influences of
disturbances on NE. To be more specific, the contributions of this paper are mainly threefold. (1) The composite
control for delta domain LQ game is proposed, which consists of disturbance-observer-based control and feedback
Nash strategies. (2) The strategies for the composite control are developed such that the matched disturbance
is compensated and individual cost function of each player is optimized. (3) The ϵ-NE is proposed to describe
the dynamic coupling of the disturbance observer and LQ game, and furthermore, the epsilon level is estimated
analytically.

The rest of the paper is organised as follows. Section II provides the problem formulation and some basic
assumptions made in this paper. In Section III, the delta domain conditions are provided to design the disturbance
observer and develop the feedback Nash strategies for LQ games. The estimation for epsilon-level of the ϵ-NE
is presented in IV. In Section V, a simulation example is given to demonstrate the effectiveness of the proposed
approach. The conclusion is drawn in Section VI.

Notation: Some standard notations are used throughout this paper. For a matrix M , MT denotes its transpose.
M > 0 (respectively, M < 0) means that M is positive definite (respectively, negative definite). M ≥ 0 (respectively,
M ≤ 0) means that M is a non-negative (respectively, non-positive definite) matrix. λmax{M} represents the largest
eignvalue of the matrix M . The element in the ith row and jth column of matrix M would be denoted as Mij .
{Mi}Si=1 denotes the set of matrices from M1 to MS . Rn denotes the n-dimensional Euclidean space. For a vector

v(k), its Euclidean norm is denoted as ∥v(k)∥ :=
√

vT (k)v(k) and ∥v(k)∥2 :=
√∑K

k=1 ∥v(k)∥
2 < ∞. l2[0,∞)

is the space of square summable vectors. Matrices, if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.
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II. PROBLEM FORMULATION

The aim of this paper is to design the disturbance observer and develop the feedback Nash strategy for the delta
domain LQ games with disturbances. The composite controller using the estimation provided by the disturbance
observer can compensate for the matched disturbance and optimize the individual cost function of each player. In
the presence of the unmatched disturbance and estimation error of the matched disturbance, the ϵ-NE is proposed
to characterize the deviation from the pure NE.

A. Delta Operator System Model with Disturbance

Consider the following delta domain system with matched and unmatched disturbances:

(Σ) : δx(k) = Ax(k) + B̄(ū(k) + dm(k)) +H1du(k), (1)

where x(k) ∈ Rn1 is the state vector, ū(k) =
[
ū1T (k) ū2T (k) · · · ūST (k)

]T
∈ Rm1 is the control input,

and dm(k) =
[
d1Tm (k) d2Tm (k) · · · dSTm (k)

]T
∈ Rm1 is the matched disturbance, and du(k) ∈ Rp1 is the

unmatched disturbance satisfying ∥du(k)∥2 < β1 < ∞. As can be seen later, the inclusion of the disturbances
will bring a deviation to NE and additional difficulty in the analysis. The matrix B̄ can be partitioned as B̄ =[
B1 B2 · · · BS

]
. A, B̄ and H1 in system (Σ) are all constant matrices with appropriate dimensions. As

discussed in [15], [31], [32], we assume that the matched disturbance dm(k) can be described by an exogenous
system with uncertainty as follows.

Assumption 1: The disturbance dm(k) can be formulated by the following exogenous system:{
δw(k) = Ww(k) +H2ϕ(k),

dm(k) = V w(k),
(2)

where wk ∈ Rq1 is the internal state vector of the exogenous system, W , H2 and V are known matrices with
appropriate dimensions, and ϕ(k) is the additional bounded disturbance which belongs to l2[0,∞).

Remark 1: As in [9], the delta operator is defined as follows:

δx(k) =

{
dx(t)/dt, Ts = 0,
x(k+1)−x(k)

Ts
Ts ̸= 0 .

(3)

System (Σ) can be obtained from the following continuous model

ẋ(t) = Asx(t) + B̄sū(t) + B̄sdm(t) +Hsdu(t), (4)

where As, B̄s and Hs are matrices with appropriate dimensions in the continuous domain. It follows from [12] that
the matrices in (1) can be obtained by A = eAsTs−I

Ts
, B̄ = 1

Ts

∫ Ts

0 eAs(Ts−τ)B̄sdτ , and H1 =
1
Ts

∫ Ts

0 eAs(Ts−τ)Hsdτ .
Remark 2: The matched disturbances are defined as the disturbances existing in the control input channel, while

the unmatched disturbances refer to disturbances which do not satisfy the ‘matching condition’ [33]. For instance,
in [34], the lumped disturbances in magnetic leviation suspension system do not satisfy the ‘matching’ condition
and can only be regarded as the unmatched disturbance. In [35], the parameter uncertainties which are seen as the
unmatched disturbances do not enter the permanent magnet synchronous motor system via the control channel. It
should be pointed out that, as we shall see subsequently, the proposed disturbance-observer-based composite control
scheme could only compensate the unwanted impact of the matched disturbance. The influence of the unmatched
disturbance will be quantified via the estimation of the upper bound of the ϵ-level.
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B. Delta Domain Disturbance Observer

In this section, we design the following disturbance observer to estimate the matched disturbance dm(k)
δv(k) = (W + LB̄V )ŵ(k) + L(Ax(k) + B̄u(k)),

ŵ(k) = v(k)− Lx(k),

d̂m(k) = V ŵ(k),

(5)

where v(k) ∈ Rm2 is the state vector of the disturbance observer, ŵ(k) ∈ Rm2 is the estimation of w(k), d̂m(k) ∈
Rm1 is the estimation of dm(k), and L ∈ Rm2×n1 is the disturbance observer gain to be designed. Letting the
estimation error be

ew(k) := w(k)− ŵ(k), (6)

it follows from (1), (2), (5) and (6) that

δew(k) = (W + LB̄V )ew(k) +H2ϕ(k) + LH1du(k). (7)

Next, system (7) can be rewritten in a compact form as follows:

δew(k) = G0ew(k) +Hd(k), (8)

where G0 = W +LB̄V , H =
[
H2 LH1

]
, and d(k) =

[
ϕT (k) dTu (k)

]T
. In the following, we introduce the

definition of the robust stability of the error dynamics system (8).
Definition 1: For a given γ > 0, the error dynamics (8) is said to satisfy the H∞ performance if the following

inequality holds:

J =
∑∞

k=0
{eTw(k)ew(k)− γ2dT (k)d(k)} < 0, (9)

under the zero initial condition.

