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Abstract 

 

It is widely accepted that, for many buckling problems of plates and shells 

in the plastic range, the flow theory of plasticity either fails to predict 

buckling or significantly overestimates buckling stresses and strains, while 

the deformation theory, which fails to capture important aspects of the 

underlying physics of plastic deformation, provides results that are more 

in line with experimental findings and is therefore generally recommended 

for use in practical applications. This thesis aims to contribute further 

understanding of the reasons behind the seeming differences between 

the predictions provided by these two theories, and therefore provide 

some explanation of this so-called ‘plastic buckling paradox’.  

The study focuses on circular cylindrical shells subjected to either axial 

compression or non-proportional loading, the latter consisting of 

combined axial tensile stress and increasing external pressure. In these 

two cases, geometrically nonlinear finite-element (FE) analyses for 

perfect and imperfect cylinders are conducted using both the flow and the 

deformation theories of plasticity, and the numerical results are compared 

with data from widely cited physical tests and with analytical results. The 

plastic buckling pressures for cylinders subjected to non-proportional 

loading, with various combinations of boundary conditions, tensile 

stresses, material properties and cylinder’s geometries, are also obtained 

with the help of the differential quadrature method (DQM). These results 

are compared with those obtained using the code BOSOR5 and with 

nonlinear FE results obtained using both the flow and deformation 

theories of plasticity.  

It is found that, contrary to common belief, by using a geometrically 

nonlinear FE formulation with carefully determined and validated 

constitutive laws, very good agreement between numerical and test 

results can be obtained in the case of the physically more sound flow 

theory of plasticity. The reason for the ‘plastic buckling paradox’ appears 

to be the over-constrained kinematics assumed in many analytical and 

numerical treatments, such as BOSOR5 and NAPAS, whereby a 

harmonic buckling shape in the circumferential direction is prescribed.  
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Chapter 1 

 

 

Introduction 

 
 
 

1.1 What is buckling? 

Buckling is a physical phenomenon occurring when the deformed 

configuration of a structure, under a given load, undergoes a relatively 

sudden variation in shape, typically with large or relatively large increase in 

displacements and strains. The most famous case, for most engineers, is 

that of a reasonably straight and slender body bending laterally and abruptly 

from its longitudinal position due to compression stresses, leading to the 

catastrophic collapse of the structure under compressive loads, often with 

very large deformations. However, from an engineering and scientific view 

point, the important phase of buckling generally occur before deformations 

become very large, when the structure appear to the naked eye to be 

undeformed or only slightly deformed (Bushnell,1982).  

Buckling is inherently a nonlinear problem, certainly from a geometrical point 

of view and often from a material point of view. The material nonlinearity is 

due to nonlinear relationships between stresses and strains, as it is the case 

in plasticity. The geometrical nonlinearity is related to the nonlinearity of the 

kinematic relations which represent the influence of large displacements and 

rotations of structural elements on the behaviour of the structure (Brush and 

Almroth, 1975). Some form of geometric nonlinearity must be included in 

order to derive buckling equations and identify the equilibrium paths, whose 

points represent configurations of equilibrium.  

To predict buckling two types of analyses can normally be conducted, 

sometimes in combination: a bifurcation analysis and a nonlinear collapse 

analysis (Bushnell, 1981).  
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A bifurcation, or eigenvalue, buckling analysis, searches for the point of 

intersection between the primary equilibrium path (pre-buckling path) and a 

secondary equilibrium path (post-buckling path), called a bifurcation point, or 

also a ‘bifurcation buckling’ point.  At this point, the deformation can start to 

grow in a new pattern which is different but energetically ‘orthogonal’ to the 

pre-buckling deformation pattern (Bushnell, 1981). In this analysis, geometric 

nonlinearity should be considered. Bifurcation buckling is purely conceptual, 

as it occurs only in a ‘perfect’ structure, subject to loads that do not perform 

any first-order work for any incremental deformation along the secondary 

equilibrium path. A typical example is a column subjected to axial 

compressive loading which must pass through the centre of mass of the 

cross-section.  

In a nonlinear collapse analysis, the slope of the load-deflection curve 

decreases by increasing the load and becomes zero at the collapse load 

(Jones, 2006; Bushnell, 1981). If the load is prescribed as the structure 

deforms, the structure becomes unstable and further deformation can only be 

captured in the analysis with a path-following technique, such as an arc-

length method, or through a dynamic analysis (Falzon and Aliabadi, 2008). 

This type of behaviour is called snap-through buckling and, from a 

mathematical point of view, is an instability problem. In order for a nonlinear 

collapse analysis to be effective in capturing buckling, either the structure has 

to be characterised by some geometric ‘imperfection’, or the applied load 

must perform some positive first-order work for the incremental deformation 

at collapse. Furthermore, geometrical nonlinearity must be accounted for in 

the analysis. 

1.2 Plastic buckling and its importance in engineering 
applications 

Shell structures are widely used in many branches of engineering such as, 

spacecrafts, aircrafts, cooling nuclear reactors, towers, steel silos and tanks 

for storage of bulk solids and liquids, pressure vessels, pipelines and 

offshore platforms. 

Several examples of catastrophic failure of expensive shell structures due to 

buckling are described in the literature. A steel water tank can collapse 
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because of unexpected buckling of the bottom part of the conical portion of 

the tank, a region subjected to meridional compressive stress combined with 

circumferential tension from the fluid pressure inside the tank (Bushnell and 

Bushnell, 2005). Cooling towers structures of nuclear reactors can buckle 

locally near the base due to axial compression. Moreover, wind can also 

cause overall buckling in an ovalisation mode in which the maximum buckling 

displacement occurs near the open top of the tower. The wind load and its 

combination with self-weight of the cooling tower can cause catastrophic 

failure due to the buckling instability (Asadzadeh and Alam, 2014). For 

aerospace applications, rocket boosters consist of segmented shell 

structures, which can buckle during launch (NASA, 2013). In aircraft 

applications, due to hard landing of a flight vehicle, the inner cylinder of the 

landing gear can axially buckle (Boeing, 2014). Some offshore oil platforms 

have supporting structures that consist of cylindrical shells with impressively 

large diameters. If large very powerful sea waves hit the platforms, these 

supporting structures can buckle (Bushnell and Bushnell, 2005). 

All the very important engineering problems mentioned above involve 

cylindrical shell structures subjected to compressive stresses which can be 

either uniform or varying throughout the cylinder. The buckling load of a thin 

cylindrical shell under axial compression is very sensitive to imperfections, 

and the buckling load and mode of thin/thick cylinders depend on the 

geometry, loading and boundary conditions. Therefore, the axially 

compressed cylinder has been the most broadly studied of all shell buckling 

problems, giving a wealth of results from both experimental and theoretical 

work (Teng and Rotter, 2004). This problem will be studied in Chapter 3 of 

this thesis. 

Another important area of engineering where buckling and often plastic 

buckling pose significant concern is the design and analysis of pipelines, 

which are the ideal means of transportation for gas and liquids such as oil, 

water or sewage. Often they are exposed to extreme environments such as 

arctic cold, desert heat or underwater environments. Smaller diameter 

pipelines buried in relatively shallow channels may buckle like beams under 

compressive axial forces. For example, the compressive stresses caused by 
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ground motion can cause an entire section of the pipeline to move out of the 

ground and bend up in the air. Pipelines with large diameter buried in 

relatively deep channels are constrained from lateral movement by the soil 

cover and can buckle and collapse like shells if any ground motion is caused 

by fault movements, landslides, permafrost melting and soil liquefaction that 

results in axial compression in the pipeline (Yun and Kyriakides, 1990). 

In buried pipelines used to transfer hot oil, the internal temperature and 

pressure can rise. The pipeline will expand as a result of temperature 

increase. If such expansion is restrained due to soil friction, axial 

compressive stresses will set up in the pipe-wall. As a result, global vertical 

buckling of a pipeline may occur, which is called upheaval buckling (Maltby 

and Calladine, 1995). 

In all the above cases, pipelines are again cylinders mainly subject to axial 

compression. However, important problems where different types of loading 

can occur in pipes involve submarine pipelines, which play an important role 

in offshore oil and gas exploitation projects. The installation of pipelines in 

deep water indeed can induce loads to the structure, which will lead to the 

risk of buckling. The most commonly used installation methods are the S-Lay 

and the J-Lay (Kashani and Young, 2005; Kyriakides and Corona, 2007). The 

pipeline in the S-Lay installation method starts in horizontal position on the 

vessel and produces an S-shape on the way to the seabed. The tensioners 

and the lay-vessel at the top provide the required tensile load to hold the 

suspended pipeline and control its shape. Therefore, the upper and lower 

curved parts of the pipeline, which are called over-bend and the sag-bend 

regions, respectively, suffer from combined tensile load, bending and 

external pressure (Kyriakides and Corona, 2007). The pipeline between 

these two regions has to withstand combined tensile load and external 

pressure. If the seabed is relatively flat, the part of the empty pipeline lying on 

the seabed can be considered to be under hydrostatic external pressure 

loading.  

As the water depth increase, the tension load required to suspend the S-lay 

pipeline increases. Therefore, the J-lay installation method is used as 
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alternative method in which the pipeline leave the vessel from a nearly 

vertical position (Kashani and Young, 2005). The pipeline then has to sustain 

high tension and relatively small external pressure close to the surface of the 

sea, increasing external pressure and decreasing tension further down the 

long suspending section, high external pressure, bending and tension in the 

sag-bend and essentially hydrostatic pressure on a flat seabed (Kyriakides 

and Corona, 2007). All these cases show the importance of studying buckling 

of cylinders subject to combined loading consisting of axial tension and 

external pressure, which is covered in Chapters 4 and 5. 

1.3 Plastic-buckling paradox 

The plasticity models that have been proposed for metals in the strain 

hardening range for the study of plastic buckling can be divided into two 

groups: the ‘deformation theory’ of plasticity and the ‘flow theory’ of plasticity. 

In both of these theories the plastic deformations do not allow volume 

changes as plastic yielding is governed by the second invariant 𝐽2 of the 

deviatoric part of the stress tensor, whereby in this respect they are both 

called 𝐽2 theories. The main difference between these two theories lays in the 

fact that the deformation theory of plasticity is based on the assumption that, 

at any point of the solid body considered, the state of stress at any time is 

uniquely determined by the current state of strain and, therefore, it is a 

special class of path-independent nonlinear elastic constitutive laws, while 

the flow theory of plasticity assumes that the stress at any point and time is a 

function not only of the current strain but also of the strain history at the same 

point. In the deformation theory of plasticity, after a strain reversal in the 

plastic range, the initial loading curve is followed. On the contrary, in the flow 

theory of plasticity after a strain reversal in the plastic range the unloading 

takes place according to the initial elastic stiffness, as it is found 

experimentally in physical tests, and when the loading is totally removed, it 

leaves a permanent plastic strain. This makes the constitutive relationship 

path-dependent.  

There is a general agreement among engineers and researchers that the 

deformation theory of plasticity lacks physical rigour in comparison to the flow 

theory (Hill, 1950; Mendelson, 1968). However, it has been found by many 
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authors (Durban and Zuckerman, 1999; Mao and Lu, 1999; Lee, 1962; Ore 

and Durban, 1992; Blachut et al., 1996; Giezen et al., 1991; Galletly el al., 

1990) that the deformation theory predicts buckling loads that are in closer, 

and in some cases much closer, agreement with experiments than those 

predicted by the flow theory of plasticity.   

This ‘plastic buckling paradox’ has been observed in a wide range of shell 

structures such as cruciform columns, plates, torispherical domes and 

circular cylinders under different loading conditions and using different 

boundary conditions. Among these, the problem of relatively thick cylindrical 

shell structures subject to either axial compression or combined axial tension 

and external pressure has attracted significant interest due to their significant 

importance in engineering applications, which led to a rich literature, with 

classic benchmark tests and results available for further investigation. 

In the early and mid-90s, the plastic buckling paradox was considered still 

“unresolved” by Yun and Kyriakides (1990) and proposed explanations 

judged still “inconclusive” by Teng (1996), who quoted results, recent at that 

time, “which once again confirm the better agreement between deformation 

theory and experiment”, these results being those by Ore and Durban (1989, 

1992), Galletly et al. (1990), Giezen et al., (1991). Blachut et al.  (1996) 

“hoped that the paradox will be resolved in the near future”.  

Since then, however, Bardi and Kyriakides (2006) reported that the flow 

theory significantly over-estimates bucking stresses, strains and wavelength 

of wrinkles while the deformation theory provides results in good agreement 

with experimental ones. Wange and Huang (2009) concluded that the 

possible reason for the large discrepancy in the results between the flow and 

the deformation theories is the small deformation assumption used to 

establish the governing differential equation. Zhang and Wang (2011) 

provided that another explanation of the results obtained by both theories 

may be that the deformation theory predicts an increasingly lower in-plane 

shear in-plane shear modulus as the level of plasticity increases, which 

results in lower calculated buckling-stress values. Other researchers, such as 

Mao and Lu (2002) and Zhang et al. (2015), accept the fact that the 
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deformation theory provides plastic buckling results that are in better 

agreement with the experimental results than those predicted by the flow 

theory. Therefore, they employed only the deformation theory in their 

analytical analysis.    

1.4 Aims and objectives 

The present thesis aims to shed light on the plastic buckling of cylinders 

subjected to proportional and non-proportional loading, i.e. simple axial 

compression or combined axial tensile load and external lateral pressure.  

Specific objectives of the thesis are the following:  

 a clarification about the actual existence of the paradox for cylindrical 

shells subjected to axial compression or combined axial tension and 

external pressure; 

 a possible explanation of the plastic bucking paradox and a critical 

revision of the results obtained by many authors in the literature, which 

led to the definition of the paradox; 

 an assessment of the imperfection sensitivity of shells buckling in the 

plastic domain; 

 the establishment of new analytical solutions for plastic buckling of 

cylindrical shells in order to investigate the effect the boundary 

conditions, material parameters and geometry of the cylinders on the 

discrepancies in the results obtained using the flow and deformation 

theories. 

1.5 Summary of methodology 

Nonlinear finite-element (FE) analyses for perfect and imperfect cylinders 

subjected to either axial compression or combined axial tension and external 

pressure have been carefully conducted using both the flow and deformation 

theories of plasticity in order to identify the discrepancies in the results 

obtained and, therefore, to check whether the paradox really exists. The 

analyses included an investigation of the imperfection sensitivity of the 

cylinders as they buckle in the plastic domain. The FE results were compared 

with experimental, numerical and analytical results available in the literature.  
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Analytical approaches for the considered case studies were also pursued in 

order to provide a possible explanation of the plastic buckling paradox and 

investigate the effect of the simplified assumptions used in many analytical 

treatments on the discrepancy between the flow and deformation theories. 

The obtained analytical results have been compared with experimental and 

numerical results obtained by other authors using the code BOSOR5 

(Bushnell, 1986) and with the FE results presented in this thesis. 

A semi-analytical model was developed using a simplified formulation 

proposed by Hutchinson (1972) to qualitatively investigate the effect of the 

imperfections and of the unloading law in the constitutive relationships on the 

calculated plastic buckling load and on the post-buckling behaviour, using the 

flow and deformation theories. 

A differential-quadrature (DQ) method has been finally employed to obtain, 

for the first time, the critical loads leading to elasto-plastic buckling of 

cylinders under combined axial tension and external pressure, for various 

geometries, material parameters and boundary conditions, again using both 

the deformation and the flow theory of plasticity. The DQ results are 

discussed and analysed also via a comparison with FE results.   

1.6 Outline of the thesis 

The thesis is divided into six chapters. A brief description for each chapter is 

presented below: 

This first chapter has introduced the problem of plastic buckling, its 

importance in engineering applications, and discussed the unresolved plastic 

buckling paradox. Furthermore, it set the aims and objectives and provided a 

brief summary of the methodology used in this research. 

Chapter 2 reviews the mathematical concepts in buckling analysis and what 

distinguishes elastic buckling from plastic buckling. It provides a historical 

background of buckling theories and of the development of the plasticity 

theories. In this chapter, the explicit expressions of stress-strain relations in 

the plastic range are derived based on the Prandtl-Ruess and the Hencky 
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equations. Finally, the literature related to the plastic buckling paradox is 

reviewed. 

Chapter 3 presents geometrically nonlinear finite-element analyses of 

cylinders subjected to axial compression by using the code ABAQUS. The 

numerical results are then compared with accurate experimental and 

analytical results. A semi-analytical model is used to investigate the effect of 

imperfections and of the plasticity law on the buckling load. In this chapter, 

the reasons underlying the buckling paradox are discussed in detail. 

Chapter 4 presents in detail the finite-element (FE) modelling of selected 

cylindrical shells, subject to combined axial tension and external pressure, 

again by using the code ABAQUS.  The comparison of the FE results with 

the experimental and numerical results conducted by other authors using the 

code BOSOR5 is also presented. This chapter contains a comprehensive 

discussion of the results in order to provide an insight into the underpinning 

causes of the discrepancy between the present predictions, test data, and 

results by other authors. Moreover, analytical results are discussed and 

compared with experimental and numerical findings. 

In Chapter 5, the differential quadrature (DQ) method is used to obtain the 

elastic-plastic buckling pressures of cylinders under combined loading, again 

consisting of tensile stress and increasing external pressure. A parametric 

study was then performed to characterize the effect of the thickness-to-

radius, 𝑡/𝑅, length-to-diameter, 𝐿/𝐷, and material stiffness-to-strength, 𝐸/𝜎𝑦, 

ratios, as well as the influence of the tensile stress and various boundary 

conditions on the discrepancies between the predictions of the flow and 

deformation theories. Nonlinear FE analyses of cylindrical shells are then 

conducted using both the flow theory and the deformation theory of plasticity, 

whose results are compared with the present DQ results and discussed 

again within the framework of the plastic buckling paradox. 

Chapter 6 presents the conclusions drawn from the previous chapters. 

Recommendations for further research are also made. 
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Chapter 2 

 

 

 

Literature Review 

 

 

2.1 The equilibrium differential equations 

The behaviour of structures under an applied load can be described by a set 

of differential equations and associated boundary conditions that identify the 

interaction between forces (internal and external) and corresponding 

deformations. The complexity of these differential equations depends on the 

shape and geometries of the problem and on the structural model used, so 

that they may be derived in terms of simplifying assumptions. 

To obtain the differential equations two methods are normally described in 

the literature (Brush and Almroth, 1975; Yoo and Lee, 2011); the method of 

equilibrium and the principle of stationary potential energy.  

For the first method, differential equations can be derived by summation of 

forces and moments to ensure static equilibrium of an infinitesimal element of 

structure. Kinematic differential equations can then be written to relate 

displacement and strain fields, and constitutive relationships are written to 

relate stresses and strains. Overall, all these equations govern the 

equilibrium of the structure and therefore, in the following, they will be called 

equilibrium differential equations.  

To capture buckling, the equilibrium equations must be written in the 

deformed configuration. In the case of the Cauchy three-dimensional 

continuum model, fifteen unknowns exist in the resulting equations: six 

internal stresses, six strains and three displacements at every point. 
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Therefore, fifteen equations are required to find these unknown fields, which 

are three equilibrium differential equations, six constitutive equations and six 

strain-displacement relations. The number of unknowns can be reduced 

according to assumptions related to 1D or 2D problems. 

The second method can be used when the total potential energy can be 

defined for the problem under examination. In such a case, let denote by 𝑈 

and 𝑉 the strain energy density and the loss of potential energy of applied 

loads, respectively. Thus, the total potential energy of the mechanical system 

is:  

Π = 𝑈 + 𝑉 (2.1) 

It was proven that minimizing the total potential energy Π governs the stable 

equilibrium of the structure, see (Yoo and Lee, 2011 ; Brush and Almroth, 

1975) among many others. 

Consider, for instance, a thin enough cylinder modelled with the Kirchhoff-

Love thin-shell theory in which each material point is identified by the axial 

coordinate 𝑥 and its circumferential coordinate 𝑦, and has three degrees of 

freedom, 𝑢, 𝑣, 𝑤, representing the displacement in the axial, circumferential 

and radial direction, respectively. If the system is given infinitesimal virtual 

displacements 𝛿𝑢, 𝛿𝑣, 𝛿𝑤 about 𝑢, 𝑣, 𝑤, the total potential energy in Taylor 

series expansion about 𝑢, 𝑣, 𝑤 is: 

П(𝑢 + 𝛿𝑢, 𝑣 + 𝛿𝑣, 𝑤 + 𝛿𝑤) = П(𝑢, 𝑣, 𝑤) +
𝜕П

𝜕𝑢
𝛿𝑢 +

𝜕П

𝜕𝑣
𝛿𝑣 +

𝜕П

𝜕𝑤
𝛿𝑤 +

1

2!
[
𝜕2П

𝜕𝑢2
(𝛿𝑢)2 +

𝜕2П

𝜕𝑣2
(𝛿𝑣)2 +

𝜕2П

𝜕𝑤2 (𝛿𝑤)
2 + 2

𝜕2П

𝜕𝑢𝜕𝑣
𝛿𝑢𝛿𝑣 + 2

𝜕2П

𝜕𝑢𝜕𝑤
𝛿𝑢𝛿𝑤 +

2
𝜕2П

𝜕𝑣𝜕𝑤
𝛿𝑣𝛿𝑤] +  ……….   

(2.2) 

The change in the total potential energy can then be written: 

𝛥П = П(𝑢 + 𝛿𝑢, 𝑣 + 𝛿𝑣,𝑤 + 𝛿𝑤) − П(𝑢, 𝑣, 𝑤) = 𝛿П +
1

2!
𝛿2П +

1

3!
𝛿3П  …. (2.3) 

Because the virtual displacements, 𝛿𝑢, 𝛿𝑣, 𝛿𝑤, are infinitesimal, each non-

zero term is much larger than the sum of succeeding terms. 

Therefore, |𝛿П| > |𝛿2П|. Hence, the necessary and sufficient condition for the 

total potential energy П to be stationary is that 𝛿П vanishes: 𝛿П = 0.  
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The total potential energy П can be written in the form: 

П = ∫ 𝐹(𝑥, 𝑦, 𝑢, 𝑣, 𝑤, 𝑢,𝑥,  𝑢,𝑦, 𝑣,𝑥, 𝑣,𝑦, 𝑤,𝑥, 𝑤,𝑦, 𝑤,𝑥𝑥, 𝑤,𝑥𝑦,𝑤,𝑦𝑦)𝑑𝑉𝑉
    (2.4) 

where function 𝐹 is called the integrand of П, 𝑥, 𝑦 are the independent 

variables, and 𝑢, 𝑣, 𝑤, 𝑢,𝑥, 𝑢,𝑦, 𝑣,𝑥, 𝑣,𝑦, 𝑤,𝑥, 𝑤,𝑦, 𝑤,𝑥𝑥, 𝑤,𝑥𝑦,𝑤,𝑦𝑦 are dependent 

variables as they are all function of 𝑥, 𝑦. Here the notations ∎𝑥 and ∎𝑦 

indicate partial differentiation of ∎ with respect to 𝑥 and 𝑦, respectively, so 

the highest-order derivatives are of first order in 𝑢 and 𝑣 and second order 

in 𝑤. The equilibrium is achieved when 𝛿 П = 0. Accordingly, the integrand F 

must satisfy the Euler-Lagrange equations with respect to arbitrary variation 

of 𝑢, 𝑣 and 𝑤 (Brush and Almroth, 1975): 

𝜕𝐹

𝜕𝑢
−

𝜕

𝜕𝑥

𝜕𝐹

𝜕𝑢,𝑥
−

𝜕

𝜕𝑦

𝜕𝐹

𝜕𝑢,𝑦
= 0     

(2.5) 

𝜕𝐹

𝜕𝑣
−

𝜕

𝜕𝑥

𝜕𝐹

𝜕𝑣,𝑥
−

𝜕

𝜕𝑦

𝜕𝐹

𝜕𝑣,𝑦
= 0    

𝜕𝐹

𝜕𝑤
−

𝜕

𝜕𝑥

𝜕𝐹

𝜕𝑤,𝑥
−

𝜕

𝜕𝑦

𝜕𝐹

𝜕𝑤,𝑦
+

𝜕2

𝜕𝑥2
𝜕𝐹

𝜕𝑤,𝑥𝑥
+

𝜕2

𝜕𝑥𝜕𝑦

𝜕𝐹

𝜕𝑤,𝑥𝑦
+

𝜕2

𝜕𝑦2
𝜕𝐹

𝜕𝑤,𝑦𝑦
= 0   

2.2 Nonlinear equilibrium paths 

The simplifying assumptions considered in the derivation of the equilibrium 

differential equations play an important role in the investigation of the 

behaviour of structures under applied loads. One of the main assumptions is 

whether the deformations are infinitesimal (geometrically linear, or first-order, 

theory), moderate or finite. The equilibrium differential equations written on 

the undeformed configuration and in the assumption of infinitesimal 

deformations are linear, and do not allow capturing any aspect of buckling. 

By approximating the deformation fields by a second-order Taylor expansion, 

or writing the equilibrium equations on the deformed configuration, for a 

structure with perfect geometry and in absence of first-order terms of the 

external work, the resulting equations are homogeneous and define a 

generalised eigenvalue problem, which only allow the determination of the 

bifurcation loads, the eigenvectors being the buckling modes. In presence of 

geometrical imperfections, or in the case of non-zero first-order terms of the 

external work done for the first buckling mode, the equations become non-
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homogenous and a nonlinear solution is found, with no bifurcation. In the 

assumption of finite deformations, the differential equations are nonlinear 

because they contain linear, quadratic and, for shell models, cubic terms in 

the derivatives of 𝑢, 𝑣, 𝑤.  

The equilibrium paths are here defined as the plots reporting the applied load 

versus a given measure of the deformation of the structure, which can be 

found by the solution of the equilibrium differential equations.  

Consider the case of a cylinder subjected to axial compressive load and 

without geometrical imperfections. Figure 2.1 represents a schematic plot of 

the load versus the axial displacement if rotations are neglected in the pre-

buckling phase. Two equilibrium paths can be observed: the primary and 

secondary paths. The linear equilibrium differential equations govern the 

primary path OA, called also pre-buckling path, and nonlinear equilibrium 

differential equations govern the secondary path AB, called the post-buckling. 

The intersection between the primary and secondary paths represents the 

bifurcation point. 

 

Figure 2. 1: Equilibrium paths for cylinder subjected to axial compressive loading 

As rotations in the above example are neglected in the pre-buckling path, this 

is obtained by neglecting the nonlinear terms in the equilibrium equations. 

However, in many shell structures, the deformations in the pre-buckling are 

not rotation-free and must be taken into account to obtain an accurate 

bifurcation point. Therefore, the pre-buckling path determined with the 

second-order theory becomes nonlinear and iterative methods are needed to 

solve such nonlinear equations (See Figure 2. 2).  
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Figure 2. 2: Equilibrium paths with nonlinear pre-buckling state 

For simplicity, in the analytical treatments, the bifurcation point can be 

obtained by solution of linearized differential equations and neglecting the 

influence of pre-buckling rotations. These equations are derived from 

nonlinear differential equations using the adjacent equilibrium criterion or the 

Trefftz criterion methods (Brush and Almroth, 1975; Yoo and Lee, 2011). The 

linearized differential equations are called the stability equations.  

The solution of the stability equations provides the bifurcation point but no 

information is obtained about the initial slope or the shape of the secondary 

equilibrium path because the incremental displacements are infinitesimally 

small and linearization is an approximation that is only valid around a region 

close to the bifurcation point. Sometimes the behaviour of some structures 

(e.g. plate and shells) can be understood only if the shape of the secondary 

path is known. Moreover, the shape of secondary path governs the sensitivity 

of structure to the initial imperfections.  

2.2.1 The adjacent equilibrium criterion 

The stability equations can be derived from the nonlinear equilibrium 

differential equations by use of a perturbation technique, in which the 

displacement field of the problem 𝑢̅ is replaced by 𝑢0̅̅ ̅ + 𝑢1̅̅ ̅ in the nonlinear 

equilibrium differential equations, where 𝑢0̅̅ ̅ is the displacement field at the 

bifurcation point in the primary path and 𝑢1̅̅ ̅ is an arbitrary incremental 

displacement field. The resulting equations contain linear, quadratic and 

cubic terms in 𝑢0̅̅ ̅ and 𝑢1̅̅ ̅ , in general. All terms containing only 𝑢0̅̅ ̅ are equal to 

zero because 𝑢0̅̅ ̅ is in equilibrium configuration and terms which are quadratic 
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and cubic in 𝑢1̅̅ ̅ are dropped out because the incremental displacements are 

very small. The final equations are homogeneous and linear in 𝑢1̅̅ ̅ with 

variable coefficients in 𝑢0̅̅ ̅ . These coefficients can be identified by the 

solution of original nonlinear equilibrium equations. However, it is desirable in 

the analytical analysis to limit the range of applicability of the linearized 

equations by requiring that 𝑢0̅̅ ̅ be restricted to configuration governed by 

linear differential equilibrium equations. 

2.2.2 The Trefftz criterion 

As is illustrated in Section 2.1, the change of total potential energy can be 

written in the form: 

𝛥П = 𝛿П +
1

2!
𝛿2П +

1

3!
𝛿3П  ……              (2.6) 

The term 𝛿П vanishes by use of the principle of stationarity of the potential 

energy. Each nonzero term in this expression is much larger than the sum of 

the succeeding term. Therefore, the sign of 𝛥П is determined by the sign of 

second variation of П that is the 𝛿2П, if this is non zero. A sufficient condition 

for П to be a local minimum is that the second variation is positive definite. 

Therefore, the critical load of a structural system is the lowest load for which 

𝛿2П is no longer positive definite. At this load the equilibrium changes from 

stable to unstable. This leads 𝛿2П to be stationary: 

𝛿(𝛿2П) = 0    
(2.7) 

i.e. the derivative with respect to 𝑢1̅̅ ̅ of the integrand in 𝛿2П must be equal to 

zero (Brush and Almroth, 1975). 

In order to obtain the second variation, the displacement field 𝑢̅ is replaced 

again by 𝑢0̅̅ ̅ + 𝑢1̅̅ ̅ in the total potential energy. In components it results: 

𝑢 → 𝑢0 + 𝑢1   

𝑣 → 𝑣0 + 𝑣1              

𝑤 → 𝑤0 + 𝑤1   

(2.8) 

The total potential energy can be expressed in Taylor series expansion: 

П(𝑢0 + 𝑢1, 𝑣0 + 𝑣1, 𝑤0 + 𝑤1) = П(𝑢0, 𝑣0, 𝑤0) +
𝜕П

𝜕𝑢
|
0
𝑢1 +

𝜕П

𝜕𝑣
|
0
𝑣1 +

𝜕П

𝜕𝑤
|
0
𝑤1 +

1

2
[
𝜕2П

𝜕𝑢2
|
0
(𝑢1)

2 +
𝜕2П

𝜕𝑣2
|
0
(𝑣1)

2 +
𝜕2П

𝜕𝑤2|
0
(𝑤1)

2 + 2
𝜕2П

𝜕𝑢𝜕𝑣
|
0
𝑢1𝑣1 +

(2.9) 
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2
𝜕2П

𝜕𝑢𝜕𝑤
|
0
𝑢1𝑤1 + 2

𝜕2П

𝜕𝑣𝜕𝑤
|
0
𝑣1𝑤1] +  ……                        

where the notation ∎|0 indicates that ∎ is to computed for 𝑢 = 𝑢0, 𝑣 = 𝑣0 and 

𝑤 = 𝑤0. The second variation is defined as:  

1

2
𝛿2П =

1

2
[
𝜕2П

𝜕𝑢2
|
0
(𝑢1)

2 +
𝜕2П

𝜕𝑣2
|
0
(𝑣1)

2 +
𝜕2П

𝜕𝑤2|
0
(𝑤1)

2 + 2
𝜕2П

𝜕𝑢 𝜕𝑣
|
0
𝑢1𝑣1 +

2
𝜕2П

𝜕𝑢 𝜕𝑤
|
0
𝑢1𝑤1 + 2

𝜕2П

𝜕𝑣 𝜕𝑤
|
0
𝑣1𝑤1]        

(2.10) 

In the resulting expression, one collects all second-order terms in 

 𝑢1, 𝑣1, 𝑤1.Hence, the second variation in П is found to be: 

1

2
𝛿2П = ∫ 𝐻(𝑥, 𝑦, 𝑢1, 𝑣1, 𝑤1)𝑑𝑉𝑉

   
(2.11) 

Eq. (2.7) implies that the integrand 𝐻 in 
1

2
𝛿2П should satisfy the Euler-

Lagrange equations. Since the integrand of second variation is a 

homogeneous quadratic function, the resulting expressions by use of Euler-

Lagrange equations are linear homogeneous differential equations.  

2.3 Elastic versus plastic buckling 

An elastic buckling analysis is based on the assumption that the stresses in 

the structure are below the yield stress of the material and, therefore, that 

buckling occurs in the elastic range. This assumption may be correct for 

slender structural member but it is not valid for thicker and/or shorter 

members in which the internal stresses exceed the yield stress before 

buckling. In such cases, buckling occurs in the plastic range and must be 

determined by taking the inelastic behaviour of the material into account. 

   

                                                   (a) (b) 
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Figure 2.3: (a) elastic buckling versus (b) plastic buckling 

2.3.1 Elastic Buckling 

Classical analysis of stability of perfect structures takes the form of a 

generalized eigenvalue problem. The smallest buckling load defined from the 

solution of eigenvalue problem is called bifurcation load Pc. However,   

classical analysis does not give any indication of the character of the post-

buckling behaviour or the behaviour of imperfect structure. The following are 

three typical cases of possible load–deflection curves describing the static 

equilibrium configurations (Falzon and Hitchings, 2006). 

2.3.1.1. Stable symmetric buckling  

Stable symmetric buckling occurs when the structure has no preference for 

the direction of the deformed shape and when the secondary path is stable. 

This type of post-buckling occurs for example for a simply supported perfect 

plate subjected to compressive edge loads. Increasing the load up to the 

buckling load Pc never causes lateral deflection. At this load level, the primary 

stable equilibrium path becomes unstable and the plate begins to deform 

perpendicularly to its un-deformed configuration. By increasing the load 

beyond the critical load with appropriate boundary conditions, the behaviour 

follows the secondary equilibrium path and the plate is able to support more 

load than the critical buckling load (Figure 2.4). The secondary path displays 

as a stiffening effect with increasing loads. 

In reality, the plate has initial imperfections causing a smooth transition in the 

response of structure from pre-buckling to post-buckling curve and the 

bifurcation point disappears. Large amount of imperfections reduces 

moderately the collapse load. Therefore, this type of structure is termed 

imperfection insensitive. 
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Figure 2.4: Stable symmetric buckling (Falzon and Hitchings, 2006) 

2.3.1.2. Unstable symmetric buckling 

In this type of buckling, the post-buckling path is unstable (Figure 2.5). The 

structure exhibits imperfection sensitivity for which a small amount of 

imperfections can reduce the buckling load significantly. An example of such 

structures is a circular cylindrical shell subjected to axial compressive loads. 

Numerous experimental studies showed that the observed buckling loads 

were significantly lower than those predicted by the classical analysis. This 

fact was interpreted by the presence of inevitable small imperfections in the 

specimens which, due to inherent imperfection sensitivity, reduce the 

experimental buckling loads (Falzon and Hitchings, 2006). 

Koiter evaluated that, for small imperfections,  the reduction in critical load for 

unstable response was proportional to the imperfection parameter raised to 

the power 2/3 (Hutchinson and Koiter, 1970). 
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Figure 2.5:  Unstable symmetric buckling (Falzon and Hitchings, 2006) 

2.3.1.3. Asymmetric buckling  

This response is caused due to asymmetries in loading or geometry of the 

shell. It is characterized by a secondary path which could be stable for some 

imperfections or unstable negative for others (Figure 2.6). 

Koiter evaluated that the reduction in critical load identified by the limit point 

for unstable response for these type of structures was proportional to the 

imperfection parameter raised to the power ½ (Hutchinson and Koiter, 1970). 

Therefore, asymmetric buckling displays higher imperfection sensitivity than 

the unstable symmetric buckling. 

  

Figure 2.6: Asymmetric buckling (Falzon and Hitchings, 2006) 
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2.3.2 Plastic Buckling 

The phenomenon of plastic buckling was firstly found in the behaviour of 

thick cylindrical shells which deform at first axisymmerically and then non-

axisymmertically under axial compressive load (Bushnell, 1982). Accurate 

prediction of the critical loads in plastic range requires accounting not only for 

moderate large deflection but also for nonlinear material behaviour (Bushnell, 

1982). 

The elastic buckling in shells usually occurs catastrophically and suddenly, 

while the plastic buckling failure of shells experience cascade of events. 

Figure 2.7 shows two points on the load-deflection curve, the limit point at A 

and the bifurcation point at B. The cylinder experiences gradual growing of 

axisymmetric wrinkles at path OA, in which the cylinder fails at the limit load 

at point A, followed by the path ABC or ABD.  The axisymmetric wrinkles 

develop along the path ABC while non-axisymmetric wrinkles develop along 

the path BD. The equilibrium path OABC is called fundamental path while the 

post-bifurcation equilibrium path BD, corresponding to the non-

axisymmetrical mode of deformation, is called secondary path. The unusual 

point in this example is that the bifurcation point B occurs after the collapse 

point. In this case, the bifurcation load is of less engineering interest than the 

collapse load (Bushnell, 1982). 

 

Figure 2.7: the stress-shortening response of long perfect circular cylinder subjected 
to axial compression (Bushnell, 1982). 
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Another commonly occurring situation, particularly for axisymmetric shells, is 

that bifurcation point B frequently occurs at load levels below the limit load A 

(Hutchinson and Koiter, 1970), as shown in Figure 2.8. Paths OAC and BD 

are again related to the axisymmetric and non-axisymmetric deformations, 

respectively. In this case the initial failure of the structure could be described 

by rapidly growing of non-axisymmetric deformation. The collapse load 𝑃𝐿 is 

of less engineering interest than the bifurcation point 𝑃𝐶 (Bushnell, 1982). For 

real structures which contain unavoidable imperfections, the buckling 

behaviour will follow the fundamental path OEF and collapse at the point E. 

  

Figure 2.8: Load deflection curves in general nonlinear analysis (Bushnell, 1982). 

2.4 Key milestones in the development of buckling theories 

2.4.1 Elastic buckling 

Euler (1757) established the principle of elastic stability. He used the 

differential equation governing the deflection of a beam, written though in the 

deformed configuration, to derive a simple formula for the critical load of a 

slender ideal column with simply supported ends and subjected to a centred 

axial compressive force. Furthermore he extended his analysis to cover 

columns with variable cross section and treated the problem of buckling of 

columns with axial load distributed along its length. However, his calculations 
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to find the correct solution for these complicated problems were incomplete 

(Timoshenko, 1983). 

Bryan (1890) was the first to use the so-called energy criterion of stability to 

study the stability of plane rectangular or circular plates. He showed that for 

the stability of equilibrium of a given configuration the total potential energy 

should be minimum in that configuration. Bryan studied an elastic plate 

subjected to compressive load in its own plane. He described a displacement 

field which was normal to the middle surface of the plate and should satisfy 

the boundary conditions. He identified the work done by the applied 

compressive loads and the bending strain energy of the plate. He concluded 

that if the work done by the applied loads (𝑉) for a small variation in 

displacements is greater than the corresponding change of bending strain 

energy 𝑈𝑏, the change of the total potential energy of the system (𝑈𝑏 − 𝑉) will 

be negative and consequently there will be a form of unstable equilibrium, 

which results in the plate to buckle.  

Southwell (1913) derived general “equations of neutral equilibrium”. The most 

important advantage of the Southwell’s theory was its accuracy in following 

the actual stress history in a body which fails by instability under increasing 

stresses. 

Biezeno and Hencky (1928) deduced differential equations for the general 

case of elastic stability. They considered an elastic body that satisfies the 

equilibrium equations under the action of volumetric forces and surface-

tractions. Consider a body which undergoes a known state of stress and 

strain, indicated by 𝐼. Another state of strain, indicated by 𝐼𝐼, is defined by 

adding infinitesimal displacement to the considered body. They attempted to 

find the stresses which must be added on the faces of the infinitesimal cube 

cut from the body in state 𝐼 to bring it into state 𝐼𝐼.  

Trefftz (1933) used the energy stability criterion to develop a stability theory 

based on the theory of elasticity for finite deformations. He indicated that the 

adequate condition for stability was that the second variation of the total 

potential energy should be positive for all possible variations of 

displacements, which is the condition for the total potential energy to be a 
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relative minimum. Denoting by П the total potential energy, the critical load of 

a structural system then is the lowest load for which 𝛿2П is no longer positive. 

At this load the equilibrium changes from stable to unstable.   

In classical theory of elasticity in the assumption of infinitesimal deformations, 

the strain components 𝜀𝑥𝑥, 𝜀𝑦𝑦 and 𝛾𝑥𝑦 and the rotation 𝜔  of a point of the 

two-dimensional elastic body, with respect to the original coordinate system 

x, y, are: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
  , 𝜀𝑦𝑦 =  

𝜕𝑣

𝜕𝑥
   , 𝛾𝑥𝑦 =

1

2
(
𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑥
 ) 

(2.12) 

𝜔 = 
1

2
(
𝜕𝑣

𝜕𝑥
− 

𝜕𝑢

𝜕𝑦
 ) 

Boit (1938) determined the terms which must be added to the classical 

equations of elasticity when there is a possibility of large rotation and small 

strains. He used a stiff string with fixed ends or thin clamped plate for which 

the nonlinear effects are not neglected. By proposing a new way to describe 

the deformed state, he succeeded in obtaining the stability equations in such 

a form that it is possible to provide a physical meaning of the various terms in 

the equations.  

2.4.2 Post-buckling behaviour  

The theories illustrated above have been limited to the analysis of neutral 

equilibrium. They aimed at determining the stability limit or the bifurcation 

point while the post-buckling response occurring possibly after overcoming 

this limit was left out of account. There were two reasons for this restriction. 

Firstly, there were great mathematical difficulties to treat the theoretical 

elastic behaviour after overcoming the stability limit. The linear differential 

equations can describe the neutral equilibrium whereas the equations which 

described the behaviour after the limit point were no longer linear. Secondly, 

engineers were satisfied with calculating the critical or buckling loads. 

However, it is now known, for long time, that some structures like flat plate 

supported along its edges and subjected to compressive loads in its plane 

are capable to resist more loads than the buckling load without exceeding the 
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elastic limit at any point (Koiter, 1945). This phenomenon is important in 

modern engineering, for example in the aerospace industry which requires 

light structures. Moreover, some shells structures such as axially 

compressed thin-walled cylinders experience significant scatter in the 

experimentally measured values of the buckling load, which lie considerably 

below the theoretical limit (Koiter, 1945).  

The post-buckling behaviour of thin shell structures came into the light in 

1940’s when von Karman and Tsien (1939) showed that the large differences 

between the theoretical and experimental buckling behaviour of thin shells 

were due to the unstable post-buckling behaviour of these structures. Almost 

at the same time Koiter (1945) established a general theory of elastic stability 

valid for structures subjected to conservative loading. Furthermore, he 

succeeded in describing the elastic post-buckling behaviour of thin shell 

structures using an asymptotic power expansion. At the same time, he 

studied the imperfection sensitivity of an elastic buckled beam. His research 

explained the reasons why some structures, such as a flat plate supported 

along its edges and subjected to compressive loads in its plane, are capable 

to carry more loads above the buckling load, while other structures, such as 

axially compressed cylindrical shells, experimentally collapse at loads far 

below the buckling load found theoretically. 

2.4.3 Inelastic buckling  

In 1889, Engesser extended the elastic buckling of a compressed column to 

the case of inelastic buckling (Hutchinson, 1974).  Engesser’s theory 

assumes that, during loading, the column remains straight up to the critical 

buckling load, which is the compressive force at which equilibrium can be 

maintained also when slightly deflecting the column from the straight form of 

equilibrium. This small deflection causes a slightly increasing compressive 

stress on the concave side and a slightly decreasing compressive stress on 

the convex side. If point 𝐶 in Figure 2.9 represents the stress-strain point that 

corresponds to the critical load of the column, the changes in stress and 

strain on the concave side of the column follow the tangent 𝐶𝐶′, which is the 

tangent modulus of the material 𝐸𝑡, while, on the convex side, the changes in 
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stress and strain follow the slope line 𝐶𝐶′′, which is the initial modulus of 

elasticity 𝐸 or the elastic unloading.  
One simplified way to apply Engesser’s ‘tangent-modulus theory’ was to just 

replace the elastic modulus 𝐸 with tangent modulus 𝐸𝑡 in the Euler’s columns 

formula (Timoshenko and Gere, 1961).  

  
Figure 2.9: Stress-strain relation for material in compression (Timoshenko and Gere, 

1961). 

In 1898, Engesser corrected his original simplified theory by accounting for 

the different tangent modulus of the tensioned side of the cross section. He 

assumed that the cross section remained plane during bending and therefore 

the strains along the cross section of the column were distributed linearly. 

The position of the neutral axis was identified from the condition that the 

resultant of the compressive and tensile stresses must be equal (Timoshenko 

and Gere, 1961). To obtain the buckling load of such a column, the elastic 

modulus should be replaced with a reduced modulus of elasticity  𝐸̅ in Euler’s 

column formula, which takes the form 

x

t

x I

I
E

I

I
EE 21   

(2.13) 

where 𝐼1 is the second moment of inertia of the tension side of the cross 

section about the neutral axis and 𝐼2 is the second moment of inertia of the 

compression side of the cross section. 

For 50 years, engineers faced the dilemma that the reduced modulus was 

expected to be the correct theory but the experimental data were closer to 

those predicted by the tangent-modulus theory. Shanley (1947) resolved this 
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dilemma by conducting very careful experiments on small aluminum columns 

in conjunction with theoretical treatments. The importance of his work is still 

recognized now by using the term ‘Shanley’s column’ to refer to his theory. In 

his analysis, he considered a discrete model of a rigid rod with two degrees 

of freedom. Two elastoplastic springs supported the model at the bottom, and 

an axial compressive force was applied at the top. He noted that the lateral 

deflection started very near to the theoretical load predicted by the tangent-

modulus theory and that the load capacity increased with increasing lateral 

deflections. Therefore, during the buckling process, the mean stress on the 

bucked column might exceed the tangent-modulus stress but it would never 

exceed the reduced-modulus stress. The maximum value of the axial load 

lies somewhere between the tangent-modulus load and the reduced-modulus 

load. Moreover, he pointed out that the column would begin to buckle while 

the axial compressive load was still increasing which made possible for the 

stress on the convex side of the column to continue to increase, during the 

early stage of buckling (Allen and Bulson, 1980).  

Duberg and Wilder (1952) studied theoretically the post-buckling behaviour of 

a column accounting for its inelastic behaviour. They showed that if the initial 

imperfection of the column vanished, the critical load of the column was the 

tangent-modulus load at which the bending started. They pointed out that the 

behaviour of the perfect column at loads beyond the tangent-modulus load 

depended on the stress-strain curve of the material. If the Ramberg-Osgood 

law was used in the analysis, the ratio between the maximum load of the 

column and the tangent-modulus load increased by decreasing the 

exponent 𝑛 of the law. 

