
Implementation relations and probabilistic schedulers in
the distributed test architecture✩

Robert M. Hierons

Department of Computer Science, Brunel University London, United Kingdom

Manuel Núñez∗

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

Abstract

We present a complete framework to formally test systems with distributed
ports where some choices are probabilistically quantified while other choices are
non-deterministic. We define different implementation relations, that is, rela-
tions that state what it means for a system to be a valid implementation of
a specification. We also study how these relate. In order to define these im-
plementation relations we use probabilistic schedulers, a more powerful version,
including probabilistic choices, of a notion of scheduler introduced in our pre-
vious work. Probabilistic schedulers, when applied to either a specification or
an implementation, resolve all the possible non-determinism, so that we can
compare purely probabilistic systems.

Keywords: Model-based testing; probabilistic systems; distributed systems.

1. Introduction

Software Testing is the most widely used technique to validate the correctness
of software systems. Classically, testing has been a manual and labour-intense
activity, taking more than 50% of the budget of software projects [1]. However,
in the last two decades there has been a significant line of work that formalises
the area. There are now comprehensive studies of the field [2, 3, 4], tools to
support formal approaches to testing [5, 6], and significant evidence of indus-
trial uptake [7, 8, 9, 10, 11]. In formal testing it is important to use a suitable
implementation relation that encodes the notion of conformance used; otherwise

✩Research partially supported by the MINECO/FEDER project DArDOS (TIN2015-
65845-C3-1-R) and the Comunidad de Madrid project SICOMORo-CM (S2013/ICE-3006).

∗Corresponding author
Email addresses: rob.hierons@brunel.ac.uk (Robert M. Hierons), mn@sip.ucm.es

(Manuel Núñez)

Preprint submitted to Journal of Systems and Software December 11, 2016

testing may be unsound and inefficient. Essentially, an implementation relation
defines what it means for a System Under Test (SUT) to be a valid implemen-
tation of a given specification. The de facto standard implementation relation
is ioco [12].

If the SUT has multiple physically distributed interfaces at which it interacts
with its environment then one might place a separate local tester at each inter-
face (port). If the local testers do not synchronise their actions and there is no
global clock then one is testing in the distributed test architecture [13]. Although
the initial work on the distributed test architecture concentrated on observabil-
ity and controllability issues (see the next section), later work extended and
adapted existing implementation relations to the distributed framework. The
dioco relation [14, 15] follows the pattern of the classical ioco relation: the
SUT should not produce an unexpected output as the reaction to a sequence
of actions allowed by the specification. However, its definition, and the study
of its properties, has to take into account the fact that different sequences of
actions must be identified as equivalent because they cannot be distinguished in
distributed testing; they look identical to the local testers placed at the ports of
the SUT. In our previous work [16, 17] we studied the impact of the inclusion of
probabilistic information into our systems. We discovered that non-determinism
means that one cannot simply compare the probabilities of equivalence classes of
traces of the SUT and specification and so we initially studied a class of models
where this non-determinism does not cause problems [16]. Later we generalised
this work by using schedulers to resolve non-deterministic choices in processes.
Essentially, schedulers can be seen as being models of the environment. How-
ever, our previous work used a restricted notion of a scheduler, which did not
include probabilistic information. It is natural to ask whether the introduction
of probabilities into schedulers might affect the implementation relations and
associated analysis.

This paper introduces a new (probabilistic) type of scheduler. Based on
this, we define three new implementation relations for distributed testing of
probabilistic input-output transition systems (PIOTSs). We also analyse how
these new implementation relations are related to one another and to our for-
mer implementation relations. It transpires that the strongest implementation
relation is equivalent to the strongest of our previously defined implementation
relations but that the weaker implementation relations are affected by the use
of probabilistic schedulers.