C. Delta Domain Noncooperative Game

The design objective for system (Σ) is to develop a composite controller which can counteract the matched
disturbance and minimize the individual cost function for each player. In this paper, we propose the following
disturbance-observer-based composite control strategy

ū(k) = −d̂m + u(k), (10)

where d̂m is the feedforward compensation term, and u(k) = [u1T (k), u2T (k), . . . , uST (k)]T is the feedback Nash
strategy to be determined later. To facilitate understanding, we provide an example of the two-player LQ game with
composite control strategy as shown in Fig. 1. From Fig. 1, we can see that the feedforward term compensates the
matched disturbance based on the estimation provided by the disturbance observer. Meanwhile, the feedback loop
of the composite control optimizes the objective of each player strategically and independently without any central
coordination, which makes it a noncooperative game. Substituting ū(k) and (6) into system (Σ) yields

(Σe) : δx(k)=Ax(k) + B̄u(k) + B̄V ew(k)+H1du(k). (11)

The system (Σe) is said to be the nominal system (Σn) if ew(k) ≡ 0 and du(k) ≡ 0. The associated cost function
of system (Σn) is

J i
K(ui, u−i) = xT (K)QK

δ x(K) +
∑K−1

k=0

{
xT (k)Qi

δx(k) +
∑S

j=1
ujT (k)Rij

δ u
j(k)

}
, k ∈ K, i ∈ S (12)
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Fig. 1. The structure of the two-player LQ games with the proposed composite strategy.

where K := {1, 2, . . . ,K} is the set of time indexes and S := {1, 2, . . . , S} is the set of players. As in [5], we
assume that QK

δ > 0, Qi
δ > 0 and Rij

δ > 0 for all i, j ∈ S. Let u−i denote the collection of actions of all
players except player i, i.e., u−i := {u1, , . . . , ui−1, ui+1, . . . , uS}. In system (Σn), the pure NE can be employed
to describe the final outcome of the noncooperative game, which is J i∗

K := J i
K(ui∗, u−i∗) ≤ J i

K(ui, u−i∗) [?], [36].
However, it should be pointed out that in system (Σe), there exist estimation error ew(k) and unmatched disturbance
du(k), which can lead to a deviation from the pure NE. To deal with system (Σe), we are now in a position to
introduce the concept of ϵ-NE as follows:

Ĵ i∗
K := Ĵ i

K(ui∗, u−i∗) ≤ Ĵ i
K(ui, u−i∗) + ϵiK , i = 1, 2, . . . , S, (13)

where Ĵ i
K describes the cost function with the same structure as J i

K but contaminated with perturbations ew(k) and
du(k), and the scalar ϵiK ≥ 0 is a parameter characterizing the deviation from the pure NE (ϵiK ≡ 0). To proceed,
let U i

admis be a class of admissible control actions ui(k), which contains all non-stationary feedback controllers
satisfying

∥∥ui(k)∥∥ ≤ δ̄i.
In this paper, our main objective is to design the composite controller (10) for system (11) such that, for matched

and unmatched disturbances, the ϵ-NE is obtained and the epsilon level can be estimated analytically. In other
words, we aim to design a composite controller such that the following design objectives O1), O2) and O3) are
achieved simultaneously.

O1) Design the disturbance observer gain L such that the error dynamics (8) is asymptotically stable while
satisfying the H∞ performance.

O2) Design the feedback Nash strategy u(k) for system Σn such that the pure NE can be obtained, i.e.
J i
K(ui∗, u−i∗) ≤ J i

K(ui, u−i∗).
O3) With the proposed composite control strategy (10), estimate an upper bound for the scalar ϵiK such that

(13) holds with ui(k) ∈ U i
admis.

Remark 3: For the purpose of describing the situation where central coordination is infeasible, the NE has been
used as the design objective instead of the social optimal solution. It should be noticed that performance obtained
by NE solution cannot be better than that by the social optimal solution. However, while dealing with the large
scaled systems, it is more practical to use NE as the control performance index since it is often the case that each
controller/decision maker only optimizes its own cost function in a noncooperative setting. As such, the NE has
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been used in a number of control problems, such as the coordinated control problem of multi-agent system [29],
the power control problem [30], and the control problem of the heating, ventilation and air conditioning system
[6].

III. DISTURBANCE-OBSERVER-BASED CONTROLLER DESIGN

In this section, the delta domain conditions are provided to design the disturbance observer gain and the feedback
Nash strategies, respectively.

To proceed, we introduce the following lemmas which will be used in the proofs of our main results.
Lemma 1: [9] For any x(k) and y(k), the following property of delta operator holds

δ(x(k)y(k)) = y(k)δx(k) + x(k)δy(k) + Tsδx(k)δy(k),

where Ts is the sampling interval.
Lemma 2: [28] Let x, y be any n1-dimensional real vectors, and let Π be an n1 × n1 symmetric positive

semi-definite matrix. Then, we have xT y + yTx ≤ xTΠx+ yTΠ−1y.

A. Disturbance Observer Design

In the following theorem, a sufficient condition is given to design the disturbance observer gain in terms of the
LMI method.

Theorem 1: For given scalars γ > 0 and Ts > 0, assume that there exist the matrix P > 0 and matrix Γ satisfying
I − 1

Ts
P 0 0 TsW

TP + TsV
T B̄TΓT + P

0 −γ2I 0 TsH
T
2 P

0 0 −γ2I TsH
T
1 Γ

T

TsPW + TsΓB̄V + P TsPH2 TsΓH1 −TsP

 < 0, (14)

then the error system (8) is robustly stable. Moreover, the disturbance observer gain is given by L = P−1Γ.
Proof: Let us construct the Lyapunov function as V (ew(k)) = eTw(k)Pew(k). For ew(0) = 0, it follows from

Lemma 1 that

J ≤
∑∞

k=0
{eTw(k)ew(k)− γ2dT (k)d(k) + δV (ew(k))}

=
∑∞

k=0
{eTw(k)ew(k)− γ2dT (k)d(k) + {δeTw(k)}Pew(k) + eTw(k)P{δew(k)}+ {δeTw(k)}P{δew(k)}}

=
∑∞

k=0
Φ(k),

where

Φ(k) =
∑∞

k=0
{eTw(k)ew(k)− γ2dT (k)d(k) + (G0ew(k) +Hd(k))TPew(k)

+eTw(k)P (G0ew(k) +Hd(k)) + Ts(G0ew(k) +Hd(k))TP (G0ew(k) +Hd(k))}.