Numerous tests of plates and shells were carried out in the late 1940s and 

early 1950s and solutions for the bifurcation load were obtained for many 

cases of interest. However, researches faced a major obstacle which was 

known as ‘plasticity paradox’ or ‘plastic buckling paradox’. Many studies 

reported that plastic bifurcation loads of shells and plates based on the 

deformation theory of plasticity, which is clearly less approximate, are 
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reasonably in good agreement with test results, while calculations based on 

the flow theory of plasticity consistently overestimate plastic bifurcation load. 

Hill (1956, 1958) identified the buckling criterion for elastic-plastic solids 

mathematically modelled using smooth or cornered yield surfaces. His 

plasticity formulation could be applied not only to find the bifurcation under 

compressive loading, but also to solve problems involving bifurcation in 

tension such as necking (Hutchinson, 1974). He established uniqueness and 

stability criteria, and pointed out the difference between bifurcation and 

stability. 

The reasons which led researchers to study the post-buckling analysis of 

continuous solids and structures in the plastic range are that, in many cases 

of compressive loading, the lowest buckling load in plastic range of the 

material occurs under increasing load as it was illustrated by Shanley theory. 

Moreover, the material nonlinearity with a high hardening parameter, which 

reflects decreasing stiffness with increasing deformation or strain, adds 

additional destabilization to the geometric nonlinearity included already in the 

pre-buckling analysis (Hutchinson, 1974). Hutchinson (1974) studied the 

post-buckling behaviour and the imperfection-sensitivity aspects of plastic 

buckling for several plate and shell structures. He examined a simple discrete 

model, which was similar to Shanley’s model for plastic buckling of columns, 

to illustrate its post-buckling behaviour. He then used a simple continuous 

model to bring out some features of the behaviour of a continuous solid. He 

applied Hill’s bifurcation criteria for three dimensions solid to the widely used 

theory for plates and shells, the Donnell-Mushtari-Vlasov (DMV) theory. 

2.5 Early development in Plasticity 

Criteria for plastic yielding of solids, such as soils, had been proposed by 

different researchers, for example Coulomb in 1773. In his first paper on the 

fracture of sandstone, he concluded that the fracture of sandstone occurs 

when the shear stress reaches a certain value (Bell, 1984). His criterion was 

used by Poncelet in 1840 and Rankine in 1853. However, it appeared that 
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there were not as important investigations conducted on metals at the same 

time (Hill, 1950). 

In 1864, Tresca carried out experiments on metal forming problems such as 

punching and extrusion, which led him to state that the metal yields 

plastically when the maximum shear stress attained a critical value (Bell, 

1984).  

Tresca’s yield criterion was employed in 1870 and 1872 by Saint-Venant to 

identify the stresses in partly plastic cylinders subjected to torsion or 

rectangular beam subjected to bending and pressurized hollow cylinders. He 

constructed a system of equations relating the stresses and strains in two 

dimensional problems and found that there was no one-to-one relation 

between stress and total plastic strain (Hill, 1950). These equations were 

based on the assumptions that the volume of material did not change during 

plastic deformation, the direction of principal strains coincided with the 

direction of the principal stresses and the maximum shear stress at each 

point was equal to a specific constant in the plastic region (Jones, 2009; 

Osakada, 2010). 

In 1871, Maurice Levy used Saint-Venant’s assumptions except that Levy 

postulated the direction of the increments of the principal strains, and not the 

total principal strains, coincided with the direction of principle stresses 

(Timoshenko, 1953). This was the first attempt to use the incremental flow 

rule. Moreover, he proposed three-dimensional relations between stress and 

rate of plastic strain (Hill, 1950). 

In 1885, Bauschinger carried out tests to identify stress-strain relations of 

different metallic materials using a tension-compression testing machine. He 

found that the yield stress in compression after plastic tensile deformation 

was significantly lower than the yield stress in tension (Timoshenko, 1953).  

In 1882, Otto Mohr presented a graphical representation of stress at a point 

of a body by plotting circles, known as Mohr’s circles, for states of stress at 

failure in the plane of the maximum and minimum principle stresses. He 

suggested that the envelope of the circles was a fracture limit (Osakada, 

2010).   
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After Levy, it seemed no further significant studies were conducted before the 

end of the century but further experiments results, such as by Guest in 1900, 

were obtained and agreed with Tresca’s criterion (Hill, 1950).  

In 1904 Huber proposed that the total strain energy was composed of a 

dilatational (volumetric) component, which depends on the hydrostatic stress, 

and a distortional (shear) component, which depends on the deviatoric 

components of stress (Rees, 2006). Moreover, he addressed the failure of 

brittle material.  

Maxwell showed that the hydrostatic stress plays no part upon yielding. In his 

letter to his friend William Thomson in 1856, he suggested the distortional 

energy could be used as a yield criterion. He proposed that yielding occurred 

when the shear strain energy component of the total energy reached a critical 

value (Rees, 2006).  

In 1913, von Mises proposed his famous criterion of plastic yielding, which 

was physically interpreted by Hencky by stating that plastic yielding occurs 

when the elastic shear strain energy attains a critical value. Von Mises 

independently proposed similar equations to Levy’s equations (Hill, 1950). He 

considered the increments of plastic strains components were proportional to 

the deviatoric stress components. 

In 1920 and 1921, Prandtl calculated the loads required to notch a plane 

surface and a trimmed wedge by a flat die. Nadai conducted experiments 

and his results were in good agreement with Prandtl’s calculations (Hill, 

1950).  

In 1923 Hencky proposed a general theory underlying the special solutions of 

Prandtl. Moreover, he established the concept of deformation theory of 

plasticity. His equations lead to approximately correct results for proportional 

loading paths without unloading (Hencky, 1924), but do not capture the 

physics correctly for non-proportional loading or in case of unloading, as will 

be discussed extensively later and in the following chapters of this thesis.  

The applications of plasticity theories to technological processes began in 

1925 when von Karman analyzed the state of stresses in rolling of sheet 
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metal (von Karman, 1925). He presented in his paper the fundamental 

differential equations, pressure acting on the roll surface and the energy 

efficiency. Similar studies were made in 1927 by Sachs and Siebel for wire-

drawing. 

In 1926, Lode measured the deformation of metallic tubes subjected to 

combined tension and internal pressure. His experimental results validated 

the Levy-Mises equations with some approximation (Hill, 1950).  

The theory of plasticity then was generalized into two ways. The first one, 

based on assumptions confirmed by experiments made by Homhenemser in 

1931, was suggested by Reuss who made allowance for the elastic 

components of strain, following an early suggestion by Prandtl. The second 

one was proposed by Schmidt in 1932 and Odquist in 1933, who showed 

how work hardening could be brought within the framework of Levy-Mises 

equations (Hill, 1950). In 1932, following all the above-mentioned key 

contributions, a theory of plasticity for isotropic metals was constructed and 

validated with experimental observations. Hill (1950) used such theory to 

solve various metal forming problems using plasticity theory. 

2.6 Computational Plasticity 

The finite element method (FEM) was developed in the 1950s to study the 

elastic behaviour of airplane structures. The elastic-plastic FEM was 

developed as an extension of the elastic FEM. Marca and King (1967) 

studied elastic-plastic analysis of two- dimensional problem. The incremental 

stress-strain relationship was derived based on Prandtl-Reuss equations and 

von Mises yield criterion. Their numerical results for an infinitely long thick 

cylinder subjected to internal pressure and for plate with a hole subject to 

tensile stress reasonably agree with test results. In the next year, Yamada et 

al. (1968) constructed the stress-strain matrix for an elastic-plastic analysis. 

The FEM motivated researchers in the field of plasticity and numerous 

papers on metal forming problems began to be published, which required the 

study of large elastic-plastic deformations (McMeeking and Rice,1975). From 

1980s until now, commercial software for elastic-plastic analysis appeared 
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and the FE method began to be used in the industry. Many researchers, such 

as J.C Simo, K.J Bathe , O.C. Zienkiewicz, R.L. Taylor and T.J.R. Hughes 

and others,  published various papers and books in finite element analysis in 

the field of plasticity, creep and viscoplasticity. Their significant contributions 

have been implemented in a number of commercial software such as 

ABAQUS and ADINA. 

2.7 Inelastic material behaviour –Elasto-plasticity based on 
the flow theory 

2.7.1 Plastic stress-strain relations  

In this section, assuming the elastoplastic response of the material is 

governed by the classical incremental theory of plasticity, called the flow 

theory, we will construct the stress-strain matrix in elasto-plasticity for three-

dimensional and plane-stress problems. With this approach, in addition to the 

elastic stress-strain relations, the following three properties characterize the 

material behaviour:  

 the yield criterion is used to identify stress combinations which will 

initiate the plastic response and to identify initial yield surface; 

 the flow rule  is used to relate the plastic strain increments to the 

current stress level and stress increments; 

 The hardening rule is employed to identify the evolution of the yield 

surface as a function of stresses, strains and other parameters. 

The yield condition or the yield surface at time t is: 

𝐹( 𝜎𝑡 𝑖𝑗, 𝜅𝑡𝑡 ) = 0 (2.14) 

where 𝜅𝑡  is a state variable which depends on the plastic strains 𝜀𝑡 𝑖𝑗
𝑝

 

The flow rule is assumed in the form (Bathe, 1982): 

𝑑𝜀𝑖𝑗
𝑝 = 𝜆 

𝜕 𝐹 𝑡

𝜕 𝜎𝑖𝑗
𝑡

𝑡 = 𝜆 𝑡 𝑞𝑖𝑗 (2.15) 

where 𝜆 𝑡  is a positive scalar at time t. This equation means that the 

increment of plastic deformation is a vector normal to the yield surface 𝐹𝑡 . 

Using matrix notation 
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𝑑𝜎 = {𝑑𝜎11 𝑑𝜎22 𝑑𝜎33  𝑑𝜎12  𝑑𝜎23  𝑑𝜎31}
𝑇 

(2.16) 𝑑𝜀𝑝 = {𝑑𝜀11
𝑝 𝑑𝜀22

𝑝 𝑑𝜀33
𝑝  𝑑𝜀21

𝑝 + 𝑑𝜀12
𝑝  𝑑𝜀23

𝑝 + 𝑑𝜀32
𝑝  𝑑𝜀13

𝑝 + 𝑑𝜀31
𝑝 }

𝑇
 

 

𝑞𝑡 = {
𝜕 𝐹𝑡

𝜕 𝜎11
𝑡

𝜕 𝐹𝑡

𝜕 𝜎22
𝑡

𝜕 𝐹𝑡

𝜕 𝜎33
𝑡 2 

𝜕 𝐹𝑡

𝜕 𝜎12
𝑡 2 

𝜕 𝐹𝑡

𝜕 𝜎23
𝑡 2 

𝜕 𝐹𝑡

𝜕 𝜎31
𝑡 }

𝑇

 (2.17) 

The factor 2 shown in Eq. (2.17) is due to the fact that, in the plastic strain 

vector shown in Eq. (2.16), the total plastic shear strains increments are the 

sum of two shear plastic strain increment components. 

The total differentiation of the function 𝐹𝑡  is 

𝑑 𝐹𝑡 =
𝜕 𝐹𝑡

𝜕 𝜎𝑖𝑗
𝑡  𝑑𝜎𝑖𝑗 + 

𝜕 𝐹𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝  𝑑𝜀𝑖𝑗

𝑝
 

(2.18) 

By defining 

𝑃𝑡 = −{
𝜕 𝐹𝑡

𝜕 𝜀𝑡 11
𝑝

𝜕 𝐹𝑡

𝜕 𝜀𝑡 22
𝑝

𝜕 𝐹𝑡

𝜕 𝜀𝑡 33
𝑝

𝜕 𝐹𝑡

𝜕 𝜀𝑡 12
𝑝

𝜕 𝐹𝑡

𝜕 𝜀𝑡 23
𝑝

𝜕 𝐹𝑡

𝜕 𝜀𝑡 31
𝑝 }

𝑇

 (2.19) 

then 𝐹𝑡  can be written 

𝑑 𝐹𝑡 = 𝑞𝑡 𝑇  𝑑𝜎 − 𝑃𝑡 𝑇  𝑑𝜀𝑝  

Since, during plastic deformation, 𝐹𝑡 = 0 (Bathe, 1982), we also have 

𝑑 𝐹𝑡 = 0 

𝑞𝑡 𝑇  𝑑𝜎 − 𝑃𝑡 𝑇  𝑑𝜀𝑝  = 0 (2.20) 

The total rate of strain is assumed to be split into an additive sum of the 

elastic part and the plastic part 

𝑑𝜀 =  𝑑𝜀𝑒 +  𝑑𝜀𝑝 
(2.21) 

Then 

𝑑𝜀𝑒 = 𝑑𝜀 −  𝑑𝜀𝑝  

The stress increment is obtained by 

𝑑𝜎 = 𝐷𝑒 𝑑𝜀𝑒 = 𝐷𝑒 (𝑑𝜀 −  𝑑𝜀𝑝) 
(2.22) 

where 𝐷𝑒 is the matrix of elastic moduli.  

Substituting Eq. (2.22) and (2.15) into the first term of Eq. (2.20), we will have 

𝑞𝑡 𝑇 𝑑𝜎 = 𝑞𝑡 𝑇  (𝐷𝑒 (𝑑𝜀 −  𝑑𝜀𝑝) ) = 𝑞𝑡 𝑇  (𝐷𝑒  (𝑑𝜀 − 𝜆 𝑡 𝑞𝑡 𝑇) )  
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Eq. (2.20) then is 

𝑞𝑡 𝑇  (𝐷𝑒  (𝑑𝜀 − 𝜆 𝑡 𝑞𝑡 𝑇) ) = 𝑃𝑡 𝑇  𝜆 𝑡 𝑞𝑡 𝑇  

Finally 

𝜆 𝑡 =
𝑞𝑡 𝑇 𝐷𝑒 𝑑𝜀

𝑞𝑡 𝑇 𝐷𝑒 𝑞𝑡 + 𝑃𝑡 𝑇 𝑞𝑡  
 

(2.23) 

Substituting 𝜆 𝑡  from Eq. (2.23) into Eq. (2.15) and then into Eq. (2.22), we 

get the stress increment as a function of total strain increment 

𝑑𝜎 = 𝐷𝑒𝑝 𝑑𝜀 
(2.24) 

where Dep is the instantaneous elastic-plastic stress-strain (tangent) matix: 

𝐷𝑒𝑝 = 𝐷𝑒 −
𝐷𝑒 𝑞𝑡  (𝐷𝑒 𝑞𝑡 )

𝑇

𝑃𝑡 𝑇 𝑞𝑡 + 𝑞𝑡 𝑇 𝐷𝑒 𝑞𝑡
 (2.25) 

The above stress-strain matrix depends on the yield function 𝐹𝑡 , the current 

stress and on the plastic strains, which are related to the history of strains. 

The matrix enters in the evaluation of the stress increment from time 𝑡 to time 

𝑡 + 𝛥𝑡. If the stress at time t is known, then the stress corresponding to time 

𝑡 + 𝛥𝑡 is calculated using (Bathe, 1982) 

𝜎𝑡+𝛥𝑡 = 𝜎𝑡 +∫  𝑑𝜎
𝑡+𝛥𝑡

𝑡

= 𝜎𝑡 +∫  𝐷𝑒𝑝 𝑑𝜀
𝜀𝑡+𝛥𝑡

𝜀𝑡
 

(2.26) 

Various well-known schemes for integration of Eq. (2.26) have been 

proposed in the literature and can be classified into explicit and implicit 

categories (Zienkiewicz and Taylor, 2005) and (Bathe, 1982). 

2.7.2 Classical yield surfaces 

The general procedure outlined in the previous section allows us to 

determine the elastic-plastic matrix for any yield surface employed in 

practice.  

The three deviatoric stress invariants at time t are: 

𝐼1
𝑡 = 𝜎𝑖𝑖

𝑡  

(2.27) 𝐽𝑡 2 = 
1

2
 𝑠𝑡 𝑖𝑗 𝑠𝑡 𝑖𝑗 
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𝐽𝑡 3 = 
1

3
 𝑠𝑡 𝑖𝑗 𝑠𝑡 𝑗𝑘 𝑠𝑡 𝑘𝑖 

in which  𝑠𝑡  is the deviatoric stress 

𝑠𝑖𝑗
𝑡 = 𝜎𝑖𝑗

𝑡 − 𝛿𝑖𝑗 𝜎𝑚
𝑡  

(2.28) 
𝜎𝑚
𝑡 =

1

3
𝐼1
𝑡 =

1

3
( 𝜎11
𝑡 + 𝜎22

𝑡 + 𝜎33
𝑡 ) 

where 𝛿𝑖𝑗 is the Kronecker delta 

𝛿𝑖𝑗 = {
0; 𝑖 ≠ 𝑗
1; 𝑖 = 𝑗

 (2.29) 

Useful form of these invariants for use in yield conditions is (Zienkiewicz and 

Taylor, 2005): 

𝜎𝑚
𝑡 =

1

3
𝐼1
𝑡  

(2.30) 

𝜎𝑓
𝑡 = √ 𝐽𝑡 2 

𝜃𝑡 =
1

3
 𝑠𝑖𝑛−1(−

3√3 𝐽3

1
3𝑡

2 𝜎𝑓
𝑡 )         𝑤𝑖𝑡ℎ      −

𝜋

6
≤ 𝜃 ≤

𝜋

6
 

Using theses definitions and stress invariants, several yield conditions can be 

given: 

1. Tresca yield condition (Zienkiewicz and Taylor, 2005): 

𝐹𝑡 = 2 𝜎𝑓
𝑡 𝑐𝑜𝑠 𝜃𝑡 − 𝑌(𝜅)𝑡  (2.31) 

where 𝑌(𝜅)𝑡  is function of the isotropic hardening parameter 𝜅. 

2. Von Mises yield condition (Bathe, 1982): 

𝐹𝑡 = 𝐽𝑡 2 − 𝜅𝑡  (2.32) 

where 𝜅𝑡  at time 𝑡 is (Bathe, 1982) 

𝜅𝑡 =
1

3
 𝜎𝑦

2𝑡  (2.33) 

𝜎𝑦
𝑡  is the yield stress at time t. In the case of von Mises theory, the 

yield condition only depends on the value of the second invariant of 

the deviatoric stress, 𝐽2. For this reason this theory is also known as a 

𝐽2 theory. 
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Conditions 1 and 2 are widely used in metal plasticity. For soils, concrete and 

other 'frictional' materials the Mohr-Coulomb or Drucker-Prager surfaces are 

used. 

3. The Mohr-Coulomb yield function is (Zienkiewicz and Taylor, 2005): 

𝐹𝑡 = 𝜎𝑚
𝑡  𝑠𝑖𝑛 𝜙 + 𝜎𝑓

𝑡  (𝑐𝑜𝑠 𝜃𝑡 −
1

√3
 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃𝑡 ) − 𝑐 𝑐𝑜𝑠 𝜙 (2.34) 

where c and ϕ are the cohesive strength and the angle of friction of the 

material, respectively. They are function of the isotropic hardening 

parameter or constant for the case of perfect plasticity.   

4. The Drucker-Prager yield function is (Zienkiewicz and Taylor, 2005): 

Ft = 3𝛼́ σm
t + 𝜎𝑓

𝑡 − 𝑘 (2.35) 

where 𝛼́ and 𝑘 are material property parameters.  

𝛼́ =
2 𝑠𝑖𝑛 𝜙

√3 (3 − 𝑠𝑖𝑛 𝜙)
 

(2.36) 
𝑘 =

6 𝑐𝑜𝑠 𝜙

√3 (3 − 𝑠𝑖𝑛 𝜙)
 

Next we consider the von Mises yield condition with isotropic hardening to 

construct the elastic-plastic matrix. 

We have from Eq. (2.32) 

𝐹𝑡 = 𝐽𝑡 2 −
1

3
 𝜎𝑦

2𝑡  
 

𝐽𝑡 2 = 
1

2
 𝑠𝑡 𝑖𝑗 𝑠𝑡 𝑖𝑗 =

1

2
 ( 𝑠𝑡 11

2 + 𝑠𝑡 22
2 + 𝑠𝑡 33

2 + 2 𝑠𝑡 12
2 + 2 𝑠𝑡 23

2 + 2 𝑠𝑡 31
2 ) 

 

To obtain 𝐷𝑒𝑝 from Eq. (2.25), we need to find 𝑞𝑡  and 𝑃𝑡 . 

To find 𝑃𝑡 : 

𝑃𝑡 =
𝜕 𝐹𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝 =

𝜕 𝐹𝑡

𝜕 𝜎𝑦
𝑡  

𝜕 𝜎𝑦
𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝 = −

2

3
 𝜎𝑦
𝑡  

𝜕 𝜎𝑦
𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝  

(2.37) 

Thus we need to find the relation between 𝜎𝑦
𝑡  and the plastic strains 

One way to formulate this equation is to assume hardening is a function of 

the plastic work, which takes the form 

𝑊𝑃
𝑡 = ∫ 𝜎𝑡 𝑖𝑗 𝑑𝜀𝑖𝑗

𝑝
𝜀𝑡 𝑖𝑗
𝑝

0

 (2.38) 
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Therefore 

𝜕 𝑊𝑃
𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝 = 𝜎𝑡 𝑖𝑗 

 

Substituting into Eq. (2.37), one can find 

𝜕 𝐹𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝 = −

2

3
 𝜎𝑦
𝑡  

𝜕 𝜎𝑦
𝑡

𝜕 𝑊𝑃
𝑡  

𝜕 𝑊𝑃
𝑡

𝜕 𝜀𝑡 𝑖𝑗
𝑝 = −

2

3
 𝜎𝑦
𝑡  

𝜕 𝜎𝑦
𝑡

𝜕 𝑊𝑃
𝑡  𝜎𝑡 𝑖𝑗 = −𝐴 𝜎𝑡 𝑖𝑗 (2.39) 

where 

𝐴𝑡 =
2

3
 𝜎𝑦
𝑡  

𝜕 𝜎𝑦
𝑡

𝜕 𝑊𝑃
𝑡  

(2. 40) 

The variable 𝐴𝑡  is zero in perfect plasticity. 

Considering 1-D test result and linear hardening, the current yield stress can 

be written in term of the plastic work from time 0 to t (Figure 2.10): 

𝑊𝑃
𝑡 =

1

2
 (
1

𝐸𝑡
−
1

𝐸
) ( 𝜎𝑡 𝑦

2 − 𝜎0 𝑦
2) 

 

where 𝐸 is the elastic modulus and 𝐸𝑡 is tangent modulus or strain hardening 

modulus of the material. 

By differentiation of both side of this equation, one can obtain 

𝜕 𝜎𝑦
𝑡

𝜕 𝑊𝑃
𝑡 =

𝐸 𝐸𝑡
𝐸 − 𝐸𝑡

 
1

𝜎𝑦
𝑡  (2.41) 

 

Figure 2.10: the stress-stain of a material for 1-D test 

Substituting into Eq. (2.41) into Eq. (2. 40) 
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𝐴𝑡 =
2

3
 𝜎𝑦
𝑡 𝐸 𝐸𝑡

𝐸 − 𝐸𝑡
 
1

𝜎𝑦
𝑡 =

2

3
 
𝐸 𝐸𝑡
𝐸 − 𝐸𝑡

 
(2.42) 

Finally 

𝑃𝑡 = −
𝜕 𝐹𝑡

𝜕 𝜀𝑝𝑡 = 𝐴𝑡  { 𝜎𝑡 11 𝜎𝑡 22 𝜎𝑡 33  𝜎𝑡 12  𝜎𝑡 23  𝜎𝑡 31}
𝑇
 (2.43) 

It is proven from Bathe (1982) that the matrix 𝑞𝑡  is 

𝑞 = { 𝑠11
𝑡 𝑠22

𝑡 𝑠33
𝑡 2 𝑠12

𝑡 2 𝑠23
𝑡 2 𝑠31

𝑡 }
𝑇𝑡  (2.44) 

By setting   

𝑎 = 𝑃𝑡 𝑇 𝑞𝑡  

(2.45) 
𝑏 = 𝐷𝑒 𝑞𝑡  

𝑐 = 𝑞𝑡 𝑇 𝐷𝑒 𝑞𝑡 = 𝑞𝑡 𝑇 𝑏 

we can now evaluate 𝐷𝑒𝑝: 

𝐷𝑒𝑝 = 𝐷𝑒 −
𝑏 𝑏𝑇

𝑎 + 𝑐
 (2.46) 

The stress-strain increments are therefore related as follows: 

𝑑𝜎 = 𝐷𝑒𝑝 𝑑𝜀  

Using the rate form of the stresses and strains in which dσ = σ̇ dt  

𝜎̇ = 𝐷𝑒𝑝 𝜀̇ 
 

𝐷𝑒 is the 6 × 6 matrix of elastic. Using the index notation 

𝐷𝑖𝑗𝑘𝑙
𝑒 = 𝜆 𝛿𝑖𝑗 𝛿𝑘𝑙 + 𝐺 (𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘) (2.47) 

where 𝜆 is Lame’s elastic constant and 𝐺 is the shear modulus 

𝜆 =
𝜈 𝐸

(1 + 𝜈)(1 − 2𝜈)
      ,         𝐺 =

𝐸

2(1 + 𝜈)
 (2.48) 

𝐷𝑒𝑝 is a 6 × 6 matrix too and represents the instantaneous tangent elastic-

plastic stress-strain matrix. Using the index notation, the stress rate is 

𝜎𝑖𝑗̇ = 𝐷𝑖𝑗𝑘𝑙
𝑒𝑝  𝜀𝑘𝑙̇  (2.49) 

and the von Mises effective stress is 

𝜎𝑡 = √3 𝐽𝑡 2 
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2.7.3 The Prandtl-Reuss equations for plane stress 
assumption 

Let consider a point of a plate or a shell, whose mid plane is plane 1-2, and 

let assume they are in a state of plane stress, so that we have 𝜀2̇3 = 𝜀3̇1 =

𝜎̇33 = 0 . Thus the constitutive equation in rate form (Eq. (2.49)) is reduced to 

the form 

𝜎̇𝛼𝛽 = 𝐷𝛼𝛽𝜅𝛾

𝑒𝑝
 𝜀𝜅̇𝛾   (2.50) 

Dαβκγ

ep
 is the plane-stress moduli which is given in term of the three 

dimensional quantities by (Hutchinson, 1974) 

𝐷𝛼𝛽𝜅𝛾

𝑒𝑝
= 𝐷𝛼𝛽𝜅𝛾

𝑒𝑝 −
𝐷𝛼𝛽33
𝑒𝑝  𝐷33𝜅𝛾

𝑒𝑝

𝐷3333
𝑒𝑝  

(2.51) 

where α, β, κ and γ range from 1 to 2. Thus 𝐷
𝑒𝑝

is 2 × 2 matrix. 

For the case of cylindrical shells subjected to non-proportional loading, which 

are the external pressure and the axial load, assuming 1 and 2 are the axial 

and hoop directions, the applied stresses 𝜎𝑡 12 = 𝜎𝑡 23 = 𝜎𝑡 31 = 𝜎𝑡 33 = 0 

and 𝜎𝑡 11 ≠ 0, 𝜎𝑡 22 ≠ 0 

Let denote by 𝑥 the axis of the shell and by 𝑟 an axis orthogonal to 𝑥 on a 

reference cross section, defining a radial direction. Introducing an angle 𝜃 ∈

[0,2π] ,(𝑥, 𝜃, 𝑟) defines a set of cylindrical coordinates for the cylindrical shell. 

Using the this alternative notation, the applied stresses are 𝜎𝑡 11 = 𝜎𝑥𝑥 and 

𝜎𝑡 22 = 𝜎𝜃𝜃. 

 Substituting into Eqs. (2.43), (2.44) and (2.45), the rate form of the 

constitutive Eq. (2.50) is 

[

𝜎̇𝑥𝑥
𝜎̇𝜃𝜃
𝜏̇𝑥𝜃

] =
𝐸

1 + 𝜈
 [

𝛼 𝛽 0
𝛽 𝛾 0

0 0
2 + 2𝜈

𝐸
 𝐺

] [

𝜀𝑥̇𝑥
𝜀𝜃̇𝜃
𝜀𝑥̇𝜃

] 
(2.52) 

The expressions of α , 𝛽 and γ are  

𝛼 =
1 + 𝜈

𝜌
[4 − 3 (1 −

𝐸𝑡
𝐸
)
𝜎𝑥𝑥

2

𝜎̅2
] 

(2.53) 
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𝛽 =
1 + 𝜈

𝜌
[2 − 2(1 − 2𝜈)

𝐸𝑡
𝐸
− 3(1 −

𝐸𝑡
𝐸
)
𝜎𝑥𝑥𝜎𝜃𝜃
𝜎2

] 

𝛾 =
1 + 𝜈

𝜌
[4 − 3 (1 −

𝐸𝑡
𝐸
)
𝜎𝜃𝜃

2

𝜎̅2
] 

𝜌 = (5 − 4𝜈) − (1 − 2𝜈)2
𝐸𝑡
𝐸
− 3(1 − 2𝜈) (1 −

𝐸𝑡
𝐸
)
𝜎𝑥𝑥𝜎𝜃𝜃
𝜎2

 

𝐺 =
𝐸

2(1 + 𝜈)
 

The effective stress 𝜎 is written with the assumption of plane stress as 

follows 

𝜎2 = 𝜎𝑥𝑥
2 − 𝜎𝑥𝑥 𝜎𝜃𝜃 + 𝜎𝜃𝜃

2 
(2.54) 

2.8 Inelastic material behaviour –Elasto-plasticity based on 
the deformation theory 

Hencky (1947) proposed total stress-strain relations in which the total strain 

components are related directly to the total current stress components. The 

total plastic strain is (Mendelson, 1968) (Jahed et al., 1998) 

𝜀𝑖𝑗
𝑝 =

3

2

𝜀
𝑝

𝜎
𝑠𝑖𝑗 (2.55) 

where 𝑠𝑖𝑗, 𝜎 and 𝜀
𝑝
are the deviatoric stress, the effective stress and the 

effective plastic strain, respectively. 

The above equation shows that the plastic strains are functions of the current 

state of the stress and independent from the loading history. This assumption 

significantly simplifies the plastic problem with respect to the actual physical 

behaviour, since experimental evidence shows that the plastic strain is 

generally dependent of the loading path. Therefore, the deformation theory 

generally cannot provide correct results (Mendelson, 1968; Hill, 1950). 

However, for the case of proportional and monotonic loading, in which all 

stress components monotonically increase with a constant ratio between 

each other, the flow theory and the deformation theory are identical. 

Moreover, Budiansky (1959) proposed that the deformation theory of 

plasticity can be employed for a range of loading paths other than 

proportional loading when the deformation theory satisfies postulates and 
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assumptions proposed by Drucker to develop the general incremental theory 

of plasticity. 

To derive the specific expression of Eq. (2.55), it is observed that, in the 

assumption of small strains, the total strain can still be written in terms of 

elastic and plastic strain parts as 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑝
 (2.56) 

According to the generalized Hooke’s low; the elastic strain is given by 

𝜀𝑖𝑗
𝑒 =

1 + 𝜈

𝐸
 𝑠𝑖𝑗 +

1 − 2𝜈

𝐸
 𝛿𝑖𝑗𝜎𝑚 (2.57) 

Replacing into Eq. (2.56)  

𝐸𝜀𝑖𝑗 = (1 + 𝜈)𝑠𝑖𝑗 + (1 − 2𝜈) 𝛿𝑖𝑗𝜎𝑚 +
3

2
𝐸
𝜀
𝑝

𝜎
𝑠𝑖𝑗 (2.58) 

This relation is used in the commercial code ABAQUS (Simulia, 2011) in 

combination with Ramberg-Osgood formula.  

The plastic strain part of the Ramberg-Osgood for a multi-axial stress state is  

𝐸 𝜀
𝑝
= 𝛼 (

𝜎

𝜎𝑦
)

𝑛−1

𝜎 (2.59) 

where E and ν are Young’s modulus and Poisson’s ratio, respectively, σy is 

the nominal yield strength (sometimes called ‘proof stress’ and denoted by 

σ0.2%, as it is the yield strength corresponding to an effective plastic strain of 

0.2%),  α is the ‘yield offset’ and n is the strain hardening parameter. 

Substituting Eq. (2.59) into Eq. (2.58), one can obtain 

𝐸𝜀𝑖𝑗 = (1 + 𝜈)𝑠𝑖𝑗 + (1 − 2𝜈) 𝛿𝑖𝑗𝜎𝑚 +
3

2
𝛼 (

𝜎

𝜎𝑦
)

𝑛−1

𝑠𝑖𝑗 (2.60) 

Eq. (2.60) is the constitutive model employed in ABAQUS using the 

deformation theory of plasticity (Simulia, 2011). 
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2.8.1 The Hencky equations for plane stress 
assumption 

For an isotropic material, the J2 deformation theory depends on the effective 

stress 𝜎 and strain 𝜀. The effective stress is given as a function of the multi-

axial stress by 

𝜎 = √3 𝐽2 (2.61) 

in which the second invariant of the deviatoric stress 𝐽2 can be written in term 

of the stress invariants 𝐼1and 𝐼2 (Jones, 2009) 

𝐽2 =
1

2
𝑠𝑖𝑗𝑠𝑖𝑗 =

1

3
𝐼1
2 − 𝐼2 

 

where 

𝐼1 = 𝜎𝑖𝑗  

𝐼2 =
1

2
(𝜎𝑖𝑖𝜎𝑗𝑗 − 𝜎𝑖𝑗𝜎𝑖𝑗) 

 

The effective strain is given as  

𝜀 = √
2

3
 𝜀𝑖𝑗𝜀𝑖𝑗 

 

Those quantities relate together by  

𝜎 = 𝐸𝑠 𝜀  

The incremental form of the those quantities relate together as follows 

𝑑𝜎 = 𝐸𝑡  𝑑𝜀  

where 𝑑𝜎 and 𝑑𝜀 are the effective stress and the total effective strain 

increments, respectively. 

During buckling, the stresses, strains and secant modulus 𝐸𝑠 vary from their 

pre-buckling value. Let the variation be denoted by 𝑑. Then the variation of 

the Eq. (2.55) is 

𝑑𝜀𝑖𝑗
𝑝 =

3

2
(
𝑑𝜀

𝑝
 𝜎 − 𝑑𝜎 𝜀

𝑝

𝜎
2  ) 𝑠𝑖𝑗 +

3

2
 
𝜀
𝑝

𝜎
 𝑑𝑠𝑖𝑗 

 

𝑑𝜀𝑖𝑗
𝑝 =

3

2

𝑑𝜎

𝜎
(
𝑑𝜀

𝑝

𝑑𝜎
−
𝜀
𝑝

𝜎
) 𝑠𝑖𝑗 +

3

2
 
𝜀
𝑝

𝜎
 𝑑𝑠𝑖𝑗 (2.62) 

We have the following relations 
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𝜀
𝑝

𝜎
=
𝜀 − 𝜀

𝑒

𝜎
=

1

𝐸𝑠
−
1

𝐸
 

 

𝑑𝜀
𝑝

𝑑𝜎
=
𝑑𝜀 − 𝑑𝜀

𝑒

𝑑𝜎
=

1

𝐸𝑡
−
1

𝐸
 

 

Substituting them into Eq. (2.62), one obtains 

𝑑𝜀𝑖𝑗
𝑝 =

3

2

𝑑𝜎

𝜎
(
1

𝐸𝑡
−

1

𝐸𝑠
) 𝑠𝑖𝑗 +

3

2
 (
1

𝐸𝑠
−
1

𝐸
)  𝑑𝑠𝑖𝑗 (2.63) 

𝑑𝜀
𝑝
 and 𝑑𝜀

𝑒
 are the effective plastic and elastic strain increment, 

respectively. 

From Eq. (2.56), the incremental form of the total strain is 

𝑑𝜀𝑖𝑗 = 𝑑𝜀𝑖𝑗
𝑒 + 𝑑𝜀𝑖𝑗

𝑝
 (2.64) 

where 𝑑𝜀𝑖𝑗
𝑒  is the elastic strain increment. Computing the variation of Eq. 

(2.57), one has 

𝑑𝜀𝑖𝑗
𝑒 =

1 + 𝜈

𝐸
 𝑑𝑠𝑖𝑗 +

1 − 2𝜈

𝐸
 𝛿𝑖𝑗 𝑑𝜎𝑚 (2.65) 

Substituting Eqs. (2.63) and (2.65) into (2.64), one has 

𝑑𝜀𝑖𝑗 =
1+𝜈

𝐸
 𝑑𝑠𝑖𝑗 +

1−2𝜈

𝐸
 𝛿𝑖𝑗  𝑑𝜎𝑚 +

3

2

𝑑𝜎

𝜎
(
1

𝐸𝑡
−

1

𝐸𝑠
) 𝑠𝑖𝑗 +

3

2
 (

1

𝐸𝑠
−

1

𝐸
)  𝑑𝑠𝑖𝑗  

 

or 

𝑑𝜀𝑖𝑗 = (
3

2𝐸𝑠
−
1 − 2𝜈

2𝐸
) 𝑑𝑠𝑖𝑗 +

1 − 2𝜈

𝐸
 𝛿𝑖𝑗  𝑑𝜎𝑚 +

3

2

𝑑𝜎

𝜎
(
1

𝐸𝑡
−

1

𝐸𝑠
) 𝑠𝑖𝑗  

Using the rate form of the stresses and strains 

𝜀𝑖̇𝑗 = (
3

2𝐸𝑠
−
1 − 2𝜈

2𝐸
) 𝑠̇𝑖𝑗 +

1 − 2𝜈

𝐸
 𝛿𝑖𝑗  𝜎̇𝑚 +

3

2

𝜎̇

𝜎
(
1

𝐸𝑡
−

1

𝐸𝑠
) 𝑠𝑖𝑗 

(2.66) 

Assuming that the plate and shell problems are in a state of approximate 

plane stress, one can assume 𝜀̇23 = 𝜀3̇1 = 𝜎̇33 = 0. Thus the constitutive 

equation in rate formEq. (2.66) is reduced to the form 

𝜀α̇β = (
3

2𝐸𝑠
−
1 − 2𝜈

2𝐸
) 𝑠̇αβ +

1 − 2𝜈

𝐸
 𝛿αβ 𝜎̇𝑚 +

3

2

𝜎̇

𝜎
(
1

𝐸𝑡
−

1

𝐸𝑠
) 𝑠αβ 

(2.67) 

where α and β range from 1 to 2 
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For cylindrical shells subjected to non-proportional loading, let 𝜎𝑥𝑥 and 𝜎𝜃𝜃 

denote the non-zero applied stresses, again with 𝑥 and 𝜃 coinciding with 

axes 1 and 2, respectively. The effective stress (Eq. (2.61)) is 

𝜎2 = 𝜎𝑥𝑥
2 − 𝜎𝑥𝑥 𝜎𝜃𝜃 + 𝜎𝜃𝜃

2 
(2.68) 

A straightforward differentiation of Eq. (2.68) gives 

𝑑𝜎

𝜎
=
(2𝜎𝑥𝑥 − 𝜎𝜃𝜃) 𝑑𝜎𝑥𝑥 + (2𝜎𝜃𝜃 − 𝜎𝑥𝑥) 𝑑𝜎𝜃𝜃

2 𝜎
2  

 

The constitutive Eq. (2.67) therefore furnishes 

𝜀𝑥̇𝑥 =
1

2
(
1

𝐸𝑠
−

1−2𝜈

3𝐸
) (2𝜎̇𝑥𝑥 − 𝜎̇𝜃𝜃) +

1−2𝜈

3𝐸
 (𝜎̇𝑥𝑥 + 𝜎̇𝜃𝜃) +

(2𝜎𝑥𝑥−𝜎𝜃𝜃) 

4𝜎
2 (

1

𝐸𝑡
−

1

𝐸𝑠
) ((2𝜎𝑥𝑥 − 𝜎𝜃𝜃) 𝜎̇𝑥𝑥 + (2𝜎𝜃𝜃 − 𝜎𝑥𝑥) 𝜎̇𝜃𝜃)  

𝜀𝜃̇𝜃 =
1

2
(
1

𝐸𝑠
−

1−2𝜈

3𝐸
) (2𝜎̇𝜃𝜃 − 𝜎̇𝑥𝑥) +

1−2𝜈

3𝐸
 (𝜎̇𝑥𝑥 + 𝜎̇𝜃𝜃) +

(2𝜎𝜃𝜃−𝜎𝑥𝑥) 

4𝜎
2 (

1

𝐸𝑡
−

1

𝐸𝑠
) ((2𝜎𝑥𝑥 − 𝜎𝜃𝜃) 𝜎̇𝑥𝑥 + (2𝜎𝜃𝜃 − 𝜎𝑥𝑥) 𝜎̇𝜃𝜃)  

𝜀𝑥̇𝜃 =
1

2
(
3

𝐸𝑠
−

1−2𝜈

𝐸
) 𝜏̇𝑥𝜃  

After some algebraic manipulations, the above equations are reduced to 

𝐸𝑡𝜀𝑥̇𝑥 = (1 − (1 −
𝐸𝑡

𝐸𝑠
)
3 𝜎𝜃𝜃

2

4 𝜎
2 ) 𝜎̇𝑥𝑥 − {

1

2
[1 − (1 − 2𝜈)

𝐸𝑡

𝐸
− 3 (1 −

𝐸𝑡

𝐸𝑠
) (

𝜎𝑥𝑥𝜎𝜃𝜃

2 𝜎
2  )]} 𝜎̇𝜃𝜃  

𝐸𝑡𝜀𝜃̇𝜃 = {
1

2
 [1 − (1 − 2𝜈)

𝐸𝑡

𝐸
− 3(1 −

𝐸𝑡

𝐸𝑠
) (

𝜎𝑥𝑥𝜎𝜃𝜃

2 𝜎
2  )]} 𝜎̇𝑥𝑥 + (1 − 3 (1 −

𝐸𝑡

𝐸𝑠
)
𝜎𝑥𝑥
2

4 𝜎
2) 𝜎̇𝜃𝜃  

𝐸𝑡 𝜀𝑥̇𝜃 =
1

2
(
3 𝐸𝑡

𝐸𝑠
− (1 − 2𝜈)

𝐸𝑡

𝐸
) 𝜏̇𝑥𝜃  

The above relations can be inverted to give the constitutive relations in the 

form 

𝜎𝑥𝑥̇ =
𝐸

1 + 𝜈
(𝛼 𝜀𝑥𝑥̇ + 𝛽 𝜀𝜃𝜃̇ ) 

(2.69) 𝜎𝜃𝜃̇ =
𝐸

1 + 𝜈
(𝛽 𝜀𝑥𝑥̇ + 𝛾 𝜀𝜃𝜃̇ ) 

𝜏𝑥𝜃̇ =
𝐸

1 + 𝜈
(
2 + 2𝜈

𝐸
 𝐺 𝜀𝑥𝜃̇ ) 

The expressions of α , 𝛽 and γ are  
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𝛼 =
1 + 𝜈

𝜌
[4 − 3 (1 −

𝐸𝑡
𝐸𝑠
)
𝜎𝑥𝑥

2

𝜎2
] 

(2.70) 

𝛽 =
1 + 𝜈

𝜌
[2 − 2(1 − 2𝜈)

𝐸𝑡
𝐸
− 3(1 −

𝐸𝑡
𝐸𝑠
)
𝜎𝑥𝑥𝜎𝜃𝜃
𝜎̅2

] 

𝛾 =
1 + 𝜈

𝜌
[4 − 3 (1 −

𝐸𝑡
𝐸𝑠
)
𝜎𝜃𝜃

2

𝜎2
] 

𝜌 = 3
𝐸

𝐸𝑠
+ (1 − 2𝜈) [2 − (1 − 2𝜈)

𝐸𝑡
𝐸
− 3(1 −

𝐸𝑡
𝐸𝑠
)
𝜎𝑥𝑥𝜎𝜃𝜃
𝜎2

] 

𝐺 =
𝐸

2(1 + 𝜈) + 3 (
𝐸
𝐸𝑠

− 1)
 

2.9 Plastic buckling paradox 

During investigations of plastic buckling of plates and shells subjected to 

uniform stresses, the plastic paradox appeared. Use of the deformation 

theory of plasticity predicts buckling loads that are smaller than those 

obtained with the incremental (or flow) theory, and physical evidence 

obtained by comparing measured and calculated buckling loads points in 

favour of the results predicted by the deformation theory. This discrepancy 

was pronounced in the case of axially compressed cruciform column in which 

the test results seem to be in better agreement with the deformation theory 

than the flow theory. Onat and Drucker (1953) pointed out through an 

approximate analysis that cruciform columns with very small initial twist and 

modelled using the flow theory were predicted to collapse at loads which 

were slightly above the bifurcation loads predicted by deformation theory. 

Apparently, a small amount of shear strains in the pre-bifurcation analysis 

was enough to reduce the effective shear modulus of the flow theory from the 

elastic value 𝐺 to the value near the effective shear modulus predicted by 

deformation theory (Bushnell, 1982). The extreme sensitivity of shear 

modulus in a cruciform column to small imperfections-related shearing forces 

applied, while the material is stressed into plastic range, led to use the 

effective shear modulus predicted by the deformation theory in the bifurcation 

analyses. Therefore, Bushnell (1982) suggested using the flow theory with 

the shear modulus predicted by the deformation theory. The purpose of this 
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strategy is to eliminate much of the discrepancy in buckling predictions 

between the flow theory and the deformation theory (Bushnell, 1982).  

There have been many other attempts to explain this so called ‘’plastic 

buckling paradox’’ and to formulate accurate methods based on the flow 

theory of plasticity, that typically differ from each other on account of the 

choice and formulation of the constitutive equations and of the associated 

factors. For instance, Drucker (1949) pointed out that if a small initial 

imperfection or twist in a compressed plate is taken into account, the shear 

modulus predicted by the flow theory will greatly reduce and may well provide 

the reason of the paradox. Batdorf and Budiansky (1949) suggested using 

the slip theory in plastic buckling analysis. Sewell (1973) proposed the use of 

Tresca yield surface in the flow theory of plasticity which leaded to significant 

reductions in the buckling loads. Lay (1965) proposed that the effective shear 

modulus should be employed when using the flow theory, whereas 

Ambartsumjan (1963) recommended considering the transverse shear 

deformation. 

Hutchinson and Budiansky (1976) showed again that more accurate results 

can be obtained in the case of the flow theory if extremely small 

imperfections on axially compressed cruciform columns are taken into 

account.  Furthermore, in another paper, Hutchinson (1972) investigated the 

post-buckling behaviour of perfect and imperfect spherical shells under 

external pressure, in order to study the imperfection sensitivity of structures 

in the plastic range. He found, as is typical for plates and shells, that the 

bifurcation pressures predicted by the deformation theory were lower than 

those predicted by the flow theory. However, plastic buckling pressures 

predicted by the flow theory tend to those predicted by the deformation 

theory if small but unavoidable imperfections were taken into account. 