The paper is structured as follows. Section 2 describes related work. Sec-
tion 3 describes the types of models used in this paper. Section 4 describes
deterministic schedulers and implementation relations defined in terms of such
schedulers. Section 5 defines probabilistic schedulers and how they interact
with PIOTSs. Section 6 defines new implementation relations in terms of prob-
abilistic schedulers and compares these with previously defined implementation
relations. Finally, in Section 7 we discuss the results and possible lines of future
work.

2

Port 1 SUT Port 2

?i1

!o1

?i2

msc MSC1

Figure 1: A test case with a controllability problem

2. Related work

In this section we review previous work on the two main lines that we con-
sider in this paper: testing in the distributed architecture and testing proba-
bilistic systems.

2.1. Distributed testing
The initial work on distributed testing was developed in the context of test-

ing the implementation of a communications protocol based on a finite state
machine (FSM) model [18, 19, 20]. Here, one local tester acted as the layer
above the implementation being tested and the other local tester resided on a
different machine. These local testers acted independently and there was no
global clock and so testing was in the distributed test architecture. This initial
work identified two additional practical issues introduced by distributed testing
and called these controllability and observability problems. A controllability
problem occurs if the local tester at port p cannot determine when to send an
input since this tester can only make decisions on the basis of the observations
at port p. Let us suppose, for example, that a test case starts with input ?i1 at
port 1, this should lead to output !o1 at port 1 only, and the tester at port 2
should then send input ?i2 (see Figure 1). The problem is that the tester at port
2 cannot know when to send its input since it did not observe either ?i1 or !o1.
A test sequence that has no controllability problems is said to be controllable.
In contrast, observability problems refer to the fact that two traces (sequences
of inputs and outputs) might be different despite no local tester observing this
difference. Let us suppose, for example, that the specification allows the trace
?i1!o2?i2!o1!o2 in which input ?i1 is at port 1, input ?i2 is at port 2, output !o1
is at port 1, and output !o2 is at port 2. If the SUT instead produces trace
?i1!o1!o2?i2!o2 then the expected trace has not occurred but the local testers
make the expected observations: in both cases the tester at port 1 observes
?i1!o1 and the tester at port 2 observes !o2?i2!o2. This is illustrated in Figure 2.
As a result, there has been much interest in the development of FSM-based test

3

Port 1 SUT Port 2

?i1

!o2

?i2

!o1

!o2

msc MSC2

Port 1 Spec Port 2

?i1

!o1

!o2

?i2

!o2

msc MSC3

Figure 2: Observationally equivalent traces

generation techniques that return test sequences that are free from controllabil-
ity and/or observability problems (see, for example, [21, 22, 23, 24, 25, 26, 27]).
It has also been noted that if the local testers can be connected using an exter-
nal network then message exchange between the local testers can sometimes be
used to overcome controllability and observability problems [28, 29]. However,
the introduction of such a network can increase the cost of testing and it may
not be possible to execute some test sequences if there are timing constraints
[30].

It is not difficult to show that test techniques that only return controllable
test sequences must have limitations. For example, one can construct an FSM
where there are states that cannot be reached using controllable test cases. This
observation led to two additional lines of research. One line of research explored
test generation without restricting attention to controllable test cases, with
it being found that many classic problems, for testing from an FSM, become
undecidable [31]. A second line of research aimed to capture the power of
distributed testing and so defined corresponding implementation relations. The
initial work was in the context of testing from an FSM [32]. This was then
extended to define the dioco implementation relation for distributed testing
from an IOTS [14, 15].

Almost all work on distributed testing has used either FSM or IOTS models.
In such models, transitions are labelled by either individual actions or sequences
of actions and so behaviours are sequences of inputs and outputs1. This corre-
sponds to an interleaving-based approach to concurrency. In contrast, there has
been some work in which a behaviour is a partially ordered multi-set of actions
[33, 34, 35, 36]. While such an approach can lead to more compact models, the
current work does not take into account the distributed nature of testing and

1An output might be a tuple of values, with up to one value at each port

4

qin

?i1

?i1

!o2

?i1

!o2

?i1

δ

!o2

δ

?i1

?i1

!o2,
1
2

?i1

δ

!o′2,
1
2

?i1

δ

Figure 3: Races between inputs and outputs at different ports

additional mechanisms, such as using time to label events, are needed [37].