The matrix Φ(k) can be further rewritten as Φ(k) =
[
eTw(k) dT (k)

]
M1

[
ew(k)

d(k)

]
, where

M1 =

[
I +GT

0 P + PG0 + TsG
T
0 PG0 HTP + TsH

TPG0

PH + TsG
T
0 PH −γ2I + TsH

TPH

]
.

It is clear that M1 < 0 implies GT
0 P + PG0 + TsG

T
0 PG0 < 0 which indicates that system (8) is asymptotically

stable [9]. On the other hand, by employing the Schur Complement, M1 < 0 implies that

M2 =

 I − 1
Ts
P 0 TsG

T
0 P + P

0 −γ2I TsH
TP

TsPG0 + P TsPH −TsP

 < 0. (15)
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Substituting the coefficient matrices of (8) into (15) and denoting Γ = PL yield

M3 =


I − 1

Ts
P 0 0 TsW

TP + TsV
T B̄TΓT + P

0 −γ2I 0 TsH
T
2 P

0 0 −γ2I TsH
T
1 Γ

T

TsPW + TsΓB̄V + P TsPH2 TsΓH1 −TsP

 < 0, (16)

It is easy to conclude that J < 0 if M3 < 0. Therefore, according to Definition 1, it can be verified that system
(8) is robustly stable. The proof is complete now.

It should be pointed out that the sampling rate is explicitly expressed in the sufficient condition in Theorem 1,
which differs from the results of the traditional discrete systems [15]. The delta domain results can be transformed
into the continuous (respectively, discrete) domain analogue if Ts → 0 (respectively, Ts = 1). As a by-product, we
point out that an optimization problem can be formulated as follows:

γ∗ := min
P>0,Γ

γ,

subject to (14). (17)

B. Strategy Design for LQ Game

In this section, the conditions are given to develop the feedback Nash strategies for system Σn with the cost
function (12). In the following theorem, the existence and uniqueness conditions of NE for delta domain game are
provided, and the explicit expression of feedback Nash strategies is given.

Theorem 2: Consider the system Σn with the cost function (12). There exists a unique feedback NE solution if
the following conditions are simultaneously satisfied:

1) The matrix Θ(k) =
(

Θij(k)
)

is invertible with

Θii(k) = Rii
δ + TsB

iTZi(k + 1)Bi,

Θij(k) = TsB
iTZi(k + 1)Bj .

2) The following inequalities hold
Rii

δ + TsB
iTZi(k + 1)Bi > 0,

and Zi(k) obeys the following backward recursion
−δZi(k) =Qi

δ +
∑S

j=1
P jT (k)Rij

δ P
j(k) + F T (k)Zi(k + 1)

+ Zi(k+1)F (k) + TsF
T (k)Zi(k + 1)F (k),

Zi(k) =Zi(k + 1)− TsδZ
i(k), Zi(K) = QK

δ

(18)

and F (k) = A −
∑S

j=1B
jP j(k). The controller takes the form of ui∗(k) = −P i(k)x(k) with the parameters

obeying

P̄ (k) = Θ−1(k)Ξ(k) (19)

where 
Ξii(k) = BiTZi(k + 1)(TsA+ I),

Ξij(k) = 0,

P (k) =
[
P 1T (k) P 2T (k) . . . PST (k)

]T
.

Moreover, the corresponding value of NE is J i∗
K = xT (0)Zi(0)x(0)(i ∈ S) with x(0) being the initial value.
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Proof: Let us choose the delta domain cost function as V i(x(k + 1)) = 1
2Ts

xT (k + 1)Zi(k + 1)x(k + 1). It
follows from Lemma 1 that

V i(x(k + 1)) =
1

2
δ(xT (k)Zi(k)x(k)) +

1

2Ts
xT (k)Zi(k)x(k)

=
1

2
δxT (k)Zi(k + 1)x(k) +

1

2
xT (k)Zi(k + 1)δx(k)

+
1

2
Tsδx

T (k)Zi(k + 1)δx(k) +
1

2Ts
xT (k)Zi(k + 1)x(k). (20)

By the principle of dynamic programming as in [36], we have

V i(x(k)) = min
ui(k)

{
1

2
xT (k)Qi

δx(k) +
1

2

∑S

j=1
ujT (k)Rij

δ u
j(k) + V i(x(k + 1))

}
= min

ui(k)

{
1

2
xT (k)Qi

δx(k) +
1

2
(
∑S

j=1
ujT (k)Rij

δ u
j(k)

+
1

2
(Ax(k) +

∑S

i=1
Biui(k))

T

Zi(k + 1)x(k)

+
1

2
xT (k)Zi(k + 1)(Ax(k) +

∑S

i=1
Biui(k))

+
1

2
Ts(Ax(k) +

∑S

i=1
Biui(k))TZi(k + 1)(Ax(k)

+
∑S

i=1
Biui(k)) +

1

2Ts
xT (k)Zi(k + 1)x(k)

}
. (21)

Since the second derivative of the right-hand side of (20) yields Rii
δ +TsB

iTZi(k+1)Bi > 0, it is easy to conclude
that the function V i(x(k)) is strictly convex with respect to ui(k). The minimum value can be obtained by setting
∂V i(x(k))/∂ui(k) = 0, i.e.,

0 = Rii
δ u

i(k) +BiTZi(k + 1)x(k) + TsB
iTZi(k + 1)Ax(k)

+TsB
iTZi(k + 1)

∑S

i=1
BiTui(k). (22)

Then, the optimal control strategies ui(k) = −P i(k)x(k) can be obtained by

BiTZi(k + 1)(TsA+ I) = (Rii
δ + TsB

iTZi(k + 1)Bi)P i(k) + TsB
iTZi(k + 1)

∑S

j=1,j ̸=i
BjP j(k). (23)

It follows from (23) that there exists a unique NE if Θ(k) is invertible with Θ(k)P̄ (k) = Ξ(k). Substituting
ui(k) = −P i(k)x(k) into (20) yields

0 = Qi
δ +

∑S

j=1
P jT (k)Rij

δ P
j(k) + F T (k)Zi(k + 1)

+Z(k+1)F (k) + TsF
T (k)Zi(k + 1)F (k) + δZi(k) (24)

with F (k) = A−
∑S

j=1B
jP j(k), which completes the proof of Theorem 2.