Moreover, he found that the imperfections had strong effect on the bifurcation 

pressures: the more the imperfections, the lower the bifurcation pressures in 

plastic range. This indicated that the imperfection-sensitivity was potentially 

important in the plastic range for spherical shells. However, the imperfection 

sensitivity in the plastic range is not as severe a problem as it is for elastic 
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range of the structures because the plastic buckling of structure requires high 

thickness-to-radius ratio, whereby it is less difficult to manufacture shells or 

panels with relatively very small imperfections. 

Durban and Zuckerman (1999) examined analytically the elastoplastic 

bifurcation of rectangular plate subjected to simultaneous biaxial loads 

(uniform compressive load 𝜎2 = −𝜎 and tensile or compressive load 𝜎1 = 𝜉𝜎 

in the perpendicular direction, where ξ is the ‘biaxial loading ratio’ or also, the 

‘loading path’). Different thickness ratios, aspect ratios, loading parameters 

and boundary conditions were considered and studied in the analyses. They 

observed, for all sets of boundary conditions, the plastic buckling stress 𝜎𝑐𝑟  

predicted by the flow theory were consistently higher than those predicted by 

the deformation theory. They found that the flow theory is more sensitive to 

the stabilizing tensile load than the deformation theory, which can 

considerably delay buckling. The authors clarified that, for all sets of 

considered boundary conditions, the deformation theory predicted an optimal 

loading path ξ, at which the compressive buckling load reached a maximum 

(see Figure 2.11, curve (a)), while the flow theory never detected such an 

optimal path loading over all range of the parameters investigated (Figure 

2.11, curve (b)). However, in certain cases, with the flow theory a local 

minimum of the 𝜎𝑐𝑟 − ξ curve could be detected, as shown in Figure 2.11, 

curve (c).  

 

Figure 2.11: variation of buckling stress over a range of loading parameter ξ 
(qualitatively adopted from Durban and Zuckerman (1999)) 
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In order to consider the effect of the transverse shear deformation, Wang et 

al. (2001) employed the Mindlin thick plate theory in the analytical study of 

the elastic-plastic buckling of rectangular plates subjected to uniaxial or 

equibiaxial loading and circular plates subjected to uniform radial load. As 

expected, they found that the buckling stresses predicted by the deformation 

theory were lower than the corresponding results predicted by the flow 

theory. Moreover, they showed that, for simply supported circular plates, both 

theories predicted almost similar buckling stresses while for clamped plates, 

the buckling stresses differed significantly using the flow and deformation 

theories. 

More recently, Kadkhodayan and Maarefdoust (2014) investigated 

analytically the plastic buckling of thin rectangular plate under various 

boundary conditions and loads. The in-plane loads were applied either 

uniformly or linearly varying. Both the flow and deformation theories of 

plasticity were considered in their analysis and the differential quadrature 

method (DQM) was employed to solve the stability equations. It was found 

that the discrepancies between the results of the flow and deformation 

theories increase by applying boundary conditions closer to fully clamped 

and by increasing thickness-to-length ratio, biaxial loading parameter and 

linear loading parameter in linearly varying in-plane loading. Moreover, 

agreement between the flow theory and the deformation theory results were 

found more in the case of equibiaxial loading rather than for uniaxial loading. 

In another recent paper, Wang and Huang (2009) examined analytically the 

elastoplastic buckling of a rectangular plate made of alloy Al 7075 T6, 

typically used in the aerospace industry, subjected to biaxial loading (again 

with 𝜎2 = −𝜎 and tension or compression load 𝜎1 = 𝜉𝜎 in the perpendicular 

direction). A detailed parametric study was made using the differential 

quadrature method (DQ) and the authors concluded that the small 

deformation assumption used to establish the governing differential equation 

could possibly be the reason for the large discrepancy between the results 

obtained using either deformation or flow theory. In a later paper, Zhang and 

Wang (2011) used the DQ method to obtain the analytically elastoplastic 
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buckling stresses for thick rectangular plates with various values of the 

thickness-to-side-length ratio, and for various material properties and 

boundary conditions. They found that the discrepancy in the calculated 

buckling stresses between the two theories of plasticity gets larger with 

increasing plate thickness, the ratio 𝐸/𝜎𝑦 and exponent 𝑛 in the Ramberg–

Osgood expression, where 𝐸 and 𝜎𝑦 are the Young’s modulus and yield 

strength. Similarly to the previously mentioned argument by Bushnell (1982), 

they suggested that another explanation of the discrepancies in the results 

using the two theories for thick plates could be that the deformation theory 

predicts an increasingly lower in-plane shear modulus as the level of 

plasticity increases, which results in lower calculated buckling-stress values. 

Becque (2010) presented a theory describing the inelastic buckling of perfect 

plates. The formulation was based on the flow theory and avoids the plastic 

buckling paradox by establishing an equation for the shear stiffness which is 

based on second order considerations. The governing equation of buckling of 

a plate was solved analytically for the case of a plate simply supported along 

three edges and with one longitudinal edge free. He found out that the 

proposed relation between the shear stresses and the shear strains at the 

onset of plastic buckling effectively overcomes the plastic buckling paradox. 

This relation is tested in Chapter 5 of this thesis. 

Restricting attention to the plastic buckling of circular cylindrical shells, Mao 

and Lu (1999) analytically examined simply supported cylinders made of 

aluminium alloy subjected to axial compression load. They compared the 

buckling stresses predicted by their analytical formula with the experimental 

results obtained by Lee (1962) and found that the deformation theory 

provides closer results with the tests while the flow theory significantly over-

predicts the critical loads. 

Ore and Durban (1992) analytically investigated the buckling of axially 

compressed circular cylindrical shells in the plastic range for various 

boundary conditions. Similar to Mao and Lu (1999), they concluded that the 

buckling compression stresses predicted by the deformation theory appeared 

to be in good agreement with measured test results, while those provided by 
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the flow theory overestimated the measured test values. Moreover, the 

authors observed that the differences between the theoretical results 

predicted by the flow and deformation theory reduced with increasing value 

of the strain hardening parameter in the Ramberg–Osgood expression. 

Bardi and Kyriakides (2006) tested fifteen cylindrical stainless steel tubes, 

with diameter-to-thickness ranging between 23 and 52, under axial 

compression and determined the critical stresses and strains at the onset of 

wrinkling.  They reported the buckling modes, including the number and the 

size of waves. They also calculated the same quantities analytically using the 

deformation or the flow plasticity theory. The calculations included the effects 

of assuming both isotropic and anisotropic material behaviour. They 

concluded that the flow theory significantly over-predicts the critical stresses 

and strains while the deformation theory leads to critical stress and strain in 

better agreement with the experimental results. Moreover, the flow theory 

grossly over-predicted the wavelength of wrinkles while the deformation 

theory was in better agreement with the wavelengths measured in the tests. 

In the case of axially loaded cylinders, at least during the elastic phase, the 

walls are subjected to proportional loading, and in many points during plastic 

yielding, the deviation from the loading path is relatively limited. 

Nevertheless, the flow and deformation theories seem to provide quite 

different results. 

It is therefore not surprising that similar or even more significant 

discrepancies have been reported between the results from the flow and 

deformation theory in the case of non-proportional loading even in the elastic 

phase.  

Blachut et al. (1996) conducted experimental and numerical analyses of 30 

mild-steel machined cylinders, of different dimensions, subject to axial 

tension and increasing external pressure. They showed that agreement 

between the buckling pressures calculated using the code BOSOR5 

(Bushnell, 1986) and employing both plasticity theories was strongly 

dependent on the ratio of the length 𝐿 of the cylindrical shell to its outer 

diameter 𝐷. For short cylinders (𝐿/𝐷 ≤ 1) the plastic buckling pressure 
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predicted by the flow or deformation theory coincided only when the tensile 

axial load vanished. By increasing the axial tensile load, the plastic buckling 

pressure predicted by the flow theory of plasticity quickly diverged from 

corresponding values calculated using the deformation theory, which were 

closer to the experimental values. For specimens with 𝐿/𝐷 ranging from 1.5 

to 2 the results predicted by both theories were very similar for a certain 

range of combined loading, beyond which the values calculated using the 

flow theory began to deviate from the corresponding results using the 

deformation theory and became unrealistic in correspondence of large plastic 

strains. 

Giezen et al. (1991) conducted experiments and numerical analyses on two 

sets of tubes made of aluminium alloy 6061-T4 and subjected to combined 

axial tension and external pressure, making resort to the code BOSOR5 

(Bushnell, 1986). The tubes were characterised by a 𝐿/𝐷 ratio equal to one 

and two loading paths were considered. In the first one the axial tensile load 

was held constant and the external pressure was increased. In the second 

one, the external pressure was held constant and the axial tensile load was 

increased. The numerical studies showed that the buckling pressure 

predicted by the flow theory increases with increasing applied tensile load 

while the experimental tests revealed a reduction in buckling resistance with 

increasing axial tension. Thus, the discrepancy between the test results and 

the numerical results predicted by the flow theory increased significantly with 

the rise of the axial tension. On the other hand, the results by the deformation 

theory displayed the same trend of the test results. However, the deformation 

theory significantly under-predicted the buckling pressure observed 

experimentally for some load paths. Therefore, Giezen (1988) concluded that 

both plasticity theories were unsuccessful in predicting buckling load. 

Interestingly enough, Giezen (1988) showed in his thesis that, when 

reversing the load path, the deformation theory was able to predict buckling 

while the flow theory failed to do so. 

Tuğcu (1998) investigated analytically the effect of the axial loads, applied at 

both edges of infinitely long simply-supported panels, on the critical shear 
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stress applied at the short edge of the plate (Figure 2.12). The applied tensile 

or compressive load was considered proportional to the shear traction stress. 

He revealed that the critical shear stresses predicted by the flow theory were 

more sensitive with respect to axial load than those predicted by the 

deformation theory. Therefore, he suggested that the details of the 

experimental set-up and boundary conditions which cause secondary 

stresses should be carefully accounted for to obtain reliable predictions. He 

assumed that some anisotropy could be present in the material, possibly as a 

result of manufacturing. He then added that, although the estimation of the 

material anisotropy was not expected to play a vital rule in reducing the flow 

theory predictions because of the limited range of buckling strains, the 

existence of the initial anisotropy could be a factor when the shear was 

involved as a critical buckling mode such as torsion buckling of cylinders or 

shear buckling of panels.  

 

Figure 2.12: Schematic representation of shear panal 

In another paper, the same author (Tuğcu, 1991a) analytically studied a thin 

rectangular plate under biaxial loading conditions. He examined the 

sensitivity of the buckling stresses predicted by the flow and deformation 

theories to the inclusion of small amounts of in-plane shear stress. For the 

case of pure biaxial loading (shear stress σxy = 0), the buckling stresses 

based on the flow theory (σxx) were very sensitive with respect to σyy, while 

those predicted by the deformation theory showed little to no sensitivity. He 

concluded that a considerable reduction in the predictions of the flow theory 
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can be achieved when a small non-zero in-plane shear stress exists in the 

analysis. 

The same author, (Tuğcu, 1991b) investigated analytically the buckling of 

cylinders under combined axial load and torque and combined external 

pressure and torque. Again he found that the predictions of the flow theory 

were more sensitive to the non-proportionality of loading than those of the 

deformation theory although the predictions of both theories were similar in 

some region of a particular interaction.  

Overall, the above mentioned literature indicates that the flow theory has 

been generally found to be more sensitive with respect to non-proportional 

loading than the deformation theory. 

The plastic paradox does not seem to be limited to the buckling of plates and 

cylinders. For example, Galletly el al. (1990) investigated the plastic buckling 

of six machined steel torispherical domes of different geometries and 

subjected to internal pressure. The tests were carried out to highlight the 

differences in buckling stresses calculated, using the code BOSOR5 

(Bushnell, 1986), with either the flow or the deformation theory.  They 

measured low-amplitude waves in the knuckle of the torispherical domes by 

probes allocated at the knuckle region for all six specimens. These waves 

grew with the increasing internal pressure in four test specimens and became 

visible to the naked eye while in other two specimens the waves could not be 

visually detected but could be felt by finger-tip contact. In their analysis they 

found that, for all the tests, the buckling mode failure and the internal 

pressure predicted by the deformation theory was in good agreement with 

the experimental results, the difference varying between 6% and 29%. On 

the other hand, the flow theory did not predict a buckling failure mode for any 

of the four test specimens. 

2.10 A brief overview of the underlying methods of BOSOR5 

The bifurcation load and the corresponding buckling mode are determined in 

BOSOR5 through a sequence of two subsequent analyses (Bushnell, 1986). 

The first one is a nonlinear pre-buckling analysis which is valid for small 
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strains and moderately large rotations and accounts for material nonlinearity. 

This nonlinear problem is solved using a strategy in which a nested iteration 

loop is applied at each load level. The inner loop is used to analyse the 

nonlinear behaviour caused by the moderately large displacements using the 

Newton-Raphson method. The outer loop is used to evaluate the constitutive 

matrix and the plastic strain components, and to test loading and unloading 

condition in the material by means of a sub-incremental strategy (Bushnell, 

1982). The results from this analysis are used in the following analysis, which 

is an eigenvalue analysis which yields the bifurcation load and the 

corresponding axisymmetric or non-symmetric buckling mode, respectively 

(Bushnell, 1982). At the bifurcation load, the infinitesimal displacement field 

has components in the axial, circumferential and radial direction denoted as 

𝛿𝑢, 𝛿𝑣 and 𝛿𝑤. They are assumed to vary harmonically around the 

circumference as follows (Bushnell, 1984) 

{

𝛿𝑢 = 𝑢𝑛(𝑠) sin(𝑛𝜃)

𝛿𝑣 = 𝑣𝑛(𝑠) cos(𝑛𝜃)

𝛿𝑤 = 𝑤𝑛(𝑠) sin(𝑛𝜃)

 (2.71) 

where 𝑛 is the number of circumferential waves, 𝑠 and 𝜃 are the arc length of 

the shell measured along the reference surface and the circumferential 

coordinate, respectively. 

BOSOR5 users are asked to specify the range of circumferential wave 

numbers (𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥), and the starting wave number, 𝑛𝑜 , which might 

correspond, in the user’s judgment, to the minimum bifurcation load. 

BOSOR5 calculates the determinant of the global stability stiffness matrix 

(𝐾1𝑛𝑜) for the chosen 𝑛𝑜 at each time increment until the determinant changes 

sign. If the determinant of the stiffness matrix changes sign, BOSOR5 sets 

up, for all the values of 𝑛 ranged between 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥, a series of 

eigenvalue problems of the form illustrated in the equations (Bushnell, 1982) 

(𝐾1𝑛 + 𝜆𝑛𝐾2𝑛)(𝑞𝑛) = 0 (2.72) 

where 𝐾1𝑛 and 𝐾2𝑛 are the stiffness matrix and load-geometric matrix 

corresponding to 𝑚 circumferential waves, respectively, and 𝜆𝑛 and 𝑞𝑛 are 

the eigenvalues and eigenvectors for the numbers of wave 𝑛, respectively. 
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The critical wave number 𝑛𝑐𝑟 corresponds to the minimum value of 𝜆𝑛 . The 

strategy used to identify buckling load is explained in detail in Bushnell 

(1982). 

It is important to note that the discretisation in BOSOR5 is only performed in 

the meridian direction because the resulting displacements are axisymmetric 

in the pre-buckling phase.  
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Chapter 3 

 

 

 

 

A Detailed Numerical Investigation into the Plastic 
Buckling Paradox for Circular Cylindrical Shells 

under Axial Compression 

 

 

 

 

3.1. Introduction 

In the framework provided by the cited publications in Section 2.9, the work 

presented in this chapter aims to shed light on the plastic buckling paradox 

by conducting accurate linear and nonlinear finite-element modelling of 

buckling of cylindrical shells using the flow theory and the deformation theory 

of plasticity, as well as using simplified semi-analytical models.  

Attention is focused on cylindrical shells subject to axial compression with 

outer-radius-to-thickness ratio 𝑅 𝑡⁄  ranging between 9 and 120, because of 

the great significance of this geometry and loading conditions for engineering 

application. The predictions have been compared with widely recognised 

experimental results reported in the literature by Lee (1962) and Batterman 

(1965) and with the analytical results reported by Mao and Lu (1999) and Ore 

and Durban (1992). 

It is found that, in contrast to common understanding, by using carefully 

developed geometrically nonlinear finite element (FE) models a very good 

agreement between numerical and experimental results can be obtained in 

the case of the physically sound flow theory of plasticity. The reasons 
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underlying the apparent buckling paradox are then investigated and 

discussed in detail. 

3.2. Test samples and finite-element modelling 

3.2.1 Geometry and elements 

The plastic buckling of perfect and imperfect cylinders subjected to axial 

compression has been numerically simulated using nonlinear FE analyses 

using both the flow and the deformation theory of plasticity, adopting the FE 

code ABAQUS, version 6.11-1.  Specific attention has been paid to adopt 

model parameters which, in the case of proportional monotonic (increasing) 

loading, result in the same stress-strain curve in both theories, to within a 

negligible numerical error. The FE simulations were conducted for aluminium 

cylinders tested by Lee (1962) and Batterman (1965). Out of the ten cylinders 

tested by Lee and of the thirty cylinders tested by Batterman, eight and nine 

of them, respectively, were chosen for the numerical investigation. The 

criterion used for the selection of these tests was to account for a wide range 

of R/t. The results of the analysis are compared with the corresponding test 

results reported by the above authors and with analytical results derived by 

Ore and Durban (1992) and Mao and Lu (1999).  

In Lee’s experiments, the specimens were made of cylinders of aluminium 

alloy 3003-0, which were reported to be free of residual stresses. The 

compression pad used to transfer the axial force and the base block had 

annular recesses in which the specimens were inserted. Lee tested 10 

cylinders with an outer diameter of 101.6 mm and radius-thickness ratios 𝑅/𝑡 

varying between 9.36 and 46.06. He pointed out that the imperfections in 

general were irregular such that the cross sections had somewhat oval 

shapes. Eight cylindrical shells were chosen for the present numerical 

analysis, as illustrated in Table 3.1. 

The end sections during the test were neither perfectly hinged nor perfectly 

clamped. Therefore, the two idealised boundary conditions, hinged and 

clamped, were modelled separately. For the case of clamped ends, the 

bottom edge of the shell was considered as fully fixed, i.e. with no allowed 
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translations and rotations for all degrees of freedom; the other edge was also 

considered fully restrained, except for the displacement in the axial direction 

which was prescribed to increase monotonically downward. In the case of 

hinged ends, the rotations normal to the cylinder wall were fully allowed.  

The cylindrical specimens were modelled using a general purpose 4-noded 

shell element which has six degrees of freedom at each node.  This element 

is named “S4” in the commercial software ABAQUS and is based on a thick 

shell theory. The shell formulation accounts for finite membrane strains, 

therefore this element can be used to perform large strain analyses. The 

element is widely used for industrial applications because it is suitable for 

both thin and thick shells.  The S4 element uses a normal integration rule 

with four integration points. The enhanced-strains approach is employed to 

prevent shear and membrane locking. Among the ABAQUS elements, S4 

outperforms S4R as the former evaluates more accurately the membrane 

strains, which play a key role in the problem at hand (Simulia, 2011). 

Spec. R (mm) R/t L/R t (mm) L (mm) 
Imperfection 

ratio 𝜹/𝒕 

A330 50.8 9.36 4.21 5.43 213.87 0.012 

A230 50.8 9.38 6.32 5.42 321.01 0.012 

A130 50.8 9.39 10.5 5.41 533.40 0.012 

A320 50.8 19.38 4.1 2.62 208.28 0.03 

A220 50.8 19.4 6.15 2.62 321.10 0.05 

A310 50.8 29.16 4.06 1.74 206.25 0.045 

A110 50.8 29.22 10.16 1.74 516.13 0.033 

A300 50.8 46.06 4.04 1.1 205.23 0.105 

Table 3.1: Geometry and imperfection ratio of the aluminium cylinders tested by Lee 
(1962).  

A structured mesh was used, made from a number of divisions along the 

circumference and longitudinal direction reported in Table 3.2 for each 

specimen. 

 

 



 

58 
 

 Specimens 

Number of 

elements 
A330 A230 A130 A320 A220 A310 A110 A300 

- around the 

circumference 
150 150 150 150 150 150 150 150 

- along the length 100 150 250 98 150 97 242 96 

Table 3.2: FE mesh discretisation adopted for the FE analyses of the cylinders 
tested by Lee. 

In the tests carried out and reported by Batterman (1965), the specimens 

were made of cylinders of aluminium alloy 2024-T4. The ends of the 

specimens were restrained such as to be considered clamped. Batterman 

tested 30 cylinders with radius-thickness ratio 𝑅/𝑡 varying between 9.7 and 

121.25. Nine cylindrical shells were chosen for the present numerical 

analysis, as presented in Table 3.3. 

Spec. R (mm) R/t L/R t (mm) L (mm) 

12 34.79 9.7 2.92 3.586 101.6 

18 34.8 9.76 2.92 3.566 101.6 

22 35.56 13.93 0.72 2.553 25.4 

5 33.42 25.94 0.76 1.297 25.4 

15 34.72 44.69 1.47 0.777 50.8 

16 34.59 56.52 0.73 0.612 25.4 

26 34.49 85.95 0.74 0.4013 25.4 

8 33.2 114.56 1.53 0.29 50.8 

9 33.12 116.61 0.77 0.284 25.4 

Table 3.3: Geometries of aluminium cylinders tested by Batterman (1965). 

Again 4-noded shell (S4) elements were used in the FE modelling with a 

structured mesh with numbers of elements along circumference and length 

shown in Table 3.4 for each specimen. 
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 Specimens 

Number of 

elements 
12 18 22 5 15 16 26 8 9 

- around the 

circumference 
150 150 250 250 150 250 250 250 250 

- along the length 70 70 28 30 35 29 29 61 31 

Table 3.4: FE mesh discretisation adopted for the analyses of the cylinders tested 
by Batterman. 

3.2.2 Constitutive relationship and material constants 

The uniaxial stress-strain relationship of the material under monotonic 

loading was characterised by the Ramberg-Osgood relationship: 

𝐸𝜀 = 𝜎 + 𝛼 (
𝜎

𝜎𝑦
)
𝑛𝑝−1

𝜎   
(3.1) 

where 𝜀 and 𝜎 denotes uniaxial strain and stress, 𝐸 and 𝜈 are Young’s 

modulus and Poisson’s ratio, respectively, 𝜎𝑦 is the nominal yield strength, 

sometimes called ‘proof stress’ and denoted by 𝜎0.2% (see Figure 3.2),  𝛼 is 

the ‘yield offset’ and 𝑛𝑝 is the strain hardening parameter. 

The Ramberg-Osgood input parameters used in the numerical simulations 

are reported in Table 3.5.  

 𝑬 [GPa] 𝝈𝒚[MPa] 𝝂 𝒏𝒑 𝜶 

Lee’s tests 70 23.62 0.32 4.1 0.429 

Batterman’s 

tests 
74.5 389.6 0.32 14.45 0.382 

Table 3.5: Ramberg-Osgood constants used in the numerical analyses. 

For the cylinders tested by Lee (1962), the parameters used for the FE 

modelling are those reported by Mau and Lu (1999), Mau and Lu (2001) and 

Ore and Durban (1992), which in turn were based on the properties given by 

Lee (1962). Notice that σy does not represent the classically defined proof 

stress, nominally corresponding to a plastic strain of 0.2%, because of the 

nature of Equation (3.1). The actual proof stress at 0.2% of plastic strain is 

equal to 41.2. Furthermore, the relatively low value of the hardening 
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exponent results in a gradual hardening and values of the stresses higher 

than 100 MPa at a strain of 0.1%, as shown in the stress-stain curve reported 

in Figure 3.1.  

 

Figure 3.1: Stress-strain curve for Lee’s tests 

For Batterman’s tests two sets of experimental data from tensile and 

compression tests were reported by the author and fitted with the Ramberg-

Osgood relationship. In particular, two values of the yield strength, 𝜎0.2% and 

𝜎0.5%, corresponding to strains of 0.2% and 0.5%, respectively, measured in 

tensile and compression tests were reported by Batterman (1965) and were 

used to calculate the values of 𝛼 and 𝑛𝑝 reported in Table 3.6. In particular, 

since 𝜎𝑦 = 𝜎0.2%, from Eq. (3.1) one has: 

𝛼 = 0.002 
𝐸

𝜎𝑦
 

(3.2) 

and 𝑛𝑝 is obtained from  the relationship: 

𝑛𝑝 =

𝑙𝑛 (
0.005 𝐸
𝛼 𝜎𝑦

)

𝑙𝑛 (
𝜎0.5%
𝜎𝑦

)
 

(3.3) 
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Figure 3.2: Illustration of σ0.2% and  σ0.5% on the stress-strain curve. 

Data from Compression tests Tension tests 

𝐸 [GPa] 74.46 73.57 

𝜎0.2% [MPa] 389.6 408.9 

𝜎0.5% [MPa] 415.1 419.2 

𝛼 0.382 0.36 

𝑛𝑝 14.45 36.68 

Table 3.6: Material constants from tensile and compression tests (Batterman, 1965). 

Figure 3.3 shows a comparison between the experimental uniaxial stress-

strain curves reported by Batterman and those obtained using the Ramberg-

Osgood relationship with the parameters in Table 3.6. It can be seen that the 

Ramberg-Osgood constants calculated using the compression tests lead to a 

very good agreement with the experimental compression data, such that they 

have been used for the numerical analyses. 
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Figure 3.3: Comparison between experimental and formula curves 

The deformation theory of plasticity used in the numerical simulations is 

obtained by extending the Ramberg-Osgood law to the case of a multi-axial 

stress state using the von Mises formulation (𝐽2 theory) and results in  a path-

independent relationship (Simulia, 2011). The resulting equations are 

reported in Section 2.8.  

The flow theory used in the numerical simulations was the classical 𝐽2 flow 

theory of plasticity, with nonlinear isotropic hardening and in the small-strain 

regime (Simo and Hughes, 1998; Simulia, 2011). Such theory is implemented 

in a model available in ABAQUS. For the sake of completeness the 

equations governing the theory are those reported in Appendix A1. On the 

other hand, it is important to underline here that the input data for the flow 

theory were obtained in such a way that the same stress-strain curve as in 

the case of the deformation theory is obtained for the case of uniaxial stress 

and monotonic loading, to within a negligibly small numerical tolerance.  

It is worth recalling that the Ramberg-Osgood relationship does not account 

for any initial linearly elastic behaviour but represents a nonlinear material 

response for any value of the stress, even if for relatively small stress values 

the deviation from linearity is quite small. Hence, the function 𝜎 in Eq. (A.7) 
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should be such that 𝜎(0) = 0, i.e. the initial yield stress in the flow theory 

should be taken as zero. However, the numerical implementation of the J2 

flow theory requires the use of the well-known radial-return algorithm (see 

Simo and Hughes, (1998) among many others) which, in turn, requires the 

calculation of the unit normal vector to the yield surface. The unit normal 

vector is undefined if the yield surface degenerates to a point, which is why, 

using the J2 flow theory implemented in ABAQUS, a zero value of 𝜎(0) leads 

to lack of convergence in the first increment. Hence, the value 𝜎(0) = 10−5 

MPa was assumed. Furthermore, a tabulated approximation of 𝜎(𝜀𝑝
𝑒𝑞) was 

obtained by considering 𝜎  increments of 2 MPa; for each value of the stress 

𝜎 the corresponding equivalent plastic strain value 𝜀𝑝
𝑒𝑞

 was obtained from Eq. 

(3.1) as follows         

       𝜀𝑝
𝑒𝑞 = 𝛼 (

𝜎̅

𝜎𝑦
)
𝑛𝑝−1 𝜎̅

𝐸
   

(3.4) 

Figure 3.5 illustrates the load-displacement curves obtained for the numerical 

tensile test of a square rod of 10×10 mm2 subject to homogeneous uniaxial 

stress using both plasticity theories in conjunction with the material 

parameters used for the simulation of Lee’s tests (Figure 3.4). It can be 

appreciated that the load-deflection curves are identical during the loading 

process. Upon unloading, in the case of the deformation theory the same 

loading curve is followed, whereas in the case of the flow theory, the 

unloading is elastic.  In the case of the flow theory, in order to restore the 

value of deflection to zero, a compressive load is applied and the load-

deflection path proceeds as shown in Figure 3.5. The same procedure has 

been followed for the material models used to simulate Batterman’s tests, 

which led to a perfectly analogous graph as in Figure 3.5.  
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Figure 3.4: Regular prism of section 10x10 mm with boundary conditions 

 

Figure 3.5: Load-displacement relation for a 10×10 mm2 square rod of aluminium 
alloy 3003-0 subjected to homogeneous uniaxial stress. 

It is worth remarking that the nonlinear isotropic model used for the flow 

theory of plasticity obviously does not account for the Baushinger effect, but 

plastic strain reversal always occurred in the simulations considered here 

after the maximum (buckling) load had been reached, so that ignoring the 

Baushinger effect does not affect the buckling predictions for the problems 

under analysis. 
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3.2.3 Large displacement formulation 

The above constitutive relationships are extended to the large-strain regime 

by using spatial co-rotational stress and strain measures and a hypo-elastic 

relation between the rates of stress and elastic strain (Simulia, 2011). This 

has been the subject of controversial debate because hypo-elastic laws lead 

to fictitious numerical dissipation (Simo and Hughes, 1998). However, this 

large-strain formulation is widely implemented in many commercial codes, 

including ABAQUS, and it is generally accepted that the hypo-elasticity of the 

formulation has limited influence on the results because, even when strains 

are large, the elastic part of the strain is typically still very small and therefore 

close to the limit where hypo-elastic and hyper-elastic formulations coincide 

(Simo and Hughes, 1998). 

3.2.4 Solution strategy 

The nonlinear analysis was conducted using the modified Riks’ approach 

(Riks, 1979) to trace the nonlinear response. Riks’ method was the first of the 

so-called “arc-length” techniques, which provide an incremental approach to 

the solution of problems involving limit points in the equilibrium path. In this 

technique, both the vector of displacement increments ∆𝐮 and the increment 

∆λ of the scalar multiplier of the applied loads or displacements are unknown 

variables in the incremental/iteration scheme. The Riks’ formulation iterates 

along a hyper plane orthogonal to the tangent of the arc-length from a 

previously converged point on the equilibrium path (Falzon, 2006). The 

iterations within each increment are performed using the Newton–Raphson 

method; therefore, at any time there will be a finite radius of convergence 

(Simulia, 2011).  

In this analysis, the displacement at the top edge of the cylinder is prescribed 

to be equal to λ 𝐮0, where 𝐮0 denotes a reference downward vertical 

displacement and λ is the scalar multiplier . The analysis accounts for 

geometrical nonlinearity as discussed in Sections 3.2.1 and 3.2.3. The critical 

load is determined by the point at which the load-shortening curve reaches a 

maximum. 
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The machine compliance was not included in the analyses reported because 

it does not affect the computed buckling stresses and only results in a right-

ward shift of the load-shortening curves. This was confirmed by additional 

analyses, not reported here, in which the compliance was introduced with 

suitably inserted springs at the top edge. 

3.2.5 Imperfection sensitivity analysis 

In order to study the imperfection sensitivity of the cylinders, in the case of 

Lee’s tests the analysis was carried out both for perfect cylinders and for two 

reference values of maximum imperfection amplitude, equal to 10% and 20% 

of the thickness. Moreover, the analysis was also conducted for the 

imperfection amplitudes presented in Table 3.1, experimentally measured by 

Lee (1962). 

In the case of Batterman’s tests, the analysis was carried out both for perfect 

cylinders and for two reference values of imperfection amplitude, i.e. 5% and 

10% of the thickness.  

In both cases, imperfections were modelled by scaling the first eigenmode of 

linear buckling analysis and adding it to the perfect cylinder (see Figure 3.6 

and Figure 3.7). The linear buckling analysis has been conducted assuming 

linear elastic material behaviour and small displacements. 

                                                
  First eigenmode for A220 cylinder                                  First eigenmode for A300 cylinder 

Figure 3.6: Buckling eigenmodes used in the simulation of Lee’s tests to account for 
imperfections. 
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      First eigenmode for sp.22 cylinder                            First eigenmode for sp.16 cylider 

Figure 3.7: Buckling eigenmodes used in the simulation of Batterman’s tests to 
account for imperfections. 

3.3. FEA results for Lee’s specimens 

As mentioned earlier, due to the uncertainty regarding the actual boundary 

conditions, both perfectly hinged and perfectly clamped conditions were 

considered at the ends of the specimens. With hinged boundary conditions 

applied to the perfect model, wrinkles developed in an axisymmetric fashion 

as shown in the Figure 3.9. However, for clamped edges Figure 3.8 and 

Figure 3.10 show that the deformed shapes of model appear to correspond 

well with the test results. Moreover, Table 3.7 shows that, for the flow and 

deformation theories, the clamped boundary conditions resulted in a closer 

agreement between numerically calculated and experimentally measured 

plastic buckling stresses than in the case of hinged boundary conditions. This 

suggests that the actual test arrangement by Lee should be considered to 

prevent radial displacements and rotations at both ends of the specimens 

 

Figure 3.8: Buckling mode failure predicted experimentally (Lee, 1962) (reprinted by 
kind permission of the American Institute of Aeronautics and Astronautics, Inc.) 
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Figure 3.9: Axisymmetric deformation of axial compression shells with hinged 
boundary conditions and without initial imperfection 

 

 

Figure 3.10: Axisymmetric deformation of axial compression shells with clamped 
boundary conditions and without initial imperfection. 

Figure 3.11 and Figure 3.12 show that the buckling stresses calculated using 

the flow and the deformation theory in the simulation of Lee’s tests have a 

low sensitivity to the imperfection amplitude for moderately thick shells. 

However, both theories show an increase in the imperfection sensitivity with 

increasing 𝑅 𝑡⁄  ratios. It should be noted that the failure mode, which is 

obtained using a non-axisymmetric shape of imperfections (see Figure 3.6), 

highly depends on the slenderness of the cylinder (R/t ratios) and the 

reference value of maximum imperfection amplitude, as seen in Table 3.8. 

For instance, the failure mode obtained numerically using the flow theory for 

specimen A330, which has the smallest R/t among the specimens, is 
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axisymmetric with ring-shaped near the edges when the reference value of 

maximum imperfection amplitude is 10% of thickness although the shape of 

imperfection is non-axisymmetric. However, its failure mode becomes ring-

shaped near the edges with gentle diamond shaped bucking wave pattern in 

the central region when imperfection amplitude is 20% of thickness. 

Moreover, the failure mode obtained numerically using the flow theory of 

specimen A300, which has the highest R/t among the specimens, is ring-

shaped near the edges with gentle diamond shaped bucking wave pattern in 

the central region when the reference value of maximum imperfection 

amplitude is 10% of thickness. However, when the imperfection amplitude is 

20% of thickness, the ring-shaped deformation near the edges disappears 

and only a gentle diamond shaped buckling wave pattern in the central 

region dominates the failure mode. 

Table 3.9 shows that the results calculated using the flow theory are in better 

agreement with the measured test results than those using the deformation 

theory. In fact, the buckling stresses calculated using the deformation theory 

tend to fall below the experimental values for all specimens except A310. In 

the case of the flow theory, on the contrary, numerical and experimental 

values generally are within a 3% discrepancy, with no clear pattern. The only 

cases in which the buckling stresses are under-estimated by the flow theory 

are for specimens A110 and A300, and in such cases the difference with the 

experiments were 2% and 9% respectively, generally well below the 9% and 

21% differences which occurred for the same cases when the deformation 

theory was used.  

Figure 3.13 and Figure 3.14 show the load-displacement curves resulting 

from flow and deformation plasticity for specimens A230 and A300, 

respectively. It can be seen that the curve predicted by flow theory is always 

above the curve predicted by deformation theory for all cases. Moreover, it 

can be noticed that both curves are identical up to specific point then they 

diverge. Therefore, the buckling loads found by the flow theory more that 

those found by the deformation theory but in line with experimental 

predictions for most cases.  The load-displacement curves obtained for all 
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other specimens are very similar to those in Figure 3.13 and Figure 3.14 and 

therefore have not been reported.
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Table 3.7: Results obtained with hinged and clamped boundary conditions for both deformation and flow theory of plasticity, in comparison 
with the corresponding test results by Lee (1962) (for perfect cylinders). 

 
 
 
 
 
 
 
 
 

Buckling 

Stress (Mpa)

Buckling 

Stress (Mpa)

Buckling 

Stress (Mpa)

Buckling 

Stress (Mpa)

A330 96.87 81.64 1.19 75.52 1.28 98.58 0.98 88.82 1.09

A230 97.22 81.40 1.19 75.43 1.29 97.84 0.99 88.74 1.10

A130 94.6 81.3491 1.16 75.47 1.25 97.83 0.97 88.89 1.06

A320 78.6 62.30 1.26 59.94 1.31 80.48 0.98 74.10 1.06

A220 81.15 62.30 1.30 60.27 1.35 80.85 1.00 73.90 1.10

A310 64.74 54.79 1.18 53.31 1.21 72.47 0.89 66.84 0.97

A110 74.12 54.81 1.35 53.16 1.39 72.94 1.02 66.84 1.11

A300 69.71 47.64 1.46 47.11 1.48 64.25 1.08 59.16 1.18

Numerical Analysis  (ABAQUS)-clamped edges

Flow Plasticity Deformation PlasticityFlow Plasticity Deformation Plasticity

Numerical Analysis  (ABAQUS)-simply supported edges

Spec.

Experimental 

Buckling Stress 

(Lee , 1962)
   𝒑𝒕/          𝒑𝒕/          𝒑𝒕/          𝒑𝒕/       
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* AX-Axisymmetric buckling wave      * AS- Almost axisymmetric buckling wave       * DM-Diamond shaped buckling wave  * LW- number of longitudinal waves 

Table 3.8: Comparison between modes of failure numerically calculated for perfect and imperfect cylinders (Cylinders tested by Lee (1962)) 

perfect 10% imperfection 20% imperfection perfect 10% imperfection 20% imperfection

A330
AX, Ring-Shaped near the 

edges
AX, Ring-Shaped near the edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

AX, 4LW AS, 4LW AS, 4LW

A230
AX, Ring-Shaped near the 

edges
AX, Ring-Shaped near the edges

AX, Ring-Shaped near the 

edges
AX, 6LW AX, 6LW AS, 6LW

A130
AX, Ring-Shaped near the 

edges

 Ring-Shaped near the edges 

and local buckling in the 

central region 

 Ring-Shaped near the edges 

and local buckling in the 

central region 

AX, 6LW near the edges

 Ring-Shaped near the edges 

and local buckling in the 

central region 

 Ring-Shaped near the edges 

and local buckling in the 

central region 

A320
AX, Ring-Shaped near the 

edges
AX, Ring-Shaped near the edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

AX, 5LW

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 Ring-Shaped near the edges 

and gentle DM pattern in 

the central region 

A220
AX, Ring-Shaped near the 

edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

AX, 8LW

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 Ring-Shaped near the edges 

and gentle DM pattern in 

the central region 

A310
AX, Ring-Shaped near the 

edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 Ring-Shaped near the edges 

and DM patterns in the 

central region

AX, 6LW

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 DM patterns in the central 

region

A110
AX, Ring-Shaped near the 

edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

AX, 6LW near the edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 Ring-Shaped near the edges 

and gentle DM pattern in 

the central region 

A300
AX, Ring-Shaped near the 

edges

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 DM patterns in the central 

region
AX, 8LW

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

 DM patterns in the central 

region

Spec.

Mode of failure predicted Numerically (Abaqus)

Flow Plasticity Deformation Plasticity
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Table 3.9: Comparison between test and numerical results for both flow and deformation theory of plasticity (imperfections identified by Lee 
(1962)) 

 
 
 
 

Buckling 

Stress (Mpa)
Mode of failure

Buckling 

Stress (Mpa)
Mode of failure

A330 96.87 0.012 98.54 0.98 AX, Ring-Shaped near the edges 89.05 1.09 *AX, 4*LW

A230 97.22 0.01 97.84 0.99 AX, Ring-Shaped near the edges 88.74 1.10 AX, 6LW

A130 94.6 0.01 97.82 0.97 AS, Ring-Shaped near the edges 88.32 1.07 *AS, 6LW near the edges

A320 78.6 0.03 80.48 0.98 AX, Ring-Shaped near the edges 74.10 1.06 AX, 5LW

A220 81.15 0.05 80.84 1.00 AX, Ring-Shaped near the edges 73.90 1.10 AS, 8LW

A310 64.74 0.05 71.54 0.90 AS, Ring-Shaped near the edges 66.59 0.97 AS, 6LW

A110 74.12 0.03 72.94 1.02 AS, Ring-Shaped near the edges 66.84 1.11 AS, 6LW near the edges

A300 69.71 0.11 64.16 1.09

 Ring-Shaped near the edges and 

gentle DM pattern in the central 

region 

57.44 1.21

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

Spec.

Experimental 

Buckling Stress 

(Lee , 1962)

Numerical Analysis  (ABAQUS)

Flow Plasticity Deformation PlasticityImperfection 

ratio δ/t

   𝒑𝒕/          𝒑𝒕/       
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Figure 3.11: Effect of imperfections on the buckling load calculated using the flow 
theory of plasticity 

 

Figure 3.12: Effect of imperfections on the buckling load calculated using the 
deformation theory of plasticity 
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Figure 3.13: Axial load vs. prescribed displacement for specimen A230 for flow and 
deformation theories. 

 

Figure 3.14: Axial load vs. prescribed displacement for specimen A300 for flow and 
deformation theories. 

Lee’s tests were studied analytically by Ore and Durban (1992) and Mao and 

Lu (1999) under the assumption of axisymmetric buckling. The results of their 

calculations, illustrated in Table 3.10 and Table 3.11, show that the 

deformation theory results in better agreement with the findings by Lee 

(1962) and that the flow theory predictions systematically overestimate the 

buckling stresses. This is in contrast with the results of the present study, 
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which show that, if appropriately applied, the flow theory accurately estimates 

the experimental buckling stress.  

 

Table 3.10: Comparison between results Mao and Lu (1999) and present numerical 
results for both flow and deformation theories of plasticity 

 

Table 3.11: Comparison between results by Ore and Durban (1992) and present 
numerical results for both flow and deformation theories of plasticity 

3.4. FEA results for Batterman’s experiments 

Figure 3.15 and Figure 3.16 show that the buckling stresses calculated using 

the flow and deformation theories in the simulation of Batterman’s tests 

display a low sensitivity to the imperfection amplitude for shells with 10 ≤

𝑅 𝑡⁄ ≤ 45. However, both theories show an increase in the imperfection 

sensitivity for 𝑅 𝑡⁄  ratios above 45. In particular, the flow and deformation 

theories of plasticity both overestimate the ultimate load for shells with 

45 ≤ 𝑅 𝑡⁄ ≤ 120 if imperfections in the shells are not accounted for. On the 

other hand, both theories provide good agreement with experimental results 

if a 5% imperfection is included in the analysis. 

Experimental 

Buckling Stress (Mpa)

 (Lee , 1962) Flow Deformation Flow Deformation

A330 96.87 165.46 89.71 98.58 88.82

A320 78.60 124.25 74.87 80.48 74.10

A310 64.74 106.00 67.70 72.47 66.84

Spec.

Analytical (Mao and Lu, 

1999)

Numerical Analysis  

(ABAQUS)

Flow Deformation Flow Deformation

A330 96.87 162.32 88.34 98.58 88.82

A230 97.22 162.32 88.34 97.84 88.74

A130 94.6 161.59 87.81 97.83 88.89

A320 78.6 121.74 73.26 80.48 74.10

A220 81.15 121.51 72.80 80.85 73.90

A310 64.74 107.73 66.79 72.47 66.84

A110 74.12 107.64 66.52 72.94 66.84

A300 69.71 87.26 59.25 64.25 59.16

Spec.

Experimental 

Buckling Stress (Mpa) 

(Lee , 1962)

Analytical (Ore and 

Durban, 1992)

Numerical Analysis  

(ABAQUS)
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Figure 3.15: Imperfection sensitivity of buckling stress computed using the flow 
theory of plasticity. 

 

Figure 3.16: Imperfection sensitivity of buckling stresses computed using the 
deformation theory of plasticity. 

It can be also noticed in Tables 3.12- 3.14 that the differences between the 

calculations of buckling stresses using flow and deformation theories for 

perfect and imperfect cylinders are quite small both for thick and thin shells. 
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* AX-Axisymmetric buckling wave   * LW- number of longitudinal waves  

Table 3.12: Comparison between measured test results and corresponding numerical results for both flow and deformation theories of 
plasticity for perfect cylinders  

 

Buckling Stress 

(Mpa)
Mode of failure

Buckling Stress 

(Mpa)
Mode of failue

12 480.08 455.632 1.05
AX, Ring-Shaped near 

the edges
444.198 1.08 AX, 3LW

18 482.63 453.912 1.06
AX, Ring-Shaped near 

the edges
447.863 1.08 AX, 3LW

22 439.8 433.111 1.02
AX, Ring-shaped at 

the central region
430.336 1.02

AX, Ring-shaped at 

the central region

5 410.72 401.427 1.02
AX, Ring-shaped at 

the central region
400.203 1.03

AX, Ring-shaped at 

the central region

15 382.6 377.503 1.01 AX, 3LW 377.429 1.01 AX, 3LW

16 354.25 368.405 0.96
AX, Ring-Shaped near 

the edges
366.162 0.97

AX, Ring-Shaped 

near the edges

26 301.23 333.042 0.90
AX, Ring-Shaped near 

the edges
332.445 0.91

AX, Ring-Shaped 

near the edges

8 227.73 308.725 0.74
AX, Ring-Shaped near 

the edges
296.1 0.78 AX, 5LW

9 219.05 311.703 0.70
AX, Ring-Shaped near 

the edges
310.609 0.71

AX, Ring-shaped at 

the central region

Spec.

Experimental Buckling 

Stress (Batterman, 

1965)

Flow Plasticity Deformation Plasticity

Numerical Analysis  (ABAQUS)

   𝒑𝒕/       
   𝒑𝒕/       
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* AX-Axisymmetric buckling wave      * DM-Diamond shaped buckling wave          * LW- number of longitudinal waves  

Table 3.13: Comparison between measured test results and numerical results for both flow and deformation theories of plasticity (5% 
imperfections) 

 
 
 
 

Buckling 

Stress (Mpa)
Mode of failure Buckling Stress (Mpa) Mode of failure

12 480.08 455.57 1.05
AX, Ring-Shaped near 

the edges
444.13 1.08 AX, 3LW

18 482.63 454.87 1.06
AX, Ring-Shaped near 

the edges
447.70 1.08 AX, 3LW

22 439.8 433.18 1.02
AX, Ring-shaped at the 

central region
430.38 1.02

AX, Ring-shaped at the 

central region

5 410.72 401.56 1.02
AX, Ring-shaped at the 

central region
400.36 1.03

AX, Ring-shaped at the 

central region

15 382.6 377.44 1.01

AX near the ends, 

gentle DM pattern in 

the central region

377.40 1.01

Ring-Shaped near the 

edges and DM pattern in 

the central region

16 354.25 366.92 0.97 DM pattern 366.25 0.97 DM pattern 

26 301.23 307.92 0.98 DM pattern 306.92 0.98 DM pattern 

8 227.73 220.93 1.03 DM pattern 220.84 1.03 DM pattern 

9 219.05 234.04 0.94 DM pattern 234.03 0.94 DM pattern 

Spec.