2.2. Testing of probabilistic systems
The study of (formal) probabilistic testing frameworks can be dated back

to the end of the 1980s. This is already a well established area, with many
contributions extending classical formalisms (Process Algebras, I/O Automata,
Finite State Machines, Input Output Transition Systems, among others) to
include probabilistic information [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52].

One interesting issue is how probabilities governing the behaviour of systems
are extracted during testing. Usually, probabilistic testing frameworks assume
that the two systems being compared are visible (that is, we have their formal
representation). Therefore, it is possible to compare probabilities because we
can see them. In practice, this approach is not feasible in testing because we
have access to the probabilities of one of the systems (the specification) but if the
SUT is a black box we do not have access to its probabilities. In this case, the
tester must try to estimate these probabilities by performing experiments [44].
For example, the tester can apply an input n times and this will induce a
probability distribution on the observed outputs. Then, a contrast hypothesis
can decide whether it is likely that the experimental probabilities are generated
by the probability distribution extracted from the specification (note that we
can compute the latter because we have access to the specification).

The previously mentioned approaches considered the testing of an isolated,
non-distributed system. In our previous work [16] we presented the first, to
the best of our knowledge, formal testing framework where probabilities were
included in the specification and analysis of systems with distributed ports. We
considered, and we use the same formalism in this paper, labelled transition
systems where we distinguish between inputs and outputs, there are multiple
ports, and each action occurs at a particular port. In order to model probabilis-
tic information, we use a combination of the reactive and generative approaches.
Our model is reactive for inputs: given state s and input ?i, the sum of all the

5

probabilities of the transitions leaving s with input ?i is 1. However, it is gen-
erative for outputs: given state s, the sum of the probabilities of the transitions
leaving s and labelled by an output is 1. Note that this combination of the two
models is not original and has been widely used in the literature. The inter-
ested reader is referred to previous work [53, 54] for longer explanations on the
appropriate use of the reactive and generative models and for motivations on
the usefulness of a mixed reactive-generative model.

One problem that we confronted in the original formulation of our frame-
work for testing probabilistic systems in the distributed architecture was that
we can have races between events at different ports. Even though our reactive-
generative approach can be used to model systems with inputs and outputs, in
this case the setting does not provide probabilistic information regarding the
outcome of such races. For example, consider the system depicted in Figure 3,
where we have omitted probabilities equal to 1 and δ denotes quiescence (qui-
escence is not relevant for this example). In addition, indexes indicate the port
(1 or 2) at which the action is being observed. In this case, it is not possible
to compute the probability that we should associate with global traces that are
indistinguishable from ?i1!o2!o2 (we have two of them: ?i1!o2!o2 and !o2?i1!o2)
because whether we observe ?i1!o2!o2 depends on the outcome of a race between
?i1 and !o2 in the initial state and we have no probabilistic information regard-
ing this race. Actually, if we are not careful then we might end up assigning
probability 1.5 to this set of traces. In order to partially overcome this prob-
lem we might probabilistically quantify the choice between performing actions
at different ports. However, if we did this then we would have to probabilisti-
cally quantify the choice between different inputs at a certain port, the relative
probability of performing inputs at different ports, and quantify the probabil-
ity between inputs and outputs. Unfortunately, this would lead to complicated
models and it is unclear how realistic it is to assume that one can know whether
two inputs are simultaneously offered at two (distant) ports. As a result, we
initially outlawed these types of races and provided a condition under which
such races cannot occur [16]. A second step was to consider a basic notion
of schedulers, also called adversaries in the literature, in our framework [17].
Schedulers can be used to resolve races and so their use allows an additional
degree of nondeterminism in the description of systems and we do not have to
forbid races between events at different ports. In this paper we consider sched-
ulers that can include probabilistic choices between different alternatives. We
study the impact of these new probabilistic schedulers (our previous schedulers
are a particular case of the new ones) in the definition of new versions of our
semantic notions.