Remark 4: It is worth mentioning that the results in Theorem 2 can be readily extended to the time-varying case
where the state matrices are A(k) and Bi(k), i ∈ S, k ∈ K. Moreover, the sampling interval is explicitly reflected
in Theorem 2. If the sampling period Ts in (18) and (19) is replaced by a time-varying sampling period, the delta
domain LQ game theoretic control strategy in Theorem 2 is still applicable.

Remark 5: The delta domain results in Theorem 2 can be regarded as a unified form of the results in both
discrete and continuous domains. It is easy to transform the delta domain results in Theorem 2 to its discrete-
domain analogue by using Az = TsA + I and Bi

z = TsB
i. For such a transformation to the continuous domain,

one has 
P i(t) = lim

Ts→0
P i
δ =

{
Rii

δ

}−1
BiTZ(t) ,

lim
Ts→0

δZi = Żi.
(25)
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Substituting (25) into the backward recursion (18) yields

Qi
δ +

∑S

j=1
ZiT (t)Bi{Rjj

δ }−1
Rij

δ {R
jj
δ }−1BiTZi(t) + F̃ T (t)(k)Zi(t) + Zi(t)F̃ (t) + Żi(t)= 0, (26)

where F̃ (t) = A −
∑S

i=1B
i{Rii

δ }−1BiTZi(t). Note that (26) is consistent with the Riccati recursions in the
continuous domain [36], which verifies the fact that Theorem 2 can unify the results in both discrete and continuous
domains.

IV. ROBUSTNESS ANALYSIS OF ϵ-EQUILIBRIUM

It should be noticed that the feedback Nash gain P i(k) (i ∈ S) has been obtained for system Σn. In the presence
of ew(k) and du(k), a certain deviation from the pure NE will be caused. In this subsection, we will consider the
system Σe and provide the estimation for the epsilon level of ϵ-NE.

Firstly, let us introduce the following notations.

1) x∗(k) is the state vector for the system (Σn) if each player uses NE strategies.
2) x(k) is the state vector for the system (Σe) if each player uses NE strategies.
3) x̃(k|i) is the state vector for the system (Σn) if each player uses NE strategies except player i. Note that we

still have ui(x̃(k)) ∈ U i
admis.

4) x̆(k|i) is the state vector for the system (Σe) if each player uses NE except player i.

To facilitate further developments, set

∥ew(k)∥2 ≤ β2,

V1(k) = zT (k)S1(k)z(k), z(k) = x(k)− x∗(k),

V i
2 (k) = z̃T (k)Si

2(k)z̃(k), z̃(k) = x̃(k|i)− x̌(k|i),

S̃1 := {S̃1 − S1(k) > 0, ∀k ∈ [0,K]}, λ1 = λmax{TsV
T B̄T (S̃1 + S̃1Λ

−1
1 S̃1 + Λ3)B̄V },

λ2 = λmax{TsH
T
1 (S̃1 + S̃1Λ

−1
2 S̃1 + S̃1Λ

−1
3 S̃1)H1},

S̃i
2 := {S̃i

2 − Si
2(k) > 0, ∀k ∈ [0,K]},

κ1,i = 4TsB
iT (S̃i

2 + S̃i
2Λ̃

−1
1 S̃i

2 + Λ̃4 + Λ̃5)B
i,

λ3,i = λmax

{
TsV

T B̄T (S̃i
2 + S̃i

2Λ̃
−1
2 S̃i

2 + S̃i
2Λ̃

−1
4 Si

2 + Λ̃6)B̄V
}
,

λ4,i = λmax

{
TsH

T
1 (S̃

i
2 + S̃i

2Λ̃
−1
3 S̃i

2 + S̃i
2Λ̃

−1
5 S̃i

2 + S̃i
2Λ̃

−1
6 S̃i

2)H1

}
,

ς1 = λ1β2 + λ2β1, ς2,i = λ3,iβ2 + λ4,iβ1 + κ1,iδ̄
i2,

Q̂i
δ = Qi

δ +
∑S

j=1
P jTRij

δ P
j , Q̃i

δ = Qi
δ +

∑S

j ̸=i
P jTRij

δ P
j .

(27)

Based on the dynamics of the nominal system, we can assume that∑K

k=0
∥x∗(k)∥2 ≤ β3 < ∞,

∑K

k=0
∥x̌(k)∥2 ≤ β4 < ∞. (28)

Now, we are in the position to provide the estimation for the epsilon level of ϵ-NE.
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Theorem 3: Consider the system Σe with the cost function (12). For given NE strategies ui∗ and positive definite
matrices {Λj}3j=1, L1, L̃i

2, {Λ̃i
j}6j=1 (i ∈ S), if there exist positive definite matrices S1 and S2i such that the

following delta domain Lyapunov equations hold

−δS1(k) =TsÃ
TS1(k + 1)Ã+ ÃTS1(k + 1) + S1(k + 1)Ã

+
1

Ts

{
L1 + (TsÃ+ I)

T
Λ1(TsÃ+ I) + (TsÃ+ I)

T
Λ2(TsÃ+ I)

}
,

S1(k) =S1(k + 1)− TsδS1(k), S1(K) = 0,

−δSi
2(k) =TsÃ

iTSi
2(k + 1)Ãi + ÃiTSi

2(k + 1) + Si
2(k + 1)Ãi

+
1

Ts

{
(TsÃ

i + I)
T
(Λ̃1 + Λ̃2 + Λ̃3)(TsÃ

i + I) + Li
2

}
,

Si
2(k) =Si

2(k + 1)− TsδS
i
2(k), Si

2(K) = 0,

(29)

with Ã = A −
∑S

i=1B
iP i(k) and Ãi = A −

∑S
j ̸=iB

jP j(k), then the NE strategies in Theorem 2 provide an
ϵ-Nash equilibrium, i.e.,

Ĵ i∗
K = Ĵ i

K(ui∗, u−i∗) ≤ Ĵ i
K(ui, u−i∗) + ϵiK , (30)

where

ϵiK = λmax{Q̂i
δ}{Tsλmin{L1}−1Kς1 + λmin{L1}−1V1(0)