Experimental 

Buckling Stress 

(Batterman, 1965)

Flow Plasticity

Numerical Analysis  (ABAQUS)

Deformation Plasticity

   𝒑𝒕/          𝒑𝒕/       
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Table 3.14: Comparison between measured test results and numerical results for both flow and deformation theories of plasticity (10% 
imperfections) 

 
 

Buckling Stress 

(Mpa)
Mode of failure

Buckling 

Stress (Mpa)
Mode of failure

12 480.08 455.385 1.05
AX, Ring-Shaped near 

the edges
443.92 1.08 AS, 3LW

18 482.63 454.604 1.06
AX, Ring-Shaped near 

the edges
447.40 1.08 AS, 3LW

22 439.8 433.366 1.01
AX, Ring-shaped at the 

central region
430.51 1.02

AX, Ring-shaped at the 

central region

5 410.72 402.334 1.02
AX, Ring-shaped at the 

central region
400.83 1.02

AX, Ring-shaped at the 

central region

15 382.6 359.507 1.06
DM pattern in the 

central region
352.59 1.09

DM pattern in the 

central region

16 354.25 334.873 1.06 DM pattern 333.85 1.06 DM pattern 

26 301.23 266.18 1.13 DM pattern 266.02 1.13 DM pattern 

8 227.73 176.401 1.29 DM pattern 179.52 1.27 DM pattern 

9 219.05 192.924 1.14 DM pattern 192.83 1.14 DM pattern 

Spec.

Experimental 

Buckling Stress 

(Batterman, 1965)

Flow Plasticity

Numerical Analysis  (ABAQUS)

Deformation Plasticity

   𝒑𝒕/          𝒑𝒕/       



 

81 
 

 

 

Table 3.15: Comparison between modes of failure numerically calculated and those experimentally observed by Batterman (1965). 

 
 

perfect 5% 10% perfect 5% 10%

12 480.08 AX Mode
AX, Ring-Shaped near 

the edges

AX, Ring-Shaped near the 

edges

AX, Ring-Shaped 

near the edges
AX, 3LW AX, 3LW AS, 3LW

18 482.63 AX Mode
AX, Ring-Shaped near 

the edges

AX, Ring-Shaped near the 

edges

AX, Ring-Shaped 

near the edges
AX, 3LW AX, 3LW AS, 3LW

22 439.8 AX Mode
AX, Ring-shaped at the 

central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at the 

central region

5 410.72 AX Mode
AX, Ring-shaped at the 

central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at the 

central region

15 382.6
AX Mode near ends, gentle 

DM pattern in central region
AX, 3LW

AX near the ends, gentle DM 

pattern in the central region

DM pattern in the 

central region
AX, 3LW

Ring-Shaped near the edges and 

DM pattern in the central region

DM pattern in the 

central region

16 354.25 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern 

AX, Ring-Shaped 

near the edges
DM pattern DM pattern 

26 301.23 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern 

AX, Ring-Shaped 

near the edges
DM pattern DM pattern 

8 227.73 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern AX, 5LW DM pattern DM pattern 

9 219.05 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern 

AX, Ring-shaped at 

the central region
DM pattern DM pattern 

Spec.

Experimental Buckling Stress 

(Batterman, 1965)

Buckling 

Stress 

(Mpa)

Mode of Failure

Mode of failure predicted Numerically (Abaqus)

Flow Plasticity Deformation Plasticity
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Error! Reference source not found. shows that the presence of initial 

imperfections also affects the failure modes bringing them into closer 

agreement with the failure mode predicted experimentally. 

 

Figure 3.17: Axial load vs. prescribed displacement numerically predicted for 
specimen 16 for flow and deformation theory in the case of perfect geometry. 

 

Figure 3.18: Axial load vs. prescribed displacement numerically predicted for 
specimen 15 for flow and deformation theory with an amplitude of initial imperfection 

equal to 10% of the thickness. 

Figure 3.17 and Figure 3.18 show the relation between axial loads and 

corresponding end shortening for specimens 15 and 16. The load-

displacement curves obtained for all other specimens are very similar to 
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those in Figure 3.17 and Figure 3.18 and therefore have not been reported. 

Again, it can be observed that for the various geometries and imperfections 

considered the curves predicted by the flow theory are always above those 

provided by the deformation theory. 

3.5. Discussion and interpretation of FEA results in the 
context of the plastic buckling paradox  

The main findings from the numerical results presented in Sections 3.3 and 

3.4 are that: 

(i) when correctly and accurately incorporated in accurate FE modelling, 

the deformation and flow theories of plasticity provide results which in 

general, and in particular in terms of buckling stresses, are similar and 

only occasionally differ more than 10%;  

(ii) the flow theory of plasticity consistently provides results which are in 

closer agreement with the experimental data; 

(iii) following the first part of the load-displacement curve, in which the 

two theories essentially provide the same results, with increasing applied 

displacements the loads calculated using the flow theory become 

systematically larger than those obtained using by the deformation theory 

for all cases analysed. 

The first two findings are in clear contrast with the conclusions of many 

authors, as discussed in Section 2.9. In particular, Table 3.10 and Table 3.11 

show very large discrepancies between the buckling stresses calculated 

using the present numerical simulations and those calculated analytically by 

Ore and Durban (1992) and Mao and Lu (1999).  

The following sections present a comprehensive discussion on the possible 

causes for such discrepancy.  

First a mesh-convergence analysis and the effects of the initial imperfections 

are examined and it is concluded that both have negligible effect on the 

findings. Second,  it is shown that the analytical approaches provide, by their 

own nature, solutions that are kinematically over constrained and that, for this 

reason, lead to an over stiffened model both in the case of the flow and 
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deformation theories of plasticity. Third, the influence of using the flow or the 

deformation theory of plasticity from the material standpoint is analysed with 

the help of a simplified model in the fashion of that proposed by Hutchinson 

(1972). This elementary model highlights in a very direct manner the 

influence of the different unloading paths on the results provided by the 

deformation and the flow theories of plasticity and it qualitatively shows why 

the loads-displacement curves found numerically by the flow theory always 

above those provided by the deformation theory. Moreover, it clearly shows 

why the deformation theory underestimates buckling loads calculated 

numerically in comparison to the flow theory.  

3.5.1 Robustness of the FE model 

A mesh-convergence analysis performed showed negligible changes in 

results by employing either coarser or and more refined meshes than those 

used to produce the presented results; additionally, a sensitivity analysis 

revealed that the results are not affected by the small numerical difference in 

the monotonic uniaxial stress-strain curve between the flow and the 

deformation theory of plasticity on account of setting 𝜎(0) = 10−5 MPa 

instead of 𝜎(0) = 0 (see Section 3.2.2). Hence, it is concluded that there 

seems to be no particular issue with the accuracy of the FE modelling used 

here. 

3.5.2 Influence of initial imperfections 

With respect to the influence of initial imperfections, some authors recently 

suggested that, at least in the case of the analysis of lined pipes under 

compression, the overestimation of the buckling stress predicted by the flow 

theory can be reduced by giving the initial imperfections a certain amplitude 

(Hilberink et al., 2010). However, the results of the sensitivity analysis to 

imperfections reported in Sections 3.3 and 3.4 clearly show that not 

accounting for imperfections leads to an overestimation of the buckling stress 

which is very similar for both the flow and the deformation theory. In other 

words, for both sets of tests simulated in the present analyses erroneous 

consideration of imperfections would not lead to a larger overestimation of 
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the buckling stress when using the flow theory than using the deformation 

theory of plasticity. 

3.5.3 Buckling shapes and over-constraint of analytical 
models 

The implicit kinematic constraint in assuming a certain buckling shape as the 

basis of analytical models seems to be the main reason for the discrepancy 

between the presented numerical results and the analytical findings which 

have suggested the existence of a plastic buckling paradox. Actually, it is on 

the basis of the results from several analytical calculations that it is widely 

accepted that the flow theory leads to a significant overestimation of the 

buckling stress while the deformation theory provides  much more accurate 

prediction and is therefore recommended for use in practical applications 

(see, for example, Mao and Lu (2001, 2002)). 

Actually, the buckling shapes determined by the inherent simplifications of 

the analytical treatments result in kinematic constraints which yield a stiffer 

structural response and, as a consequence, an overestimation of the 

buckling stress.  

Batterman (1965) derived analytical equations to define the buckling stress 

and corresponding number of half wave (m) for flow and deformation theories 

of plasticity. 

He assumed simply supported boundary conditions and the stress-strain 

relationship of the material was represented by the Ramberg-Osgood 

expression. The expressions of the buckling stresses obtained in the case of 

the flow and deformation theories are reported in Appendix A2. They were 

derived from an axisymmetric buckling shape in the form 

 sin /nv A m x L  (3.5) 

Table 3.16 shows the maximum buckling stress for each specimen of Lee’s 

cylindrical shells and its corresponding number of half waves m. It can be 

seen that the corresponding number of half waves predicted by the flow 

theory of plasticity is very different from that predicted by the deformation 

theory of plasticity and therefore the maximum buckling stress predicted also 
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differs sensibly. Further validation of these results is given by the fact that the 

maximum buckling stresses are almost equal to the buckling stresses 

calculated by Ore and Durban (1992) (Table 3.11). 

Spec. 

Experimental 

buckling stress 

(MPa) 

Analytical predictions 

𝒎 (Flow) 𝝈 (Flow) 𝒎 (Def.) 𝝈 (Def.) 

A330 96.87 3 165.6 7 89.85 

A320 78.6 5 124.2 11 74.63 

A220 81.15 7 125.05 17 74.63 

A310 64.74 7 105.74 13 67.23 

A110 74.12 17 105.75 33 67.23 

A300 69.71 9 88.75 17 59.78 

Table 3.16: The maximum buckling stress and corresponding number of half-waves 
obtained analytically 

To investigate this hypothesis further, cylindrical test specimens have been 

modelled here using finite-element modelling based on a 2-node linear 

axisymmetric shell element (named SAX1 in ABAQUS), with a uniform mesh.  

In order to reproduce the shape from the analytical solution presented in 

Table 3.16, the cylinders were partitioned into an appropriate number of 

parts, corresponding to the number of half waves yielded by the analytical 

solution, by using the edge partition tool in ABAQUS. Each part was meshed 

into ten elements. Linear constraint equations were used to ensure that the 

radial displacements of the nodes replicated the desired number of half-

waves. 

This is shown, for example, in Figure 3.19. 
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Figure 3.19: Deformed and undeformed shape of the cylinder for the case of m=7 

Table 3.17 shows the comparison between the maximum buckling stresses 

obtained analytically and numerically with and without the use of equation 

constraints for a number of specimens. 

It is evident that imposing constraint equations on the FE model in order to 

reproduce the shape of the analytical solution makes the buckling stresses 

predicted by the flow theory of plasticity well in excess of those predicted by 

the deformation theory of plasticity. The latter coincidentally seem therefore 

to be in better agreement with the experimental results. 
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Spec. 

Experim- 

ental 

buckling 

stress 

(MPa) 

Analytical predictions 

Numerical 

(FE+ 

kinematical 

constraints) 

Numerical 

using S4 

element 

(Without 

kinematical 

constraints) 

Numerical 

using SAX1 

element 

(Without 

kinematical 

constraints) 

𝒎 

(Flow) 

𝝈 

(Flow) 

𝒎 

(Def.) 

𝝈 

(Def.) 

𝝈 

(Flow) 

𝝈  

(Def.) 

𝝈 

(Flow) 

𝝈 

(Def.) 

𝝈 

(Flow) 

𝝈 

(Def.) 

A330 96.87 3 165.6 7 89.85 151.77 101.3 98.58 88.82 92.64 85.20 

A320 78.6 5 124.2 11 74.63 121.9 83.4 80.48 74.10 74.72 69.58 

A220 81.15 7 125.05 17 74.63 136.67 84.42 80.85 73.90 74.74 69.57 

A310 64.74 7 105.74 13 67.23 106.13 75.28 72.47 66.84 66.59 62.29 

A110 74.12 17 105.75 33 67.23 121.23 76.78 72.94 66.84 66.63 62.29 

A300 69.71 9 88.75 17 59.78 94.95 66.66 64.25 59.16 58.55 55.03 

Table 3.17: Comparison between the buckling stresses obtained analytically and 
numerically with and without the use of equation constraints 

On the other hand, without any constraints on the displacements the results 

from using the flow theory of plasticity in the S4 elements are, as pointed out 

in the previous sections, in much better agreement with the experimental 

results than those by use of the deformation theory. Using SAX1 

axisymmetric elements without kinematic constraints confirms this fact, but in 

such a case the results from the deformation theory tend to underestimate 

the buckling stresses even more than in the case of the S4 elements. 

Overall, it can be concluded that the use of the deformation theory tends to 

underestimate the buckling load and this fact, in the case of the analytical 

solution proposed by Batterman, compensates the over stiffened kinematics 

from the simplified analytical equations. 

3.5.4 Effects of unloading: analysis through a semi-
analytical model 

It is worth recalling that the fundamental differences between flow and 

deformation theories lie in the stress-strain responses (i) during non-

proportional loading and (ii) during unloading.  

Plastic buckling does indeed lead to non-proportional loading because, 

before the onset of plasticity, strains are elastic whereas, once the stress 

reaches and exceeds the yield strength, plastic strains gradually become 
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predominant. Since the rate of plastic strain is normal to the yield domain, 

typically the strain path deviates significantly from the initial straight line 

followed during elastic loading. This aspect is captured in the same manner 

by the constitutive relationships used in the performed numerical FE 

analyses and in the analytical formulations.  

Unloading is correctly represented by the use of the flow theory in the 

present numerical calculations, but it is physically misrepresented in the 

numerical calculations based on the deformation theory as well as in the 

analytical investigations. As for the latter, it is worth clarifying that unloading 

is not considered in analytical models using either the deformation theory or 

the flow theory. Therefore, the consideration of unloading does not offer 

insight into why analytical models based on the deformation theory provide 

lower buckling predictions compared to models based on the flow theory. 

Instead, considering the different ways unloading is treated in the numerical 

calculations can explain why  the deformation theory intrinsically tends to 

under predict the buckling load in the numerical simulations.  

In order to isolate the role played by the different stress responses resulting 

from the use of the flow or the deformation theory after strain reversal, i.e. 

material unloading, a simplified model conceptually similar to the one 

proposed by Hutchinson (1972) is considered. The model qualitatively 

reproduces the geometrically nonlinear response of a cylinder in compression 

and is modelled by uniaxial stress-strain relationships, leading by definition to 

proportional (material) loading. The model is described in  Figure 3.20: it 

consists of two rigid bars connected by two pin-ended short struts. Suffixes 1 

and 2 are used to denote the lower and upper central struts. Each rigid bar 

has length equal to 𝑎 − ℎ and a rectangular cross section of depth 𝑑 and 

width 𝑐, whereby the cross section area is 𝐴 = 𝑐 𝑑. The short struts have 

length 2h and cross sectional areas equal to 𝐴1 = 𝐴2 = 𝐴/2. 

The structure is axisymmetrically supported and subjected to an end-load 𝑃 

with an eccentricity 𝑒. Moreover, nonlinear elastic ‘unstable’ springs are 

assumed to act orthogonally to the rigid bars. They are introduced to account 

for geometric nonlinearity effects and are characterized by a nonlinear and 
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de-stabilizing response. The responses of the springs are unstable in the 

sense that the force transmitted is in the same direction as the spring 

deformation rather than opposite to it, i.e. tensile for spring elongation and 

compressive for spring shortening, in accordance with the following formula 

𝑄 = 𝑐 𝛽 𝛥2 𝑠𝑖𝑔𝑛(𝛥)   (3.6) 

where 𝑄 is the force,  𝛥 is the lateral displacement (spring elongation) and 𝛽 

is the material constant of the spring.  

 

 Figure 3.20: A simplified model after Hutchinson (1972) 

Essentially, the presence of these nonlinear and unstable springs qualitatively 

reproduces the unstable post-buckling responses due to the peculiar 

geometrically nonlinear nature of structures, such cylinders in compression, 

via the introduction of material nonlinearity and unstable structural 

components. Geometrical nonlinearity is translated into material nonlinearity, 

which enables a study of the pre- and post-buckling response of the structure 

with a simple second-order approach, resulting in relatively easy analytical 

computations.  

The stresses and strains in the struts are taken as positive when 

compressive. Denoting the strain in the struts by 𝜀1 and ε2, the rotation of the 

left hand bar is  given by 
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θ =  
ℎ(𝜀2 − 𝜀1)

𝑑
 

(3.7) 

From Figure 3.20, the lateral displacement 𝛥 is: 

𝛥 = (𝑎 − ℎ) 𝜃 = (𝑎 − ℎ)
ℎ(𝜀2 − 𝜀1)

𝑑
 (3.8) 

The stress-strain relation is in the form of a bilinear elastic-plastic behaviour 

with isotropic hardening which can be expressed as 

{
𝜎1 = 𝑎1 + 𝑏1 𝜀1
𝜎2 = 𝑎2 + 𝑏2 𝜀2

 
(3.9) 

where 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1,2, are material constants that depend on the (linear) 

branch of the stress-strain curve and on whether the deformation or the flow 

theory of plasticity is used, as shown in Figure 3.21. 

 

Figure 3.21: Bilinear stress-strain curves used for the flow and deformation theory. 

Equilibrium requires that 

𝑃1 + 𝑃2 = 𝑃   
(3.10) 

where 

{
𝑃1 = 𝐴1 𝜎1 =

1

2
𝐴 𝜎1 =

1

2
𝑑 𝑐 𝜎1

𝑃2 = 𝐴2 𝜎2 =
1

2
𝐴 𝜎2 =

1

2
𝑑 𝑐 𝜎2

   
(3.11) 

Equilibrium about any point along the line of action of 𝑃 yields 

P1(𝛥 + 𝑒 + 𝑑 2⁄ ) + P2(𝛥 + 𝑒 − 𝑑 2⁄ ) + (𝑎 − ℎ) 𝑐 𝛽𝛥2 = 0   
(3.12) 
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And from Eq. (3.8), one has 

𝜀2 − 𝜀1 = 
∆

𝑎−ℎ

𝑑

ℎ
   

(3.13) 

By defining  

𝑥 = 𝜀2 − 𝜀1    and  𝜎 = (𝜎1 + 𝜎2)/2 
(3.14) 

and solving for 𝜎 leads to: 

𝜎 =
a2b1𝑑

2−𝑎1𝑏2𝑑
2+𝑏1𝑏2𝑑

2𝑥+2𝑎𝑏1𝛽𝛥
2+2𝑎𝑏2𝛽𝛥

2−2𝑏1ℎ𝛽𝛥
2−2𝑏2ℎ𝛽𝛥

2

𝑑(𝑏2(−𝑑+2(𝑒+𝛥))+𝑏1(𝑑+2(𝑒+𝛥)))
   

(3.15) 

The horizontal deflection of the point where the load P is applied can be 

calculated: 

𝑢 =  
(𝜀1+𝜀2)ℎ

2
+  𝑎 𝑒 𝜃 + 𝑎(1 − 𝑐𝑜𝑠𝜃)  

(3.16) 

In order to determine the relation between stress 𝜎 and the deflection 𝛥 or the 

longitudinal displacement 𝑢 the following procedure is used. 

The value of deflection 𝛥 is incrementally increased and 𝜎 and 𝑥 are 

calculated from Eqs. (3.13) and (3.15). The strains 𝜀1, 𝜀2, stresses 𝜎1 , 𝜎2 and 

the horizontal deflection 𝑢 are then evaluated. At each increment, the loading 

stage of each strut on the stresses-strain curve (Figure 3.21) is determined 

based on its stresses 𝜎1 , 𝜎2. The coefficients   𝑎1, 𝑎2,   𝑏1, 𝑏2  are then 

calculated according to the current loading stage and to the plasticity theory 

adopted in accordance with Table 3.18 and Table 3.19. 

Loading stage Strut 1 Strut 2 

1 Both struts are elastic 
𝑎1 = 0 

𝑏1 = 𝐸 

𝑎2 = 0 

𝑏2 = 𝐸 

2 
Strut 2 plastic, strut 1 

elastic 

𝑎1 = 0 

𝑏1 = 𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

3 Both struts plastic 
𝑎1 = 𝜎𝑦(1 − 𝜆) 

𝑏1 = 𝜆𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

4 
Strut 1 elastic unloading, 

Strut 2 plastic loading 

𝑎1 = 𝜎𝑢𝑙 − 𝐸𝜀𝑢𝑙 

𝑏1 = 𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 
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5 
Strut 1 plastic reloading, 

Strut 2 plastic loading 

𝑎1 = 𝜎𝑢𝑙(2𝜆 − 1)

− 𝜆𝐸𝜀𝑢𝑙 

𝑏1 = 𝜆𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

Table 3.18: loading stages in the case of flow plasticity. 

 
 
 

Loading stage Strut 1 Strut 2 

1 Both struts are elastic 
𝑎1 = 0 

𝑏1 = 𝐸 

𝑎2 = 0 

𝑏2 = 𝐸 

2   Strut 2 plastic, strut1 elastic 
𝑎1 = 0 

𝑏1 = 𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

3     Both struts plastic 
𝑎1 = 𝜎𝑦(1 − 𝜆) 

𝑏1 = 𝜆𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

4 

Strut 1 plastic unloading, strut 

2  

       plastic loading 

𝑎1 = 𝜎𝑢𝑙 − 𝜆𝐸𝜀𝑢𝑙 

𝑏1 = 𝜆𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

5 

Strut 1 elastic unloading, strut 

2  

         plastic loading 

𝑎1 = 0 

𝑏1 = 𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

6 
Strut 1 plastic reloading, strut 2 

         plastic loading 

𝑎1 = 𝜎𝑦(𝜆 − 1) 

𝑏1 = 𝜆𝐸 

𝑎2 = 𝜎𝑦(1 − 𝜆) 

𝑏2 = 𝜆𝐸 

Table 3.19: loading stages in the case of deformation plasticity. 

The procedure was implemented in a FORTRAN code and analyses were 

conducted assuming 𝑎 = 250 mm , 𝑑 = 15 mm, ℎ = 5 mm (Appendix A3). The 

cross section of the rigid bar was assumed to be square. The material 

properties for the struts were assumed to be 𝜎𝑦 = 100  MPa,   𝐸 = 70000 

MPa and  𝜆 = 0.5. The nonlinear spring constant was assumed equal to 

𝛽 = 10 Nmm-3 and two values of load eccentricity considered in the 

calculations were, 𝑒 = 0.5 mm , 𝑒 = 2 mm. The results are reported in Figure 

3.22 to Figure 3.25. 
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It is evident from the 𝑃 − 𝑢 and 𝑃 − 𝛥 plots that both theories of plasticity 

provide the same results up to the onset of stage 3 (i.e. start of unloading in 

one strut). From that point onwards, the deformation theory of plasticity 

underestimates the carried load by up to 20% with respect to the 

corresponding load calculated using the flow theory, depending on the value 

of the assumed imperfection. 

This fact provides a direct and physical explanation to the findings of FE 

analyses in which the load-displacement curves provided by the flow and 

deformation theories are identical up to the point of unloading then the flow 

theory tends to be stiffer than deformation theory and thus provide higher 

buckling loads but more in line with the experimental findings than the 

deformation theory findings. 

 

Figure 3.22: 𝑃 − 𝛥 plot from the simplified model: comparison between flow and 
deformation theory, 𝑒 = 0.5 mm. 
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Figure 3.23: 𝑃 − 𝑢 plot from the simplified model: comparison between flow and 
deformation theory, 𝑒 = 0.5 mm. 

 

Figure 3.24: 𝑃 − 𝛥 plot from the simplified model: comparison between flow and 
deformation theory, 𝑒 = 2 mm. 
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Figure 3.25: 𝑃 − 𝑢 plot from the simplified model: comparison between flow and 

deformation theory, 𝑒 = 2 mm. 

3.6. Conclusions 

The discrepancy between the presented results and those in the literature by 

many other authors can be summarised by stating that, according to the 

performed numerical investigations in the cases under consideration here 

there is actually no plastic buckling paradox. In fact, the flow theory of 

plasticity, which provides a physically sound description of the behaviour of 

metals, leads to predictions of the buckling stress which are in better 

agreement with the corresponding test results than those provided by use of 

the deformation theory.  

This is in contrast to the conclusions by other authors and with the widely 

accepted belief that the flow theory leads to a significant overestimation of 

the buckling stress while the deformation theory leads to much more 

accurate predictions and, therefore, is the recommended choice for use in 

practical applications. The reason for these different conclusions has been 

carefully investigated from different standpoints and with the help of 

simplified models. 

The roots of the discrepancy, according to present results, may be found in 

the simplifying assumptions with regards to assumed buckling modes used 

as the basis of many analytical investigations and essentially in the fact that 
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adopting the deformation theory of plasticity contributes to counterbalance 

the excessive stiffness induced by kinematically constraining the cylinders to 

follow predefined buckling modes, thus providing results that are only 

apparently more in line with the experimental findings. Furthermore, 

additional analytical investigations could be carried out by taking into 

consideration buckling modes different from the harmonic one and evaluate if 

this can deliver any improvement in the predictions based on the flow theory 

of plasticity. 
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Chapter 4 

 

 

 

 

 

A Numerical and Analytical Investigation into the 
Plastic Buckling Paradox for Circular Cylindrical 

Shells under Non-Proportional Loading 

 
 
 
 
 
 
 
 
 

4.1. Introduction  

In Chapter 3 the so-called “plastic buckling paradox” of cylinders subjected to 

axial compression was investigated by conducting accurate finite-element 

modelling of the buckling of cylindrical shells using both the flow theory and 

the deformation theory of plasticity.  It was found that, in contrast to common 

understanding, a very good agreement between numerical and experimental 

results can be obtained in the case of the physically sound flow theory of 

plasticity. The discrepancy between the presented results and those in the 

literature by many other authors can be summarised by stating that, 

according to the performed numerical investigations in the cases under 

consideration, no plastic buckling paradox actually exists. In fact, the flow 

theory of plasticity, which provides a physically sound description of the 

behaviour of metals, leads to predictions of the buckling stress which are in 

better agreement with the corresponding test results than those provided by 

use of the deformation theory.  
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The roots of the discrepancy may be in the simplifying assumptions with 

regard to assumed buckling modes used as the basis of many analytical 

investigations and essentially in the fact that adopting the deformation theory 

of plasticity contributes to counterbalance the enhanced stiffness induced by 

kinematically constraining the cylinders to follow predefined buckling modes. 

In the case of axially loaded cylinders studied in Chapter 3, material points 

are generally subjected to proportional loading in the elastic range, and this 

remains relatively true also in the initial phase of plastic buckling.  

Nevertheless, the flow and deformation theory seem to provide quite different 

results. It is, therefore, not surprising that similar or even more significant 

discrepancies have been reported between the results from the flow and 

deformation theory in the case of non-proportional loading.  

It was noted in Section 2.9 that, for the case of cylinders subjected to axial 

tensile load and external pressure, Blachut et al. (1996) and Giezen et al. 

(1991) concluded that the flow theory significantly over predicts the plastic 

strains and buckling loads for high tensile loads while the deformation theory 

leads to acceptable plastic strains and buckling loads that are more in line 

with experimental observations in most cases. In many practical applications 

the deformation capacity is the main concern rather than buckling load. For 

instance for reeling of pipelines, one is interested in how far one can bend a 

pipe without wrinkling it and incorrect prediction of strains calculated using 

the flow plasticity are not acceptable (Peek, 2000). Additionally, one cannot 

use the deformation theory in the post-buckling analysis of shells because it 

does not account for elastic unloading after bifurcation. This led the prudent 

designer not to rely only on the flow theory, and moved researchers to 

attempt a revised deformation theory by including unloading (Peek, 2000) or 

propose a total deformation theory applicable for non-proportional loading 

defined as a sequence of linear loadings (Jahed et al., 1998). 

This chapter aims to shed further light on the plastic buckling paradox by 

means of carefully conducted finite-element (FE) analyses of cylindrical 

shells using both the flow theory and the deformation theory of plasticity. 

Results are compared with the experimental and the numerical results 
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obtained by Blachut et al. (1996) and Giezen et al. (1991) using the code 

BOSOR5. The study also aims to examine the sensitivity of the predicted 

critical strains and buckling pressures with respect to the applied tensile load. 

Moreover, it attempts to provide further understanding of the apparent 

discrepancy between the predictions of the flow and deformation theories of 

plasticity by means of a straightforward analytical approach, which moves 

from the formulation presented by Chakrabarty (2010) and employs both the 

flow and deformation theories. The obtained analytical results are again 

compared with the experimental and numerical results obtained in Blachut et 

al. (1996) and Giezen et al. (1991)  using the code BOSOR5 and with the 

present numerical ones. 

The analysis is focused on machined short cylindrical shells subjected to 

non-proportional loading consisting of axial tension and increasing external 

pressure, with length-to-outer diameter ratio 𝐿 𝐷⁄  ranging between 1 and 2 

because this allowed us to compare our numerical results with the classical 

experimental results reported in the literature by Blachut et al. (1996) and 

Giezen et al. (1991). 

4.2. Test samples and finite-element modelling 

4.2.1.        Geometry and elements 

The plastic buckling of selected imperfect cylinders tested by Blachut et al. 

(1996) and Giezen et al. (1991), subjected to uniform external pressure and 

axial tensile load, has been numerically simulated using nonlinear FE 

analyses using both the flow theory and the deformation theory of plasticity, 

adopting the FE code ABAQUS, version 6.11-1 (Simulia, 2011). 

4.2.1.1 Modelling of tests made by Blachut et al. 
(1996) 

Blachut et al. (1996) conducted tests on 30 machined cylinders made of mild 

steel with outer diameter 34 mm and length-diameter ratio (𝐿 𝐷⁄ ) of 1.0, 1.5 

and 2.0. In the experimental setting, one flange of the specimen was rigidly 

attached to the end flange of the pressure chamber and the other flange was 

bolted to a coupling device which in turn was bolted to the load cell, see 
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Figure 4.1. The load cell was centred with respect to the test chamber in 

order to prevent any eccentricity of the axial load exerted on the specimen. 

The authors reported that the maximum initial radial imperfection measured 

at the mid-length of the specimens was about 1% of the wall thickness.  

In the present investigation, in order to keep the numerical analyses at a 

reasonable number, twelve cylinders were chosen, as illustrated in Table 4.1, 

in such a way that (a) a significant range of L/D is covered in the study and 

(b) for all the selected cases, except S2 and L4, the flow theory of plasticity 

failed to predict buckling numerically according to Blachut et al. (1996). 

 

 

Figure 4.1: Experimental setting (Blachut et al., 1996). 

 

Spec. 
Geometry of the cylinders 

𝑫 (𝒎𝒎) 𝒕 (𝒎𝒎) 𝑳/𝑫 

S1 34.01 0.685 0.982 

S2 33.98 0.688 0.983 

S3 34.05 0.667 0.982 

S4 34.07 0.667 0.982 

S5 33.98 0.679 0.981 

S6 34.06 0.704 0.979 

S7 33.97 0.675 0.982 

M2 34 0.616 1.47 

M12 33.59 0.669 1.474 

M7 33.97 0.63 1.473 

L4 34 0.669 1.961 

L8 33.96 0.693 1.964 

Table 4.1: Geometry of tested cylinders. 

In the FE modelling one reference point has been located at the centre of the 

top end of the cylinder and the axial displacements of all the nodes at the top 

edge of the cylinder have been constrained to the axial displacement of this 

reference point.  The axial tensile load has been applied directly to the 

reference point. All the other degrees of freedom of the nodes at the top edge 
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have been restrained. The bottom edge of the shell has been considered fully 

fixed, i.e. with no allowed translation or rotations at any node. 

 

 

 

Figure 4.2: Boundary conditions. 

In order to simulate the experimental settings, two types of loading have 

been considered:  axial tensile load in the longitudinal direction and external 

pressure applied normally to the surface of the shell elements (Table 4.2).  

First the tensile load has been applied and held constant. Successively, an 

increasing lateral pressure has been applied.  

Specimen S1 S2 S3 S4 S5 S6 S7 

Axial tension 
(N) 

17960 0 18000 3990 12010 15030 7970 

 
Specimen M2 M12 M7 L4 L8 

Axial tension 
(N) 

10670 18530 15060 8210 16490 

Table 4.2: Axial tension values for the selected cylinders. 

The cylinders have been modelled by means of the general-purpose 4-noded 

fully-integrated shell element, “S4” (Simulia, 2011), whose features have 

already been discussed in Section 3.2.1.  

A structured mesh was used, made from a number of divisions along the 

circumference and longitudinal direction, as reported in Table 4.3 for each 

specimen. 

 

 

Kinematic coupling constraint 

Clamped boundary 
conditions 
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 Specimens 

Number of elements S1 S2 S3 S4 S5 S6 S7 

- around the 

circumference 
200 200 200 200 200 200 200 

- along the length 63 63 63 63 63 63 63 

 
 Specimens 

Number of elements M2 M12 M7 L4 L8 

- around the 

circumference 
200 200 200 200 200 

- along the length 94 94 94 125 125 

Table 4.3: FE mesh discretisation adopted for the analyses of the cylinders tested 
by Blachut et al. (1996). 

4.2.1.2 Modelling of tests made by Giezen et al. 
(1991) 

 In the test carried out by Giezen et al. (1991), the cylindrical specimens were 

made of aluminium alloy 6061-T4. Two sets of specimens were tested, 

namely Set A and Set B. The average wall-thickness values of the first and 

second set were 0.76 and 0.71 mm, respectively, and the length-to-diameter 

ratio (𝐿 𝐷⁄ ) was equal to one.  The maximum initial imperfections were found 

to be about 0.076mm (10% of the thickness) (Giezen et al., 1991). 

For the present numerical analysis only specimens subjected to constant 

axial tensile load and increasing external pressure have been chosen, as 

shown in Table 4.4 and Table 4.5.  

 
Specimen SP.1 SP.2 SP.3 SP.4 SP.5 SP.6 SP.7 

Axial tension 
(N) 

0 1254.4 2508.8 4076.8 5205.8 6021.2 6522.9 

n. of buckling 
waves 

5 5 5 5 4 4 4 

 
Specimen SP.8 SP.9 SP.10 SP.11 SP.12 SP.13 

Axial tension 
(N) 

6899.2 7902.8 9408.1 11666 12920.4 14613.80 

n. of buckling 
waves 

4 4 4 4 4 4 

Table 4.4: Axial tensile load and observed number of buckling waves (in the 
circumferential direction) for Set A specimens 
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Specimen SP.1 SP.2 SP.3 SP.4 SP.5 SP.6 SP.7 

Axial tension 
(N) 

0 
2343.7

6 
4793 7089.9 9375 11777.4 14062.6 

n. of buckling 
waves 

4 4 4 4 4 4 4 

Table 4.5: Axial tensile load and observed number of buckling waves (in the 
circumferential direction) for Set B specimens. 

Again, a 4-noded shell elements (S4) has been used with a structured mesh 

and a division of 210 and 67 elements along the circumference and the 

length, respectively. The same boundary conditions used to simulate 

Blachut’s experiments have been adopted. 

4.2.2. Material parameters 

The uniaxial stress-strain relationship of the material under monotonic 

loading has been characterised by means of the Ramberg-Osgood law, i.e 

Eq. (3.1). 

The Ramberg-Osgood input parameters used in the numerical simulations 

are reported in Table 4.6. 

 𝐸 [MPa] 𝜎𝑦[MPa] 𝜈 𝑛𝑝 𝛼 

Blachut’s test 212000 328 or290 0.31 300 0.428 

Giezen’s test-Set 

A 
65129.73 177.75 0.3 16 

0.733 

Giezen’s test-Set 

B 
60986.34 165.37 0.3 11.76 

0.738 

Table 4.6: Ramberg-Osgood constants used in the numerical analyses. 

Blachut et al. (1996) conducted longitudinal tensile tests on a number of 

coupons to determine the mechanical properties of the cylindrical specimens. 

They reported that the yield plateau in the stress-strain relationship of the 

material appears to be extended to a strain value of almost 3%, see Figure 

4.3. Moreover, they observed that the upper yield stress of the tested 

coupons, cut along the longitudinal direction of the cylinders, varied from 280 

to 360 MPa, with an average value of 328 MPa, and the lower yield stress 

from 275 to 305 MPa, with an average value of 290 MPa (Blachut et al., 

1996). In the present numerical analysis both the average upper yield stress, 
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𝜎𝑦
𝑢 = 328Mpa, and the average lower yield stress, 𝜎𝑦

𝑙 = 290 MPa, were 

employed in order to perform meaningful comparisons. 

 

Figure 4.3: Typical stress-strain curve of the mild steel. 

With respect to Blachut’s examples, two approaches have been used in the 

present numerical analyses. In the first use has been made of an elastic-

perfectly plastic flow theory (EPP flow theory). In the second recourse has 

been made to an isotropic nonlinear hardening material model with an initial 

yield stress close to zero and a hardening curve based on the Ramberg-

Osgood law (NLH flow theory).  A detailed description of this implementation 

in the case of the flow theory of plasticity is given in Section 3.2.2. 

It is worth noticing that, despite the very high value of the hardening 

parameter, the NLH flow theory cannot reproduce the elastic-perfectly plastic 

behaviour of the material undergoing monotonic loading, see Figure 4.4.  

In order to compare the results from the flow theory with those from the 

deformation theory, the input parameters of the flow theory in the numerical 

analyses have been tuned so that the same stress-strain curve of the 

material as in the case of the deformation theory is obtained for the case of 

uniaxial stress and monotonic loading, to within a negligible numerical 

tolerance. 
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Figure 4.4: Comparison between the approximated and the exact elastic-perfect 
plastic material behaviour. 

Giezen et al. (1991) reported stress-strain data recorded from material tests 

on a number of strips machined from the original tubes of the sets A and B to 

evaluate the material properties of the cylindrical specimen.  

With respect to  Giezen ‘s examples, in the present study the material 

behaviour has  been simply determined by fitting the Ramberg-Osgood 

relation to the available data set, as shown in Figure 4.5 and Figure 4.6. 

 

Figure 4.5: Ramberg-Osgood fit (Set A). 
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Figure 4.6: Ramberg-Osgood fit (Set B). 

The formulations of the flow and deformation theories of plasticity adopted in 

the numerical simulations are reported in Appendix A1 and Section and 2.8, 

respectively. 

4.2.3. Large displacement formulation and solution 
procedure 

The numerical analyses have been performed accounting for large 

deformations by using spatial co-rotational stress and strain measures and a 

hypo-elastic relation between the rates of stress and elastic strain (Simulia, 

2011). As discussed in Section 3.2.3, this approach can be considered 

sufficiently accurate for the purposes of these analyses, because, the elastic 

part of the strain is typically still very small and close enough to the limit 

where hypo-elastic and hyper-elastic formulations coincide (Simo and 

Hughes, 1998).  

As for the analyses discussed in Chapter 3, the Riks arc-length method 

(Riks, 1979) has been used in the version implemented in ABAQUS (Simulia, 

2011), whose main features have been already discussed in Section 3.2.4.   

For the analyses presented in this chapter, the external pressure is set as 

λ P0, where P0 denotes a reference inward external pressure and λ is a scalar 
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multiplier. The critical load is determined by the point at which the load-arc 

length curve reaches a maximum. 

The bifurcation point is the intersection of secondary and primary paths, 

which are the pre-buckling and post buckling paths, respectively. To avoid 

such discontinuous response at bifurcation, it is common to introduce 

geometric imperfections in order to remove bifurcation points (Falzon, 2006; 

Simulia, 2011). In this way, the post-buckling problem analysed using Riks 

method will turn into a problem with a continuous response. The critical point 

determined on the equilibrium path is the limit point and there is no 

bifurcation prior to collapse. The choice of the size of the imperfection and its 

shape is discussed in later sections. Furthermore, if analyses are conducted 

with progressively reduced size of the imperfection, the limit point found in 

those with the smallest amount of imperfections; say 0.05% or 0.1% of the 

thickness turns out to be a good approximation of the bifurcation load 

(Bushnell, private communication). This method is used later in Section 4.5.3. 

4.2.4. Description of imperfections 

Accounting for imperfections has been achieved by scaling and adding 

buckling eigenmodes to a perfect geometry in order to create a perturbed 

initial geometry. The scaling factor has been set as a percentage of the shell 

thickness, t. The analyses have been conducted for an imperfection 

amplitude equal to 1% of the thickness, as experimentally measured by 

Blachut et al. (1996).  

The choice of linear elastic eigenmodes used to generate the imperfect 

models was made with the aim of choosing those with the same number of 

circumferential waves that were found experimentally in the post-buckling 

path. Except for specimen M2, for which a buckling mode with 3 waves was 

reported, Blachut et al. (1996) did not report the observed failure modes of 

the other cylinders. However, they did report that the number of 

circumferential waves observed from the test varied from 3 waves for high 

values of axial tensile load to 6 waves for pure applied external pressure. 

Therefore, for very small values of the axial load such as in specimen S2, the 

fifth eigenmode with 6 waves was used; for specimen M2 and for the others 
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which were tested with very high tensile loads, the eigenmode corresponding 

to 3 waves was used; for the other specimens subject to intermediate smaller 

or larger tensile loads, the eigenmodes with 5 or 4 waves were used, 

respectively. This is summarised in Table 4.7, which shows the eigenmode 

number used to generate the shape of imperfection in the FE models for 

each specimen together with the associated number of circumferential waves 

(see Figure 4.7). 

On the other hand, Giezen et al. (1991) reported the buckling failure modes 

found experimentally, as illustrated in Table 4.4 and Table 4.5. Hence, for 

these cases the eigenmodes used to generate the imperfections are those 

with the same number of waves found experimentally, with a single wave in 

the longitudinal direction. Accordingly, the eigenmodes with five 

circumferential waves have been chosen to generate initial imperfection’s 

shape for specimens SP.1 to SP.4 in Set A and those with four waves have 

been chosen for the rest of the specimens (see Figure 4.8). The analyses 

have been conducted for an imperfection amplitude equal to 10% of the 

thickness for both Set A and B, as experimentally measured by Giezen et al. 

(1991).  

In all the cases the linear buckling analysis has been conducted assuming 

linear elastic material behaviour and small displacements, under constant 

axial tensile loading. 

It is worth pointing out that existing results show that it is not universally true 

for geometrically imperfect structures to fail by collapse at a reduced 

magnitude of load. In fact, Blachut and Galletly (1993) observed that the 

elastic buckling load of externally pressurized torispheres was not affected by 

local flattening with small amplitudes and this fact was verified 

experimentally.  Actually, the limit carrying load of shells of revolution is 

known to exhibit complex phenomena including mode switching and 

interaction and many analyses of the non-axisymmetric buckling deformation 

of spherical domes suggest that the observed deformation at collapse is 

mostly determined by the form of the imperfections, rather than by their 

magnitude. 
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This seems to be hardly the case with the circular cylindrical shells object of 

the present study, especially in the case of non-proportional loading. In fact, 

apart from the observation that the behaviour described by Blachut and 

Galletly tends to depend on the rise of the torispheres, a geometric 

characteristic which does not pertain to cylinders, in the performed numerical 

analyses, the 𝑅/𝑡 ratio of the cylinders was about 25, placing the buckling in 

a substantially pure plastic range, where imperfect shells are prone to show a 

reduced collapse load with respect to perfect ones. As an additional point, 

Figure 4.23 and Figure 4.25 show that the plastic buckling resistances of the 

cylinders under analysis are actually sensitive to imperfection amplitudes. 

Specimens S1 S2 S3 S4 S5 S6 S7 

Eigenmode number 3 5 3 1 3 3 1 

Number of 
circumferential waves 

4 6 4 5 4 3 5 

 
 

Specimens M2 M12 M7 L4 L8 

Eigenmode number 7 7 7 1 3 

Number of 
circumferential waves 

3 3 3 4 3 

Table 4.7: Number of circumferential waves used to generate imperfections in the 
FE modelling for the specimens tested by Blachut et al. (1996). 

 

                                          

          

          First eigenmode for S4 cylinder                       Seventh eigenmode for M2 cylinder 

Figure 4.7: Buckling eigenmodes used in the simulation of Blachut’s tests to account 
for initial imperfections. 
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      First eigenmode for SP.1 (Set A) cylinder        Fifth eigenmode for SP.1 (Set B) cylinder  

Figure 4.8: Buckling eigenmodes used in the simulation of Giezen’s tests to account 
for initial imperfections. 

4.3. Finite-element results for the experiments in Blachut et 
al. (1996) 

4.3.1. Comparison of the numerical results with 
experimental results 

The plastic buckling pressures, based on the deformation theory, the EPP 

flow theory and the NLH flow theory of plasticity, have been calculated for 

different specimen geometries, axial tensions and both values of the average 

yield stress. The results are illustrated in Figure 4.9 and show that the 

buckling pressure results predicted by the NLH flow theory and the 

deformation theory of plasticity are extremely close to each other. 

The calculated buckling pressures based on the flow theory and the 

deformation theory in conjunction with the upper value of the yield stress are 

in better agreement with experimental results for the specimens S2, S3, S5, 

S7, M2, M12 ,M7, and L4. The calculated buckling pressures based on the 

flow theory and the deformation theory in conjunction with the lower value of 

the yield stress are in better agreement with experimental results for the 

specimens S1, S4, S6, and L8. 
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Figure 4.9: Comparison between experimental and numerical results for both the 
deformation theory and the NLH flow theory of plasticity. 

Figure 4.10 shows the external pressure vs arc length plots resulting from 

flow and deformation plasticity for different specimens. It can be noticed that 

the curve predicted by the flow theory lays above the curve predicted by the 

deformation theory for most cases.  

Figure 4.11 and Figure 4.12 show the predicted circumferential and meridian 

plastic strains at the onset of buckling according to the flow and deformation 

theory of plasticity. It can be observed that the differences in the predictions 

increase with the intensification of the applied tensile load. 

Figure 4.11 and Figure 4.12 show that both plasticity theories succeed in 

predicting buckling with physically acceptable plastic strains for all 

specimens. In fact, although the maximum plastic strains calculated at the 

buckling pressure in meridian and circumferential directions and predicted by 

the NLH flow theory of plasticity are larger than those predicted by the 

deformation theory, the result still acceptable for all specimens with 𝐿 𝐷⁄ ≈ 1. 

Additionally,   Table 4.8 to Table 4.10 show that meridian and circumferential 

plastic strains predicted using the flow theory of plasticity are physically 

realistic, being smaller than 1.5%, with the exception of specimens S1, S3 
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and S6 in Table 4.10, albeit with values still largely below 5%.  The plastic 

buckling pressures presented in Figure 4.9 and calculated using the flow 

theory can be thus considered all physically acceptable.  

 

(a) External pressure versus arc-length for specimen S1  

 
(b) External pressure versus arc-length for specimen S2 
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(c) External pressure versus arc-length for specimen S3 

 

(d) External pressure versus arc-length for specimen S7 

 
(e) External pressure versus arc-length for specimen M2 
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(f) External pressure versus arc-length for specimen L4 

Figure 4.10: External pressure vs. arc-length curves for specimens (a) S1, (b) S2, 
(c) S3, (d) S7, (e) M2 and (f) L4 (upper value of the yield stress) showing the 

buckling response, ultimate external pressure and deformation modes before, after 
and at the limit pressure load (colour indicating the total deformation). 