Our implementation relations are defined in terms of the traces, actually, the
sets of indistinguishable traces, that can be observed at different ports. There-
fore, our methodology has some similarities with work on testing of probabilistic
automata [55, 56, 57, 40]. In particular, adversaries are used to extract sequences
from probabilistic systems [57]. However, the assumption of distributed ports,
the distinction between inputs and outputs and the use of schedulers in the way
that we do it is not considered in that line of work. Some of the ideas underlying

6

our notion of schedulers are similar to those found in previous work [58] but we
use a different formalism (a unique system with distributed ports versus the
parallel composition of different systems) and the main goal of our research is
different (we concentrate on implementation relations).

3. Preliminaries

In this section we start by describing the formalisation we use for systems
(probabilistic labelled transition system and probabilistic input output transi-
tion systems). First we define some notation.

We are concerned with the behaviour of state-based systems and such a be-
haviour will be denoted by a sequence of actions. Throughout this paper we
will let ε denote the empty sequence. We will also use multi-sets of probabil-
ities, with {| p1, p2, . . . , pk |} denoting such a multi-set. Finally, since we will
consider systems with different ports, we denote by O the (finite) set of ports.
Throughout the paper we assume that this set is fixed.

The two tables appearing in Figures 4 and 5 summarise the main concepts
and implementation relations that we will use in this paper. The first table
describes definitions of systems and notions while the second table gives an
intuitive description, although not as precise as the actual definition, of the
different implementation relations that we use in the paper.

3.1. Probabilistic labelled transition systems
The basic type of model used is a probabilistic labelled transition system.

We include a special action, δ, and require that δ is a possible action whenever
no other actions can occur. We include δ in the definition since, once we consider
models with input and output, we will use δ to denote quiescence: the model
being in a state where it cannot produce output or change state without first
receiving input. Therefore, the interaction between systems and schedulers can
produce this type of transitions.

Definition 1 A probabilistic labelled transition system (PLTS) s is defined
by a tuple (Q,Act, T, qin) in which Q is a countable set of states, qin ∈ Q
is the initial state, Act is a countable set of actions, with δ ∈ Act, and T ⊆
Q×Act×Q×(0, 1] is the transition relation. A transition (q, a, q′, p) means that
when in state q, with probability p the next event moves s to state q′ with action
a ∈ Act. We cannot have two transitions (q, a, q′, p) ∈ T and (q, a, q′, p′) ∈ T in
which p �= p′. We say that transition (q, a, q′, p) has start state q, end state q′ and
label a. We require that for every state q ∈ Q either

∑ {| p | ∃a, q′ : (q, a, q′, p) ∈
T |} is equal to 1 or q is a deadlock state and so this sum is equal to zero. We
extend the set of transitions T to a new set Tδ by adding the transition (q, δ, q, 1)
for each deadlock state q.

Let O = {1 . . .m} be the set of ports. For port o ∈ O we let Acto denote
the set of actions that can be observed at o. Thus, for all o ∈ O we have that
δ ∈ Acto and also that Act1 \ {δ}, . . . ,Actm \ {δ} partition Act \ {δ}. We let
PLTS(Act) denote the set of PLTSs with action set Act.

7

Types of systems
Notation Def. Explanation
PLTS Def. 1 Labelled transition systems with a unique probabil-

ity distribution for all the actions departing a given
state.

PIOTS Def. 6 Labelled transition systems with a distinction be-
tween reactive inputs (a probability distribution for
each of the inputs departing a given state) and gen-
erative outputs (a unique probability distribution
for all the outputs departing a given state).