+2

√
β3{Tsλmin{L1}−1Kς1 + λmin{L1}−1V1(0)}}

+λmax{Q̃i
δ}{Tsλmin{Li

2}−1Kς2,i + λmin{Li
2}−1V i

2 (0)

+2

√
β4{Tsλmin{Li

2}
−1

Kς2,i + λmin{Li
2}

−1
V i
2 (0)}}+ 4λmax{Rii

δ }Kδ̄i2. (31)

Proof: According to the definition of NE, we have

J i
K(ui∗, u−i∗) ≤ J i

K(ui, u−i∗). (32)

It follows that

Ĵ i
K(ui∗, u−i∗) ≤ Ĵ i

K(ui, u−i∗) + ∆J i
K1 +∆J i

K2︸ ︷︷ ︸
ϵiK

, (33)

where ∆J i
K1 := Ĵ i

K(ui∗, u−i∗) − J i
K(ui∗, u−i∗) and ∆J i

K2 := J i
K(ui, u−i∗) − Ĵ i

K(ui, u−i∗). In the following, the
terms ∆J i

K1 and ∆J i
K2 will be estimated, respectively.

Firstly, let us estimate the term ∆J i
K1. According to the NE strategies without noise, we obtain

Ĵ i
K(ui∗, u−i∗) =

∑K

k=0
xT (k)Q̂i

δ(k)x(k), (34)

where Q̂i
δ = Qi

δ +
∑S

j=1 P
jTRij

δ P
j . When the noise exists, one has

J i
K(ui∗, u−i∗) =

∑K

k=0
x∗T (k)Q̂i

δ(k)x
∗(k). (35)

Then, the term ∆J i
K1 can be calculated as follows:

∆J i
K1 = Ĵ i

K(ui∗, u−i∗)− J i
K(ui∗, u−i∗)

=
∑K

k=0
xT (k)Q̂i

δx(k)−
∑K

k=0
x∗T (k)Q̂i

δx
∗(k)

=
∑K

k=0
(x− x∗)T Q̂i

δ(x− x∗ + 2x∗)

≤
∑K

k=0
{∥x− x∗∥2

Q̂i
δ

+ 2 ∥x− x∗∥
∥∥∥Q̂i

δx
∗
∥∥∥}
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≤ λmax{Q̂i
δ}

{∑K

k=0
{∥x− x∗∥2}+

∑K

k=0
{2 ∥x− x∗∥ ∥x∗∥}

}
≤ λmax{Q̂i

δ}

{∑K

k=0
{∥z∥2}+ 2

√∑K

k=0
∥z∥2

√∑K

k=0
∥x∗∥2

}
. (36)

It should be noticed that the Cauchy inequality is used when deriving the last inequality. According to the definition
of z(k)

δz(k) =Ãz(k) + B̄V ew(k)+H1du(k), (37)

with Ã = A−
∑S

i=1B
iP i(k), calculating the difference of V1(k) along (37) in the delta domain yields

δV1(k) =
1

Ts
{zT (k)(TsÃ+ I)TS1(k + 1)(TsÃ+ I)z(k)

+T 2
s e

T
w(k)V

T B̄TS1(k + 1)B̄V ew(k) + T 2
s d

T
u (k)H

T
1 S1(k + 1)H1du(k)

+Tsz
T (k)(TsÃ+ I)TS1(k + 1)B̄V ew(k) + Tse

T
w(k)V

T B̄TS1(k + 1)(TsÃ+ I)z(k)

+Ts z
T (k)(TsÃ+ I)TS1(k + 1)H1du(k) + Ts d

T
u (k)H

T
1 S1(k + 1)(TsÃ+ I)z(k)

+T 2
s e

T
w(k)V

T B̄TS1(k + 1)H1du(k) + T 2
s d

T
u (k)H

T
1 S1(k + 1)B̄V ew(k)

+zT (k)L1z(k)− zT (k)S1(k)z(k) } −
1

Ts
zT (k)L1z(k). (38)

It follows from Lemma 2 that

δV1(k) ≤ 1

Ts
zT (k){(TsÃ+ I)TS1(k + 1)(TsÃ+ I)− S1(k) + L1 + (TsÃ+ I)TΛ1(TsÃ+ I)

+(TsÃ+ I)TΛ2(TsÃ+ I)}z(k) + Ts{eTw(k)V T B̄TS1(k + 1)B̄V ew(k)

+dTu (k)H
T
1 S1(k + 1)H1du(k) + eTw(k)V

T B̄TS1(k + 1)Λ−1
1 S1(k + 1)B̄V ew(k)

+dTu (k)H
T
1 S1(k + 1)Λ−1

2 S1(k + 1)H1du(k) + eTw(k)V
T B̄TΛ3B̄V ew(k)

+dTu (k)H
T
1 S1(k + 1)Λ−1

3 S1(k + 1)H1du(k)} −
1

Ts
zT (k)L1z(k). (39)

Select S1(k) such that

(TsÃ+ I)TS1(k + 1)(TsÃ+ I)− S1(k) + L1

+(TsÃ+ I)TΛ1(TsÃ+ I) + (TsÃ+ I)TΛ2(TsÃ+ I) = 0. (40)

Then

δV1(k) ≤ Ts{eTw(k)V T B̄T S̃1B̄V ew(k)+dTu (k)H
T
1 S1H1du(k)

+ew(k)
TV T B̄T S̃1Λ

−1
1 S̃1B̄V ew(k) + dTu (k)H

T
1 S̃1Λ

−1
2 S̃1H1du(k)

+eTw(k)V
T B̄TΛ3B̄V ew(k)+dTu (k)H

T
1 S̃1Λ

−1
3 S̃1H1du(k)} −

1

Ts
zT (k)L1z(k)

≤ ν1(k)−
1

Ts
zT (k)L1z(k), (41)

where

ν1(k) = λ1∥ew(k)∥2 + λ2∥du(k)∥2,

λ1 = λmax{TsV
T B̄T (S̃1 + S̃1Λ

−1
1 S̃1 + Λ3)B̄V },

λ2 = λmax{TsH
T
1 (S̃1 + S̃1Λ

−1
2 S̃1 + S̃1Λ

−1
3 S̃1)H1}.