 
Figure 4.11: Maximum circumferential plastic strains at the mid-section of the 

cylinders under combined loading (𝑳 𝑫⁄ ≅ 𝟏), calculated using the upper value of the 
yield stress. 
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Figure 4.12: Maximum meridian plastic strains at the mid-section of the cylinders 

under combine loading (𝑳 𝑫⁄ ≅ 𝟏), calculated using the upper value of the yield 
stress. 

Spec 
M2 M12 M7 L4 L8 

C M C M C M C M C M 

S=0 -0.028 0.320 -0.030 0.320 -0.027 0.242 -0.021 0.176 -0.0245 0.205 

S=0.25 -0.453 0.403 -0.580 0.750 -0.380 0.404 -0.065 0.044 -0.210 0.231 

S=0.5 -0.679 0.603 -0.960 1.250 -0.638 0.660 -0.151 0.087 -0.309 0.318 

S=0.75 -0.453 0.403 -0.640 0.866 -0.380 0.404 -0.065 0.037 -0.210 0.223 

S=1 -0.028 0.320 -0.030 0.320 -0.027 0.242 -0.021 0.176 -0.0245 0.205 

Table 4.8: Maximum plastic strains (%) at the buckling at different sections of the 
cylinders (S=x/L), according to the NLH flow theory of plasticity and using the upper 

value of the yield stress (C-circumferential direction; M-meridian direction). 
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Spec 

M2 M12 M7 L4 L8 

C M C M C M C M C M 

S=0 -0.023 0.266 -0.026 0.454 -0.207 0.220 0.018 0.160 -0.020 0.190 

S=0.25 -0.330 0.298 -0.734 0.961 -0.261 0.273 -0.047 0.032 -0.138 0.150 

S=0.5 -0.480 0.420 -1.268 1.656 -0.417 0.421 -0.127 0.071 -0.179 0.182 

S=0.75 -0.330 0.298 -0.734 0.961 -0.261 0.273 -0.047 0.032 -0.138 0.150 

S=1 -0.023 0.266 -0.026 0.454 -0.207 0.220 0.018 0.160 -0.020 0.190 

Table 4.9: Maximum plastic strains (%) at the buckling at different sections of the 
cylinders (S=x/L), according to the deformation theory of plasticity and using the 

upper value of the yield stress. 

Spec. 
NLH flow theory Deformation plasticity 

Circumferential Meridian Circumferential Meridian 

S1 -2.66 4.00 -2.96 4.52 

S2 -0.36 0.13 -0.28 0.09 

S3 -2.63 4.14 -2.06 3.30 

S4 -1.25 0.88 -0.49 0.34 

S5 -1.80 1.54 -0.91 0.88 

S6 -2.60 2.93 -1.66 1.77 

S7 -1.00 0.77 -0.67 0.51 

M2 -0.94 0.89 -0.56 0.53 

M12 -0.52 0.84 -0.62 1.00 

M7 -0.83 1.02 -0.83 0.94 

L4 -0.13 0.08 -0.86 0.14 

L8 -0.57 0.69 -0.37 0.44 

Table 4.10: Maximum plastic strains (%) at the buckling pressure based on the flow 
theory and the deformation theory of plasticity, calculated using lower value of yield 

stress. 

4.3.2. Comparison of the FE results with the numerical 
results by Blachut et al. (1996)  

Blachut et al. (1996) conducted numerical analyses of their experimental 

tests using the code BOSOR5. In their investigation they looked for the 

plastic buckling pressure and investigated which plasticity theory used in 

BOSOR5 seemed to better agree with the test results. The most significant 

finding was that the maximum plastic strains for most of numerically tested 

cylinders as predicted by the flow theory were an order of magnitude greater 

than those predicted by the deformation theory of plasticity. As a 
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consequence, they concluded that the flow theory predictions (including 

buckling pressures) were physically unrealistic and incorrect, particularly 

when 𝐷/𝐿 ≈ 1.  

This finding is in contrast with the numerical results from the present study, 

as shown in Table 4.8 to Table 4.10 and Figure 4.11 and Figure 4.12. In fact, 

the presented numerical findings show that the flow theory can predict 

buckling within physically acceptable plastic strains.   

Figure 4.13 shows that although the flow theory used by Blachut et al. (1996) 

using BOSOR5 and the upper yield material stress failed to predict buckling 

for all selected specimens except for S2 and L4, the present numerical 

investigation based on the flow theory succeeds in predicting buckling for all 

specimens with physically acceptable plastic strains. Therefore, according to 

the presented results both plasticity theories can reasonably predict plastic 

buckling pressure values. Moreover, the plastic buckling pressures calculated 

in the FE analyses using the deformation theory are extremely close to those 

calculated by Blachut et al. (1996). 

 

 

Figure 4.13: Comparison of Blachut et al. (1996) with present numerical predictions 
for both the flow and deformation theories of plasticity, using the upper yield stress. 
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on the basis of the upper yield stress (𝜎𝑦𝑝
𝑢 = 328 MPa), for specimens with 

average geometry 𝐷/𝐿 = 0.98  and 𝐷/𝐿 = 1.47.  The comparison with the 

present numerical analyses, presented in Table 4.11(a), shows that plastic 

buckling pressure predicted by Blachut et al. (1996) and based on the flow 

theory is larger than the one predicted by the deformation theory by about 

34%. Moreover, the maximum predicted plastic strains seem unacceptable 

and this fact led the authors to agree only with the predictions from the 

deformation theory. However, the present numerical investigations show that 

the plastic buckling pressures predicted by the flow theory are close to those 

by the deformation plasticity, see Table 4.11(a) and Table 4.11(b). Moreover, 

the maximum plastic strains resulting from the FE analyses using the flow 

theory and the deformation theory result different from those reported in 

Blachut et al. (1996) and physically acceptable. For instance, the maximum 

plastic strains in meridian and circumferential directions, shown in Table 

4.11(a), according to the flow theory are 63% and -19.42%, respectively, 

while the maximum plastic strains given by the present study are 0.7% and -

0.85%.   

(a) 𝐿/𝐷 = 0.98 

  
Flow theory 

(Blachut et al.,1996) 
Deformation theory 
(Blachut et al., 1996) 

Buckling pressure (MPa) 12.7 9.52 

Maximum plastic strains 
(%) 

Meridian Circumferential Meridian Circumferential 

S=0 63.08 -0.049 1.273 -0.034 

S=0.25 13.11 -13.652 0.193 -0.213 

S=0.5 18.57 -19.42 0.390 -0.439 

S=0.75 13.11 -13.652 0.193 -0.213 

S=1 63.08 -0.049 1.273 -0.034 

Plastic strains results obtained by Blachut et al. (1996) using the flow theory and the 

deformation theory of plasticity, L/D=0.98 
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EPP flow theory 

Our numerical analysis 
Deformation theory 

Our numerical analysis 

Buckling pressure (MPa) 9.53 9.38 

Maximum plastic strains 
(%) 

Meridian Circumferential Meridian Circumferential 

S=0 0.330 -0.029 0.30 -0.0233 

S=0.25 0.327 -0.423 0.249 -0.34 

S=0.5 0.700 -0.85 0.54 -0.675 

S=0.75 0.327 -0.423 0.249 -0.34 

S=1 0.330 -0.029 0.30 -0.0233 

Plastic strains results obtained by present numerical analysis using the flow theory and the 

deformation theory of plasticity, L/D=0.98 

(b) 𝐿/𝐷 = 1.47 

  
Flow theory 

 (Blachut et al.,1996) 
Deformation theory 
(Blachutetal.,1996) 

Buckling pressure (MPa) 8.92 8.8 

Maximum plastic strains (%) Meridian Circumferential Meridian Circumferential 

S=0 1.667 -0.034 0.406 -0.032 

S=0.25 0.462 -0.523 0.047 -0.054 

S=0.5 0.785 -0.888 0.005 -0.005 

S=0.75 0.462 -0.523 0.047 -0.054 

S=1 1.677 -0.034 0.406 -0.032 

Plastic strains results obtained by Blachut et al. (1996) using the flow theory and the 

deformation theory of plasticity, L/D=1.47 

  
EPP flow theory 

Our numerical analysis  
Deformation theory 

Our numerical analysis  

Buckling pressure (MPa) 8.077 8.079 

Maximum plastic strains (%) Meridian Circumferential Meridian Circumferential 

S=0 0.1700 -0.0212 0.1750 -0.0188 

S=0.25 0.0900 -0.1160 0.0880 -0.1150 

S=0.5 0.1130 -0.1550 0.1100 -0.1500 

S=0.75 0.0900 -0.1160 0.0880 -0.1150 

S=1 0.1700 -0.0212 0.1750 -0.0188 

Plastic strains obtained by present numerical analysis using the flow theory and the 

deformation theory of plasticity, L/D=1.47 

Table 4.11: Comparison between plastic strains obtained by Blachut et al. (1996) 
and those by the present numerical analysis using the flow theory and the 

deformation theory of plasticity. 
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4.4.  Comparison of FE results with results by Giezen et al. 
(1991) 

Giezen et al. (1991) conducted numerical analyses on the set of cylindrical 

specimens tested by means of the code BOSOR5 and an axisymmetric shell 

formulation. They observed that the results from the deformation theory 

results were in better agreement with the experimental ones than those 

predicted by the flow theory. Moreover, the flow theory seemed to display a 

stiffening character, in the sense that the buckling load increased with the 

axial tensile load. This was in contrast with their experimental findings.  

The present numerical analyses show that both the flow and the deformation 

theory display a softening character with the increase in the axial tensile load 

(Figure 4.14 and Figure 4.15). Furthermore, Figure 4.14 and Figure 4.15 

show that the difference between the flow and the deformation theory 

predictions increases with the intensification of the non-proportionality of the 

load while become almost negligible when the loading tends to be 

proportional (i.e. when the tensile load tend to become negligible). It can be 

noticed that addition of axial tensile load reduces the buckling pressure. This 

can be explained by the fact that the axial tension is materially destabilizing 

because it moves the material further into the plastic region and reduce the 

stiffness of structure (material instability). 
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Figure 4.14: External pressure vs axial load – present numerical results (Set A) 

 

Figure 4.15: External pressure vs axial load – present numerical results (Set B). 

Figure 4.16 and Figure 4.17 show that the results calculated using the flow 

theory are in better agreement with the test results than those using the 

deformation theory for all specimens except SP.7 in set B, for which the flow 

theory and the deformation theory over-predict the buckling pressure by 37% 
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and 18%, respectively. Figure 4.16 shows that the buckling pressures 

calculated using both the flow and deformation theories tend to fall short of 

the experimental values. In the case of the flow theory, the discrepancy 

between the numerical and experimental values ranges between 4% and 

20% while in the case of the deformation theory the discrepancy ranges 

between 6% and 30%. On the other hand, Figure 4.17 shows that the 

differences with the experiment in the case of the flow theory range between 

0.2% and 7.5%, with the exception of SP.7, while in the case of the 

deformation theory the differences range between 1.2% and 7.2%. Overall, it 

can be concluded that the flow theory succeeds in predicting buckling 

pressure in all cases except one, with a deviation from the test results which 

is generally below 20% and in many cases below 10%. 

 

 

Figure 4.16: Comparison between numerical and test results (Set A). 
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Figure 4.17: Comparison between numerical and test results (Set B). 

A comparison between the flow and the deformation theory predictions in 

terms of plastic strains at the onset of buckling is also interesting. The plastic 

strains from the deformation theory seem generally less sensitive to the non-

proportionality of loading than those predicted by the flow theory for 

moderate values of axial tension, as shown in Figure 4.18 to Figure 4.21. The 

plastic strains calculated using the flow and deformation theory are very 

close for low values of the tensile load but the discrepancies increase with 

the biaxial loading. 
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Figure 4.18: Maximum circumferential plastic strains (Set A). 

 

Figure 4.19: Maximum meridian plastic strains (Set A). 
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Figure 4.20: Maximum circumferential plastic strains (Set B). 

 

Figure 4.21: Maximum meridian plastic strains (Set B). 
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4.5. Imperfection sensitivity analysis 

All the presented plastic buckling pressures have been obtained by assuming 

imperfections based on the experimentally observed buckling modes. Since 

this might appear a key point in obtaining a very good agreement with 

experimental results, in this section the influence of the choice of the 

eigenmode used to generate the imperfect initial shape will be investigated in 

depth. To this purpose the results of additional numerical analyses conducted 

for specimens SP.6-Set B and SP.10-Set A, studied by Giezen et al. (1991) 

are presented. 

In a first set of analyses, reported in Section 4.5.1, 3 separate cases are 

considered in which the initial imperfection, of varying size, is generated by 

three different eigenmodes. For the same specimens a second set of 

analyses, reported in Section 4.5.2, have also been conducted, in which the 

imperfection was generated as a linear combination of the same three 

eigenmodes considered in Section 4.5.1.  

Furthermore, in Section 4.5.3 the analyses for the same specimens were 

performed again using BOSOR5, combining a nonlinear analysis of the 

axialsymmetric perfect cylinder with an eigenvalue analysis based on 

harmonic variation of radial displacements in the circumferential direction. 

4.5.1.     Imperfections generated by different 

eigenmodes  

The results reported in this section are relative to specimens SP.6-Set B and 

SP.10-Set A, which were studied by means of a nonlinear analysis of the 

imperfect cylinders with imperfection sizes varying from 1% to 14% of the 

thickness, and the imperfection shapes based on the first, third and fifth 

elastic eigenmodes, which correspond to a number 𝑛 of circumferential 

waves equal to five, four and six, as shown in Figure 4.22.  
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n=5 n=4 n=6 

 
  

Figure 4.22: Imperfection distribution considered in this analysis 

Figure 4.23 shows, as it was expected, that the buckling pressures are 

sensitive to the size and shape of imperfection. The imperfection shape 

based on the linear elastic eigenmodes with 5 waves, which provides the 

lowest elastic buckling pressure, also provides the lowest plastic buckling 

pressure. Moreover, the buckling pressure values predicted by the 

deformation theory are lower than those predicted by the flow theory. The 

discrepancies between the flow and deformation theories results vary from 

18.7% to 8.5% for the case of SP.6-Set B and from 8% to 2% for the case of 

SP.10-Set A. It can be also noticed that the discrepancies between both 

plasticity theories decrease with increasing imperfection ratios. 
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Figure 4.23: Effect of imperfections size and shapes on the buckling pressure (P) 
calculated using the flow and deformation theories of plasticity. 

4.5.2.    Imperfections generated by a linear combination 
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section of the cylinder is shown, before and after buckling and using both 

theories. This result is in good agreement with the experimental finding 

reported by Giezen (1988), for instance in Figures 3.13 and 3.21 of his work, 

where the radial displacements present a rather irregular profile, which 

cannot be easily identified with a particular one of the eigenmode shapes.  

 

n. of 
waves 

Imperfection 
amplitude  

(% of shell’s 
thickness) 

PFlow / 
PExperimental 

PDeformation / PExperimental 

Case 1 

4 2 

1.15 0.98 5 1 

6 1 

Case 2 

4 3 

1.09 0.96 5 2 

6 2 

Case 3 

4 6 

1.06 0.94 5 2 

6 2 

Case 4 

4 10 

1.04 0.93 5 2 

6 2 

Case 5 

4 10 

0.97 0.89 5 5 

6 5 

Case 6 

4 10 

0.9 0.83 5 10 

6 10 

Table 4.12: Buckling pressures for specimen SP.6-Set B obtained from our 
numerical analysis (ABAQUS) based on the flow and deformation theories. 4, 5 and 

6 waves are used to seed the imperfection (P is the plastic buckling pressure). 
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n. of 
waves 

Imperfection 
amplitude  

(% of shell’s 
thickness) 

PFlow / PExperimental PDeformation / PExperimental 

Case 1 

4 2 

0.96 0.91 5 1 

6 1 

Case 2 

4 3 

0.92 0.87 5 2 

6 2 

Case 3 

4 6 

0.91 0.86 5 2 

6 2 

Case 4 

4 10 

0.88 0.86 5 2 

6 2 

Case 5 

4 10 

0.83 0.82 5 5 

6 5 

Case 6 

4 10 

0.77 0.77 5 10 

6 10 

Table 4.13: Buckling pressures for specimen SP.10-Set A obtained from our 
numerical analysis (ABAQUS) based on the flow and deformation theories and 

using a combination of imperfections generated with 4, 5 and 6 waves. 

 Flow theory Deformation theory 

Buckling 
pressure 

After buckling 
pressure 

Buckling 
pressure 

After Buckling 
pressure 

Case1 

    

Case2 

    

Table 4.14: The deformed shape at the mid-section of the SP.6-Set B cylinder at the 
buckling pressure and after buckling pressure (the deformation is 10 times enlarged 

and the outer circle of each picture represents the un-deformed shape of the 
cylinder). 
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4.5.3.     Bifurcation analysis for a perfect model using 

BOSOR5 and an asymptotic approach in ABAQUS  

While the results of the nonlinear analyses conducted using the flow theory in 

ABAQUS are in good agreement with the test results, similar analyses 

conducted in BOSOR5 tend to strongly over-predict plastic buckling 

pressures, by about 100% and 29% for SP.6-Set B and SP.10-Set A 

cylinders, respectively, as reported in Table 4.15. The procedure used in 

BOSOR5 is discussed in detail in Section 4.7, but here it is worth noticing 

that no imperfections are introduced and that bifurcations are searched by 

means of an eigenvalue analysis using a tangent stiffness matrix that 

accounts for the elastoplastic material stiffness and is computed assuming a 

harmonic variation of the radial displacement with a predefined number 𝑛 of 

circumferential waves. 

Spec 
PExp 

(MPa) 

Flow theory-BOSOR5 
Deformation theory-

BOSOR5 

P(MPa) P/PExp. 
Number of 

waves 
P(MPa) P/PExp. 

Number 
of 

waves 

SP.6-
Set B 

2.99 6.12 2.04 3 3.20 1.1 5 

SP.10-
Set A 

5.02 6.5 1.29 4 4.83 0.97 5 

S5 8.25 NB NB NB 8.71 1.05 5 

Table 4.15: Buckling pressures and corresponding buckling modes obtained from 
BOSOR5 code based on the flow and deformation theories. 

In ABAQUS it is not possible to compute the bifurcation loads with a similar 

procedure, that is using a geometrically perfect model in the elastoplastic 

range. This is because, even if an eigenvalue buckling analysis can be 

conducted starting from a “base state geometry” equal to “the deformed 

geometry at the end of the last general analysis step, … during an 

eigenvalue buckling analysis, the model's response is defined by its linear 

elastic stiffness in the base state. All nonlinear and/or inelastic material 

properties, as well as effects involving time or strain rate, are ignored” 

(Simulia, 2011). 
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Therefore, in order to estimate the bifurcation load for a perfect model, an 

asymptotic procedure was used in ABAQUS for the two specimens S5 and 

SP.6-Set B, using six different values for imperfection amplitudes. The values 

of the imperfection amplitudes were 0%-0.05%-0.1%-1%-10% -50%. Four 

circumferential waves were chosen to generate the initial imperfection as this 

was the number of waves observed experimentally. 

It is worth noting that if the imperfection was made even smaller than the 

smallest one considered, it could become less important than the numerical 

errors due to FEA approximation, the convergence tolerances used in the 

iterative solution procedure, and ultimately machine precision. 

 Figure 4.24 and Figure 4.25 show the equilibrium curves of the external 

pressure versus the radial displacement. It can be appreciated that, with a 

progressively decreasing amount of imperfection, the load-displacement 

curve tends towards a limit curve, which however does not coincide with the 

curve obtained for a perfect cylinder. The point where these deviate is the 

bifurcation point for the perfect model. 
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Figure 4.24: External pressure vs. radial displacement curves for specimens S5 
(upper value of the yield stress) for different imperfection amplitudes 

 Flow theory Deformation theory 

 At the onset of 
buckling pressure 

Post buckling 
path 

At the onset of 
buckling 
pressure 

Post buckling 
path 

Perfect 

   

------- 

0.05% 
imperf
-ection  

    

0.1% 
imperf
-ection  

    

Table 4.16: The deformed shape at the mid-section of the S5 cylinder at the 
buckling pressure and after buckling pressure (Deformation is 10 times enlarged) 
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The buckling pressure for the cylinder S5 calculated in the present numerical 

analysis using the flow theory with 0.05% imperfection is equal to 9.23 MPa 

while the flow theory employed in BOSOR5 code fail to predict plastic 

buckling pressure, as shown in Table 4.15. Moreover, the buckling pressure 

of the cylinder SP.6-Set B calculated in the present numerical analysis using 

the flow theory with 0.05% imperfection is equal to 4.05 MPa while the flow 

theory employed in BOSOR5 code over-predicts plastic buckling pressure. 
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Figure 4.25: External pressure vs. radial displacement curves for specimens SP.6-
Set B (upper value of the yield stress) for different imperfection amplitudes 

Overall, the performed sensitivity imperfection analyses confirm the fact that, 

according to the present numerical studies, the flow and the deformation 

theories of plasticity tend to yield very similar results when the predominant 

imperfection coincides with the experimentally observed buckling mode. At 

the same time they show that for progressively different imperfection modes, 

the difference between the results from the flow and deformation theory tend 

to increase but significantly less than observed in other previous numerical 

treatments. 
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 Flow theory Deformation theory 

 At the onset 
of buckling 
pressure 

Post buckling 
path 

At the onset of 
buckling 
pressure 

Post buckling 
path 

Perfect 

   

------ 

0.05% 
imperf-
ection  

    

0.1% 
imperf-
ection  

   

------- 

Table 4.17: The deformed shape at the mid-section of the SP.6-Set B cylinder at the 
buckling pressure and after buckling pressure (Deformation is 10 times enlarged) 

4.6. Analytical treatment 

In order to get further insight in to the root causes of the differences between 

present numerical results and those obtained by Blachut et al. (1996) and 

Giezen et al. (1991), an analytical treatment of the buckling of a circular 

cylindrical shell under combined axial tensile load and lateral pressure has 

been developed on the basis of the approach presented Chakrabarty (2010). 

The analytical treatment has been extended to cover both the use of 

deformation and flow theory of plasticity. The obtained analytical results are 

compared with the experimental and numerical results obtained in Blachut et 

al. (1996) and Giezen et al. (1991) using the code BOSOR5 and with the 

numerical ones obtained by ABAQUS.  

To determine the bifurcation load for a circular cylindrical shell with mean 

radius 𝑅, length 𝐿  and uniform thickness 𝑡  , subject to combined axial 
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tension and uniform external pressure, let x be the axis of the shell and r  the 

radial direction. Then, the angle  0,2   defines a set of cylindrical 

coordinates for the shell, see Figure 4.26. 

 

Figure 4.26: The cylindrical reference system. 

At any point within the shell 𝑧 is the distance of the point from the middle 

surface of the shell, which is taken positive if the point is on the outer side of 

the middle surface. The components of the velocity with respect to the above 

cylindrical coordinates at the considered point may be written as follows 

{

𝑣𝑥 = 𝑢 + 𝑧 𝜔𝜃

𝑣𝜃 = 𝑣 − 𝑧 𝜔𝑥

𝑣𝑟 = 𝑤
 

(4.1) 

where 𝑢, 𝑣 and 𝑤 denote the velocities at the middle surface in the x, θ and 

radial directions r, respectively, while 𝜔𝑥 and 𝜔𝜃 indicate the rotational 

velocities of the normal to the middle surface about the positive x- and θ-

axes, respectively. 

In the realm of the thin-shell theory, 𝜔𝑥 and 𝜔𝜃 are related to the mid-surface 

velocities components as follows 

𝜔𝑥 =
1

𝑅
(
𝜕𝑤

𝜕𝜃
− 𝑣) 

(4.2) 
 

𝜔𝜃 = −
𝜕𝑤

𝜕𝑥
 

At the onset of bifurcation different modes of deformation can be found as a 

solution of the rate problem. A key assumption is to characterise such modes 

of deformation with the following harmonic expressions for 𝑢, 𝑣  and w 
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𝑢(𝜉, 𝜃) = 𝑈 𝐶𝑜𝑠 𝜇𝜉 𝑆𝑖𝑛 (𝑛𝜃)
𝑣(𝜉, 𝜃) = 𝑉 𝑆𝑖𝑛 𝜇𝜉 𝐶𝑜𝑠 (𝑛𝜃)
𝑤(𝜉, 𝜃) = 𝑊 𝑆𝑖𝑛 𝜇𝜉 𝑆𝑖𝑛 (𝑛𝜃)

 (4.3) 
 

where  U ,V and W are arbitrary constants, 𝜇 = 𝑚𝜋𝑅/𝐿, 𝜉 = 𝑥/𝑅 and 𝑚 and 𝑛 

are two positive integers. 𝑚 represents the number of half waves along the 

generator of the cylinder and 𝑛 denotes the number of waves in the 

circumferential direction. 

The constitutive equations of the flow and deformation theories used in 

present analytical analysis are shown in Eq.(2.52) and Eq.(2.69), 

respectively. 

Since the material obeys the von-Misses yield criterion, the effective stress    

is written, under the assumption of plane stress (i.e.  𝜎𝑟𝑟 = 𝜏𝑧𝑟 = 𝜏𝑧𝜃 = 0) as 

follows (Eq. (2.54)) 

𝜎2 = 𝜎𝑥𝑥
2 − 𝜎𝑥𝑥𝜎𝜃𝜃 + 𝜎𝜃𝜃

2 
 

Setting   xx t   and 𝜎𝜃𝜃 = −𝑃 𝑅/𝑡 at the point of bifurcation, it is 

𝜎2 = 𝜎𝑡
2 + 𝜎𝑡

𝑃 𝑅

𝑡
+ (

𝑃 𝑅

𝑡
)
2

 (4.4) 

The ratios of the elastic modulus 𝐸 to the tangent modulus, 𝐸𝑡, and to the 

secant modulus, 𝐸𝑠, are expressed by the Ramberg and Osgood relationship 

as 

𝐸

𝐸𝑡
= 1 +

𝛼 𝑛𝑝𝜎
𝑛𝑝−1

𝜎𝑦
𝑛𝑝−1

 
(4.5) 

𝐸

𝐸𝑠
= 1 +

 𝛼

𝜎𝑦
𝑛𝑝−1

𝜎𝑛𝑝−1 
(4.6) 

Under the assumption that the cylinders are simply supported at both ends 

and following the same line of reasoning as in Chakrabarty (2010), the 

equilibrium equations at the bifurcation point lead to the following set of 

buckling equations in the unknown constants 𝑈, 𝑉, and 𝑊  

[𝛼𝜇2 + (
1 + 𝜈

𝐸
𝐺 − 𝑞)𝑛2] 𝑈 − (

1 + 𝜈

𝐸
𝐺 + 𝛽)𝜇 𝑛 𝑉 − (𝛽 + 𝑞)𝜇 𝑊 = 0 

(4.7) 
 

−(
1+𝜈

𝐸
𝐺 + 𝛽)𝜇 𝑛 𝑈 + [(

1+𝜈

𝐸
𝐺 𝜇2 + 𝛾 𝑛2 + 𝜇2 𝑠) + 𝑘 (

4+4𝜈

𝐸
𝐺 𝜇2 +

𝛾 𝑛2)] 𝑉 + [𝛾 𝑛 + 𝑘 𝑛 {(
4+4𝜈

𝐸
𝐺 + 𝛽) 𝜇2 + 𝛾 𝑛2}]𝑊 = 0  
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−(𝛽 + 𝑞) 𝜇 𝑈 + [𝛾 𝑛 + 𝑘 𝑛 {(
4+4𝜈

𝐸
𝐺 + 𝛽)𝜇2 + 𝛾 𝑛2}] 𝑉 + [𝛾 + 𝜇2𝑠 −

(𝑛2 − 1)𝑞 + 𝑘 {𝛼 𝜇4 + (
4+4𝜈

𝐸
𝐺 + 2𝛽) 𝜇2𝑛2 + 𝛾 𝑛4}]𝑊 = 0  

and a sufficient condition for bifurcation to take place is that the following 

characteristic equation is satisfied 

𝐴 + 𝐵𝑘 = 𝐶𝑠 + 𝐷𝑞 
(4.8) 

where 𝑠 and 𝑞 are related to the applied average axial stress and external 

pressure, respectively, and 𝑘 is a geometry dependent parameter, as follows 

𝑠 = (1 + 𝜈)
𝜎𝑡
𝐸
             𝑞 = (1 + 𝜈)

𝑃𝑅

𝐸𝑡
               𝑘 =

𝑡2

12𝑅2
 (4.9) 

It is worth noticing that Eq. (4.8) is obtained by neglecting the higher-order 

terms which involve the square and products of s, 𝑞 and k . A, B, C and D are 

obtained in such a way that the Eq. (4.8) is valid for the case of combined 

axial tensile stress and external pressure, and the use of both flow and 

deformation theory of plasticity.  

It is 

𝐴 =
𝐺 𝜇4

𝐸
(−𝛽2 + 𝛼𝛾 − 𝛽2𝜈 + 𝛼𝛾𝜈)  

(4.10) 

𝐵 =
1

𝐸2
[−𝐸2𝑛2(𝛽2 − 𝛼𝛾)𝜇2{(−1 + 𝑛2)2𝛾 + 2(−1 + 𝑛2)𝛽𝜇2 + 𝛼𝜇4} +

𝐸 𝐺 (1 + 𝜈){𝑛4(−1 + 𝑛2)2𝛾2 + 2((−2 + 5𝑛2 − 4𝑛4)𝛽2 + (2 − 4𝑛2 +

3𝑛4)𝛼𝛾)𝜇4 + 𝛼2𝜇8} + 4𝐺2𝑛2𝜇2(1 + 𝜈)2{(−1 + 𝑛2)2𝛾 − 2(−1 +

𝑛2)𝛽𝜇2 + 𝛼𝜇4}]  

𝐶 = −
𝜇2

𝐸
[−𝐸 (1 + 𝑛2)(𝛽2 − 𝛼𝛾)𝜇2 + 𝐺(1 + 𝜈){𝑛4𝛾 + 𝛼𝜇4 + 𝑛2(𝛾 −

2𝛽𝜇2)}]  

𝐷 = −
1

𝐸
[𝐸 𝑛2(−1 + 𝑛2)(𝛽2 − 𝛼𝛾)𝜇2 − 𝐺(1 + 𝜈){𝑛6𝛾 − (𝛼 − 2𝛽)𝜇4 +

𝑛2𝜇2(2𝛽 − 𝛾 + 𝛼𝜇2) − 𝑛4(𝛾 + 2𝛽𝜇2})]  

From Eq. (4.8) it follows 

𝑞 =
(𝐴 + 𝐵 𝑘 − 𝐶 𝑠)

𝐷
 (4.11) 

Consequently, for sequential values of 𝑚 and 𝑛 a series of corresponding 

values of the external pressure 𝑃 can be obtained. The smallest value of 𝑃 

and the corresponding determinations of 𝑚 and 𝑛 provide the buckling 

pressure and the corresponding buckling mode. 
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4.7. Results and discussion 

Using the Ramberg-Osgood input parameters reported in Table 4.6, the 

buckling pressures and corresponding buckling modes have been analytically 

calculated using Eq. (4.11) and reported in Table 4.18, using both the flow 

and deformation theories. The smallest eigenvalue in all the examined cases 

corresponds to 𝑚 = 1, which means that only one half wave is formed in the 

longitudinal direction of the cylinder axis. 

Table 4.18 collects the results from a subset of experimental tests and 

BOSOR5 numerical analyses (Blachut et al., 1996; Giezen et al., 1991). The 

results have been chosen to represent cases in which the flow theory of 

plasticity, according to BOSOR5, does not provide a buckling load or strongly 

overestimates the ones from tests, and cases in which there is agreement 

between the flow and deformation theory of plasticity.  

Table 4.19, along with the analytical results from the presented treatment, 

shows the results from nonlinear FE analyses obtained by means of the 

commercial package ABAQUS (Sections 4.3.1 and 4.4). 

Sp. 

Experimental results 
BOSOR5 results: 

Deformation theory 
BOSOR5 results: 

Flow theory 

Number 
of 

waves 

Axial 
tension 

(N) 

External 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

S1  NA 17960 4.07 NA  5.65 NA  NA 

S2  NA 0 12.76 NA  13.29 NA  13.15 

S3 NA 18000 4 NA 5.2 NA NA 

S5 NA  12010 8.28  NA 8.63 NA  NA 

M2 NA  10670 8.14 NA  7.75 NA  NA 

L4 NA 8210 10.34 NA 9.84 NA 9.85 

SP.1-Set B 4 0 5.26 5 5.98 5 6.22 

SP.6-Set B 4 11771 3.00 5 3.32 4 6.20 

SP.3-Set A 5 2341 6.27 5 6.25 4 6.49 

Table 4.18: Experimental vs BOSOR5 results (NA=Not Available) 
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Sp. 

Numerical results 
(ABAQUS): 

Deformation 
theory 

Numerical results 
(ABAQUS): Flow 

theory 

Analytical results: 
Deformation 

Theory   

Analytical results: 
Flow Theory  

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

S1 4 5.53 4 5.64 4 5.29 2 16.24 

S2 6 13.14 6 13.15 4 13.24 4 13.28 

S3 4 5.04 4 5.14 4 4.81 2 16.22 

S5 4 8.73 4 8.83 4 8.56 2 11.02 

M2 3 7.84 3 7.87 4 7.75 4 7.91 

L4 3 9.76 3 9.84 3 9.87 3 9.87 

SP.1-Set B 4 5.09 4 5.15 5 5.32 5 5.44 

SP.6-Set B 4 2.91 4 3.22 4 2.75 3 5.36 

SP.3-Set A 5 5.25 5 5.28 4 6.00 4 6.27 

Table 4.19: Numerical vs analytical. 

It is found that the plastic buckling results calculated analytically using both 

the flow and deformation theories closely match those, when available, 

obtained numerically by using the code BOSOR5. The analytical results thus 

confirm that the flow theory seems to over-predict buckling pressures for high 

values of applied tensile load while the deformation theory predictions appear 

in better agreement with experimental results. 

It is immediate to notice that the analytical treatment, differently from 

BOSOR5, always provides a value of the buckling pressure, albeit 

sometimes very different from the experimental results. 

This is not surprising, given that the difference between the two theories lies, 

in the proposed procedure, only in the adoption of different values for the 

expressions of  𝛼, 𝛽, 𝛾 and 𝐺, Eq. (2.53) and Eq. (2.70), respectively. 

Furthermore, the buckling mode is assumed in BOSOR5 to vary harmonically 

in the circumferential direction in the bifurcation buckling analysis, as seen in 

Eq. (2. 71). As a result, using the flow theory, the stiffening effect due to the 

constrained kinematics is so large that BOSOR5 fails to compute a buckling 

load in the cases of specimens S1, S3, S5 and M2 tested by Blachut et al. 

(1996), as shown in Table 4.18. 
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The numerical analyses conducted by means of the nonlinear FE code 

ABAQUS, instead, lead to the correct determination of the buckling loads, in 

accordance with the experimental results, both for the deformation and the 

flow theory of plasticity. 

The main finding from the presented analytical treatment is that when the 

buckling modes coincide using either the deformation or the flow theory, i.e. 

in the case of specimens S2, M2, L4, SP1-Set B and SP3-Set A, the buckling 

loads result the same and in line with the experimental and FE results. When 

the buckling modes do not coincide in the case of the deformation or of the 

flow theory of plasticity, then the buckling loads provided by the flow theory of 

plasticity result much higher than those provided by the deformation theory, 

see specimens S1, S3, S5 and SP6-Set B. 

It is worth pointing out that the buckling modes yielded by the presented 

analytical analysis do not need to coincide with those by the FE analyses or 

by the experimental results in order to lead to the same value of the buckling 

pressure. This is the case, for example of specimens S2 and SP.3-Set A, as 

shown in Figure 4.27 and Figure 4.28. Figure 4.29 shows the 3D isometric 

views of the deformed shapes for specimens S2 and SP.3-Set A with the von 

Mises stress as contour plot. 

Also, this is not surprising, given that the kinematics in the FE approach is far 

less constrained than that in the analytical one, as discussed in Section 3.5.3 

 

Specimen S2  

Buckling shape by FE 

(ABAQUS) using either the 

Flow or Deformation theory 

Buckling shape by the 

analytical treatment  

Flow theory  

Buckling shape by the 

analytical treatment  

Deformation theory 
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Figure 4.27: Specimen S2 (Blachut et al., 1996), Comparison between buckling 
shapes from different methods. 

      Specimen SP.3 - Set A  

Buckling shape by FE 

(ABAQUS) using either the 

Flow or Deformation theory 

Buckling shape by the 

analytical treatment  

Flow theory 

Buckling shape by the 

analytical treatment  

Deformation theory 

 

  

Figure 4.28: Specimen SP.3 - Set A (Giezen et al., 1991), Comparison between 
buckling shapes from different methods. 

 

(a) 
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(b) 

  Figure 4.29: Von Mises stress contour at the ultimate pressure for: (a) Specimen 
S2 (Deformation is 50 times enlarged) and (b) Specimen SP.3-Set A (Deformation is 

20 times enlarged). 

Overall the presented investigation suggests that, also in the case of non-

proportional loading, there is actually no plastic buckling paradox. In fact, 

when the buckling shapes coincide, the analytical treatment of the problem 

based on the flow theory of plasticity leads to predictions of the buckling load 

which are very close to the corresponding test results. This is again in 

contrast with the conclusions by other authors and with the widely accepted 

belief that the flow theory leads to a significant overestimation of the buckling 

stress while the deformation theory leads to much more accurate predictions. 

The discrepancy between the results from the analytical use of the 

deformation or of the flow theory of plasticity arises instead when the 

buckling modes do not coincide. This can be related to the phenomenon of 

change in buckle patterns in elastic structures studied by Chilver (1967), 

Supple (1968) and Guarracino and Walker (2008), among the others. The 

phenomenon can be attributed to an interference between the geometrical 

and material properties, which can induce a change of the collapsing modes. 

In such a case, it might happen that, adopting the deformation theory of 

plasticity compensates the over-stiffness of the cylinder induced by 

kinematically constraining the cylinders to follow predefined buckling modes, 

thus providing results that are only apparently more in line with the 
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experimental findings. However, the flow theory cannot compensate such 

over-stiffness and consequently the predicted buckling loads will be more 

than those predicted by the deformation theory. 

Once again, this does not happen in the case of carefully constructed and 

validated nonlinear FE analyses in which the kinematic is free. 

4.8. Interpretation of FEA results in the context of the plastic 
buckling paradox  

The main findings from the numerical results presented in Sections 4.3, 4.4 

and 4.5, and analytical results presented in Section 4.7 are the following: 

1. When an accurate and consistent FE model is set up, both the flow 

and deformation theories can predict buckling loads within acceptable 

plastic strains for different values of the applied axial tensile load. 

2. Buckling pressures calculated numerically by means of the flow theory 

are generally in better agreement with the experimental data. 

3.  Analytical analyses provide results which are very similar to those 

obtained by Blachut et al. (1996) and Giezen et al. (1991) using the 

code BOSOR5 for both flow and deformation theories. Such results 

lead to analogous conclusions as those by Blachut et al. (1996) and 

Giezen et al. (1991) in which the flow theory over-predicts buckling 

pressure for high value of tensile load while the deformation theory 

provides more accurate results. 

The first two findings, discussed in Sections 4.3 and 4.4, are in contrast with 

the conclusions obtained by Blachut et al. (1996) and Giezen et al. (1991) by 

means of the code BOSOR5. In fact, according to BOSOR5 the flow theory 

tends to overpredict the values of the buckling pressure and of the plastic 

strains while the deformation theory results are more in line with the 

experimental results.  

In general, it has been observed that BOSOR5 is not a very good predictor of 

non-axisymmetric buckling because it does not handle pre-buckling 

transverse shear deformation and non-axisymmetric initial imperfections 

(Bushnell, private communication).  In fact, for a long time it was believed 
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that the difference in buckling predictions between flow versus deformation 

theory was entirely caused by the difference in the effective shear modulus 

used for the bifurcation buckling phase of the analysis (Onat and Drucker, 

1953). However, Giezen (1988) showed, using the code BOSOR5, that in the 

case of cylinders under non-proportional loading the adoption of the effective 

shear modulus predicted by the deformation theory, 𝐺, instead of the elastic 

one, G, in the flow theory does lead to a certain reduction in the value of the 

buckling load but not as much as to make it comparable with the predictions 

from the deformation theory, based on the secant modulus in shear. 

Table 4.15 clearly shows that, although this modification is used in the 

BOSOR5 calculations based on the flow theory of plasticity (Bushnell, 1974), 

the results still overestimate the experimental buckling pressures or even fail 

to predict buckling at all. It is therefore clear that the difference in buckling 

predictions between flow versus deformation theory can be only partially 

attributed to the difference in the effective shear modulus used for the 

bifurcation buckling phase of the analysis. 

The discrepancies between the numerical results from the presented study, 

particularly in terms of buckling pressure, and those obtained numerically 

using BOSOR5 can be explained by analysing the type of assumptions made 

in BOSOR5. 

In fact, we already concluded in Section 3.5, in the case of proportional 

loading, that the simplifying assumptions on the buckling shape made in 

several analytical treatments, which result in a sort of kinematic constraint, 

lead to an excessive stiffness of the cylinders and, consequently, to an 

overestimation of the buckling stress for both the flow and deformation 

theories. However, the deformation theory tends to compensate this 

kinematic overstiffness and provides results that are more in line with the 

experimental ones. This fact seems confirmed also in the case of non-

proportional loading by the presented comparison between the FE results 

and those obtained by Blachut et al. (1996) and Giezen et al. (1991) using 

BOSOR5. In fact, BOSOR5 assumes that the buckling shapes vary 

harmonically in the circumferential direction. Once again, this assumption 
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regarding the kinematics of the problem seems to be the main reason for the 

systematic discrepancies between the results from BOSOR5 based on the 

flow theory of plasticity and those from the numerical analyses performed in 

the present study, especially when a noticeable value of axial loading is 

applied. 

4.9. Conclusions 

An analytical and numerical analysis of the plastic buckling of cylinders 

subjected to non-proportional loading, i.e. axial tensile load and external 

pressure has been presented with the aim of providing further understanding 

of the apparent discrepancy between the predictions of the flow and 

deformation theories of plasticity. By comparing the analytical results with 

experimental and numerical results, the following conclusions may be drawn: 

 the numerical FE predictions based on the flow theory of plasticity are 

once again in good agreement with the experimental results. This is in 

contrast to the conclusions by other authors that the flow theory, as in the 

case of BOSOR5 code results, leads to incorrect predictions of plastic 

strains and buckling pressures while the deformation theory leads to 

much more accurate predictions;  

 the buckling loads calculated analytically using both the flow and 

deformation theories of plasticity often match those obtained numerically 

by using the code BOSOR5;  

 the root of the apparent discrepancy seems to be a change in the 

buckling modes induced in some cases by the different material stiffness 

provided by the deformation and flow theories of plasticity. In such cases 

there is an apparent overestimation of the buckling loads by the flow 

theory while the deformation theory counterbalances the excessive 

kinematic stiffness of the cylinder due to a constrained kinematics. 

The conclusion of the present investigation is that also in the case of 

cylinders subjected to non-proportional loading actually there seems to be no 

plastic buckling paradox when using detailed nonlinear finite element 

analysis models. 
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Chapter 5 

 

 

 

On the Elastoplastic Buckling Analysis of Cylinders 
under Non-proportional Loadings via the Differential 

Quadrature Method 

 

 

 

 

 

 

 

5.1.  Introduction 

There are many practical cases of buckling of shells involving various 

combinations of boundary conditions. Obtaining closed form solutions for 

different boundary conditions requires complex mathematics and is generally 

difficult or even impossible to obtain analytically. Therefore, many 

approximate numerical methods have been employed over the years for 

buckling problems, such as the finite difference (FD), the finite element (FE), 

the Rayleigh-Ritz and the Galerkin methods, etc.  The differential quadrature 

method (DQM) may offer some advantages over some of these methods and 

at the same time a clearer insight into the mechanics of the problem under 
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analysis. For example, Wang (1982) employed the DQ method to study 

transient analysis of isothermal chemical reactors. He showed that the DQM 

can provide accurate results using only nine grid points while the FD method 

required 480 grid points to provide the same accuracy.  

The Rayleigh-Ritz and Galerkin methods require less computational effort in 

comparison with the FE and FD methods but at the same time they require 

the selection of trial functions satisfying boundary conditions. This does not 

apply to the DQ method, which leaves a certain freedom in dealing with the 

boundary conditions of the problem. Therefore, the method has become quite 

popular in the numerical solution of some problems in engineering and 

physical science. For instance, the DQ method is routinely employed to 

provide solutions to partial differential equations arising in various simplified 

models of fluid flow, diffusion of neutrons through homogeneous media and 

one-dimensional nonlinear transient heat diffusion and conduction problems 

(Bert and Malik, 1996a).  This technique has been applied in the simulation of 

fluid mechanics (Shu and Richards, 1992), heat transfer (Bert and Malik, 

1996a), transport processes (Civan and Sliepcevich, 1983), chemical 

engineering (Civan, 1994), lubrication mechanics (Malik and Bert, 1994) and 

static aero-elasticity (Bert and Malik, 1996a). The method has also been 

used to analyse deflection, vibration and buckling of linear and nonlinear 

structural components (Nassar et al., 2013; Wang and Gu, 1997; Bert and 

Malik, 1996b, Bert et al., 1989).  

The DQ method, first used by Bert et al. (1988) to solve structural problems 

of shell analysis, was successively used to analyse other linear and nonlinear 

structural problems. More recently, geometrically nonlinear transient analysis 

of moderately thick laminated composite shallow shells were studied using 

the DQ method (Kurtaran, 2015). At the date of writing, the DQ method has 

been applied to analyse elastic buckling of plates of different shapes such as 

rectangle, square, skew, circle and trapezoid with different boundary 

conditions (Civalek, 2004), elastic buckling of circular cylindrical shells 

(Mirfakhraei and Redekop, 1998), elastic buckling of one-dimensional 

composite laminated beam-plates (Moradi and Taheri, 1999), elastoplastic 
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buckling of thick rectangular plates under biaxial loadings (Wang and Huang, 

2009; Zhang and Wang, 2011; Maarefdoust and Kadkhodayan, 2014b) and 

elastoplastic buckling of skew thin plates (Maarefdoust, and Kadkhodayan, 

2014a). 

It can be noticed that, so far, the DQ method has only been successfully 

used to obtain elastic buckling loads of plates and cylinders and plastic 

buckling loads of plates. The available analytical solutions of plastic buckling 

of cylindrical shells subjected to combined loadings are only for cylinders with 

one type of simply-supported boundary conditions (Chakrabarty, 2010). 

Thus, the DQ method is used herein for the first time for the elastoplastic 

buckling analysis of cylinders subjected to combined tensile stress and 

external pressure with different boundary conditions.  

Moreover, Becque (2010) proposed a modification for the flow theory to 

overcome the plastic buckling paradox of pates by using a modified shear 

modulus at the onset of inelastic buckling. 