Main notions and concepts
∼ and [σ] Def. 3 ∼ is an equivalence relation between traces: two

traces are related if all their local projections are
equal. [σ] is the equivalence class of σ.

prob Def. 2,
4, 15
and 16

This function is overloaded. It computes probabili-
ties of traces, set of traces, equivalence classes, etc.

deterministic
scheduler

Def. 8 System that resolves non-determinism in PIOTSs:
when applied to a PIOTS it returns a PLTS.

probabilistic
scheduler

Def. 13 Same purpose as deterministic schedulers but allow-
ing probabilistic choices between alternatives. They
are applied only to PIOTSs.

path and
pre(ρ)

Def. 15 Sequence of consecutive transitions of a
PLTS/scheduler. pre(ρ) is the set of prefixes
of the path ρ.

Figure 4: Main concepts

A state q ∈ Q defines a PLTS derived from s by setting the initial state to q.
As a result, in an abuse of notation we consider q to be the PLTS (Q,Act, T, q)
with unreachable states (and corresponding transitions) removed.

We make a number of restrictions to the PLTSs that we consider. A PLTS
s is connected if for each state q of s there is a sequence

(qin, a1, q2, p1)(q2, a2, q3, p2) . . . (qk, ak, q, pk) ∈ T ∗

We restrict attention to connected PLTSs; this is not problematic since, if a
PLTS is not connected, it is possible to remove the unreachable states without
affecting the behaviour. We assume that all transitions have non-zero probabil-
ity; if this condition does not hold then we can simply delete the transitions that
have zero probability. We also do not allow two different transitions to have the
same starting state, ending state and label (and so to be of the form (q, a, q′, p)
and (q, a, q′, p′)); such a pair of transitions is equivalent to having the transition
(q, a, q′, p+ p′). In the graphical representation of a system we omit the names

8

Implementation relations
Notation Def. Explanation
r � s Def. 5 A PLTS r is correct with respect to another PLTS s

if for all trace σδ of s both processes return the same
probability for [σδ] (δ denotes quiescence).

r ≡ s Def. 5 When restricted to a finitary class of processes the pre-
vious relation is an equivalence.

r ≡s
d s Def. 11 A PIOTS r is correct with respect to another PIOTS

s if for all deterministic scheduler, its application to
each of the processes return PLTSs that are equivalent
under ≡. If we apply a scheduler to the SUT then
the same scheduler must provide an equivalent process
when applied to the specification.

r �w
d s Def. 12 A PIOTS r is correct with respect to another PIOTS

s if for all deterministic scheduler Gr there exists a
deterministic scheduler Gs such that the application of
Gr to r and the application of Gs to s return PLTSs
that are equivalent under ≡. If we apply a scheduler
to the SUT then it is sufficient that there is a (possibly
different) scheduler that leads to an equivalent process.

r ≡s
p s Def. 17 Similar to ≡s

d but for probabilistic schedulers.
r �w

p s Def. 18 Similar to �w
d but for probabilistic schedulers.

r ≡w
p s Def. 19 Largest equivalence contained in �w

p .

Figure 5: Implementation relations

of irrelevant states and probabilities that are equal to 1. Moreover, a transi-
tion labelled by a set of actions is shorthand for a set of different transitions:
one for each action. We will be interested in PLTSs that are formed from the
composition of a probabilistic input-output transition system and a scheduler
and it will transpire that, in such PLTSs, all δ transitions have probability 1.
In Figure 6 we present three PLTSs with two ports and the following sets of
actions: Act1 = {α, β} and Act2 = {λ, μ}.

We use a generative interpretation of probabilities under which for each state
s of the system, the probabilities of the transitions leaving s sum to 1 if δ self-
loops are added to deadlocked states. The following shows how one can assign
probabilities to sequences of actions (traces).