Furthermore, we have ∑K

k=0
δV1(k) ≤

∑K

k=0
ν1(k)−

1

Ts

∑∞

k=0
zT (k)L1z(k), (42)
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which leads to
1

Ts
λmin{L1}

∑K

k=0
∥z(k)∥2 ≤ 1

Ts

∑K

k=0
zT (k)L1z(k)

≤
∑K

k=0
ν1(k)− 1/TsV1(K) + 1/TsV1(0)

≤
∑K

k=0
ν1(k) + 1/TsV1(0). (43)

Then, we can conclude that
∑K

k=0 ∥z(k)∥
2 ≤ Tsλmin{L1}−1K{λ1β2 + λ2β1} + λmin{L1}−1V1(0). The upper

bound for ∆J i
K1 can then be obtained

∆J i
K1 ≤ λmax{Q̂i

δ}{Tsλmin{L1}−1Kς1 + λmin{L1}−1V1(0)

+2

√
β3{Tsλmin{L1}−1Kς1 + λmin{L1}−1V1(0)}}. (44)

Secondly, we are ready to estimate the term ∆J i
K2. The cost functions without and with noises are shown as

follows: 
J i
K(ui, u−i∗) =

∑K

k=0

{
x̃T (k)Q̃i

δx̃(k) + uiT (k)Rii
δ u

i(k)
}
,

Ĵ i
K(ui, u−i∗) =

∑K

k=0

{
x̌T (k)Q̃i

δx̌(k) + uiT (k)Rii
δ u

i(k)
}
,

(45)

where Q̃i
δ = Qi

δ +
∑S

j ̸=i P
jTRij

δ P
j . The term ∆J i

K2 can be rewritten as

∆J i
K2 =

∑K

k=0

{
{x̃(k)− x̌(k)}T Q̃i

δ{x̃(k)− x̌(k) + 2x̌(k)}
}

+
∑K

k=0

{
{ui(x̃)− ui(x̌)}TRii

δ {ui(x̃)− ui(x̌) + 2ui(x̌)}
}

≤
∑K

k=0

{
∥x̃(k)− x̌(k)∥2

Q̃i
δ
+ 2 ∥x̃(k)− x̌(k)∥

∥∥∥Q̃i
δx̌(k)

∥∥∥}
+
∑K

k=0

{∥∥ui(x̃)− ui(x̌)
∥∥2
Rii

δ

+ 2
∥∥ui(x̃)− ui(x̌)

∥∥∥∥Rii
δ u

i(x̌)
∥∥}

≤ λmax{Q̃i
δ}

{∑K

k=0
∥z̃(k)∥2 + 2

√∑K

k=0
∥z̃(k)∥2

√∑K

k=0
∥x̌∥

2
}

+λmax{Rii
δ }

{∑K

k=0

∥∥ui(x̃)− ui(x̌)
∥∥2 + 2

√∑K

k=0
∥ui(x̃)− ui(x̌)∥2

√∑K

k=0
∥ui(x̌)∥

2
}

≤ λmax{Q̃i
δ}

{∑K

k=0
∥z̃(k)∥2 + 2

√∑K

k=0
∥z̃(k)∥2

√∑K

k=0
∥x̌∥

2
}

+ 4λmax{Rii
δ }Kδ̄i2. (46)

Note that the last inequality holds from the Clarkson’s inequalities in [40] Similarly, according to the definition of
z̃(k)

δz̃(k) = Ãiz̃(k) +Biui(x̃)−Biui(x̌)+B̄V ew(k) +H1du(k) (47)

with Ãi = A−
∑S

j ̸=iB
jP j , calculating the difference of V i

2 (k) along (47) in the delta domain yields

V i
2 (k) =

1

Ts
{V i

2 (k + 1)− V i
2 (k)}

=
1

Ts
{(TsÃ

i + I)z̃(k) + TsB
iui(x̃)− TsB

iui(x̌) + TsB̄V ew(k) + TsH1du(k)}T

×Si
2(k + 1){(TsÃ

i + I)z̃(k) + TsB
iui(x̃)− TsB

iui(x̌) + TsB̄V ew(k)

+TsH1du(k)} −
1

Ts
z̃T (k)Si

2(k)z̃(k) (48)
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Again, it follows from Lemma 2 that

V i
2 (k) ≤ 1

Ts
z̃T (k){(TsÃ

i + I)TSi
2(k + 1)(TsÃ

i + I))

+(TsÃ
i + I)T (Λ̃1 + Λ̃2 + Λ̃3)(TsÃ

i + I + Li
2 − Si

2(k)}z̃(k)

+
∥∥ui(x̃)− ui(x̌)

∥∥2
κ1,i/4

+ λ3,i ∥du(k)∥2 + λ4,i ∥ew(k)∥2 −
1

Ts
z̃T (k)Li

2z̃(k)

≤ 1

Ts
z̃T (k){(TsÃ

i + I)TSi
2(k + 1)(TsÃ

i + I) + (TsÃ
i + I)T (Λ̃1 + Λ̃2 + Λ̃3)(TsÃ

i + I)

+Li
2 − Si

2(k)}z̃(k) + λ3,i ∥du(k)∥2 + λ4,i ∥ew(k)∥2 + κ1,iδ̄
i2 − 1

Ts
z̃T (k)Li

2z̃(k), (49)

where 

S̃i
2 := {S̃i

2 − Si
2(k) > 0, ∀k ∈ [0,K]},

κ1,i = 4TsB
iT (S̃i

2 + S̃i
2Λ̃

−1
1 S̃i

2 + Λ̃4 + Λ̃5)B
i,

λ3,i = λmax

{
TsV

T B̄T (S̃i
2 + S̃i

2Λ̃
−1
2 S̃i

2 + S̃i
2Λ̃

−1
4 Si

2 + Λ̃6)B̄V
}
,

λ4,i = λmax

{
TsH

T
1 (S̃

i
2 + S̃i

2Λ̃
−1
3 S̃i

2 + S̃i
2Λ̃

−1
5 S̃i

2 + S̃i
2Λ̃

−1
6 S̃i

2)H1

}
.