This study assumes that the cylindrical shells are thin, homogeneous and 

isotropic. The Flugge stability equations, based on the assumption of 

infinitesimal deformations and moderate rotations, are used and a buckling 

mode varying harmonically in the circumferential direction of the cylinder is 

assumed, thus allowing using the one-dimensional version of the DQ 

method. Both the flow theory and deformation theory of plasticity are 

considered. The validated elastic and plastic buckling results obtained with 

the help of the DQ method are analysed to achieve the following objectives in 

the framework of the study of the so-called “plastic buckling paradox”: 

- investigate the effect of different boundary conditions on the plastic 

buckling results and the discrepancies between predictions of the flow 

and deformation theories; 

- investigate the effect of cylinder’s geometries (thickness-to-radius 𝑡/𝑅 

and length-to-diameter 𝐿/𝐷 ratios), material properties (Young’s 

modulus-to-yield strength 𝐸/𝜎𝑦) and values of the applied tensile 

stress on the plastic buckling pressure and the discrepancy between 

the results of the flow and deformation theories; 
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- assess the proposed modifications of the flow theory by Becque 

(2010). 

- compare the results of the DQM, which uses a bifurcation analysis 

approach, with those of nonlinear incremental FE analyses based on 

both the flow and the deformation theories of plasticity;  

- point out once more the possible reasons of some large discrepancies 

in the predictions of buckling loads between the flow theory and the 

deformation theory of plasticity when the kinematics is not free, 

following work in Chapters 3 and 4. 

The outline of the chapter is as follows. The main governing equations and 

related boundary conditions of the problems are derived in Section 5.2. In 

Section 5.3 a solution procedure for these equations, based on the DQ 

method, is described and results are presented and discussed together with 

a sensitivity analysis with respect to the boundary conditions and to some of 

the key input parameters. The results of nonlinear FE simulations are then 

presented in Section 5.4 and their comparison with those given by the DQM 

is discussed in Section 5.5, also within the framework of the plastic buckling 

paradox. Conclusions are then drawn in Section 5.6.   

5.2.  Flugge’s differential equations for cylinders under 
combined loading 

Consider a circular cylindrical shell of length L radius R and uniform 

thickness t and subjected to two different loads: a uniform normal pressure 

on its lateral surface, 𝑃, and an axial tensile stress, 𝜎𝑡. 

Let denote by 𝑥 the axis of the shell and by 𝑟 an axis orthogonal to 𝑥 on a 

reference cross section, defining a radial direction. Introducing an angle 𝜃 ∈

[0,2𝜋] ,(𝑥, 𝜃, 𝑟) a set of cylindrical coordinates is set for the cylindrical shell, 

see Figure 4.26. At any point within the shell, let denote by z the distance of 

the point from the middle surface of the shell, taken positive if the point is on 

the outer side of the middle surface. Writing the governing equations in rate 

form, the components of the velocity vector may be written as follows 

(Flugge, 1960):  
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𝑣𝑥 = 𝑢 − 𝑧 
𝜕𝑤

𝜕𝑥
 

(5. 1) 𝑣𝜃 = 𝑣 −
𝑧

𝑅
 
𝜕𝑤

𝜕𝜃
 

𝑣𝑟 = 𝑤 

where 𝑢 and 𝑣 are the velocity components at the middle surface of the shell 

in the x and θ directions, respectively and w is the transverse velocity in the 𝑟 

direction. 

5.2.1.      Strain-displacement relations 

Within the framework of the thin-shell theory, the through-thickness shear 

strain rates 𝜀𝑟𝑥̇  and 𝜀𝑟𝜃̇  are zero. The non-zero components of the strain rate 

associated with the velocity field in Eq. (5. 1) at an arbitrary point of the shell 

are related to the middle-surface strain-rate components 𝜆𝑥̇, 𝜆𝜃̇ and  𝜆𝑥𝜃̇  and 

to the changes in the curvature and twist of the middle surface, 𝐾𝑥̇ , 𝐾𝜃̇ and 

𝐾𝑥𝜃̇ , by the following three relations 

𝜀𝑥𝑥̇ = 𝜆𝑥̇ − 𝑧 𝐾𝑥̇ 

(5. 2) 
𝜀𝜃𝜃̇ = 𝜆𝜃̇ − 𝑧 𝐾𝜃̇ 

𝜀𝑥𝜃̇ = 𝜆𝑥𝜃̇ − 𝑧 𝐾𝑥𝜃̇  

The expressions of the strain rates of the middle surface, assuming a small 

displacement theory, may be written as 

𝜆𝑥̇ =
𝜕𝑢

𝜕𝑥
 

 (5. 3) 
𝜆𝜃̇ =

1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) 

𝜆𝑥𝜃̇ =
1

2
(
𝜕𝑣

𝜕𝑥
+
1

𝑅

𝜕𝑢

𝜕𝜃
) 

while those for the changes in the curvature and twist of the middle surface 

are as follows 

𝐾𝑥 =̇
𝜕2𝑤

𝜕𝑥2
 

(5. 4) 
𝐾𝜃 =̇

1

𝑅2

𝜕2𝑤

𝜕𝜃2
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𝐾𝑥𝜃 =̇
1

𝑅

𝜕2𝑤

𝜕𝜃𝜕𝑥
 

5.2.2.      Stress-strain relations in plastic range 

While strains are linearly related to stresses by Hooke’s law in the elastic 

range, the relations between stresses and strains are nonlinear in the plastic 

range.  

In this study, two plasticity theories, namely the flow and the deformation 

theories, are considered.  

Since the stress rate through the thickness (𝜎𝑟𝑟̇ ) is identically zero in the thin-

shell theory, the constitutive relations for a linearized elastic-plastic solid, in 

the assumption that that no unloading takes place (or that behaviour is 

identical under loading and unloading), are as follows (see Section 2.7.3) 

𝜎𝑥𝑥̇ =
𝐸

1 + 𝜈
(𝛼 𝜀𝑥𝑥̇ + 𝛽 𝜀𝜃𝜃̇ ) 

(5. 5) 
𝜎𝜃𝜃̇ =

𝐸

1 + 𝜈
(𝛽 𝜀𝑥𝑥̇ + 𝛾 𝜀𝜃𝜃̇ ) 

𝜏𝑥𝜃̇ =
𝐸

1 + 𝜈
(
2 + 2𝜈

𝐸
 𝐺 𝜀𝑥𝜃̇ ) 

where 𝐸 is the elastic modulus, 𝐺 is the effective shear modulus and ν is the 

Poisson’s ratio for the material. 

The expressions of 𝛼 , 𝛽, 𝛾 and G are given in Eq. (2.53) for the case of the 

flow theory and in Eq. (2.70) for the case of the deformation theory. 

For the case of elastic buckling, both the tangent modulus and the secant 

modulus at the point of bifurcation are equal to elastic moduli, i.e. 𝐸𝑡 = 𝐸𝑠 =

𝐸, then 

𝛼 = 𝛾 =
1

1−𝜈
    ,  𝛽 =

𝜈

1−𝜈
 (5. 6) 

Since the material obeys the von Mises yield criterion, the effective stress 𝜎 

is written with the assumption of plane stress as follows 

𝜎2 = 𝜎1
2 − 𝜎1 𝜎2 + 𝜎2

2 

Setting 𝜎1 = 𝜎𝑡, that is the applied axial tensile stress, and 𝜎2 =
−𝑃 𝑅

𝑡
 at the 

point of bifurcation, one obtains 
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𝜎2 = 𝜎𝑡
2 + 𝜎𝑡  

𝑃 𝑅

𝑡
 + (

𝑃 𝑅

𝑡
)
2

 (5. 7) 

The Ramberg-Osgood relationship between the effective stress 𝜎 and the 

effective strain 𝜀 ̅is used: 

𝜀̅ =
𝜎

𝐸
[1 + 𝛼 (

𝜎

𝜎𝑦
)

𝑛𝑝−1

] 
(5. 8) 

where 𝜎𝑦 is the nominal yield strength, sometimes called ‘proof stress’, 𝛼 is 

the ‘yield offset’ and 𝑛𝑝 is the hardening parameter. 

The material used in this study is aluminium alloy 6061-T4 that used in the 

tests carried out by Giezen et al (1991). The material constants were found in 

Section 4.2.2  by fitting the Ramberg-Osgood relation to the available data 

set.  They are reported again in Table 5. 1:   

𝐸 [MPa] 𝜎𝑦[MPa] 𝜈 𝑛𝑝 𝛼 

65129.73 177.8 0.31 16 0.733 

Table 5. 1: Ramberg-Osgood constants 

 The ratios of the elastic modulus E to the tangent modulus, Et, and to the 

secant modulus, Es, are expressed by the Ramberg and Osgood relationship 

as shown in Eqs. (4.5) and (4.6) 

5.2.3.     Governing differential equations 

Assuming that 𝑢, 𝑣 and 𝑤 are the incremental velocity components at the 

middle surface of the shell when it buckles.  The rate of change of the 

additional membrane forces and bending moments (stress resultants) per 

unit length of the middle surface, associated to a variation of the original 

state, are denoted by 𝑁̇𝑥, 𝑁̇θ, 𝑁̇θx and 𝑀̇x, 𝑀̇θ, 𝑀̇θx, respectively. 

We also assume that no unloading occurs at the instant of the plastic 

buckling, an assumption normally made in the analytical or semi-analytical 

formulation of plastic buckling problems (Hutchinson, 1974). Then, based on 

Flugge’s theory, the rate form of the governing differential equations 

considering a membrane pre-buckling state for the case of cylinders 
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subjected to external pressure and axial tension can be formulated as 

(Flugge, 1960) 

𝑅2  
𝜕𝑁𝑥̇

𝜕𝑥
+ 𝑅

𝜕𝑁𝜃𝑥̇

𝜕𝜃
− 𝑃 𝑅 (

𝜕2𝑢

𝜕𝜃2
− 𝑅 

𝜕𝑤

𝜕𝑥
) + 𝑅2 𝑡 𝜎𝑡  

𝜕2𝑢

𝜕𝑥2
= 0   

(5. 9) 

𝑅 
𝜕𝑁𝜃̇

𝜕𝜃
+ 𝑅2  

𝜕𝑁𝑥𝜃̇

𝜕𝑥
−

𝜕𝑀𝜃̇

𝜕𝜃
− 𝑅 

𝜕𝑀𝑥𝜃̇

𝜕𝑥
− 𝑃 𝑅 (

𝜕2𝑣

𝜕𝜃2
+ 

𝜕𝑤

𝜕𝜃
) + 𝑡 𝜎𝑡 𝑅

2  
𝜕2𝑣

𝜕𝑥2
= 0  

𝜕2𝑀𝜃̇

𝜕𝜃2
+ 𝑅 

𝜕2𝑀𝑥𝜃̇

𝜕𝑥𝜕𝜃
+ 𝑅 

𝜕2𝑀𝜃𝑥̇

𝜕𝑥𝜕𝜃
+ 𝑅2  

𝜕2𝑀𝑥̇

𝜕𝑥2
+ 𝑅 𝑁𝜃̇ + 𝑃 𝑅 (𝑅 

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) − 𝑡 𝜎𝑡 𝑅

2  
𝜕2𝑤

𝜕𝑥2
= 0    

The stress rate resultants are related to the stress rate by 

𝑁𝑥̇ = ∫ 𝜎𝑥̇
ℎ/2

−ℎ/2
𝑑𝑧  

(5. 10) 

𝑁𝜃̇ = ∫ 𝜎𝜃̇
ℎ/2

−ℎ/2
𝑑𝑧  

𝑁𝑥𝜃̇ = 𝑁𝜃𝑥̇ = ∫ 𝜏𝑥𝜃̇
ℎ/2

−ℎ/2
𝑑𝑧  

𝑀𝑥
̇ = − ∫ 𝑧 𝜎𝑥̇

ℎ/2

−ℎ/2
𝑑𝑧  

𝑀𝜃
̇ = −∫ 𝑧 𝜎𝜃̇

ℎ/2

−ℎ/2
𝑑𝑧  

𝑀𝑥𝜃
̇ = 𝑀𝜃𝑥

̇ = −∫ 𝑧 𝜏𝑥𝜃̇
ℎ/2

−ℎ/2
𝑑𝑧  

Eq. (5.9) are supplemented by the conditions along the boundaries 𝑥 = 0 and 

𝑥 = 𝐿. For simply-supported boundary conditions we have the following four 

possibilities (Ore and Durban, 1992) 

 𝑆1: 𝑤 = 𝑣 = 𝑁𝑥̇ = 𝑀𝑥
̇ = 0 

(5. 11) 

  𝑆2:𝑤 = 𝑀𝑥
̇ = 𝑁𝑥̇ = 𝑁𝑥𝜃̇ = 0 

  𝑆3:𝑤 = 𝑢 = 𝑀𝑥
̇ = 𝑁𝑥𝜃̇ = 0 

 𝑆4:𝑤 = 𝑣 = 𝑢 = 𝑀𝑥
̇ = 0 

while for clamped boundary conditions we have the following four possibilities 

(Ore and Durban, 1992) 

   𝐶1: 𝑤 = 𝑣 = 𝑁𝑥̇ = 𝑤 ´ = 0 

(5. 12) 

   𝐶2:𝑤 = 𝑤 ´ = 𝑁𝑥̇ = 𝑁𝑥𝜃̇ = 0 

  𝐶3:𝑤 = 𝑢 = 𝑤 ´ = 𝑁𝑥𝜃̇ = 0 

  𝐶4: 𝑤 = 𝑣 = 𝑢 = 𝑤 ´ = 0 
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In the numerical analyses described later for BOSOR5 and ABAQUS, the 

above boundary conditions are defined in Table 5.2, where δu, δv, δw and δβ 

are incremental displacements at the boundary. 

Name 𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝛽 Name 𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝛽 

S1 f r r f C1 f r r r 

S2 f f r f C2 f f r r 

S3 r f r f C3 r f r r 

S4 r r r f C4 r r r r 

Table 5. 2: Different boundary conditions terminology for cylindrical shells (f: free to 
displace during buckling; r: restrained displacement during buckling) (Teng and 

Rotter, 2004) 

5.2.4.     The rate of displacement function 

At the onset of bifurcation, the variables 𝑢, 𝑣 and 𝑤 shown in the resulting 

governing Eqs. (5.9) are function of both coordinates 𝑥 and 𝜃. To solve the 

set of partial differential Eqs. (5.9), the separation method is used in which 

the dependent variables 𝑢, 𝑣 and 𝑤 can be expressed as a multiplication of 

two functions of independent variables 𝑥 and 𝜃. The key assumption here is 

that the buckling mode 𝑢, 𝑣 and 𝑤 is assumed to vary harmonically in the 

circumferential direction of the cylinder. Thus an analytically two-dimensional 

problem is reduced to a numerically one-dimensional model. This simplifying 

assumption with regards to assumed buckling modes is used in many 

analytical and numerical treatment such as BOSOR5 (Bushnell, 1976) and 

NAPAS (Teng and Rotter, 1989). Thus, displacements are therefore 

assumed to be expressed as follows: 

𝑢(𝑥, 𝜃) = 𝑢(𝑥) 𝑆𝑖𝑛 (𝑛𝜃) 

(5. 13) 
𝑣(𝑥, 𝜃) = 𝑣(𝑥) 𝐶𝑜𝑠 (𝑛𝜃) 

𝑤(𝑥, 𝜃) = 𝑤(𝑥) 𝑆𝑖𝑛 (𝑛𝜃) 

where n is the number of waves in the circumferential direction of the 

cylinder. 

Substituting these expressions into Eqs. (5.3) and (5.4), then the resulting 

strain rate components from Eq. (5.2) are substituted into constitutive 
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equations (5.5).  Integrating Eq. (5.10) and substituting the stress rate 

resultants into the governing equations of the eigenvalue problem (Eq. (5.9)) 

give: 

𝑢´´ (𝑅2 𝑡 𝜎𝑡 +
𝑅2 𝐸 𝑡 𝛼

1+𝜈
) + 𝑢(𝑥)(−𝐺 𝑡 𝑛2) + 𝑣´ (−𝑅 𝐺 𝑡 𝑛 −

𝑅 𝐸 𝑡 𝑛 𝛽

1+𝜈
) +

𝑤 ´ (
𝑅 𝐸 𝑡 𝛽

1+𝜈
) = 𝑃 (−𝑅 𝑛2 𝑢(𝑥) − 𝑅2𝑤 ´)  

(5. 14) 

𝑢´ (
𝑅 𝐸 𝑡 𝑛 𝛽

1+𝜈
+ 𝑅 𝐺 𝑡 𝑛) + 𝑣´´(𝑅2 𝑡 𝜎𝑡 + 𝑅2𝐺 𝑡) + 𝑣(𝑥) (

−𝐸 𝑡 𝑛2 𝛾

1+𝜈
) +

𝑤 ´´ (−
1

6
 𝐺 𝑡3 𝑛 −

𝐸 𝑡3 𝑛 𝛽

12(1+𝜈)
) + 𝑤(𝑥) (

𝐸 𝑡 𝑛 𝛾

1+𝜈
+

𝐸 𝑡3 𝑛3 𝛾

12 𝑅2 (1+𝜈)
) = 𝑃 (𝑅 𝑛 𝑤(𝑥) −

𝑅 𝑛2 𝑣(𝑥))  

𝑢´  (
𝑅 𝐸 𝑡 𝛽

1+𝜈
) + 𝑣(𝑥) (

−𝐸 𝑡 𝑛 𝛾

1+𝜈
) + 𝑤 ´´´´ (

𝑅2 𝐸 𝑡3 𝛼

12 (1+𝜈)
) + 𝑤 ´´ (−

1

3
 𝐺 𝑡3 𝑛2 −

𝑅2 𝑡 𝜎𝑡 −
𝐸 𝑡3 𝑛2 𝛽

6(1+𝜈)
) + 𝑤(𝑥) ( 

𝐸 𝑡 𝛾

1+𝜈
+

𝐸 𝑡3 𝑛4 𝛾

12 𝑅2 (1+𝜈)
) = 𝑃 (𝑅 𝑛2 𝑤(𝑥) −

𝑅 𝑛 𝑣(𝑥) − 𝑅2 𝑢´)  

or 

𝐴1 𝑢
´´ + 𝐴2 𝑢(𝑥) + 𝐴3𝑣

´ + 𝐴4 𝑤
´ = 𝑃 ( 𝐴5 𝑢(𝑥) + 𝐴6 𝑤

´)  

(5. 15) 

𝐶1 𝑢
´ + 𝐶2 𝑣

´´ + 𝐶3 𝑣(𝑥) + 𝐶4 𝑤
´´ + 𝐶5𝑤(𝑥)  = 𝑃 (𝐶6 𝑤(𝑥) + 𝐶7 𝑣(𝑥))  

𝐷1 𝑢
´  + 𝐷2 𝑣(𝑥) + 𝐷3 𝑤

´´´´ +𝐷4 𝑤
´´ + 𝐷5 𝑤(𝑥)  = 𝑃 (𝐷6 𝑤(𝑥) +

𝐷7 𝑣(𝑥) + 𝐷8 𝑢
´)  

The expressions of 𝑀𝑥
̇ , 𝑁𝑥̇ and 𝑁𝑥𝜃̇  used for the boundary conditions become 

𝑀𝑥
̇ = 𝑤 ´´ + (

−𝑛2 𝛽

𝑅2 𝛼
)  𝑤(𝑥) = 0  

(5. 16) 
𝑁𝑥̇ = 𝑢´ + (

−𝑛 𝛽

𝑅 𝛼
)  𝑣(𝑥) + (

𝛽

𝑅 𝛼
)𝑤(𝑥) = 0  

𝑁𝑥𝜃̇ = (
𝑛

𝑅
) 𝑢(𝑥) + 𝑣´ = 0  

or 

𝑀𝑥
̇ = 𝑤 ´´ + 𝐵1 𝑤(𝑥) = 0  

(5. 17) 
𝑁𝑥̇ = 𝑢´ + 𝐵2 𝑣(𝑥) + 𝐵3 𝑤(𝑥) = 0  

𝑁𝑥𝜃̇ = 𝐵4 𝑢(𝑥) + 𝑣´ = 0  

where the primes indicate the derivatives with respect to the coordinate 𝑥. 
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5.3. Solution via the differential quadrature method 

The differential quadrature (DQ) is an approximation method to calculate the 

𝑘th-order derivative of the solution function 𝑓(𝑥) at a grid point 𝑖. Consider 

firstly a one dimensional problem. The 𝑘th-order derivative of a function 𝑓(𝑥) 

is given by a linear weighting of the function values at N points of the domain 

𝑑𝑘𝑓

𝑑𝑥𝑘
|
𝑥=𝑥𝑖

= ∑ 𝐸𝑖𝑗
𝑘  𝑓(𝑥𝑗)

𝑁
𝑗=1            𝑖 = 1, 2, … . , 𝑁  

(5. 18) 

Here 𝐸𝑖𝑗
𝑘  are called the weighting coefficients of the 𝑘th-order derivative at the 

𝑖th point in the domain, 𝑁 and 𝑓(𝑥𝑗) are the total number of grid points and 

the solution values at the grid point 𝑗, respectively. Denote 𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑖𝑗 and 𝐷𝑖𝑗 

the weighting coefficients of the first-, second-, third- and fourth-order 

derivatives for the ordinary DQ method. The weighting coefficient 𝐴𝑖𝑗 can be 

computed explicitly by (Wang et al., 2005) 

𝐴𝑖𝑗 =
𝜔𝑁
´ (𝑥𝑖)

(𝑥𝑖−𝑥𝑗) 𝜔𝑁
´ (𝑥𝑗)

            𝑖 ≠ 𝑗  

(5. 19) 
𝐴𝑖𝑖 = ∑

1

(𝑥𝑖−𝑥𝑗)

𝑁
𝑗=1,𝑖≠𝑗   

where 

𝜔𝑁(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)…… . (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)… . . (𝑥 −

𝑥𝑁)  (5. 20) 

𝜔𝑁
´ (𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)…… . (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1)… . . (𝑥 − 𝑥𝑁)  

The weighting coefficients for higher order derivatives 𝐵𝑖𝑗, 𝐶𝑖𝑗 and 𝐷𝑖𝑗 can be 

calculated through the following (Wang et al., 2005) 

𝐵𝑖𝑗 = ∑ 𝐴𝑖𝑘 𝐴𝑘𝑗
𝑁
𝑘=1   

(5. 21) 
𝐶𝑖𝑗 = ∑ 𝐴𝑖𝑘 𝐵𝑘𝑗

𝑁
𝑘=1   

𝐷𝑖𝑗 = ∑ 𝐵𝑖𝑘 𝐵𝑘𝑗
𝑁
𝑘=1   

It is worth pointing out that also the finite difference method (FD) discretizes 

the continuous domain into 𝑁 discrete points. In the FD method, the 

approximation of the derivatives at one grid point is based on a low-order 

(linear or quadratic) interpolation of the function values over a small number 

of adjacent points. Instead, in the DQ method the derivatives at each point 

are based on the interpolation of the function over all the grid points, using 
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Lagrange polynomials. This normally increases the accuracy of the solution 

for a given number of grid points, although the method leads to a full matrix 

instead of the banded matrix obtained with the FD method. In other words, 

the DQ method can be considered as a higher-order finite difference method 

(Shu and Richards, 1992).  

There are two main issues related to sampling points in the DQ method. The 

first one is the location of the sampling points, which can affect the accuracy 

of the solution of the differential equations. The simplest choice is to take 

them evenly spaced. However, in most cases, one can obtain better 

convergence and a more accurate solution by choosing unequally spaced 

sampling points (Bert and Malik, 1996a; Moradi and Taheri, 1999). The 

second issue is how to enforce the boundary conditions. Jang and his co-

workers (Jang et al., 1989) propose the so-called 𝛿-technique, in which 

additional points are located at a small distance (𝛿 = 10−5) from the 

boundary points. Then the boundary conditions are applied at both the actual 

boundary points and the 𝛿-points. 

In this study, as already discussed, the buckling mode is assumed to follow a 

trigonometric curve in the circumferential direction. In this way, the problem is 

reduced to a one-dimensional one and the sampling points are only taken in 

the axial direction of the cylinder. The following relation for the grid spacing 

has been used: 

𝑥(1) = 0     ,      𝑥(2) = 𝛿 𝐿    ,       𝑥(𝑁 − 1) = 𝐿 (1 − 𝛿)    ,     𝑥(𝑁) = 𝐿       

(5. 22) 𝑥(𝑖) = 𝐿 (
1−𝐶𝑜𝑠(

𝜋(𝑖−2)

𝑁−3
)

2
)                 3 <  𝑖 < 𝑁 − 2  

Figure 5.1 shows the position of the grid points along the axial direction of the 

cylinder for N=15. 
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Figure 5. 1: Sketch of the axial direction of a cylinder with grid points 

 

5.3.1.       DQ approximation of the differential equations 
and solution procedure  

Using the DQ method, the governing Eqs. (5.15) are expressed as 

𝐴1  ∑ 𝐵𝑖𝑗 𝑢𝑗
𝑁
𝑗=1 + 𝐴2 𝑢𝑖  + 𝐴3∑ 𝐴𝑖𝑗  𝑣𝑗

𝑁
𝑗=1 + 𝐴4∑ 𝐴𝑖𝑗  𝑤𝑗

𝑁
𝑗=1  =

𝑃 ( 𝐴5 𝑢𝑖 + 𝐴6  ∑ 𝐴𝑖𝑗  𝑤𝑗
𝑁
𝑗=1 )       (5. 23a) 

𝐶1  ∑ 𝐴𝑖𝑗  𝑢𝑗
𝑁
𝑗=1 + 𝐶2  ∑ 𝐵𝑖𝑗 𝑣𝑗

𝑁
𝑗=1 + 𝐶3 𝑣𝑖 + 𝐶4  ∑ 𝐵𝑖𝑗 𝑤𝑗

𝑁
𝑗=1 + 𝐶5 𝑤𝑖   =

𝑃 (𝐶6 𝑤𝑖  + 𝐶7 𝑣𝑖  )      
(5. 23b) 

𝐷1  ∑ 𝐴𝑖𝑗  𝑢𝑗
𝑁
𝑗=1  + 𝐷2 𝑣𝑖 + 𝐷3  ∑ 𝐷𝑖𝑗  𝑤𝑗

𝑁
𝑗=1 + 𝐷4  ∑ 𝐵𝑖𝑗 𝑤𝑗

𝑁
𝑗=1 + 𝐷5 𝑤𝑖  =

𝑃 (𝐷6 𝑤𝑖 + 𝐷7 𝑣𝑖 + 𝐷8  ∑ 𝐴𝑖𝑗  𝑢𝑗
𝑁
𝑗=1 )        (5. 23c) 

 The boundary conditions (Eq. (5.12)) become 

S1: 

𝑤1 = 𝑤𝑁 = 𝑣1 = 𝑣𝑁 = 0  

∑ 𝐴1𝑗  𝑢𝑗
𝑁
𝑗=1 + 𝐵2 𝑣1 + 𝐵3 𝑤1 = 0  

∑ 𝐴𝑁𝑗 𝑢𝑗
𝑁
𝑗=1 + 𝐵2 𝑣𝑁 + 𝐵3 𝑤𝑁 = 0  

∑ 𝐵1𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤1 = 0  

∑ 𝐵𝑁𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤𝑁 = 0  

(5. 24) 

S2: 

𝑤1 = 𝑤𝑁 = 0  

∑ 𝐴1𝑗  𝑢𝑗
𝑁
𝑗=1 + 𝐵2 𝑣1 + 𝐵3 𝑤1 = 0  

∑ 𝐴𝑁𝑗 𝑢𝑗
𝑁
𝑗=1 + 𝐵2 𝑣𝑁 + 𝐵3 𝑤𝑁 = 0  

∑ 𝐵1𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤1 = 0  

∑ 𝐵𝑁𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤𝑁 = 0  

𝐵4 𝑢1 + ∑ 𝐴1𝑗  𝑣𝑗
𝑁
𝑗=1 = 0  
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𝐵4 𝑢𝑁 + ∑ 𝐴𝑁𝑗 𝑣𝑗
𝑁
𝑗=1 = 0  

S3: 

𝑤1 = 𝑤𝑁 = 𝑢1 = 𝑢𝑁 = 0  

𝐵4 𝑢1 + ∑ 𝐴1𝑗  𝑣𝑗
𝑁
𝑗=1 = 0  

𝐵4 𝑢𝑁 + ∑ 𝐴𝑁𝑗 𝑣𝑗
𝑁
𝑗=1 = 0  

∑ 𝐵1𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤1 = 0  

∑ 𝐵𝑁𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤𝑁 = 0  

S4: 

𝑤1 = 𝑤𝑁 = 𝑣1 = 𝑣𝑁 = 𝑢1 = 𝑢𝑁 = 0  

∑ 𝐵1𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤1 = 0  

∑ 𝐵𝑁𝑗 𝑤𝑗
𝑁
𝑗=1 + 𝐵1 𝑤𝑁 = 0  

Similar expressions hold for the clamped boundaries except that 𝑀𝑥
̇ = 0 is 

replaced by 𝑤 ´ = 0. Thus they become  

∑ 𝐴1𝑗  𝑤𝑗
𝑁
𝑗=1 = 0  

∑ 𝐴𝑁𝑗 𝑤𝑗
𝑁
𝑗=1 = 0  (5. 25) 

Imposing these boundary conditions makes some of the equations in (5.23) 

redundant. In order to eliminate such a redundancy, the numberings of the 

inner point are chosen as: 𝑖 = 2, 3, … . , 𝑁 − 1 for the Eq. (5.23a), 𝑖 =

2, 3, … . , 𝑁 − 1 for the Eq. (5.23b) and 𝑖 = 3, 4, … . , 𝑁 − 2 for the Eq. (5.23c). 

The combination of the governing equations written in differential quadrature 

form Eqs. (5.23) and of the boundary conditions yield a set of linear 

equations which can be written in the following partitioned matrix form 

[
[𝐴𝐵𝐵] [𝐴𝐵𝐼]

[𝐴𝐼𝐵] [𝐴𝐼𝐼]
] .

{
  
 

  
 
{𝑢𝑏}

{𝑣𝑏}

{𝑤𝑏}

{𝑢𝑖}

{𝑣𝑖}

{𝑤𝑖}}
  
 

  
 

= 𝑃. [
[0] [0]

[𝐵𝐼𝐵] [𝐵𝐼𝐼]
] .

{
  
 

  
 
{𝑢𝑏}

{𝑣𝑏}

{𝑤𝑏}

{𝑢𝑖}

{𝑣𝑖}

{𝑤𝑖}}
  
 

  
 

  
(5. 26) 

Sub-matrices [𝐴𝐵𝐵]8×8 , [𝐴𝐵𝐼]8×(3𝑁−8) stem from the boundary conditions 

while [𝐴𝐼𝐵](3𝑁−8)×8 , [𝐴𝐼𝐼](3𝑁−8)×(3𝑁−8) , [𝐵𝐼𝐵](3𝑁−8)×8 , [𝐵𝐼𝐼](3𝑁−8)×(3𝑁−8) 

stem from the governing equations. 𝑏 and 𝑖 refer to the location of boundary 

and interior points, respectively. 

 {𝑢𝑏} = {𝑢1, 𝑢𝑁}
𝑇, {𝑣𝑏} = {𝑣1, 𝑣𝑁}

𝑇and {𝑤𝑏} = {𝑤1, 𝑤2, 𝑤𝑁−1, 𝑤𝑁}
𝑇 
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The above equation can be transformed into a general eigenvalue form 

[𝐴∗]. {𝑊𝑖} = 𝑃 [𝐵∗]. {𝑊𝑖}          ⟺           [[𝐵∗]−1. [𝐴∗] − 𝑃 [𝐼]]. {𝑊𝑖} = 0        
(5. 27) 

where 

[𝐴∗] = [[𝐴𝐼𝐼] − [𝐴𝐼𝐵]. [𝐴𝐵𝐵]−1. [𝐴𝐵𝐼]]  

[𝐵∗] = [[𝐵𝐼𝐼] − [𝐵𝐼𝐵]. [𝐴𝐵𝐵]−1. [𝐴𝐵𝐼]]  

(5. 28) 

{𝑊𝑖} = {

{𝑢𝑖}

{𝑣𝑖}

{𝑤𝑖}
}  

By solving the eigenvalue problem represented by Eq. (5.27) with the help of 

a standard eigensolver, one can obtain the lowest eigenvalue (i.e., buckling 

pressure P) and corresponding eigenvector (i.e., the buckling mode {𝑊𝑖}). 

Since 𝛼, 𝛽, 𝛾 and 𝐺 depend on the unknown load P, Eq. (5.27) defines a 

nonlinear problem. Thus an iterative method is needed for obtaining the 

solution of Eq. (5.27). The number of circumferential waves n varies between 

nmin and nmax. For each value of n, the buckling pressure is calculated. The 

smallest value of 𝑃 and the corresponding determinations of n provide the 

buckling pressure Pcr and the corresponding buckling mode. 

A computer program has been written in Matlab language for determining the 

plastic buckling pressure and buckling mode using both the flow and 

deformation theories of plasticity for the examined cylinders (Appendix A4). 

The flow chart of the algorithm implemented is illustrated in Figure 5.2. 
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Figure 5. 2: Flow chart of the solution procedure 

5.3.2.        Verification with known solutions 

In order to verify the solution procedure based on the DQ method has been 

correctly implemented in the written code, the obtained results in tern of the 

buckling pressure of cylinders subjected to combined loading, are compared 

with those provided by the BOSOR5 code and with analytical solutions in 

Section 4.6, as shown in Tables 5.3 and 5.4. 

Ye
s 

Set initial value of 𝑃0  (𝑃0 is small 
value, 𝑃0 = 0.01 𝑀𝑝𝑎 in this study) 

Calculate 𝐸𝑡 or 𝐸𝑠 from Eq. (4.5) or Eq. (4.6) 

Calculate 𝛼. 𝛽, 𝛾 and 𝐺 from Eq. (2.53) or 
(2.70) for the flow or deformation 

theories 

Calculate the coefficients 𝐴1. . . 𝐴5, 𝐶1. . . 𝐶7, 𝐷1. . . 𝐷8, 𝐵1. . . 𝐵4 of 
the Eqs (5.14) and (5.16) 

Calculate the weighting coefficients from the 
Eqs (5.19) and (5.21) 

Set governing Eqs (5.23) and boundary Eqs (5.24) or 
(5.25) and identify the sub-matrices (5.26) 

Calculate matrices [𝐴∗] and [𝐵∗] from Eq. (5.28) and find the 
lowest eigenvalue 𝑃 of system (5.27)  

Check if  
|𝑃−𝑃0|

𝑃
≤ 𝑒𝑟𝑟 , where err is the 

prescribed error bound (err=10−5 in this study) 

𝑃0 = (1 − 𝜉)𝑃0 + 𝜉 𝑃, where 𝜉 taken in 
this study equal to 0.1 

𝑃0 is the plastic 
buckling pressure  

Stop 

No 
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For brevity, letter S is used for the case of simply-supported edge and letter 

C for that of a clamped edge.  Two letters and numbers are used to represent 

the boundary conditions of the cylinder. For example, a S1-S1 cylinder will 

have a simply-supported edge of the type 1 at 𝑥 = 0 and 𝑥 = 𝐿. 

Figure 5.3 shows the buckling pressures computed for a C4-C4 cylinder 

under constant tensile stress 𝜎𝑡 = 82.7 MPa by the DQ method with different 

numbers of grid points. The geometry of the cylinder is given by 𝐿 = 2𝑅 =

38.1 mm and 𝑡 = 0.76 mm. It can be seen that the DQ method with 𝑁 = 9 can 

already yield accurate results for both the flow and deformation theory of 

plasticity. N is set to 15 for all DQ results presented in this paper.  

Tables 5.3a-5.3b show the plastic buckling pressures and corresponding 

buckling modes calculated by DQ method for C3-C3 and C4-C4 cylinders 

with 𝐿/𝐷 = 1, 𝐷 = 38.1 mm and 𝑡 = 0.76 mm and subjected to increasing 

value of axial tensile stress, while Table 5.3c-5.3d show the plastic buckling 

pressures for S4-S4 and S1-S1 cylinders for increasing 𝑡/𝑅 ratios. The 

results are shown together with results calculated using BOSOR5. Here it 

should be noted that the flow theory employed in BOSOR5 uses the modified 

shear modulus which is the shear modulus predicted by the deformation 

theory (Bushnell, 1976). Therefore, for comparison purpose, the flow theory 

with the same modified shear modulus was used in the DQ method.  The DQ 

plastic bucking pressures and corresponding buckling modes are in very 

good agreement with those obtained using BOSOR5 for all types of boundary 

conditions, loadings and cylinders’ geometry.  

The results for S1-S1 cylinders subjected to combined axial tensile stress 

and external pressure and bifurcated in plastic phase are shown in Table 5.4 

for both the flow and deformation theory of plasticity. The results are shown 

together with plastic buckling pressures obtained using analytical solution in 

Section 4.6 (Eq. (4.11)), which assumes the S1-S1 type (simply-supported) 

of boundary condition. The geometry of the cylinder is defined by 𝐿 = 2𝑅 =

38.1 mm and 𝑡 = 0.76 mm. For all the cases of applied axial tension, the 

current buckling pressure results agree with those obtained analytically with 

errors varying in the range 0.7%-9% using the flow theory and 3.1%-3.7% 
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using the deformation theory. It should be noted that in some cases the 

buckling modes obtained here are different from those obtained analytically 

when the flow theory is used.  

These examples serve as a check that both the formulations and the 

computer program are correct. 

 

Figure 5. 3: Convergence study 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from BOSOR5 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode 
n,m calculated from present 

study 
Error - 
flow 

theory 
(%) 

Error -
deformation 
theory (%) Tensile 

stress 
(MPa) 

Flow theory 
Deformation 

theory 
Flow theory 

Deformation 
theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0.00 5,1 7.24 5,1 7.07 5,1 7.149 5,1 6.91 -1.3 -2.2 

13.79 5,1 7.16 5,1 6.9 5,1 7.06 5,1 6.72 -1.4 -2.5 

27.58 5,1 7.07 5,1 6.64 5,1 6.96 5,1 6.50 -1.6 -2.1 

55.16 4,1 6.9 5,1 6.12 4,1 6.87 5,1 5.96 -0.4 -2.6 

82.74 4,1 6.55 5,1 5.52 4,1 6.62 5,1 5.30 1.1 -4.0 

110.32 3,1 6.64 5,1 4.74 3,1 6.24 5,1 4.52 -6.0 -4.7 

137.90 NB NB 5,1 3.88 NB 5.73 5,1 3.63 NB -6.5 

165.47 NB NB 5,1 3.02 8,2 5.07 5,1 2.68 NB -11.4 

(a) 
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Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from BOSOR5 

Buckling pressure Pcr (MPa) 
and corresponding buckling 
mode n,m calculated from 

present study 
error-
flow 

theory 
(%) 

error-
deformation 
theory (%) Tensile 

stress 
(MPa) 

The flow 
theory 

The 
deformation 

theory 

The flow 
theory 

The 
deformation 

theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0 5,1 7.24 5,1 7.07 5,1 7.15 5,1 6.92 -1.3 -2.1 

13.79 5,1 7.16 5,1 6.90 5,1 7.05 5,1 6.73 -1.5 -2.5 

27.58 5,1 7.07 5,1 6.72 5,1 6.97 5,1 6.5 -1.4 -3.3 

55.16 5,1 6.98 5,1 6.13 4,1 6.88 5,1 6.0 -1.5 -2.1 

82.74 NB NB 5,1 5.52 4,1 6.64 5,1 5.3 NB -4.0 

110.32 NB NB 5,1 4.75 NB NB 5,1 4.52 NB -4.8 

137.9 NB NB 5,1 3.96 NB NB 5,1 3.63 NB -8.4 

165.48 NB NB 5,1 3.02 NB NB 5,1 2.67 NB -12 

(b) 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from BOSOR5 

Buckling pressure Pcr (MPa) 
and corresponding buckling 
mode n,m calculated from 

present study 
error-
flow 

theory 
(%) 

error-
deformation 
theory (%) 

h/R 

The flow 
theory 

The 
deformation 

theory 

The flow 
theory 

The 
deformation 

theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0.0107 7,1 0.52 7,1 0.52 7,1 0.53 7,1 0.53 1.9 1.0 

0.0160 6,1 1.24 6,1 1.22 6,1 1.18 6,1 1.14 -5.1 -6.7 

0.0214 5,1 2.06 6,1 1.94 5,1 1.96 5,1 1.84 -4.9 -5.4 

0.0321 4,1 4.05 5,1 3.4 4,1 3.9 5,1 3.24 -3.7 -4.7 

0.0408 3,1 6.64 5,1 4.66 3,1 6.11 5,1 4.46 -8.0 -4.3 

0.0428 3,1 7.15 5,1 5 3,1 6.59 5,1 4.75 -7.9 -5.0 

0.0535 NB NB 5,1 6.68 NB NB 4,1 6.26 NB -6.2 

0.0749 NB NB 4,1 10 NB NB 4,1 9.46 NB -5.4 

0.0856 NB NB 4,1 11.89 NB NB 4,1 

11.1
4 NB 

-6.3 

(C) 
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Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from BOSOR5 

Buckling pressure Pcr (MPa) 
and corresponding buckling 
mode n,m calculated from 

present study 
error-
flow 

theory 
(%) 

error-
deformation 
theory (%) 

h/R 

The flow 
theory 

The 
deformation 

theory 

The flow 
theory 

The 
deformation 

theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0.00802 6,1 0.21 7,1 0.18 6,1 0.212 7,1 0.17 1.0 -4.9 

0.01070 6,1 0.35 6,1 0.31 5,1 0.37 6,1 0.29 5.7 -5.6 

0.02140 4,1 1.64 5,1 1 4,1 1.588 5,1 0.96 -3.2 -3.6 

0.03210 NB NB 5,1 1.98 4,1 3.872 5,1 1.82 NB -8.1 

0.04076 NB NB 4,1 2.8 NB NB 4,1 2.59 NB -7.4 

0.04279 NB NB 4,1 3.1 NB NB 4,1 2.78 NB -10.4 

0.05349 NB NB 4,1 4.3 8,3 6.659 4,1 3.80 NB -11.6 

0.07489 NB NB 4,1 7.06 8,3 9.32 4,1 6.62 NB -6.3 

(d) 
Table 5. 3: Comparison between plastic buckling pressures and corresponding 

buckling mode obtained using DQ method and BOSOR5 for: (a) C3-C3 cylinders, 
(b) C4-C4 cylinders, (c) S4-S4 cylinders with 𝜎𝑡 = 110.3 MPa, (d) S1-S1 cylinders 

with 𝜎𝑡 = 165.5 MPa (NB: No buckling) 
(m: number of half waves in the longitudinal direction of the cylinder, n: number of 

half waves in the circumferential direction) 

Tensile 
stress 
(MPa) 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from present study 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from Eq. (4.11) 

error 
% -
flow 

theory  

error %-
deformation 

theory  

The flow 
theory 

The deformation 
theory 

The flow theory 
The 

deformation 
theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0.0 5,1 6.75 5,1 6.60 5,1 6.51 5,1 6.39 3.7 3.3 

13.8 4,1 6.68 5,1 6.42 5,1 6.42 5,1 6.21 4.0 3.4 

27.6 4,1 6.52 4,1 6.19 4,1 6.27 4,1 6.00 4.0 3.2 

41.4 4,1 6.40 4,1 5.93 4,1 6.11 4,1 5.75 4.7 3.1 

55.2 4,1 6.36 4,1 5.66 4,1 5.99 4,1 5.47 6.2 3.5 

68.9 4,1 6.44 4,1 5.35 4,1 5.98 4,1 5.18 7.7 3.3 

82.7 3,1 6.43 4,1 5.02 3,1 6.03 4,1 4.85 6.6 3.5 

96.5 3,1 6.47 4,1 4.67 3,1 5.93 4,1 4.51 9.1 3.5 

110.3 5,3 6.45 4,1 4.29 3,1 5.97 4,1 4.14 8.0 3.6 

124.1 8,5 6.26 4,1 3.88 3,1 6.14 4,1 3.74 2.0 3.7 

137.9 8,5 6.3 4,1 3.45 3,1 6.36 4,1 3.33 -0.9 3.6 
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151.7 3,2 6.52 4,1 3.02 3,1 6.60 4,1 2.91 -1.2 3.8 

165.5 3,2 6.89 4,1 2.59 3,1 6.84 4,1 2.50 0.7 3.6 

Table 5. 4: Comparison of Eq. (4.11) with present study for both the flow and 
deformation theories. 

5.3.3.        Effect of thickness ratio on the buckling 
pressure 

The influence of the thickness-radius ratio 𝑡/𝑅 on the buckling pressure (P) 

for different values of applied tensile stresses, using both the flow and 

deformation theories, is presented in Figure 5.4. The elastic and plastic 

buckling results are also presented in the same figures. The length-diameter 

ratio is taken as 𝐿/𝐷 = 1. The results are calculated for three different values 

of the axial tensile stress and three cases of boundary conditions.  

Figures 5.4a-5.4d show that, below a certain value of thickness-radius 

ratio 𝑡/𝑅, i.e. 0.008, 0.008, 0.0214 and 0.0428, respectively, for the four 

considered cases, the plastic buckling results predicted using the flow and 

deformation theories are identical. When the thickness ratio is increased 

beyond these values, the differences in results between the two theories tend 

to increase and become extremely high for high thickness ratios.  It is also 

observed that the deformation theory generally gives consistently lower 

buckling pressures than the flow theory.  This confirms what is generally 

reported as the plastic buckling paradox.  

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 5. 4: Influence of thickness ratio 𝑡/𝑅 on the discrepancies between the 
buckling pressures P obtained using the flow and deformation theories 
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Figure 5.5 shows the influence of the thickness-radius ratio t/R on the 

ratio 𝜎/𝜎𝑦 calculated using the flow, the deformation and the elastic theory, 

where 𝜎 is the effective stress calculated from Eq. (5.7). When it is  
𝜎̅

𝜎𝑦
> 1, 

noticeable differences between buckling pressure obtained by the flow theory 

and the deformation theory are observed. Moreover, increasing the ratio 
𝜎̅

𝜎𝑦
 , 

the discrepancies between the two plasticity theories also increase. Although 

both theories of plasticity could be expected to give approximately the same 

results for proportional loading (tensile stress equal to zero), Figure 5.4d 

shows that, also in this case, there are some differences in plastic buckling 

pressures predicted by the flow and deformation theories when the ratio t/R 

is high and Figure 5.5d shows the discrepancy in the calculated buckling 

pressure occurs when 
𝜎̅

𝜎𝑦
> 1. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5. 5: Influence of thickness ratio 𝑡/𝑅 on the ratio 𝜎̅/𝜎𝑦 

5.3.4.        Effect of tensile stress and 𝑬/𝝈𝒚 ratio on the 

buckling pressure 

Figure 5.6 shows the plastic buckling pressures under various axial tensile 

stresses according to the flow and deformation theory for S3-S3 cylinders. 