Definition 2 Given a PLTS s = (Q,Act, T, qin), state q ∈ Q, and σ ∈ Act∗,
we let prob(q, σ) denote the probability of performing the sequence σ from state q.
Formally,

prob(q, σ) =

⎧⎨
⎩

1 if σ = ε

∑ {| p · prob(q′, σ′) | (q, a, q′, p) ∈ T |} if σ = aσ′

9

qin

α, 1
3

α, 1
4

δ

β, 1
2

δ

μ, 1
4

δ

λ, 2
3

δ

qin

α

β

λ

δ

qin

α, 1
4

β, 1
3

δ

μ, 23

λ

δ

α, 3
4

δ

Figure 6: Examples of PLTSs.

A sequence σ ∈ Act∗ is said to be a trace of s if prob(qin, σ) > 0. We let
L(s) denote the set of traces of PLTS s.

In distributed testing we have a set of physically distributed ports at which
the system interacts with its environment. An event a ∈ Act\{δ} is observed at
a particular port: the port o such that a ∈ Acto \{δ}. There is a separate tester
at each port and the tester at port o only observes the events that occur at o
(those in Acto). As a result of this we have a notion of observational equivalence
where two traces are equivalent if they have the same set of projections at the
ports.

Definition 3 Let σ ∈ Act∗ and o ∈ O. The projection of the trace σ on the
port o, denoted by πo(σ), is the sequence of events observed at port o if the trace
σ occurs.

πo(σ) =

⎧⎪⎨
⎪⎩

ε if σ = ε

πo(σ
′) if σ = aσ′ and a �∈ Acto

aπo(σ
′) if σ = aσ′ and a ∈ Acto

Overloading the previous notation, we let πo(C) = {πo(σ)|σ ∈ C} for each
C ⊆ Act∗.

Given two traces σ, σ′ ∈ Act∗ we say that σ ∼ σ′ if and only if πo(σ) = πo(σ
′)

for all o ∈ O. Clearly ∼ is an equivalence relation and it captures the situation in
which no port can distinguish between σ and σ′. We denote by [σ] the equivalence
class of σ.

Note that all testers observe δ because, as we have previously stated, δ ∈
Acto for all o ∈ O. In practice, quiescence (δ) is detected through a timeout.
If we use a sufficiently large time before a next input is supplied then all of
the local testers will observe quiescence. Later on we will introduce an invisible
action τ , which will not be observed at any port. It will transpire that the notion
of equivalence can be directly applied when we consider sequences containing
invisible actions; we simply compare the traces formed by deleting invisible
actions.

10

Example 1 Consider the trace σ = a1b2c1δd1δ, where the index denotes the
port where the action is observed. The following traces belong to [σ]

b2a1c1δd1δ a1c1b2δd1δ b2τa1c1δd1δ a1τc1b2δτd1δ

On the contrary, the following traces do not belong to [σ]

b2c1a1δd1δ a1c1δb2d1δ a1c1b2d1δδ

The problem with these traces is that the order between actions is not preserved
at a certain port. In the first case, the problem happens at port 1 (a1 and c1
are swapped); in the second case, the problem happens at port 2 (b2 and δ are
swapped) while the last case presents problems at both ports.

This paper concerns implementation relations, which are defined in terms of
observations that can be made of the implementation and specification. Since
we cannot distinguish between two traces that are equivalent under ∼, an obser-
vation will be an equivalence class of ∼. As a result, we consider the probability
of equivalence classes of traces rather than single traces.

Definition 4 Let s = (Q,Act, T, qin) be a PLTS and σ ∈ Act∗. We define
the probability with which s performs the equivalence class [σ], denoted by
prob(s, [σ]), as ∑

{| prob(qin, σ′) |σ′ ∈ [σ] |}
In testing, we will not directly compare traces of processes but instead we will

compare projections of traces. We therefore wish to know that the projections
observed are all projections of the same trace of a process. The approach used
is to restrict observations to traces that end in δ; states that are said to be
quiescent. The idea is that if we reach a state where δ can be produced then we
know that the system cannot immediately produce an output and, therefore, we
can study the observed projections at each port. This allows us to know that
we are combining projections of the same global trace. For example, if we do
not apply this restriction then we have that a system r that can just perform
the trace ?i1!o

′
2!o1 would not be a good implementation of a specification s that

can only perform the trace ?i1!o1!o
′
2: the probabilities associated with [?i1!o1]

are, respectively, equal to 0 and 1. The above observations lead to the following
implementation relation [16].