It is worth mentioning that we use the Clarkson’s inequalities again when deriving (49). Next, select Si
2(k) such

that

(TsÃ
i + I)TSi

2(k + 1)(TsÃ
i + I) + (TsÃ

i + I)T (Λ̃1 + Λ̃2 + Λ̃3)(TsÃ
i + I) + Li

2 − Si
2(k) = 0. (50)

Then, ∑K

k=0
δV i

2 (k) ≤
∑K

k=0
ν2(k)−

1

Ts

∑K

k=0
z̃T (k)Li

2z̃(k), (51)

where ν2 = λ3,i∥du(k)∥2 + λ4,i∥ew(k)∥2 ++κ1,iδ̄
i2. Note that (51) can be rewritten as

1

Ts
λmin{Li

2}
∑K

k=0
∥z̃(k)∥2 ≤ 1

Ts

∑K

k=0
z̃T (k)Li

2z̃(k)

≤
∑K

k=0
ν2(k)− 1/TsV

i
2 (K) + 1/TsV

i
2 (0)

≤
∑K

k=0
ν2(k) + 1/TsV

i
2 (0). (52)

Hence, it is concluded that
∑K

k=0 ∥z̃(k)∥
2 ≤ Tsλmin{Li

2}−1K{λ3,iβ2+λ4,iβ1+κ1,iδ̄
i2}+λmin{Li

2}−1V i
2 (0). Thus,

the upper bound for ∆J i
K2 can be obtained as

∆J i
K2 ≤ λmax{Q̃i

δ}{Tsλmin{Li
2}−1Kς2,i + λmin{Li

2}−1V i
2 (0)

+2

√
β4{Tsλmin{Li

2}
−1

Kς2,i + λmin{Li
2}

−1
V i
2 (0)}}+ 4λmax{Rii

δ }Kδ̄i2. (53)

Therefore, the proof of this theorem is complete.
Remark 6: According to [37], the set of riccati recursions (29) will be convergent as the time goes to infinity if

P i(k), i ∈ S remains constant over time and all eignevalues of Ã and Ãi lie within the stability boundary in the
delta-domain.

Remark 7: From Theorem 3, the following argument can easily be verified, i.e., if ew(k) = 0, du(k) = 0 and
z(0) = z̃(0) = 0, the so-called ϵ-NE will reduce to the pure NE with ϵiK ≡ 0.

Remark 8: Note that (29) yields the typical delta domain Lyapunov equation which is actually a unified form of
the discrete and continuous Lyapunov equations. For example, if we choose L1 = TsL̂1, Λ1 = TsΛ̂1 and Λ2 = TsΛ̂2,
the continuous domain Lyapunov equation in [38] can be obtained with Ts → 0

Ṡ1(t) + ÃT
t S1(t) + S1(t)Ãt +

{
L̂1 + Λ̂1 + Λ̂2

}
= 0. (54)
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On the other hand, by using Ã = (Ãz − I)/Ts and setting Ts = 1, one has the discrete Lyapunov equation as in
[38]

S1(k) = ÃT
z S1(k + 1)Ãz +

{
L1 + ÃT

z Λ1Ãz + ÃT
z Λ2Ãz

}
. (55)

Remark 9: It should be noticed that the parameters which are used to calculate the epsilon level for ϵ-NE can
all be obtained in prior or be deduced. For example, the parameter β4 can be rewritten as β4 = β3 +∆β, and ∆β

can be obtained by using similar techniques with deriving ∆J i
K2.

The proposed methods can be outlined as the following two algorithms.

Algorithm 1 The calculation of the composite control strategies
1: Set k = K, then Zi(K) = QK

δ is available
2: Calculate the matrices Θ(k). If Θ(k) is invertible and Rii

δ +TsB
iTZi(k+1)Bi > 0, then we obtain the feedback

gains P i(k) by using (19).
3: Solve the backward RDEs of (18) to get Zi(k).
4: If k ̸= 0, set k = k − 1 and go back to Step 2, else stop the algorithm
5: Solve the LMI (14) to get the gain of the disturbance observer L.
6: Substitute L into (5) and get the estimation for the matched disturbance d̂m(k)

7: Calculate the composite control strategy by using (10).

It should be noticed that, once the composite control strategies have been derived, the scalar β2 and β3 could be
obtained. Then, the calculation of the ϵ level is summarized in the following algorithm.

Algorithm 2 The calculation of the ϵ level

1: Select positive definite matrices {Λj}3j=1, L1, L̃i
2, {Λ̃i

j}6j=1 (i ∈ S)
2: Set k = K, then S1(K) = 0 and Si

2(K) = 0 are available
3: Solve the backward recursions (29) to get S1(k) and Si

2(k)

4: If S1(k) > 0, Si
2(k) > 0, then we can move to the next procedure, else jump to Step 1

5: If k ̸= 0, set k = k − 1, else stop the algorithm
6: Calculate S̃1, S̃i

2, λ1, λ2, λ3,i, λ4,i, κ1,i, ς1, ς2,i, Q̂i
δ and Q̃i

δ according to (28). The epsilon level can be obtained
by (31).

Up to now, the estimation for the upper bound of the ϵ-NE has been provided. In the following corollary, we
will present an upper bound estimation for system (Σe) with an average cost.

Corollary 1: Consider the system (Σe) with the average cost defined by J i
av,K(ui, u−i) := 1

KJ i
K(ui, u−i). If the

Nash strategies ui∗ for any K yields an ϵ-NE of the delta domain LQ game, we have

J i
av,K(ui∗, u−i∗) ≤ J i

av,K(ui, u−i∗) + ϵiav,K , (56)

with

ϵiav,K = λmax{Q̂i
δ}Tsλmin{L1}−1ς1 + λmax{Q̃i

δ}{Tsλmin{Li
2}−1ς2,i + 4λmax{Rii

δ }δ̄i2 +O(
1√
K

). (57)

Proof: The proof follows directly from Theorem 3 and is therefore omitted here for brevity.
Remark 10: Compared with the results in Theorem 2, it should be noticed that the ϵ-level in Corollary 1 is not

dependent on the initial value x(0) as K → ∞. The reason is that costs incurred in the early stages do not matter
since their contribution to the average cost per stage is reduced to zero as K → ∞ for any fixed Kk, i.e.,

lim
K→∞

1

K

∑Kk−1

k=0

{
xT (k)Qi

δx(k) +
∑S

i=1
ujT (k)Rij

δ u
j(k)

}
= 0.
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Remark 11: In most of the existing literature, it is implicitly assumed that the underlying dynamics of the LQ
game evolves in the ideal environment without disturbances. Recently, it has been pointed out in [27] and [28]
that such an assumption is impractical because that disturbances could perturb the outcome of the game. Under
the disturbances, the classic pure NE cannot be used to describe the outcome of the game anymore. Therefore, the
most distinguishing feature of our paper over the existing literature is that the impact from disturbance on the NE
has been explicitly expressed in the delta domain. By using the analytical methods in our paper, the ϵ-NE could
be found which is more practical since, in practice, all the control system are operated subjected to disturbances.