Two thickness-radius ratios are considered. The length-diameter ratio is 

taken as 𝐿/𝐷 = 1. It is observed that the differences between the flow theory 

and deformation theory results are quite large when 𝑡/𝑅 =  0.041. In a 

certain loading range (0 ≤ 𝜎𝑡 ≤ 70MPa) and when 𝑡/𝑅 =  0.0214, both 

plasticity results are identical while they are quite different when t/R=0.041.  

Figure 5.7 shows the influence of the ratio 𝐸/𝜎𝑦 on the buckling pressures 

using both the flow and deformation theories of plasticity for C4-C4 cylinders. 
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Again, the length-diameter ratio is taken as  𝐿/𝐷 = 1. It is seems that large a 

discrepancy in predictions between two theories exists for increasing 𝐸/𝜎𝑦 

ratio. 

 

Figure 5. 6: Influence of tensile stress 𝜎𝑡 on the discrepancies between the buckling 
pressures P obtained using the flow and deformation theories for two thickness 

ratios 

  

Figure 5. 7: Influence of 𝐸/𝜎𝑦 ratio on the discrepancies between the buckling 

pressures P obtained using the flow and deformation theories 

5.3.5.        Effect of boundary conditions on the buckling 
pressure 

Tables 5.5-5.8 show the buckling pressures and buckling modes of cylinders 

for eight sets of boundary conditions and for different values of axial tensile 

stress with 𝐿/𝐷 = 1, 𝐷 = 38.1 mm and 𝑡 = 0.762 mm. The plastic buckling 

results for clamped and simply-supported cylinders represented by the 

boundary conditions C4-C4 and S4-S4 indicate that clamping increases the 
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plastic buckling pressures predicted using the flow theory by 10%-15% when 

𝜎𝑡 ≥ 82.7𝑀𝑃𝑎 while it has no influence on the plastic buckling pressures 

predicted by the deformation theory.  

In the following a comparison between the plastic buckling pressures for 

additional sets of cylinders is presented. In the first set, the boundary 

condition is S1-S1 (or C1-C1), for which the edges are free to move axially. 

In the second set, the boundary condition is S4-S4 (or C4-C4), for which the 

incremental axial displacement 𝑢 vanishes. It can be observed that the 

presence of the axial restraint at the boundaries increases the plastic 

buckling pressures calculated using the flow theory by 17%-22% when 

𝜎𝑡 ≥ 96.5 𝑀𝑃𝑎 and by 25%-32% when C1-C1 and C4-C4 cylinders are 

compared, while it has no significant influence on the plastic buckling 

pressures calculated using the deformation theory (the intensification is about 

4%). 

The influence of the incremental circumferential displacement 𝑣 on the plastic 

buckling pressures can be investigated in two sets of boundary conditions, 

namely S3-S3 and S4-S4 (or C3-C3 and C4-C4). The incremental 

circumferential displacement 𝑣 vanishes in the S4-S4 and C4-C4 cylinders. It 

seems that the circumferential restraint at the boundaries increases the 

plastic buckling pressures predicted using the flow theory by 20%-25% when 

𝜎𝑡 ≥ 96.5 𝑀𝑃𝑎 and by 25%-35% when C3-C3 and C4-C4 cylinders are 

compared, while it has no influence on the results calculated using the 

deformation theory for all values of tensile stresses. 

It can be concluded that the presence of axial, circumferential and rotational 

restrains at the edges of the cylinders with increasing axial tensile stresses 

can significantly increase the discrepancies between the results of the flow 

and deformation theories in the range 8%-260%, as it is shown in Table 5.7 

for cylinders C4-C4. 
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Constant 
axial 

tensile 
stress 
(MPa) 

S1-S1 S2-S2 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode 
n,m 

Buckling 
pressure-

Deformation 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode 
n,m 

Buckling 
pressure-

Deformation 

0.0 5,1 6.75 5,1 6.60 4,1 6.69 4,1 6.53 

13.8 4,1 6.68 5,1 6.42 4,1 6.56 4,1 6.34 

27.6 4,1 6.52 4,1 6.19 4,1 6.43 4,1 6.13 

41.4 4,1 6.40 4,1 5.93 4,1 6.34 4,1 5.88 

55.2 4,1 6.36 4,1 5.66 4,1 6.34 4,1 5.62 

68.9 4,1 6.44 4,1 5.35 3,1 6.37 4,1 5.33 

82.7 3,1 6.43 4,1 5.02 3,1 6.35 4,1 5.01 

96.5 3,1 6.47 4,1 4.67 3,1 6.5 4,1 4.66 

110.3 5,3 6.45 4,1 4.29 4,2 6.4 4,1 4.28 

124.1 8,5 6.26 4,1 3.88 9,5 6.2 4,1 3.87 

137.9 8,5 6.3 4,1 3.45 NB NB 4,1 3.45 

151.7 3,2 6.52 4,1 3.02 NB NB 4,1 3.02 

165.5 3,2 6.89 4,1 2.59 NB NB 4,1 2.59 

Table 5. 5: Plastic buckling pressures and corresponding buckling modes calculated 
using the DQ method and obtained by the flow theory and the deformation theory 

under different values of tensile stresses for S1-S1 and S2-S2 cylinders. 

Constant 
axial 

tensile 
stress 
(MPa) 

S3-S3 S4-S4 

Buckling 
mode 
n,m 

Buckling 
pressure

-Flow 

Bucklin
g mode 

n,m 

Buckling 
pressure-

Deformation 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode n,m 

Buckling 
pressure-

Deformation 

0.0 5,1 7.07 5,1 6.75 5,1 7.14 5,1 6.79 

13.8 5,1 7.07 5,1 6.57 5,1 7.09 5,1 6.60 

27.6 5,1 7.08 5,1 6.37 5,1 7.08 5,1 6.39 

41.4 5,1 7.1 5,1 6.13 5,1 7.12 5,1 6.14 

55.2 3,1 7.07 5,1 5.86 5,1 7.26 5,1 5.86 

68.9 3,1 6.9 5,1 5.56 4,1 7.50 5,1 5.56 

82.7 3,1 6.71 5,1 5.22 4,1 7.76 5,1 5.23 

96.5 3,1 6.52 5,1 4.86 4,1 7.82 5,1 4.86 

110.3 3,1 6.32 5,1 4.46 4,1 7.91 5,1 4.46 

124.1 3,1 6.17 5,1 4.03 4,1 8.02 5,1 4.03 

137.9 3,1 6.14 5,1 3.58 4,1 8.14 5,1 3.58 

151.7 3,1 6.30 5,1 3.11 4,1 8.27 5,1 3.11 

165.5 3,1 6.65 5,1 2.63 4,1 8.40 5,1 2.63 

Table 5. 6: Plastic buckling pressures and corresponding buckling modes calculated 
using the DQ method and obtained by the flow theory and the deformation theory 

under different values of tensile stresses for S3-S3 and S4-S4 cylinders. 
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Constant 
axial 

tensile 
stress 
(MPa) 

C1-C1 C2-C2 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode 
n,m 

Buckling 
pressure-

Deformation 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode 
n,m 

Buckling 
pressure-

Deformation 

0.0 5,1 7.0 5,1 6.73 5,1 7.0 5,1 6.73 

13.8 5,1 7.0 5,1 6.55 5,1 7.0 5,1 6.55 

27.6 4,1 6.94 5,1 6.35 4,1 6.94 5,1 6.35 

41.4 4,1 6.92 4,1 6.10 4,1 6.92 4,1 6.10 

55.2 4,1 7.02 4,1 5.81 4,1 7.01 4,1 5.81 

68.9 4,1 7.21 4,1 5.50 2,1 7.20 4,1 5.50 

82.7 7,4 6.97 4,1 5.16 2,1 6.89 4,1 5.16 

96.5 5,3 6.71 4,1 4.79 2,1 6.6 4,1 4.79 

110.3 5,3 6.45 4,1 4.40 2,1 6.39 4,1 4.40 

124.1 5,3 6.26 4,1 3.98 7,4 6.23 4,1 3.98 

137.9 3,2 6.3 4,1 3.55 NB NB 4,1 3.55 

151.7 3,2 6.64 4,1 3.11 NB NB 4,1 3.11 

165.5 3,2 6.98 5,1 2.65 NB NB 5,1 2.65 

Table 5. 7: Plastic buckling pressures and corresponding buckling modes calculated 
using the DQ method and obtained by the flow theory and the deformation theory 

under different values of tensile stresses for C1-C1 and C2-C2 cylinders. 

Constant 
axial 

tensile 
stress 
(MPa) 

C3-C3 C4-C4 

Buckling 
mode 

n,m 

Buckling 
pressure-

Flow 

Buckling 
mode 

n,m 

Buckling 
pressure-

Deformation 

Buckling 
mode 

n,m 

Buckling 
pressure-

Flow 

Buckling 
mode 

n,m 

Buckling 
pressure-

Deformation 

0.0 6,1 7.47 5,1 6.91 6,1 7.48 5,1 6.92 

13.8 5,1 7.54 5,1 6.72 5,1 7.63 5,1 6.73 

27.6 5,1 7.48 5,1 6.50 5,1 7.71 5,1 6.50 

41.4 5,1 7.50 5,1 6.25 5,1 7.85 5,1 6.25 

55.2 3,1 7.45 5,1 5.96 5,1 8.05 5,1 6.0 

68.9 3,1 7.24 5,1 5.64 5,1 8.30 5,1 5.65 

82.7 3,1 6.98 5,1 5.30 5,1 8.54 5,1 5.30 

96.5 3,1 6.7 5,1 4.92 5,1 8.79 5,1 4.92 

110.3 3,1 6.5 5,1 4.52 5,1 9.02 5,1 4.52 

124.1 3,1 6.3 5,1 4.10 5,1 9.24 5,1 4.10 

137.9 3,1 6.26 5,1 3.63 5,1 9.51 5,1 3.63 

151.7 3,1 6.40 5,1 3.16 5,1 9.68 5,1 3.16 

165.5 3,1 6.76 5,1 2.67 5,1 9.85 5,1 2.67 

Table 5. 8: Plastic buckling pressures and corresponding buckling modes calculated 
using the DQ method and obtained by the flow theory and the deformation theory 

under different values of tensile stresses for C3-C3 and C4-C4 cylinders. 
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Tables 5.9a-5.9d show the computed buckling mode of cylinders subjected to 

constant axial tensile stress equals to 110.3 MPa and under different 

boundary conditions using both the flow and deformation theories. In these 

tables, the buckling shape in the circumferential direction of the cylinders is 

reported at the section in which the maximum radial displacement is 

observed. The buckling shape in the axial direction of the cylinders is 

reported for  𝜃 = 0. It is interesting to observe from Tables 5.5 to 5.9 that for 

high values of applied axial tensile stress and for all types of boundary 

conditions except for C4-C4, the buckling modes observed using the flow 

theory differ from those obtained using the deformation theory of plasticity. 

S1-S1 

Buckling shape 
in the 

circumferential 
direction using 
the flow theory 

Buckling shape in 
the axial direction 

using the flow theory 

Buckling shape 
in the 

circumferential 
direction using 
the deformation 

theory 

Buckling shape in 
the axial direction 

using the 
deformation theory 

    

(a) 

S2-S2 

Buckling shape 
in the 

circumferential 
direction using 
the flow theory 

Buckling shape in 
the axial direction 

using the flow theory 

Buckling shape 
in the 

circumferential 
direction using 
the deformation 

theory 

Buckling shape in 
the axial direction 

using the 
deformation theory 

    

(b) 
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C1-C1 
Buckling shape in 

the 
circumferential 

direction using the 
flow theory 

Buckling shape in 
the axial direction 

using the flow 
theory 

Buckling shape in 
the circumferential 
direction using the 
deformation theory 

Buckling shape in 
the axial direction 

using the 
deformation theory 

    

(c) 

C2-C2 
Buckling shape in 
the circumferential 
direction using the 

flow theory 

Buckling shape in 
the axial direction 

using the flow 
theory 

Buckling shape in 
the circumferential 
direction using the 
deformation theory 

Buckling shape in 
the axial direction 

using the 
deformation theory 

    

(d) 

Table 5. 9: Buckling mode shapes of cylindrical shells under proportional loading 
and various boundary conditions (the constant axial tensile stress is 110.3 MPa) 

5.3.6.      Effects of L/D ratio on the buckling pressure 

The effects of length-diameter ratio 𝐿/𝐷 on the plastic buckling pressures of 

cylinders subjected to various values of axial tension using both the flow and 

deformation theories are presented in Figure 5.8. The results are relative to 

C4-C4 cylinders. It can be seen that, by decreasing the ratio 𝐿/𝐷 and 

increasing the tensile stress, the differences between the results obtained 

using the flow and the deformation theory increase significantly. It is clear 

that increasing 𝐿/𝐷 causes a significant reduction in plastic buckling 

pressures predicted using the flow theory and a slight reduction in critical 

pressures obtained using the deformation theory. 
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Figure 5. 8: Influence of 𝐿/𝐷 ratio on the discrepancies between the buckling 
pressures obtained using the flow and deformation theories 

5.4. Effect of shear stiffness proposed by Becque 
(2010) 

 As discussed in Section 5.1, Becque (2010) proposed a modification to the 

J2 flow theory which hinges on the determination of the shear stiffness from 

second-order considerations. The shear stiffness is taken as follows 

GBecque =
𝐸𝑡𝐸

(1 + 𝜅 + 2𝜈)𝐸𝑡 + (1 − 𝜅)𝐸
 (5.29) 

where parameter κ is the ratio of the plastic strain in the Principal 2 direction 

(𝑦-direction) to the plastic strain in the Principal 1 direction (𝑥-direction) at the 

point of local buckling. In case the von Mises yield surface is used 𝜅 = −0.5 

for the plate studied by Beque. Eq. (5.29) therefore becomes 

GBecque =
EtE

(0.5 + 2ν)Et + 1.5 E
 (5.30) 

Eq. (5.30) is then substituted into Eq. (2.7) so that the shear stiffness GBecque 

is adopted instead of the elastic one in the flow theory. 

Moreover, it was discussed in Section 4.8 that Bushnell (1974) proposed 

adopting the effective shear modulus predicted by the deformation theory, G, 

instead of the elastic one, Gelastic, in the flow theory. It was concluded that 

this modification in the flow theory does lead to a certain reduction in the 
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value of the buckling load but not as much as to make it comparable with the 

predictions from the deformation theory. 

 In order to assess the efficiency of Becque’s proposed shear stiffness, a 

series of results are obtained for cylinders with boundary conditions S1-S1 

and C4-C4, which have dimensions 𝐿 = 2𝑅 = 37.4mm and ℎ = 0.7mm. The 

deformation theory and the flow theory adopting three shear modulus Gelastic, 

 G and GBecque are employed. The results are shown in Table 5.10. 

Constant 
axial 

tensile 
stress 
(MPa) 

Deformation theory 

Gelastic is used 
for the flow 

theory 
 

GBecque is used for 

the flow theory 
 G is used for the 

flow theory 

Buckling 
mode 
n,m 

Buckling 
pressure-

Deformation 

Buckling 
mode 
n,m 

Buckling 
pressure

-Flow 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode n,m 

Buckling 
pressure-

Flow 

0 5,1 6.6 5,1 6.75 4,1 6.5 5,1 6.68 

13.8 5,1 6.42 4,1 6.68 4,1 6.3 4,1 6.55 

27.6 4,1 6.19 4,1 6.52 4,1 6.1 4,1 6.4 

41.4 4,1 5.93 4,1 6.4 4,1 5.9 4,1 6.17 

55.2 4,1 5.66 4,1 6.36 4,1 5.75 4,1 6.0 

68.9 4,1 5.35 4,1 6.44 4,1 5.65 4,1 5.87 

82.7 4,1 5.02 3,1 6.43 3,1 5.61 4,1 5.83 

96.5 4,1 4.67 3,1 6.47 3,1 5.5 3,1 5.72 

110.3 4,1 4.29 5,3 6.45 3,1 5.53 3,1 5.67 

124.1 4,1 3.88 8,5 6.26 2,1 5.38 3,1 5.76 

137.9 4,1 3.45 8,5 6.3 2,1 4.88 2,1 5.69 

151.7 4,1 3.02 3,2 6.52 2,1 4.36 2,1 5.36 

(a) 
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Constant 
axial 

tensile 
stress 
(MPa) 

Deformation theory 
Gelastic is used 

for the flow 
theory 

GBecque is used for 

the flow theory 
 G is used for the 

flow theory 

Buckling 
mode 
n,m 

Buckling 
pressure-

Deformation 

Buckling 
mode 
n,m 

Buckling 
pressure

-Flow 

Buckling 
mode 
n,m 

Buckling 
pressure-

Flow 

Buckling 
mode n,m 

Buckling 
pressure-

Flow 

0 5,1 6.92 6,1 7.48 5,1 6.78 5,1 7.15 

13.8 5,1 6.73 5,1 7.63 5,1 6.66 5,1 7.06 

27.6 5,1 6.5 5,1 7.71 4,1 6.55 5,1 6.97 

41.4 5,1 6.25 5,1 7.85 4,1 6.4 5,1 6.91 

55.2 5,1 6.0 5,1 8.05 4,1 6.26 4,1 6.88 

68.9 5,1 5.65 5,1 8.3 4,1 6.22 4,1 6.73 

82.7 5,1 5.3 5,1 8.54 4,1 6.28 4,1 6.64 

96.5 5,1 4.92 5,1 8.79 NB NB NB NB 

110.3 5,1 4.52 5,1 9.02 NB NB NB NB 

124.1 5,1 4.1 5,1 9.24 NB NB NB NB 

137.9 5,1 3.63 5,1 9.51 NB NB NB NB 

151.7 5,1 3.16 5,1 9.68 NB NB NB NB 

(b) 

Table 5. 10: Plastic buckling pressures and corresponding buckling modes 
calculated using the DQ method and obtained by the flow theory and the 

deformation theory under different values of tensile stresses for (a) S1-S1 and (b) 
C4-C4 cylinders. 

For S1-S1 cylinders one can observe that employing the shear modulus 

GBecque in the flow theory can reduce the buckling pressures calculated using 

the flow theory based on the elastic shear modulus Gelastic by 3.7% to 12.7% 

for axial tensile stress ranging between 0- 82.7 MPa and by 14% -33% for 

higher values of tensile stresses (between 96.5 -151.7 MPa). Furthermore it 

can be noted that employing the effective shear modulus  G  in the flow 

theory can reduce the buckling pressures calculated using the flow theory 

based on the elastic shear modulus Gelastic by 2.7% to 4.7% for axial tensile 

stress ranging between 0- 82.7 MPa and by 3.8% to18.7% for higher values 

of tensile stresses (between 96.5 - 151.7 MPa). The differences between the 

results obtained by the flow theory based on GBecque and those obtained 

based on  G range between 2.5 % to 6.6% for axial tension ranging between 

0 - 124.1 MPa and by 14.2% to 18.7% for higher values of tensile stresses 
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(between 137.9 - 151.7 MPa). Moreover, the flow theory based on GBecque 

provides the same trend as the deformation theory, in which the buckling 

pressure reduces by increasing the axial tensile stress. Comparing with the 

deformation theory results, it can be seen that the discrepancy between the 

results obtained by the deformation theory and the flow theory based on 

GBecque ranges between 0.5% to 11% for axial tension ranging between 0 - 

82.7 MPa and 17% - 44% for higher values of axial tension ( between 96.5 – 

151.7 MPa).  

For C4-C4 cylinders in which the degree of boundary clamping is higher, the 

flow theory based on GBecque or  G  does not predict buckling for axial tensile 

stress more than 96.7 MPa while the deformation theory can predict buckling. 

The differences between the results obtained by the flow theory based on 

GBecque and those obtained based on  G range between 5.2% to 9%. 

Moreover, the discrepancy in the results between the results obtained by the 

deformation theory and the flow theory based on GBecque ranges between 2% 

to 18.5%.  

On the basis of these discussions and comparisons, it can be concluded that 

employing the shear modulus proposed by Becque (2010) in the flow theory 

does lead to a certain reduction in the value of the buckling pressure but not 

as much as to make it comparable with the predictions from the deformation 

theory for higher value of axial tensile stress. Moreover, by increasing the 

clamping of the cylinders, the flow theory failed to predict buckling at all. It is 

therefore clear that the difference in buckling predictions between flow theory 

and deformation theory can be only partially attributed to the difference in the 

shear modulus used for the bifurcation buckling analysis. 
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5.5. Finite-element modelling 

The plastic buckling of imperfect cylinders subjected to constant axial tensile 

stress and increasing external pressure has been numerically simulated by 

means of  the nonlinear FE commercial package ABAQUS, version 6.11-1 

(Simulia, 2011), using both the flow and deformation theories of plasticity. 

The results of the analysis are compared with the current DQ results. 

The FE simulations were conducted for cylinders of aluminum alloy 6061-T4. 

The plastic buckling pressures and the corresponding deformation shapes 

predicted by the flow theory and deformation theory were obtained for: a) C1-

C1 cylinders subjected to various axial tensile stresses with 𝑡/𝑅 = 0.0408; b) 

S1-S1 cylinders with different values of thickness-radius ratios, 𝑡/𝑅, and 

subjected to constant axial tensile stress; c) S2-S2 cylinders subjected to 

three different values of axial tensile stress with 𝑡/𝑅 = 0.0408. The chosen 

length-diameter ratio 𝐿/𝐷 was equal to one. For this value most of the 

buckling modes are symmetric with respect to the middle cross section. 

Therefore, half of the cylinder was modelled and symmetry boundary 

conditions were assigned to the symmetry plane of the cylinder, as shown in 

Figure 5.9. In the case of C1-C1 boundary conditions, nodes on the top edge 

of the shell were fixed except for the axial displacement (Table 5.1). In the 

case of S1-S1 boundary conditions, the rotations normal to the cylinder wall 

were allowed (Table 5.1). For cylinders S2-S2, the circumferential 

displacements were allowed (Table 5.1). Two types of loading were 

considered:  axial tensile load applied at the top edge as a shell edge load in 

the longitudinal direction and external pressure applied normally to the 

surface of the shell elements (Figure 5.9).  First the tensile load was applied 

and held constant. Successively, an increasing lateral pressure was applied.  
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Figure 5. 9: Boundary conditions  

The cylinders were modelled using a general-purpose 4-noded fully 

integrated shell element, “S4” (Simulia, 2011). This element accounts for 

finite membrane strains and large rotations; therefore, it is suitable for large-

strain analyses (Simulia, 2011). A structured mesh was used, made from a 

division of 150 and 50 elements along the circumference and the length, 

respectively. The Ramberg–Osgood input parameters used in the numerical 

simulations were reported in Table 5.1. Both the flow and deformation 

theories of plasticity have been employed. A detailed description of the 

implementation of the flow and deformation theories in the numerical analysis 

was given in Section 3.2.2.  Initially, a linear buckling analysis was conducted 

assuming linear elastic material behavior and small displacements. The first 

16 eigenmodes were used to seed the imperfection with maximum amplitude 

equal to 3% of the thickness. This strategy removes the presence of 

bifurcation point associated with primary and secondary paths (Falzon, 

2006). The smallest buckling pressure predicted for all imperfection shapes, 

each one being proportional to one of the eigenmodes, was assumed to be 

the buckling pressure and its deformation shape was taken as the 

corresponding buckling mode. The Newton-Raphson scheme implemented in 

ABAQUS was used. 

Symmetry 
boundary 
condition 

Shell edge load 
at the tope edge 
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5.6. Comparison between the DQ and the FEA results 

The plastic buckling pressures, based on the flow theory and deformation 

theory, were calculated numerically using ABAQUS and compared with the 

results by the DQ method. The results are presented in Figures 5.10 – 5.12 

and Table 5.10. It can be observed that the flow theory employed in the DQ 

method gives consistently higher values of the buckling pressures than those 

calculated using deformation theory, as illustrated in Figures 5.10-5.11. 

Moreover, Table 5.11 shows that the equivalent strains (Eq. (5.8)) 

corresponding to the calculated buckling pressure for S1-S1 and C1-C1 

cylinders on the basis of the flow theory are exceedingly large to be 

considered realistic, while the deformation theory provides physically more 

acceptable equivalent strains. However, Figures 5.12a-5.12b show that when 

conducting geometrically nonlinear finite-element calculations using the flow 

theory and the deformation theory of plasticity, the flow theory results 

become realistic and much closer to the results from the deformation theory. 

The differences in the results is in the range 0.7% - 15% for C1-C1 cylinders 

and -6% - 9.4% for S1-S1 cylinders. It is important to note that the plastic 

buckling pressures calculated analytically using the deformation theory are in 

very good agreement with those obtained numerically, as shown in Figures 

5.10b- 5.11b. The discrepancy between the analytical and numerical results 

using the deformation theory ranges from -4.3% to 9.4% for S1-S1 cylinders, 

and from -1.7% to 8.2 % for C1-C1 cylinders. It is thus confirmed that, using 

the DQ method with a harmonic variation of the buckling mode assumed 

along the circumferential direction, the use of the flow theory of plasticity in 

the elastic-plastic bifurcation analysis may lead to unacceptable results and 

to over-estimate the buckling pressures when bucking occurs at an advanced 

plastic phase, while the deformation theory provides physically acceptable 

results within the same framework. However, the flow theory provides 

acceptable and reliable results in a nonlinear incremental analysis, which 

therefore does not give origin to any plastic buckling paradox  
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(a) 

 

(b) 

Figure 5. 10: Comparison between DQ method and numerical buckling pressure for 
C1-C1 cylinders with ℎ/𝑅 = 0.0408, calculated using both the: (a) flow theory and 

(b) deformation theory  
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(a) 

 

(b) 

Figure 5. 11: Comparison between DQ method and numerical buckling pressure for 

S1-S1 cylinders with 𝜎𝑡 = 110.5 MPa, calculated using both the: (a) flow theory and 
(b) deformation theory 
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(a) 

 

(b) 

Figure 5. 12: Comparison between the flow and deformation theory buckling 
pressures calculated using ABAQUS for: (a) C1-C1 cylinders and (b) S1-S1 

cylinders. 
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DQ results 

S1-S1    𝜎𝑡 = 110.5 Mpa C1-C1      𝑡/𝑅 = 0.0408 

t/R 
Equivalent 
strain (%)-

Flow 

Equivalent 
strain (%)-

Deformation 

Tensile 
stress 
(Mpa) 

Equivalent 
strain (%)-

Flow 

Equivalent 
strain (%)-

Deformation 

0.0053 0.185 0.19 0 0.379 0.31 

0.0080 0.197 0.2 13.8 0.503 0.34 

0.0107 0.212 0.21 27.6 0.685 0.37 

0.0214 0.355 0.31 41.4 1.097 0.41 

0.0321 2.13 0.51 55.2 2.329 0.45 

0.0408 16.55 0.72 68.9 6.197 0.51 

0.0428 16.56 0.79 82.7 8.607 0.59 

0.0535 16.57 1.16 96.5 11.62 0.67 

0.0642 16.57 1.60 110.3 16.48 0.82 

0.0749 16.58 2.12 124.1 36.80 1.02 

      137.9 83.98 1.29 

      151.7 187.09 1.73 

      165.5 549.19 2.40 

Table 5. 11: Equivalent strain (%) of the cylinders S1-S1 and C1-C1 

5.5.1. Interpretation of the presented and FE results in the 
context of the plastic buckling paradox 

The main findings from the present study are the following: 

(1) when an accurate  FE model is set up accounting for material and 

geometrical nonlinearity, the flow theory does not over-estimate plastic 

buckling pressures and the results obtained by the flow and 

deformation theories are similar and may occasionally differ by no 

more than 14%, a fact which has already been discussed in Chapter 

4;   

(2) the discrepancy between the flow and deformation theories results 

arises when they are calculated in the framework of a buckling 

analysis, either analytically or by using the DQ method. The 

discrepancy increases significantly when the buckling occurs well 

within the plastic domain of the material. The deformation theory 

generally provides consistently lower buckling pressures than the flow 

theory; 
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(3) the discrepancy in the results between the flow theory and the 

deformation theory significantly increases, according to the presented 

procedure, with the stiffening of the cylinder, that is with the increase 

of the thickness ratio, the clamping of the boundaries and the ratio 

𝐸/𝜎𝑦.  

It has been already shown in Section 3.5 that a certain buckling shape 

determined by the simplified assumptions of the analytical treatments, 

which result in kinematic constraints, leads to an excessive stiffness of 

the cylinder and, consequently, an overestimation of the buckling stress 

for both the flow and deformation theories. However, the deformation 

theory compensates the over-stiffening of the shell, thus providing 

buckling stress results that are lower than those obtained by the flow 

theory. This fact is confirmed also by the DQ treatment presented here, in 

which the kinematic of the problem is approximated by assuming that the 

buckling mode varies harmonically in the circumferential directions, as 

shown in Eq. (5.13). Therefore, the implicit kinematic constraint, which 

derives from assuming a harmonic buckling shape, seems to be once 

again the main reason for the discrepancy between the flow theory and 

deformation theory results obtained analytically. This does not happen in 

the case of carefully constructed and validated nonlinear FE analyses in 

which the kinematics is far less constrained. 

Table 5.12 shows the plastic buckling pressures and corresponding 

buckling modes obtained using the DQ method and geometrically 

nonlinear finite element method. It can be seen for all cases, as 

mentioned above, that the flow and the deformation theory results 

obtained by the FE method are similar, and the corresponding buckling 

modes predicted by both plasticity theories are identical. However, by 

using the DQ method, when large differences in the buckling pressures 

between the flow and deformation theories are observed, it is seen that 

the buckling modes are different. These buckling modes predicted by the 

flow theory are also different from those obtained by the FE method, see 

Tables 5.13-5.15. 
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Tensile 
stress 
(MPa) 

Buckling pressure Pcr (MPa) 
and corresponding buckling 
mode n,m calculated from 

present study 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

obtained from ABAQUS 

The flow 
theory 

The deformation 
theory 

The flow theory 
The deformation 

theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0 5,1 7.00 5,1 6.73 5,1 6.26 5,1 6.22 

13.8 5,1 7.01 5,1 6.55 5,1 6.30 5,1 6.20 

27.6 4,1 6.94 5,1 6.35 5,1 6.02 5,1 5.95 

41.4 4,1 6.92 4,1 6.1 5,1 5.88 5,1 5.78 

55.2 4,1 7.02 4,1 5.81 5,1 5.72 5,1 5.57 

68.9 4,1 7.21 4,1 5.5 5,1 5.49 5,1 5.33 

82.7 7,4 6.97 4,1 5.16 4,1 5.18 4,1 5.04 

96.5 5,3 6.71 4,1 4.79 4,1 4.96 5,1 4.72 

110.3 5,3 6.45 4,1 4.4 4,1 4.63 4,1 4.43 

124.1 5,3 6.26 4,1 3.98 4,1 4.29 4,1 3.96 

137.9 3,2 6.3 4,1 3.55 4,1 3.97 4,1 3.55 

151.7 3,2 6.64 4,1 3.11 4,1 3.56 5,1 3.13 

165.5 3,2 6.98 5,1 2.65 5,1 3.28 5,1 2.70 

(a) 

𝑡/𝑅 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from present study 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

obtained from ABAQUS 

The flow 
theory 

The deformation 
theory 

The flow 
theory 

The deformation 
theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

0.0053 8,1 0.092 8,1 0.092 7,1 0.092 7,1 0.092 

0.0080 7,1 0.23 7,1 0.23 6,1 0.226 6,1 0.241 

0.0107 6,1 0.44 6,1 0.44 7,1 0.43 7,1 0.41 

0.0214 5,1 1.82 5,1 1.67 5,1 1.61 5,1 1.56 

0.0321 4,1 4.01 4,1 3.09 4,1 3.16 4,1 2.98 

0.0408 5,3 6.45 4,1 4.55 4,1 4.54 4,1 4.20 

0.0428 5,3 6.77 4,1 4.57 4,1 4.88 4,1 4.51 

0.0535 5,3 8.46 4,1 6.11 4,1 6.69 5,1 6.31 

0.0642 5,3 10.16 4,1 7.71 4,1 8.66 4,1 7.92 

0.0749 5,3 11.85 4,1 9.35 4,1 10.53 4,1 9.77 

(b) 
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Tensile 
stress 
(MPa) 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

calculated from present study 

Buckling pressure Pcr (MPa) and 
corresponding buckling mode n,m 

obtained from ABAQUS 

The flow 
theory 

The deformation 
theory 

The flow 
theory 

The deformation 
theory 

n,m Pcr  n,m Pcr n,m Pcr  n,m Pcr 

27.6 4,1 6.43 4,1 6.13 4,1 5.82 4,1 5.72 

68.9 3,1 6.36 4,1 5.33 4,1 5.23 4,1 5.11 

110.3 4,2 6.38 4,1 4.28 4,1 4.57 4,1 4.21 

(c) 

Table 5. 12: plastic buckling pressure and corresponding buckling mode obtained 
using the DQ and FE method: (a) C1-C1 cylinder; (b) S1-S1 cylinder and (c) S2-S2 

cylinder. 
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t/R 

The DQ results The FE results (ABAQUS) 

Buckling shape in 
the circumferential 
direction using the 

flow theory (n) 

Buckling shape in the 
axial direction using 
the flow theory (m) 

Buckling shape in 
the circumferential 
direction using the 
deformation theory 

(n) 

Buckling shape in 
the axial direction 

using the 
deformation 
theory (m) 

Buckling shape in the 
circumferential 

direction using either 
the flow theory or 

deformation theory 

Buckling shape 
in the axial 

direction using 
either the flow 

theory or 
deformation 

theory 

0.0321 
 
 
 
 
 
 
 
 

   
 

 
 

0.0408 

 
 

  
 

  



 

194 
 

0.0642 
 
 
 
 
 
 

 

 
 
 

 
 

 
 

0.0749 

  
 

 

 
 

Table 5. 13: Comparison between buckling shapes from different methods for S1-S1 cylinders (𝜎𝑡 = 110.5 MPa,) 
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𝜎𝑡   
(MPa) 

The DQ results The FE results (ABAQUS) 

Buckling shape in 
the circumferential 
direction using the 

flow theory (n) 

Buckling shape in the 
axial direction using 
the flow theory (m) 

Buckling shape in 
the circumferential 
direction using the 
deformation theory 

(n) 

Buckling shape in 
the axial direction 

using the 
deformation 
theory (m) 

Buckling shape in the 
circumferential 

direction using either 
the flow theory or 

deformation theory 

Buckling shape 
in the axial 

direction using 
either the flow 

theory or 
deformation 

theory 

27.6 

   
 

 
 

68.9 
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110.3 

   
 

 
 

Table 5. 14: Comparison between buckling shapes from different methods for S2-S2 cylinders ( 
𝑡

𝑅
= 0.0408) 
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𝜎𝑡 
 (MPa) 

The DQ results The FE results (ABAQUS) 

Buckling shape in 
the circumferential 
direction using the 

flow theory (n) 

Buckling shape in the 
axial direction using 
the flow theory (m) 

Buckling shape in 
the circumferential 
direction using the 
deformation theory 

(n) 

Buckling shape in 
the axial direction 

using the 
deformation 
theory (m) 

Buckling shape in the 
circumferential 

direction using either 
the flow theory or 

deformation theory 

Buckling shape 
in the axial 

direction using 
either the flow 

theory or 
deformation 

theory 

13.8 

   
 

 
 

110.3 
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165.5 

    
 

 

Table 5. 15: Comparison between buckling shapes from different methods for C1-C1 cylinders ( 
𝑡

𝑅
= 0.0408) 
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5.7. Conclusions 

In this chapter, the DQ method has been used to obtain the elastic-plastic 

buckling pressures of cylinders under non-proportional loadings and various 

boundary conditions. The analysis has been based on Flugge stability 

equations. In the problem considered, the buckling mode was assumed to 

vary harmonically in the circumferential direction. The problem has thus been 

reduced to a one-dimensional one, and the sampling points had to be taken 

only in the axial direction of the shell. Buckling pressures were obtained 

using direct iterations with a standard eigenvalue solver.  

Comparisons were made with some results given in the literature and results 

obtained using BOSOR5. The DQ results show good agreement with some 

of the known solutions. A parametric study was then performed to 

characterise the effect of the thickness-radius, 𝑡/𝑅, length-diameter,  𝐿/𝐷 , 

material stiffness-strength, 𝐸/𝜎𝑦 ratios, tensile stress and various boundary 

conditions on the discrepancies between the flow theory and deformation 

theory predictions.  

Nonlinear finite-element (FE) analyses of cylindrical shells have also been 

carefully conducted using both the flow theory and the deformation theory of 

plasticity. Plastic buckling results were compared with the present DQ results 

for three types of boundary conditions, various values of thickness-radius 

ℎ/𝑅 ratio and tensile stress.  

The findings are: 

- using the DQ method, the discrepancy between the buckling 

pressures predicted by the flow theory and the deformation theory 

increases with the increase in t/R, 𝐸/𝜎𝑦 ratios and tensile stress and 

with the decrease in the 𝐿/𝐷 ratio; 

- using the DQ method, both theories provide the same results when 

the buckling occurs in the elastic phase. When buckling occurs in 

plastic phase, the flow theory results deviate from those obtained 

using the deformation theory;   
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- preventing the edge rotation along of the generator and the presence 

of axial and circumferential restraint at the boundaries increase the 

plastic buckling pressures obtained using the flow theory while it has 

no or very little influence on the plastic buckling pressures calculated 

using the deformation theory for all values of the applied tensile 

stresses; 

- by conducting geometrically nonlinear finite-element analyses, the flow 

theory provides physically reliable results, which are in accordance 

with the deformation theory ones. The large discrepancies between 

flow and deformation theories results observed with analytical 

solutions or using the DQ method vanish when using the flow theory in 

nonlinear incremental analysis; 

- the root of the discrepancy can once again be attributed to the over-

constrained assumed kinematics, i.e. harmonic buckling shapes in the 

circumferential direction. This fact leads to overestimate the buckling 

pressures when the flow theory of plasticity is used, while the 

deformation theory counterbalances the excessive kinematic stiffness 

and provides results which are much lower that the flow theory 

findings; 

- in order to further verify that the assumption on the harmonic 

kinematics in Eq. (5.13) is the only origin of the unacceptable results 

for the DQ method, additional analytical investigations could be carried 

out by taking into consideration buckling modes different from the 

harmonic one and evaluate if this can deliver any improvement in the 

predictions based on the flow theory of plasticity. However, since the 

harmonic assumption is the standard approach in the DQ method, this 

would imply a modification of the whole procedure, which could 

become more complex and therefore offset many of its advantages; 

- The proposed modifications of the flow theory by Becque (2010) or 

Bushnell (1974), which hinge on the use of a shear stiffness different 

from the elastic one, do lead to a certain reduction in the buckling 

pressure but not as much as to make it comparable with the 
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predictions from the deformation theory for higher value of axial tensile 

stress. Moreover, the flow theory failed to predict buckling for cylinders 

with higher clamping condition. 

- it is recommended that a geometrically nonlinear finite-element 

formulation for imperfect shells is used, with carefully determined and 

validated constitutive laws, to avoid the discrepancies between the two 

plasticity theories, and that accurate post-buckling curves are tracked 

using the physically more sound flow theory of plasticity. 
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Chapter 6 

 

 

Conclusions and Recommendations 

 

 

 

 
 

6.1. Conclusions 

The research work presented in this thesis generally achieved its objectives 

as stated in the introduction. More in detail it managed to: 

 clarify whether the paradox really exists for cylindrical shells subjected 

to axial compression or combined axial tension and external pressure.  

This has been achieved to a good extent in Chapters 3 and 4.  It was 

found that by conducting accurate geometrically nonlinear FE analysis 

using both the flow and the deformation theories of plasticity, the flow 

theory of plasticity led to predictions of buckling load and pressure that 

were in better agreement with the corresponding experimental results 

than those provided by the deformation theory. Moreover, the flow 

theory of plasticity succeeds in predicting buckling with physically 

acceptable plastic strains. Additionally the discrepancies between the 

flow and deformation theories results in terms of plastic buckling 

stress for both perfect and imperfect cylinders were quite small for 

both thick and thin cylinders. 

 provide possible explanation of the plastic bucking paradox and a 

critical revision of the results obtained by many authors in the 

literature, which led to the definition of the paradox.  
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This was achieved and discussed in Chapters 3, 4. In Chapter 3, for 

the case of cylinders subjected to axial compression, many analytical 

equations used in the literature to determine the plastic buckling and 

corresponding buckling mode were derived from the assumption of 

harmonic expression of buckling shape. It was found that imposing a 

constrained kinematics on the FE model in order to produce the 

buckling shape of the analytical solution made the buckling stresses 

predicted by the flow theory well in excess of those obtained by the 

deformation theory of plasticity. When no kinematic constraints were 

used, the results of the flow theory were in much better agreement 

with the test results than those of the deformation theory. This led to 

conclude that the roots of the discrepancy for the case of cylinders 

subjected to axial compression are found in the simplifying 

assumptions regarding the buckling modes used as the basis of many 

analytical investigations. The deformation theory of plasticity 

counterbalances the excessive stiffness induced by kinematically 

constraining the cylinders to follow predefined buckling modes, thus 

providing results that are only apparently more in line with the 

experimental findings. 

In Chapter 4, for cylinders subjected to non-proportional loading, 

consisting of combined external pressure and axial tensile stress, an 

analytical formulation was established employing both the flow and 

deformation theories. The analytical results were compared with those 

provided by the code BOSOR5 and with those provided by nonlinear 

FE analyses, for a vast range of boundary conditions, geometries and 

loadings. It was found that the plastic buckling pressures calculated 

analytically using both the flow and the deformation theories closely 

matched those obtained numerically by use of the code BOSOR5. The 

proposed analytical findings and BOSOR5 results confirm that the flow 

theory over-predicts plastic buckling pressure for high values of 

applied axial tensile stress and for thick cylinders while the 

deformation theory provides results in better agreement with test 

results. It was noted that both analytical and BOSOR5 treatments 
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used the same simplifying assumption in which the kinematics of the 

problem was constrained to follow harmonic expressions in the 

circumferential direction while the kinematics in the current FE 

approach was free. Therefore, the discrepancy between the FE 

predictions, the analytical solutions and the numerical results 

computed by BOSOR5 could be attributed to the simplifying 

assumptions on the buckling shape used in BOSOR5 and in the 

analytical treatment. These result in a kinematic constraint which lead 

to an excessive stiffness of the cylinders and, ultimately, to an 

overestimation of the buckling stress for both the flow and deformation 

theories. However, the deformation theory tends to compensate this 

kinematic over-stiffness and provides results that are more in line with 

the experimental ones. Given that the kinematics in the FE approach 

is far less constrained than that in the analytical one, the flow theory 

provides results more in line with the tests results.  

 assess the imperfection sensitivity of shells buckling in the plastic 

domain.  

This has been achieved in Chapters 3 and 4. For cylinders subjected 

to axial compression, it was found that the plastic buckling stresses 

obtained using the flow and deformation theories showed low 

sensitivity to the imperfection for shells with 10 ≤ 𝑅 𝑡⁄ ≤ 45 while both 

theories showed imperfection sensitivity for R/t over 45. For cylinders 

subjected to non-proportional loading, it was found that the 

discrepancies in the predictions of buckling pressure between the two 

plasticity theories increase as the imperfection ratios decrease but 

significantly less than observed in other previous numerical treatments 

in the literature. 

 establish new analytical solutions for plastic buckling of cylindrical 

shells in order to investigate the effect the boundary conditions, 

material parameters and geometry of the cylinders on the 

discrepancies in the results obtained using the flow and deformation 

theories.  
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This has been achieved in Chapter 5. The governing equations of 

buckling analysis of cylindrical shells derived by Flugge (1960) served 

as the basis of the analysis, conducted for both the flow theory and the 

deformation theory of plasticity.  The plastic buckling results were 

obtained by means of the differential quadrature method (DQM), which 

has been successfully used in the literature to analyse the elastic 

buckling of plates and cylinders and the plastic buckling of plates. It 

was found that the DQ results obtained from the flow and deformation 

theories confirm that, using over-constrained kinematics for the 

buckling shape in the circumferential direction, the deformation theory 

tends to provide lower values of buckling pressure and the 

discrepancies in the results from the two plasticity theories increase 

with increasing thickness-to-radius ratio, tensile stresses, boundary 

clamping and material stiffness-to-strength, 𝐸/𝜎𝑦, ratio. Moreover, it is 

concluded that the difference in buckling pressure between flow theory 

and deformation theory can be only partially attributed to the 

difference in the shear modulus proposed by Becque (2010) or 

Bushnell (1974) used for the bifurcation buckling analysis. 

6.2. Recommendations for further work 

This thesis focuses on the plastic buckling paradox for cylinders subjected to 

two loading cases, i.e. simple axial compression and combined external 

pressure and axial tensile stress.  Other load patterns, such as combined 

tensile load, external pressure and bending, could be explored in further 

studies. These loadings are induced in pipelines during installation in deep 

water.  

The geometric imperfection in the cylinders studied in Chapter 4 was 

assumed to have the shape of a single mode, i.e. the first, third and fifth, and 

of a linear combination of such modes. If the maximum value of imperfection 

is known, the question will be what the critical imperfection shape which 

leads to lowest buckling load is. Further work could consider a larger number 

of single modes and combinations of such modes.  
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Chapter 5 shows that DQ method can yield accurate results using less 

number of grid points than for the finite-difference method. Therefore, a 

possible area for future work is the extension of DQ method to nonlinear 

analysis, accounting for the effect of imperfections. Chapter 5 mainly focused 

on the plastic buckling analysis in the case of small deflections. Therefore, 

the effect of initial imperfections cannot be taken into consideration in the 

present study. In order to include the effect of imperfections, a nonlinear 

analysis with large deflection needs to be conducted. Therefore, the 

application of the DQ method to the nonlinear analysis of cylindrical shells, 

including the effects of imperfections and plasticity, could be considered in 

future. 

BOSOR5 takes in considerations the effect of pre-buckling stresses by 

conducting a nonlinear analysis which accounts for large deformation and 

material nonlinearity. Then an eigenvalue analysis is carried out to calculate 

the buckling load and corresponding buckling mode. The equations that 

describe the pre-buckling and plastic eigenvalue analyses are derived from 

the finite difference method. The DQ method used in Chapter 5 provides 

results in very good agreements with BOSOR5 results. However, the DQ 

method presented in this thesis assumes linear pre-buckling and therefore 

small differences in the results between the DQ results and BOSOR5 results 

are due to the effect of pre-buckling. It is reasonable to extend the DQ 

method in the elastoplastic buckling and include the effect of nonlinear pre-

buckling. 
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Appendix   

A1. Equations used for the flow theory of plasticity 

employed in ABAQUS 

The J2 flow theory of plasticity theory (Simo and Hughes, 1998; Simulia, 

2011), available in ABAQUS and used in the numerical simulations, is based 

on the additive decomposition of the spatial rate of the deformation tensor ε̇ 

into its elastic and plastic parts ε̇e and ε̇p, respectively, 

ε̇ = ε̇e + ε̇p   A.5 

The rate of the Cauchy stress tensor σ̇ is obtained from the elastic part of the 

strain tensor through the isotropic linear elastic relation 

σ̇ = 2Gε̇e + μ tr ε̇e I    A.6 

where G and μ are Lamé’s elastic constants and I is the rank-2 identity 

tensor.  