Definition 5 Let s, r be PLTSs with the same set Act of actions. We write r �
s if for every σ ∈ Act∗ such that σδ is a trace of s, we have that prob(s, [σδ]) =
prob(r, [σδ]).

It is straightforward to show that if the number of traces of r and s conclud-
ing with a single occurrence of δ are both finite then r � s holds if and only if
s � r [17]. To see this, let us suppose that r � s and [σ1δ], . . . , [σkδ] are the
equivalence classes of traces of s that end in a single δ. Then the sum of the prob-
abilities of these equivalence classes, in s, is 1. Since r � s, these equivalence

11

classes have the same probabilities in r and s and so r cannot have any traces,
that end in a single δ, that are not in the equivalence classes [σ1δ], . . . , [σkδ].
The fact that s � r follows from this and the equivalence classes having the
same probabilities in r and s. Thus, for processes with finite sets of traces we
have that � is an equivalence relation and so at times we will use the symbol ≡.
Note that this is not true in general; if a process s does not have finite sets of
traces then the above argument need not hold since, for instance, s might have
a trace that cannot be extended to a trace of s that ends in δ. For example, let s
be a PLTS with a unique state and a self-loop transition labelled by an action a
with probability 1. It is obvious that for all PLTS r we have r � s, since s
does not have traces ending with quiescence, but the reverse relation, that is,
s � r, does not necessarily hold. Although the previous relation has obvious
shortcomings, for instance, it will identify systems with different non-quiescent
infinite traces, it will be used to define other relations.

3.2. Probabilistic input output transition systems
While PLTSs allow us to describe probabilistic systems, they do not distin-

guish between inputs and outputs. However, in the context of testing it is often
important to make this distinction since inputs and outputs play different roles;
the testers control the application of inputs and the system controls the gener-
ation of outputs. This has led to models that distinguish between inputs and
outputs. We now define a probabilistic IOTS that has multiple ports [16, 17].

In defining a model that has inputs and outputs and also probabilities, one
has to decide how to assign probabilities. Since the environment, or tester,
controls inputs it makes little sense to define the probability of an input when
producing a model of the system. Thus, we have a reactive scenario for inputs.
In contrast, since the system controls outputs we have a generative scenario for
outputs. We do attach probabilities to transitions with inputs since for a state q
and input ?i there may be more than one transition leaving q with input ?i: the
environment chooses the input but the system determines which transition to
take. During the rest of the paper, if we are dealing with systems where there
is a distinction between inputs and outputs we let Act = In∪ Out∪ {δ} denote
the complete set of actions that can be performed by systems.

Definition 6 A probabilistic input-output transition system (PIOTS) s is de-
fined by a tuple (Q, In, Out, T, qin) in which Q is a countable set of states,
qin ∈ Q is the initial state, In is a countable set of inputs, Out is a countable set
of outputs, and T ⊆ Q×(In∪Out)×Q×(0, 1] is the transition relation. A tran-
sition (q, a, q′, p) means that from state q it is possible to move to state q′ with
action a ∈ In ∪ Out with probability p. Again, we cannot have two transitions
(q, a, q′, p), (q, a, q′, p′) ∈ T in which p �= p′. If a ∈ Out then we should interpret
the probability p of (q, a, q′, p) as meaning that if an output occurs in state q be-
fore input is provided2 then with probability p this transition occurs. Therefore,

2We do not quantify time in our models. However, if the system under test is in a state

12

for every state q we must have that
∑ {| p | ∃q′, a : (q, a, q′, p) ∈ T ∧ a ∈ Out |} is

either 1 or 0 (if the state cannot produce any output). Further, if a ∈ In then we
must have that the sum of the probabilities of transitions leaving q with input a,
that is

∑ {| p | ∃q′ : (q, a, q′, p) ∈ T |}, is 1. This means that once an input a is
chosen by the environment, we can forget the other available inputs and concen-
trate on the probability distribution function governing the transitions labelled
by a.