V. A NUMERICAL SIMULATION

In this section, we aim to demonstrate the validity and applicability of the proposed method. For this purpose,
we discuss the disturbance-observer-based composite control problem for a two-area interconnected power system.
Our objective is to control the load frequency control system such that the outputs are kept at the desired setting,
while maintaining robustness against load disturbances. As in [39], the basic parameters of the power system are
shown in Table I.

TABLE I
PARAMETERS OF TWO-AREA INTERCONNECTED POWER SYSTEM

Area TPi KPi TTi TGi Ri KEi KBi KSij

1 20 120 0.3 0.08 2.4 10 0.41 0.55
2 25 112.5 0.33 0.072 2.7 9 0.37 0.65

Consider the following two-area interconnected power system:

ẋ(t) = Axi(t) +
[
B1 B2

]{[
u1(t)

u2(t)

]
+∆P̃d(t)

}
+ F∆Pd(t),

where

x(t) =
[
xT1 (t) xT2 (t)

]T
, A =

[
A1 E12

E21 A2

]
,

Ai =



1
TPi

KPi

TPi

0 0 − KPi

2πTPi

∑
j ̸=iKsij

0 − 1
TTi

1
TTi

0 0

− 1
RiTGi

0 − 1
TGi

− 1
TGi

0

KEi
KBi

0 0 0
KEi

2π

∑
j ̸=iKsij

2π 0 0 0 0


,

Bi =
[
0 0 1

TGi

0 0
]T

,

Eij =


0 0 0 0

KPi

2πTPi

∑
j ̸=iKsij

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −KEi

2π

∑
j ̸=iKsij

0 0 0 0 0

 , xi(t) =


∆fi(t)

∆Pgi(t)

∆Xgi(t)

∆Ei(t)

∆δi(t)

 , i, j = 1, 2

∆Pd(t) is the vector of load disturbance, ∆P̃d(t) is the disturbance in the control channel, ∆fi(t), ∆Pgi(t),
∆Xgi(t), ∆Ei(t) and ∆δi(t) are the changes of frequency, power output, governor valve position, integral control
and rotor angle deviation, respectively. TGi

, Tti and Tpi
are the time constants of governor, turbine and power system,
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respectively. Kpi
, Ri, KEi

and KBi
are the power system gain, speed regulation coefficient, integral control gain

and frequency bias factor, respectively. Ksij is the interconnection gain between area i and j (i ̸= j).
First, let us design the composite controller with K = 100, γ = 2 and Ts = 0.05s. That is, we aim to deal

with the problems O1) and O2). The parameters of the cost function are chosen as Q100
δ = Q1

δ = Q2
δ = 1 and

R11
δ = R12

δ = R21
δ = R22

δ = 0.1. We assume that the unmatched disturbance ∆Pdi
(t) = 0 and the matched

disturbance ∆P̃di
(t) is given by

δw(k) =

[
0.8776 0.4794

−0.4794 0.8776

]
w(k) +

[
1

1

]
1

k
,

∆P̃d(t) =

[
25 0

0 25

]
w(k), w(0) =

[
0 0

]T
.

(58)

Solving the LMI condition (14) in Theorem 1 by using the LMI Toolbox, one has

L =

[
−0.1076 −0.2382 −0.0216 −41.7887 −27.3024 0.1435 −0.0100 −0.0008 −1.3946 −1.5204

0.1125 0.0010 0.0001 0.5698 0.1142 −0.1500 −0.2394 −0.0200 −55.6887 −36.3582

]
.

The initial conditions are set as ew(0) =
[
0.1 −0.1

]T
and x(0) =

[
0 0.1 0 0 0 0 0 0 0 0.5

]T
.

By using (19) in Theorem 2, we depict the state responses in Fig. 2a and Fig. 2b, respectively. It follows from
the simulation results that the disturbance-observer-based composite control method can significantly improve the
control results, which further confirms the advantage of the proposed control scheme.

Next, let us estimate an upper bound of epsilon for ϵ-NE. Set ∆P̃d(t) = 0 and ∆Pd(t) = [1/k, . . . , 1/k]T . The
other parameters are chosen as F = 0.5, Q100

δ = Q1
δ = Q2

δ = 1, R11
δ = R12

δ = R21
δ = R22

δ = 40, z(0) = z̃(0) = 0,
and L1 = L1

2 = L2
2 = Λ1 = Λ2 = Λ3 = Λ4 = Λ5 = Λ6 = I10×10. The specific values on the right-hand side of

(31) are β1 = 10, β3 = 49.1925, β4 = 28839, δ̄1 = δ̄2 = 0.005, ς2,1 = 531.9233, ς2,2 = 532.9554, ς1 = 199.8622,
λmax{Q̂1

δ} = λmax{Q̂2
δ} = λmax{Q̃1

δ} = 6.2050, λmax{Q̃2
δ} = 5.2186. It follows from (31) in Theorem 3 that

ϵ1100 = 698.7544 and ϵ2100 = 694.1752. Since the cost functions are Ĵ1∗
100 = 2.2571× 104 and Ĵ2∗

100 = 2.3054× 104,
it is not difficult to see that the obtained upper limits of a possible deviation of an ϵ-equilibrium from the cost
functions are 3.10% and 3.01%, respectively.

VI. CONCLUSION

In this paper, a novel composite control scheme has been given for a class of delta domain LQ games with
disturbances. In the presence of the disturbances, a disturbance-observer-based composite control method has been
proposed, where the disturbance has been counteracted and the individual cost function of each player has been
minimized. The ϵ-NE has been employed to characterize the dynamic coupling of the disturbance observer and
LQ games, and an upper bound for the epsilon level has been obtained. Finally, a simulation has been provided to
demonstrate the feasibility of the proposed control scheme.
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