The von Mises yield function f is  

f(σ, εp
eq
) = ‖dev σ‖ − √

2

3
  σ̅(εp

eq
)    A.7 

where σ̅ represents the uniaxial yield strength which, in order to model 

nonlinear isotropic hardening, is assumed to be an increasing function of the 

equivalent plastic strain εp
eq

, defined at time t as follows 

εp
eq(t) = ∫ ‖ε̇p(τ)‖ dτ

t

−∞
    A.8 

The evolution of the plastic strain is given by the associated flow rule: 

ε̇p = λ̇ (
∂f

∂s
)
s=dev σ

    A.9 

where λ̇ is a plastic multiplier which must satisfy the complementarity 

conditions: 

λ̇ ≥ 0   f(σ, εp
eq
) ≤ 0  λ̇ f(σ, εp

eq
) = 0 A.10 
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A2. Analytically derived buckling formulas derived by 

Batterman  

The buckling stresses were analytically derived by Batterman (1965) in the 

following manner.  In the case of the flow theory of plasticity the buckling 

stress is denoted by 𝜎𝑓 and the following expression was obtained: 

𝜎𝑓 =
𝑘 (𝐴 + 𝐵 − 𝐶)

𝐷
 A.1 

with 

𝑘 = 𝐿4(𝜆(5 − 4𝜐) − (1 − 2𝜐)2) 𝐴 =
4𝐸2𝑡2𝑚2𝜋2𝜆(3+𝜆)

𝐿2𝑅2(𝜆(5−4𝜐)−(1−2𝜐)2)2
 

𝐵 =
𝐸2𝑡4𝑚6𝜋6(3+𝜆)2

12𝐿6(𝜆(5−4𝜐)−(1−2𝜐)2)2
          𝐶 =

4𝐸2𝑡2𝑚2𝜋2(−1+𝜆+2𝜐)2

𝐿2𝑅2(𝜆(5−4𝜐)−(1−2𝜐)2)2
 

𝐷 = 𝐸𝑡2𝑚4𝜋4(3 + 𝜆) 

A.2 

where 𝑡, 𝑅, 𝐿,𝑚 are the thickness, radius, length of the cylinder and number of 

half waves, respectively, 𝜆 = 𝐸/𝐸𝑡  , 𝐸𝑡 being tangent modulus of the material 

evaluated at stress level 𝜎 on a uniaxial stress-strain test curve and 𝐸 being 

the elastic Young’s modulus. 

In the case of the deformation theory of plasticity the buckling stress is 

denoted by 𝜎𝑑 and the following expression was obtained: 

𝜎𝑑 =
𝑘̅ (𝐴̅ + 𝐵̅ − 𝐶̅)

𝐷̅
 

A.3 

with 

k̅ = 𝐿4(−(1 − 2𝜐)2 + 𝜆(2 − 4𝜐 + 3𝜓))

 𝐴̅ =
𝐸2𝑡4𝑚6𝜋6(𝜆+3𝜓)2

12𝐿6(−(1−2𝜐)2+𝜆(2−4𝜐+3𝜓))2
 

𝐵̅ =
4𝐸2𝑡2𝑚2𝜋2𝜆(𝜆+3𝜓)

𝐿2𝑅2(−(1−2𝜐)2+𝜆(2−4𝜐+3𝜓))2
         𝐶̅ =

4𝐸2𝑡2𝑚2𝜋2(−1+𝜆+2𝜐)2

𝐿2𝑅2(−(1−2𝜐)2+𝜆(2−4𝜐+3𝜓))2
 

𝐷̅ = 𝐸𝑡2𝑚4𝜋4(𝜆 + 3𝜓) 

A.4 

where 𝛹 = 𝐸/𝐸𝑠  , 𝐸𝑠 being the secant modulus of the material evaluated at 

stress level 𝜎 on a uniaxial stress-strain test curve. 
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A3. FORTRAN code for the semi-analytical model in 

Chapter 3 

program BLASTICBUCKLING 
      implicit none 
      integer n,mode,itheory,nmax,nout,idummy 
      real*8 a1,a2,b1,b2,vmax,theta 
      real*8 EE,sigy,tau,Et,hh,dd,aa,ecc,beta 
      real*8 vv,dv,sig,sig1,sig2,sig1tr,sig2tr, 
     #       eps1,eps2,eps1new,eps2new,xx,uu   !(vv=Delta,Deflection) 
c------------------------------------------------------------------- 
c     Assign input parameters 
      EE=70000d0 
      sigy=100d0       
      tau=0.5d0 
      hh=5d0 
      dd=15d0 
      aa=250d0 
      ecc=0.5d0 
      beta=10d0 
      itheory=1     !itheory=1 -> flow theory / itheory=2 -> def theory 
c     Assign algorithm parameters 
      nmax=10000 
      vmax=10d0 
      dv=vmax/nmax 
      nout=10              
c     Initialise  
      Et=tau*EE 
      vv=0d0 
      a1=0d0 
      a2=0d0 
      b1=EE 
      b2=EE 
      sig1=0d0 
      sig2=0d0 
      eps1new=0d0 
      eps2new=0d0 
      mode=1  !Both bars elastic 
c 
c     For flow theory 
c       mode=2 -> bar1 elastic loading / bar 2 plastic loading 
c       mode=3 -> bar1 plastic loading / bar 2 plastic loading 
c       mode=4 -> bar1 elastic unloading / bar 2 plastic loading 
c       mode=5 -> bar1 plastic re-loading (tension) / bar 2 plastic loading 
c------------------------------------------------------------------- 
C     Create the output file (overwrite it if already existing) 
      OPEN(UNIT=1,FILE="load-disp.txt",STATUS='UNKNOWN') 
      OPEN(UNIT=2,FILE="switches.txt",STATUS='UNKNOWN') 
      WRITE(1,*)'   Deflection           Load' 
      WRITE(1,1)0d0,0d0,0d0,0d0 
c------------------------------------------------------------------- 
      do n=1,nmax   
        xx=vv*dd/((aa-hh)*hh) 
        sig=((a2*b1-a1*b2+b1*b2*xx)*dd*dd- 
     #      (aa-hh)*(b1+b2)*(2d0*beta*vv*vv)) 
     #     /(dd*(b2*(-dd+2d0*(ecc+vv))+b1*(dd+2d0*(ecc+vv)))) 
        eps1new=(-b2*xx-a1-a2+2d0*sig)/(b1+b2) 
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        eps2new=( b1*xx-a1-a2+2d0*sig)/(b1+b2) 
        sig1tr=a1+b1*eps1new 
        sig2tr=a2+b2*eps2new 
c     decide if mode to be increased 
        if(itheory.eq.1)then 
c       flow theory 
          if(mode.eq.1)then 
            if(sig2tr.gt.sigy)then  
              mode=2 
              a2=(1d0-tau)*sigy 
              b2=Et 
              sig1=sig1tr 
              sig2=a2+b2*eps2new 
c     Mark swithing pointin the output,mode 1 to mode 2 
            WRITE(2,1)'1->2 ',vv,sig,uu,sig 
            WRITE(2,*)' ' 
            else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
          elseif(mode.eq.2)then 
            if(sig1tr.gt.sigy)then  
              mode=3 
              a1=(1d0-tau)*sigy 
              b1=Et 
              sig1=a1+b1*eps1new 
              sig2=sig2tr 
c     Mark swithing point in the output,mode 2 to mode 3 
            WRITE(2,1)'2->3 ',vv,sig,uu,sig 
            WRITE(2,*)' ' 
            else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
          elseif(mode.eq.3)then 
            if(sig1tr.lt.sig1)then  
              mode=4 
              sigy=sig1tr 
              b1=Et 
              a1=sig1-Et*eps1new 
              sig1=a1+b1*eps1new 
              sig2=sig2tr 
c     Mark swithing point in the output,mode 3 to mode 4 
            WRITE(2,1)'3->4 ',vv,sig,uu,sig 
            WRITE(2,*)' ' 
        else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
           
            endif      
        else 
c ------------------------------------------------------------------ 
c       deformation theory 
          if(mode.eq.1)then 
            if(sig2tr.gt.sigy)then  
              mode=2 
              a2=(1d0-tau)*sigy 
              b2=Et 
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              sig1=sig1tr 
              sig2=a2+b2*eps2new 
c     Mark swithing point in the output,mode 1 to mode 2 
            WRITE(2,1)'1->2 ',vv,sig,uu,sig 
            else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
          elseif(mode.eq.2)then 
            if(sig1tr.gt.sigy)then  
              mode=3 
              a1=(1d0-tau)*sigy 
              b1=Et 
              sig1=a1+b1*eps1new 
              sig2=sig2tr 
c     Mark swithing point in the output,mode 2 to mode 3 
            WRITE(2,1)'2->3 ',vv,sig,uu,sig 
            else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
          elseif(mode.eq.3)then 
            if(sig1tr.lt.sig1)then  
              mode=4 
              b1=Et 
              a1=sig1-Et*eps1new 
              sig1=a1+b1*eps1new 
              sig2=sig2tr 
c     Mark swithing point in the output,mode 3 to mode 4 
            WRITE(2,1)'3->4 ',vv,sig,uu,sig 
            else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
          elseif(mode.eq.4)then 
            if(sig1tr.lt.sigy)then  
              mode=5 
              b1=Ee 
              a1=0 
              sig1=a1+b1*eps1new 
              sig2=sig2tr 
c     Mark swithing point in the output,mode 4 to mode 5 
            WRITE(2,1)'4->5 ',vv,sig,uu,sig 
            else 
              sig1=sig1tr 
              sig2=sig2tr 
            endif 
          elseif(mode.eq.5)then 
               if(sig1tr.lt.-sigy) then 
                  mode=6 
                  b1=Et 
                  a1=sig1-Et*eps1new 
                  sig1=a1+b1*eps1new 
                  sig2=sig2tr 
c     Mark swithing pointin the output,mode 5 to mode 6 
            WRITE(2,1)'5->6 ',vv,sig,uu,sig 
                else 
                  sig1=sig1tr 
                  sig2=sig2tr 
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               endif 
               elseif(mode.eq.6)then 
                  sig1=sig1tr 
                  sig2=sig2tr 
               endif 
        endif 
c------------------------------------------------------------------- 
c       Update strains 
        eps1=eps1new 
        eps2=eps2new 
c       Get horizontal displacement 
        theta=datan((eps2-eps1)*hh/dd) 
        uu=(eps1+eps2)/2d0*hh+theta*ecc+aa*(1d0-cos(theta)) 
c------------------------------------------------------------------- 
c       Write output 
        if(vv.gt.4.359d0)then 
          idummy=0 
        endif 
        if(mod(n,nout).eq.0)then 
          WRITE(1,1)vv,sig,uu,sig 
        endif 
c------------------------------------------------------------------- 
c       Increase applied deflection 
      vv=vv+dv 
      end do      
      close(1) 
      close(2) 
C-----Format statements 
1     FORMAT(6(2X,G13.5)) 
      end 
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A4. Matlab code for determining the plastic buckling 

pressure and buckling mode using the DQ method 

based on both the flow and deformation theories of 

plasticity 

For the case of the flow theory 

clc 
clear 
disp('Wait Please') 
nmax=4; 
eta=0.1; 
%data input 
Di=37.388;   %diameter 
h=0.762;    %Thickness 
L=38.1;     %Length 
a=Di/2;  %Radius 
%-----material ------- 
EE=65129.73; 
nue=0.3; 
np=16; 
alphap=0.733; 
sigmay=177.75; 
%------------------------ 
Axial_tensile_stress=165.5; 
Ft= Axial_tensile_stress*(Di*h*pi); 
Pa=Ft/(3.14*Di); 
%------------------------------------------------------------------- 
%----------number of points---------- 
N=15; 
%-------------------------- 
for n=2:nmax 
Po=0.01;   
for ii=1:200 
Pa=Ft/(3.14*Di);  
%Flow theory equations 
P=Po;    
sigmat=Ft/(Di*pi*h); 
sigma1=sigmat; 
sigma2=-a*P/h; 
sigmaeff=(sigma1^2+sigma2^2-sigma1*sigma2)^0.5; 
lambda=1/(1+alphap*np*sigmaeff^(np-1)*sigmay^(1-np)); 
roh=5-((3*(1-lambda)*sigma1*sigma2*(1-2*nue))/sigmaeff^2)-lambda*(1-2*nue)^2-4*nue; 
alpha=((1+nue)/roh)*(4-(3-3*lambda)*sigma1^2/sigmaeff^2); 
beta=((1+nue)/roh)*(2-((3-3*lambda)*sigma1*sigma2/sigmaeff^2)-2*lambda*(1-2*nue)); 
gama=((1+nue)/roh)*(4-(3-3*lambda)*sigma2^2/sigmaeff^2); 
G=EE/(2+2*nue); 
%------------A1,A2….A6,C1,C2….C7,D1,D2,…D8,B1,B2,B3----------------- 
A1=a^2*Pa+a*a*EE*h*alpha/(1+nue); 
A2=-G*h*n^2; 
A3=(-a*G*h*n)-(a*EE*h*n*beta/(1+nue)); 
A4=a*EE*h*beta/(1+nue); 
A5=-a*n*n; 
A6=-a*a; 
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C1=(a*EE*h*n*beta/(1+nue))+(a*G*h*n); 
C2=a^2*Pa+a*a*G*h; 
C3=-EE*h*n*n*gama/(1+nue); 
C4=(-G*h^3*n/6)-(EE*h^3*n*beta/(12+12*nue)); 
C5=(EE*h*n*gama/(nue+1))+(EE*h^3*n^3*gama/(12*a^2*(nue+1))); 
C6=a*n; 
C7=-a*n^2; 
D1=(a*EE*h*beta/(nue+1)); 
D2=-EE*h*n*gama/(nue+1); 
D3=a^2*EE*h^3*alpha/(12*(1+nue)); 
D4=(-G*h^3*n^2/3)-(EE*h^3*n^2*beta/(6*(1+nue)))-a^2*Pa; 
D5=(EE*h*gama/(nue+1))+(EE*h^3*n^4*gama/(12*a^2*(nue+1))); 
D6=a*n^2; 
D7=-a*n; 
D8=-a^2; 
B1=-n^2*beta/(a^2*alpha); 
B2=-n*beta/(a*alpha); 
B3=beta/(a*alpha); 
 
% claculate Xi 
X(1)=0; 
X(2)=0.00001*L; 
X(N-1)=(1-0.00001)*L; 
X(N)=L; 
for i=3:N-2 
    X(i)=L*(1-cos(pi*(i-2)/(N-3)))/2; 
End 
  
% Calculate omegai 
for i=1:N 
        for j=1:N 
            if i~=j 
        M(j)=X(i)-X(j); 
            else 
                M(j)=1; 
            end 
        end 
    omega(i)= prod(M); 
end 
  
% Calculate A,B,C,D 
for i=1:N 
    for j=1:N 
        if i~=j 
            A(i,j)=omega(i)/((X(i)-X(j))*omega(j)); 
        else 
            for v=1:N 
                if v~=i 
                P(v)=1/(X(i)-X(v)); 
                else 
                    P(v)=0; 
                end 
            end 
            A(i,j)=sum(P); 
        end 
    end 
end 
for i=1:N 
    for j=1:N 
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        for k=1:N 
            BB(k)=A(i,k)*A(k,j); 
        end 
        B(i,j)=sum(BB); 
    end 
end 
  
for i=1:N 
    for j=1:N 
        for k=1:N 
            CC(k)=A(i,k)*B(k,j); 
        end 
        C(i,j)=sum(CC); 
    end 
end 
  
for i=1:N 
    for j=1:N 
        for k=1:N 
            DD(k)=B(i,k)*B(k,j); 
        end 
        D(i,j)=sum(DD); 
    end 
end 

 
%Caculate Astar (Boundary conditions is C1-C1) 
%--------Abb----------------------------- 
Abb(1,1)=0; 
Abb(1,2)=0; 
Abb(1,3)=0; 
Abb(1,4)=0; 
Abb(1,5)=1; 
Abb(1,6)=0; 
Abb(1,7)=0; 
Abb(1,8)=0; 
  
Abb(2,1)=0; 
Abb(2,2)=0; 
Abb(2,3)=0; 
Abb(2,4)=0; 
Abb(2,5)=0; 
Abb(2,6)=1; 
Abb(2,7)=0; 
Abb(2,8)=0; 
  
Abb(3,1)=0; 
Abb(3,2)=0; 
Abb(3,3)=1; 
Abb(3,4)=0; 
Abb(3,5)=0; 
Abb(3,6)=0; 
Abb(3,7)=0; 
Abb(3,8)=0; 
  
Abb(4,1)=0; 
Abb(4,2)=0; 
Abb(4,3)=0; 
Abb(4,4)=1; 
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Abb(4,5)=0; 
Abb(4,6)=0; 
Abb(4,7)=0; 
Abb(4,8)=0; 
  
Abb(5,1)=A(1,1); 
Abb(5,2)=A(1,N); 
Abb(5,3)=B2; 
Abb(5,4)=0; 
Abb(5,5)=B3; 
Abb(5,6)=0; 
Abb(5,7)=0; 
Abb(5,8)=0; 
  
Abb(6,1)=A(N,1); 
Abb(6,2)=A(N,N); 
Abb(6,3)=0; 
Abb(6,4)=B2; 
Abb(6,5)=0; 
Abb(6,6)=B3; 
Abb(6,7)=0; 
Abb(6,8)=0; 
  
Abb(7,1)=0; 
Abb(7,2)=0; 
Abb(7,3)=0; 
Abb(7,4)=0; 
Abb(7,5)=A(1,1); 
Abb(7,6)=A(1,N); 
Abb(7,7)=A(1,2); 
Abb(7,8)=A(1,N-1);  
  
Abb(8,1)=0; 
Abb(8,2)=0; 
Abb(8,3)=0; 
Abb(8,4)=0; 
Abb(8,5)=A(N,1); 
Abb(8,6)=A(N,N); 
Abb(8,7)=A(N,2); 
Abb(8,8)=A(N,N-1); 
  
%-----------Aib (1)------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Aib(i-1,1)=A1*B(i,1); 
end 
for i=2:(N-1) 
Aib(i-1,2)=A1*B(i,N); 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Aib(i-1,3)=A3*A(i,1); 
end 
for i=2:(N-1) 
Aib(i-1,4)=A3*A(i,N); 
end 
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%-------------w1 wN------ 
for i=2:(N-1) 
Aib(i-1,5)=A4*A(i,1); 
end 
for i=2:(N-1) 
Aib(i-1,6)=A4*A(i,N); 
end 
  
%-------------w2 wN-1------ 
for i=2:(N-1) 
Aib(i-1,7)=A4*A(i,2); 
end 
for i=2:(N-1) 
Aib(i-1,8)=A4*A(i,N-1); 
end 
  
%-----------Aib (2)------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Aib(i-1+N-2,1)=C1*A(i,1); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,2)=C1*A(i,N); 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Aib(i-1+N-2,3)=C2*B(i,1); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,4)=C2*B(i,N); 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Aib(i-1+N-2,5)=C4*B(i,1); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,6)=C4*B(i,N); 
end  
  
%-------------w2 wN-1------ 
for i=2:(N-1) 
Aib(i-1+N-2,7)=C4*B(i,2); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,8)=C4*B(i,N-1); 
end 
  
%-----------Aib (3)------- 
%-------------u1 uN------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),1)=D1*A(i,1); 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),2)=D1*A(i,N); 
end 
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%-------------v1 vN------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),3)=0; 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),4)=0; 
end 
  
%-------------w1 wN------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),5)=D3*D(i,1)+D4*B(i,1); 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),6)=D3*D(i,N)+D4*B(i,N); 
end 
  
%-------------w2 wN-1------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),7)=D3*D(i,2)+D4*B(i,2); 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),8)=D3*D(i,N-1)+D4*B(i,N-1); 
end 
  
%--------Abi------------------------------ 
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(1,j)=0; 
end 
  
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(2,j)=0; 
end 
  
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(3,j)=0; 
end 
  
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(4,j)=0; 
end 
  
for j=2:(N-1) 
Abi(5,j-1)=A(1,j); 
end 
for j=1:((N-2)+(N-4)) 
Abi(5,j+(N-2))=0; 
end 
  
for j=2:(N-1) 
Abi(6,j-1)=A(N,j); 
end 
for j=1:((N-2)+(N-4)) 
Abi(6,j+(N-2))=0; 
end 
  
for j=1:((N-2)+(N-2)) 
Abi(7,j)=0; 
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end 
for j=3:(N-2) 
Abi(7,j-2+(N-2)+(N-2))=A(1,j); 
end 
  
for j=1:((N-2)+(N-2)) 
Abi(8,j)=0; 
end 
for j=3:(N-2) 
Abi(8,j-2+(N-2)+(N-2))=A(N,j); 
end 
  
%------------Aii  (1)--------------------------- 
for i=2:(N-1) 
    for j=2:N-1 
        if i==j 
Aii(i-1,j-1)=A1*B(i,j)+A2; 
        else 
           Aii(i-1,j-1)=A1*B(i,j) ; 
        end 
    end 
end 
  
for i=2:(N-1) 
    for j=2:(N-1) 
Aii(i-1,j-1+N-2)=A3*A(i,j); 
    end 
end 
  
  
for i=2:(N-1) 
    for j=3:(N-2) 
Aii(i-1,j-2+N-2+N-2)=A4*A(i,j); 
    end 
end 
  
%_________________Aii  (2) ______________________ 
  
for i=2:(N-1) 
    for j=2:N-1 
     Aii(i-1+N-2,j-1)=C1*A(i,j); 
    end 
end 
  
for i=2:(N-1) 
    for j=2:(N-1) 
        if i==j 
          Aii(i-1+N-2,j-1+N-2)=C2*B(i,j)+C3; 
        else 
          Aii(i-1+N-2,j-1+N-2)=C2*B(i,j); 
        end 
    end 
end 
  
for i=2:(N-1) 
    for j=3:(N-2) 
        if i==j 
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Aii(i-1+N-2,j-2+N-2+N-2)=C4*B(i,j)+C5; 
        else 
          Aii(i-1+N-2,j-2+N-2+N-2)=C4*B(i,j); 
        end 
    end 
end 
%-------------Aii  (3)------------------------------ 
for i=3:(N-2) 
    for j=2:N-1 
     Aii(i-2+N-2+N-2,j-1)=D1*A(i,j); 
    end 
end 
  
for i=3:(N-2) 
    for j=2:(N-1) 
        if i==j 
      Aii(i-2+N-2+N-2,j-1+N-2)=D2; 
        else 
            Aii(i-2+N-2+N-2,j-1+N-2)=0; 
             
        end 
    end 
end 
  
for i=3:(N-2) 
    for j=3:(N-2) 
        if i==j 
Aii(i-2+N-2+N-2,j-2+N-2+N-2)=D4*B(i,j)+D3*D(i,j)+D5; 
        else 
          Aii(i-2+N-2+N-2,j-2+N-2+N-2)=D4*B(i,j)+D3*D(i,j); 
        end 
    end 
end 
 
%--------Bib-(1)---------------------------------------------------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Bib(i-1,1)=0; 
end 
for i=2:(N-1) 
Bib(i-1,2)=0; 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Bib(i-1,3)=0; 
end 
for i=2:(N-1) 
Bib(i-1,4)=0; 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Bib(i-1,5)=A6*A(i,1); 
end 
for i=2:(N-1) 
Bib(i-1,6)=A6*A(i,N); 
end 
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%-------------w2 wN-1------ 
for i=2:(N-1) 
Bib(i-1,7)=A6*A(i,2); 
end 
for i=2:(N-1) 
Bib(i-1,8)=A6*A(i,N-1); 
end 
  
%-----------Bib (2)------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Bib(i-1+N-2,1)=0; 
end 
for i=2:(N-1) 
Bib(i-1+N-2,2)=0; 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Bib(i-1+N-2,3)=0; 
end 
for i=2:(N-1) 
Bib(i-1+N-2,4)=0; 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Bib(i-1+N-2,5)=0; 
end 
for i=2:(N-1) 
Bib(i-1+N-2,6)=0; 
end 
  
%-------------w2 wN-1------ 
for i=2:(N-1) 
    if i==2 
Bib(i-1+N-2,7)=C6; 
    else 
     Bib(i-1+N-2,7)=0; 
    end 
end 
for i=2:(N-1) 
    if i==N-1 
Bib(i-1+N-2,8)=C6; 
    else 
      Bib(i-1+N-2,8)=0; 
    end 
end 
  
%-----------Bib (3)------- 
%-------------u1 uN------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),1)=D8*A(i,1); 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),2)=D8*A(i,N); 
end 
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%-------------v1 vN------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),3)=0; 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),4)=0; 
end 
%-------------w1 wN------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),5)=0; 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),6)=0; 
end 
  
%-------------w2 wN-1------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),7)=0; 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),8)=0; 
end 
  
%--------------Bii  (1)-------------------- 
for i=2:(N-1) 
    for j=2:N-1 
        if i==j 
Bii(i-1,j-1)=A5; 
        else 
           Bii(i-1,j-1)=0; 
        end 
    end 
end 
  
for i=2:(N-1) 
    for j=2:(N-1) 
Bii(i-1,j-1+N-2)=0; 
    end 
end 
  
for i=2:(N-1) 
    for j=3:(N-2) 
Bii(i-1,j-2+N-2+N-2)=A6*A(i,j); 
    end 
end 
  
%_________________Bii  (2) ______________________ 
  
for i=2:(N-1) 
    for j=2:N-1 
         
     Bii(i-1+N-2,j-1)=0; 
    end 
end 
  
for i=2:(N-1) 
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    for j=2:(N-1) 
        if i==j 
          Bii(i-1+N-2,j-1+N-2)=C7; 
        else 
          Bii(i-1+N-2,j-1+N-2)=0; 
        end 
    end 
end 
  
for i=2:(N-1) 
    for j=3:(N-2) 
        if i==j 
Bii(i-1+N-2,j-2+N-2+N-2)=C6; 
        else 
          Bii(i-1+N-2,j-2+N-2+N-2)=0; 
        end 
    end 
end 
%-------------Bii  (3)------------------------------ 
for i=3:(N-2) 
    for j=2:N-1 
     Bii(i-2+N-2+N-2,j-1)=D8*A(i,j); 
    end 
end 
  
for i=3:(N-2) 
    for j=2:(N-1) 
        if i==j 
      Bii(i-2+N-2+N-2,j-1+N-2)=D7; 
        else 
            Bii(i-2+N-2+N-2,j-1+N-2)=0; 
             
        end 
    end 
end 
  
for i=3:(N-2) 
    for j=3:(N-2) 
        if i==j 
Bii(i-2+N-2+N-2,j-2+N-2+N-2)=D6; 
        else 
          Bii(i-2+N-2+N-2,j-2+N-2+N-2)=0; 
        end 
    end 
end 
%--------------------------------------------------------- 
 
Astar=Aii-Aib*inv(Abb)*Abi; 
Bstar=Bii-Bib*inv(Abb)*Abi; 
  
% find the eigenvalue and vectors 
  
Mat=inv(Bstar)*Astar; 
[Eigen_vector,All_Eigen_value]=eig(Mat); 
  
for i=1:3*N-8 
    for j=1:3*N-8 
        if All_Eigen_value(i,j)>0; 
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        Eigen_value2(i,j)=All_Eigen_value(i,j); 
        else 
        end 
    end  
 end 
  
Eigen_value_positive=nonzeros(Eigen_value2); 
  
min_Eigen_value=min(Eigen_value_positive); 
if (abs(P-min_Eigen_value)/min_Eigen_value) <= 0.000001 
    Pfinal_buckling_pressure(n-1)=min_Eigen_value; 
  break 
else 
    clearvars -except ii P min_Eigen_value eta n nmax Pfinal_buckling_pressure Di h a EE 
nue np alphap sigmay Ft N L 
  Po=(1-eta)*P+eta*min_Eigen_value; 
  clearvars P min_Eigen_value  
   end 
end 
end 
buckling_pressure=min(Pfinal_buckling_pressure) 
for i=2:nmax 
    if Pfinal_buckling_pressure(i-1)==buckling_pressure 
        number_of_wave_n=i 
    else 
    end 
end 
       
    %--------------------------------------------------------------- 
clearvars -except buckling_pressure number_of_wave_n Di h a EE nue np alphap sigmay Ft 
N L  
n=number_of_wave_n; 
  
%FLOW THEORY EQUATIONS 
  
P=buckling_pressure; 
Pa=Ft/(3.14*Di);  
sigmat=Ft/(Di*pi*h); 
sigma1=sigmat; 
sigma2=-a*P/h; 
sigmaeff=(sigma1^2+sigma2^2-sigma1*sigma2)^0.5; 
lambda=1/(1+alphap*np*sigmaeff^(np-1)*sigmay^(1-np)); 
roh=5-((3*(1-lambda)*sigma1*sigma2*(1-2*nue))/sigmaeff^2)-lambda*(1-2*nue)^2-4*nue; 
  
alpha=((1+nue)/roh)*(4-(3-3*lambda)*sigma1^2/sigmaeff^2); 
beta=((1+nue)/roh)*(2-((3-3*lambda)*sigma1*sigma2/sigmaeff^2)-2*lambda*(1-2*nue)); 
gama=((1+nue)/roh)*(4-(3-3*lambda)*sigma2^2/sigmaeff^2); 
G=EE/(2+2*nue); 
   
A1=a^2*Pa+a*a*EE*h*alpha/(1+nue); 
A2=-G*h*n^2; 
A3=(-a*G*h*n)-(a*EE*h*n*beta/(1+nue)); 
A4=a*EE*h*beta/(1+nue); 
A5=-a*n*n; 
A6=-a*a; 
  
C1=(a*EE*h*n*beta/(1+nue))+(a*G*h*n); 
C2=a^2*Pa+a*a*G*h; 
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C3=-EE*h*n*n*gama/(1+nue); 
C4=(-G*h^3*n/6)-(EE*h^3*n*beta/(12+12*nue)); 
C5=(EE*h*n*gama/(nue+1))+(EE*h^3*n^3*gama/(12*a^2*(nue+1))); 
C6=a*n; 
C7=-a*n^2; 
  
D1=(a*EE*h*beta/(nue+1)); 
D2=-EE*h*n*gama/(nue+1); 
D3=a^2*EE*h^3*alpha/(12*(1+nue)); 
D4=(-G*h^3*n^2/3)-(EE*h^3*n^2*beta/(6*(1+nue)))-a^2*Pa; 
D5=(EE*h*gama/(nue+1))+(EE*h^3*n^4*gama/(12*a^2*(nue+1))); 
D6=a*n^2; 
D7=-a*n; 
D8=-a^2; 
  
B1=-n^2*beta/(a^2*alpha); 
B2=-n*beta/(a*alpha); 
B3=beta/(a*alpha); 
  
% claculate Xi 
  
X(1)=0; 
X(2)=0.00001; 
X(N-1)=L-0.00001; 
X(N)=L; 
for i=3:N-2 
    X(i)=L*(1-cos(pi*(i-2)/(N-3)))/2; 
end 
  
% Calculate omegai 
for i=1:N 
        for j=1:N 
            if i~=j 
        M(j)=X(i)-X(j); 
            else 
                M(j)=1; 
            end 
        end 
    omega(i)= prod(M); 
end 
  
% Calculate A,B,C,D 
for i=1:N 
    for j=1:N 
        if i~=j 
            A(i,j)=omega(i)/((X(i)-X(j))*omega(j)); 
        else 
            for v=1:N 
                if v~=i 
                P(v)=1/(X(i)-X(v)); 
                else 
                    P(v)=0; 
                end 
            end 
            A(i,j)=sum(P); 
        end 
    end 
end 
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for i=1:N 
    for j=1:N 
        for k=1:N 
            BB(k)=A(i,k)*A(k,j); 
        end 
        B(i,j)=sum(BB); 
    end 
end 
  
for i=1:N 
    for j=1:N 
        for k=1:N 
            CC(k)=A(i,k)*B(k,j); 
        end 
        C(i,j)=sum(CC); 
    end 
end 
  
for i=1:N 
    for j=1:N 
        for k=1:N 
            DD(k)=B(i,k)*B(k,j); 
        end 
        D(i,j)=sum(DD); 
    end 
end 
  
 %Caculate Astar 
%--------Abb----------------------------- 
Abb(1,1)=0; 
Abb(1,2)=0; 
Abb(1,3)=0; 
Abb(1,4)=0; 
Abb(1,5)=1; 
Abb(1,6)=0; 
Abb(1,7)=0; 
Abb(1,8)=0; 
  
Abb(2,1)=0; 
Abb(2,2)=0; 
Abb(2,3)=0; 
Abb(2,4)=0; 
Abb(2,5)=0; 
Abb(2,6)=1; 
Abb(2,7)=0; 
Abb(2,8)=0; 
  
Abb(3,1)=0; 
Abb(3,2)=0; 
Abb(3,3)=1; 
Abb(3,4)=0; 
Abb(3,5)=0; 
Abb(3,6)=0; 
Abb(3,7)=0; 
Abb(3,8)=0; 
  
Abb(4,1)=0; 
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Abb(4,2)=0; 
Abb(4,3)=0; 
Abb(4,4)=1; 
Abb(4,5)=0; 
Abb(4,6)=0; 
Abb(4,7)=0; 
Abb(4,8)=0; 
  
Abb(5,1)=A(1,1); 
Abb(5,2)=A(1,N); 
Abb(5,3)=B2; 
Abb(5,4)=0; 
Abb(5,5)=B3; 
Abb(5,6)=0; 
Abb(5,7)=0; 
Abb(5,8)=0; 
  
Abb(6,1)=A(N,1); 
Abb(6,2)=A(N,N); 
Abb(6,3)=0; 
Abb(6,4)=B2; 
Abb(6,5)=0; 
Abb(6,6)=B3; 
Abb(6,7)=0; 
Abb(6,8)=0; 
  
Abb(7,1)=0; 
Abb(7,2)=0; 
Abb(7,3)=0; 
Abb(7,4)=0; 
Abb(7,5)=A(1,1); 
Abb(7,6)=A(1,N); 
Abb(7,7)=A(1,2); 
Abb(7,8)=A(1,N-1); 
   
Abb(8,1)=0; 
Abb(8,2)=0; 
Abb(8,3)=0; 
Abb(8,4)=0; 
Abb(8,5)=A(N,1); 
Abb(8,6)=A(N,N); 
Abb(8,7)=A(N,2); 
Abb(8,8)=A(N,N-1); 
  
%--------------------------------------- 
%-----------Aib (1)------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Aib(i-1,1)=A1*B(i,1); 
end 
for i=2:(N-1) 
Aib(i-1,2)=A1*B(i,N); 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Aib(i-1,3)=A3*A(i,1); 
end 
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for i=2:(N-1) 
Aib(i-1,4)=A3*A(i,N); 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Aib(i-1,5)=A4*A(i,1); 
end 
for i=2:(N-1) 
Aib(i-1,6)=A4*A(i,N); 
end 
  
%-------------w2 wN-1------ 
for i=2:(N-1) 
Aib(i-1,7)=A4*A(i,2); 
end 
for i=2:(N-1) 
Aib(i-1,8)=A4*A(i,N-1); 
end 
  
%-----------Aib (2)------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Aib(i-1+N-2,1)=C1*A(i,1); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,2)=C1*A(i,N); 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Aib(i-1+N-2,3)=C2*B(i,1); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,4)=C2*B(i,N); 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Aib(i-1+N-2,5)=C4*B(i,1); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,6)=C4*B(i,N); 
end 
   
%-------------w2 wN-1------ 
for i=2:(N-1) 
Aib(i-1+N-2,7)=C4*B(i,2); 
end 
for i=2:(N-1) 
Aib(i-1+N-2,8)=C4*B(i,N-1); 
end 
  
%-----------Aib (3)------- 
%-------------u1 uN------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),1)=D1*A(i,1); 
end 
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for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),2)=D1*A(i,N); 
end 
  
%-------------v1 vN------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),3)=0; 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),4)=0; 
end 
  
%-------------w1 wN------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),5)=D3*D(i,1)+D4*B(i,1); 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),6)=D3*D(i,N)+D4*B(i,N); 
end 
  
%-------------w2 wN-1------ 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),7)=D3*D(i,2)+D4*B(i,2); 
end 
for i=3:(N-2) 
Aib(i-2+(N-2)+(N-2),8)=D3*D(i,N-1)+D4*B(i,N-1); 
end 
  
%--------Abi------------------------------------------- 
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(1,j)=0; 
end 
  
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(2,j)=0; 
end 
  
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(3,j)=0; 
end 
  
for j=1:((N-2)+(N-2)+(N-4)) 
Abi(4,j)=0; 
end 
  
for j=2:(N-1) 
Abi(5,j-1)=A(1,j); 
end 
for j=1:((N-2)+(N-4)) 
Abi(5,j+(N-2))=0; 
end 
  
for j=2:(N-1) 
Abi(6,j-1)=A(N,j); 
end 
for j=1:((N-2)+(N-4)) 
Abi(6,j+(N-2))=0; 
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end 
   
for j=1:((N-2)+(N-2)) 
Abi(7,j)=0; 
end 
for j=3:(N-2) 
Abi(7,j-2+(N-2)+(N-2))=A(1,j); 
end 
  
for j=1:((N-2)+(N-2)) 
Abi(8,j)=0; 
end 
for j=3:(N-2) 
Abi(8,j-2+(N-2)+(N-2))=A(N,j); 
end 
  
%------------Aii  (1)--------------------------- 
for i=2:(N-1) 
    for j=2:N-1 
        if i==j 
Aii(i-1,j-1)=A1*B(i,j)+A2; 
        else 
           Aii(i-1,j-1)=A1*B(i,j) ; 
        end 
    end 
end 
    
for i=2:(N-1) 
    for j=2:(N-1) 
Aii(i-1,j-1+N-2)=A3*A(i,j); 
    end 
end 
   
for i=2:(N-1) 
    for j=3:(N-2) 
Aii(i-1,j-2+N-2+N-2)=A4*A(i,j); 
    end 
end 
  
%_________________Aii  (2) ______________________ 
  
for i=2:(N-1) 
    for j=2:N-1 
     Aii(i-1+N-2,j-1)=C1*A(i,j); 
    end 
end 
   
for i=2:(N-1) 
    for j=2:(N-1) 
        if i==j 
          Aii(i-1+N-2,j-1+N-2)=C2*B(i,j)+C3; 
        else 
          Aii(i-1+N-2,j-1+N-2)=C2*B(i,j); 
        end 
    end 
end 
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for i=2:(N-1) 
    for j=3:(N-2) 
        if i==j 
Aii(i-1+N-2,j-2+N-2+N-2)=C4*B(i,j)+C5; 
        else 
          Aii(i-1+N-2,j-2+N-2+N-2)=C4*B(i,j); 
        end 
    end 
end 
%-------------Aii  (3)------------------------------ 
for i=3:(N-2) 
    for j=2:N-1 
     Aii(i-2+N-2+N-2,j-1)=D1*A(i,j); 
    end 
end 
   
for i=3:(N-2) 
    for j=2:(N-1) 
        if i==j 
      Aii(i-2+N-2+N-2,j-1+N-2)=D2; 
        else 
            Aii(i-2+N-2+N-2,j-1+N-2)=0; 
             
        end 
    end 
end 
  
for i=3:(N-2) 
    for j=3:(N-2) 
        if i==j 
Aii(i-2+N-2+N-2,j-2+N-2+N-2)=D4*B(i,j)+D3*D(i,j)+D5; 
        else 
          Aii(i-2+N-2+N-2,j-2+N-2+N-2)=D4*B(i,j)+D3*D(i,j); 
        end 
    end 
end 
 
%--------Bib-(1)-------------------------------------------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Bib(i-1,1)=0; 
end 
for i=2:(N-1) 
Bib(i-1,2)=0; 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Bib(i-1,3)=0; 
end 
for i=2:(N-1) 
Bib(i-1,4)=0; 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Bib(i-1,5)=A6*A(i,1); 
end 
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for i=2:(N-1) 
Bib(i-1,6)=A6*A(i,N); 
end 
   
%-------------w2 wN-1------ 
for i=2:(N-1) 
Bib(i-1,7)=A6*A(i,2); 
end 
for i=2:(N-1) 
Bib(i-1,8)=A6*A(i,N-1); 
end 
  
%-----------Bib (2)------- 
%-------------u1 uN------ 
for i=2:(N-1) 
Bib(i-1+N-2,1)=0; 
end 
for i=2:(N-1) 
Bib(i-1+N-2,2)=0; 
end 
  
%-------------v1 vN------ 
for i=2:(N-1) 
Bib(i-1+N-2,3)=0; 
end 
for i=2:(N-1) 
Bib(i-1+N-2,4)=0; 
end 
  
%-------------w1 wN------ 
for i=2:(N-1) 
Bib(i-1+N-2,5)=0; 
end 
for i=2:(N-1) 
Bib(i-1+N-2,6)=0; 
end 
  
%-------------w2 wN-1------ 
for i=2:(N-1) 
    if i==2 
Bib(i-1+N-2,7)=C6; 
    else 
     Bib(i-1+N-2,7)=0; 
    end 
end 
for i=2:(N-1) 
    if i==N-1 
Bib(i-1+N-2,8)=C6; 
    else 
      Bib(i-1+N-2,8)=0; 
    end 
end 
  
%-----------Bib (3)------- 
%-------------u1 uN------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),1)=D8*A(i,1); 
end 
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for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),2)=D8*A(i,N); 
end 
  
%-------------v1 vN------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),3)=0; 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),4)=0; 
end 
  
%-------------w1 wN------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),5)=0; 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),6)=0; 
end 
   
%-------------w2 wN-1------ 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),7)=0; 
end 
for i=3:(N-2) 
Bib(i-2+(N-2)+(N-2),8)=0; 
end 
  
%--------------Bii  (1)-------------------- 
for i=2:(N-1) 
    for j=2:N-1 
        if i==j 
Bii(i-1,j-1)=A5; 
        else 
           Bii(i-1,j-1)=0; 
        end 
    end 
end 
   
for i=2:(N-1) 
    for j=2:(N-1) 
Bii(i-1,j-1+N-2)=0; 
    end 
end 
   
for i=2:(N-1) 
    for j=3:(N-2) 
Bii(i-1,j-2+N-2+N-2)=A6*A(i,j); 
    end 
end 
  
%_________________Bii  (2) ______________________ 
  
for i=2:(N-1) 
    for j=2:N-1 
         
     Bii(i-1+N-2,j-1)=0; 
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    end 
end 
   
for i=2:(N-1) 
    for j=2:(N-1) 
        if i==j 
          Bii(i-1+N-2,j-1+N-2)=C7; 
        else 
          Bii(i-1+N-2,j-1+N-2)=0; 
        end 
    end 
end 
   
for i=2:(N-1) 
    for j=3:(N-2) 
        if i==j 
Bii(i-1+N-2,j-2+N-2+N-2)=C6; 
        else 
          Bii(i-1+N-2,j-2+N-2+N-2)=0; 
        end 
    end 
end 
%-------------Bii  (3)------------------------------ 
for i=3:(N-2) 
    for j=2:N-1 
     Bii(i-2+N-2+N-2,j-1)=D8*A(i,j); 
    end 
end 
   
for i=3:(N-2) 
    for j=2:(N-1) 
        if i==j 
      Bii(i-2+N-2+N-2,j-1+N-2)=D7; 
        else 
            Bii(i-2+N-2+N-2,j-1+N-2)=0; 
             
        end 
    end 
end 
  
for i=3:(N-2) 
    for j=3:(N-2) 
        if i==j 
Bii(i-2+N-2+N-2,j-2+N-2+N-2)=D6; 
        else 
          Bii(i-2+N-2+N-2,j-2+N-2+N-2)=0; 
        end 
    end 
end 
%--------------------------------------------------------- 
 
Astar=Aii-Aib*inv(Abb)*Abi; 
Bstar=Bii-Bib*inv(Abb)*Abi; 
  
% find the eigenvalue and vectors 
  
Mat=inv(Bstar)*Astar; 
[Eigen_vector,All_Eigen_value]=eig(Mat); 
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for i=1:3*N-8 
    for j=1:3*N-8 
        if All_Eigen_value(i,j)>0; 
        Eigen_value2(i,j)=All_Eigen_value(i,j); 
        else 
        end 
    end   
 end 
  
Eigen_value_positive=nonzeros(Eigen_value2); 
min_Eigen_value=min(Eigen_value_positive); 
  
%--------------------------------------------------------------- 
  for i=1:3*N-8 
    for j=1:3*N-8 
        if All_Eigen_value(i,j)== min_Eigen_value 
            kk=j; 
            Vector=Eigen_vector(:,kk); 
        else 
        end 
    end 
  end      
Fianl_Eigen_verctor=Vector; 
       
    for i=2:N-1 
        u(i)=Fianl_Eigen_verctor(i-1); 
    end 
    for i=2:N-1 
        v(i)=Fianl_Eigen_verctor(i-1+N-2); 
    end 
    for i=3:N-2 
        w(i)=Fianl_Eigen_verctor(i-2+N-2+N-2); 
    end 
    u(1)=u(2); 
    u(N)=u(N-1); 
    v(1)=v(2); 
    v(N)=v(N-1); 
    w(1)=0; 
    w(2)=0; 
    w(N)=0; 
    w(N-1)=0; 
    Eigen_verctor_x_u_v_w=[transpose(X) transpose(u) transpose(v) transpose(w)]; 
    plot(w,X,'-o') 
    plot(w,X) 
    ylabel('Axial coordinates') 
    legend('Buckling shape in axial direction')  

     
    for t=0:360 
        theata(t+1)=t*pi/180; 
         
     ww(t+1)=sin(n*theata(t+1))+Di/5; 
    end 
     
    polar(theata,ww) 
    ylabel('circumferential coordinates') 
    legend('Buckling shape in circumferential direction')  
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eps_eff=(sigmaeff+alphap*sigmaeff^(np-1)*sigmay^(1-np)*sigmaeff)/EE*100 
   sigma_eff=sigmaeff 
  

 For the case of the deformation theory 

 It is the same previous code. However, the deformation theory equations 

are: 

% deformation theory equations 
  
P=Po; 
sigmat=Ft/(Di*3.14*h); 
sigma1=sigmat; 
sigma2=-a*P/h; 
sigmaeff=(sigma1^2+sigma2^2-sigma1*sigma2)^0.5; 
  
lambda=1/(1+alphap*np*sigmaeff^(np-1)*sigmay^(1-np)); 
psai=1/(1+alphap*sigmaeff^(np-1)*sigmay^(1-np)); 
roh=(3/psai)+(1-2*nue)*(2-lambda*(1-2*nue)-(3*sigma1*sigma2*(1-
lambda/psai)/sigmaeff^2)); 
alpha=((1+nue)/roh)*(4-(3-3*lambda/psai)*sigma1^2/sigmaeff^2); 
beta=((1+nue)/roh)*(2-((3-3*lambda/psai)*sigma1*sigma2/sigmaeff^2)-2*lambda*(1-2*nue)); 
gama=((1+nue)/roh)*(4-(3-3*lambda/psai)*sigma2^2/sigmaeff^2); 
G=EE/(-1+2*nue+3/psai); 
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