A state q ∈ Q is quiescent if there are no outgoing transitions from q labelled
by output. We extend the set of transitions T to a new set Tδ by adding the
transition (q, δ, q, 1) for each quiescent state q.

We partition the set In of inputs into In1, . . . , Inm in which for port o ∈ O we
have that Ino is the set of inputs that can be received at port o. Similarly, we par-
tition the set Out of outputs into sets Out1, . . . , Outm. We let PIOTS(In, Out)
denote the set of PIOTSs with input set In and output set Out. Given port o we
let Acto = Ino ∪ Outo ∪ {δ} denote the set of events that can be observed at o.

We say that s is input-enabled if for all q ∈ Q and a ∈ In there is some
q′ ∈ Q and probability p such that (q, a, q′, p) ∈ T . We say that s is output-
divergent if it can reach a state from which there is an infinite sequence of
transitions whose label contains outputs only.

In the context of testing it is normal to assume that the implementation is
input-enabled; it cannot block input from the environment. In this paper we
also assume that specifications are input-enabled since this simplifies the expo-
sition. Therefore, since all our systems (specifications and implementations) are
input-enabled, we restrict ourselves to consider PIOTSs that are input-enabled.
This is why we require that for a state q and input ?i the sum of probabilities
of transitions from q with input ?i is 1. We also require that processes, speci-
fications and implementations, are not output-divergent. Intuitively, a PIOTS
can either process a received input or produce a certain output (in particular,
if the system is in a state where no outputs can be produced, it can produce δ).

Similar to PLTSs, we assume that all PIOTSs considered are connected. If
one or more outputs are possible from a state q then the sum of the probabilities
of the transitions from q with outputs is 1; if no outputs are possible from q then
there is a self-loop transition from q with label δ and probability 1. As a result,
the sum of the probabilities associated with events from Out ∪ {δ} in a state q
is always equal to 1; for all q ∈ Q we have

∑ {| p | ∃q′, a : (q, a, q′, p) ∈ Tδ ∧ a �∈
In |} = 1. As usual, we precede the name of an input by ? and we precede the
name of an output by !. The name of an input or output at port o will often
have o as a subscript. For example, ?i1 will normally denote an input at port
1 and !o2 will normally denote an output at port 2. In Figure 7 we present a
PIOTS with two ports and the following sets of actions: Act1 = {?i1, !o1} and
Act2 = {?i′2, !o′2, !o′′2}.

where it can produce output and the environment/tester is in a state where it can provide
input then there is a race that, in practice, will be resolved based on whether the system
under tester or environment acts first.

13

qin

?i1,
1
4

In

!o1,
1
3

In ∪ {δ}
!o′2,

2
3

δ

?i1

In ∪ {δ}

?i′2

In ∪ {δ}

?i1,
3
4

δ

?i1

In ∪ {δ}

?i′2

In ∪ {δ}

?i′2

In ∪ {δ}

!o1

?i1

In ∪ {δ}

?i′2

In ∪ {δ}

!o1,
1
2

In ∪ {δ}

!o′′2 ,
1
2

In ∪ {δ}

Figure 7: Example of PIOTS

Global traces are sequences of actions from Act and so can contain quies-
cence.

Definition 7 Given a PIOTS s = (Q, In, Out, T, qin) ∈ PIOTS(In, Out), we
use the following notation.

1. If (q, a, q′, p) ∈ Tδ, for some probability 0 < p ≤ 1 and action a ∈ Act,
then we write q a−−→ q′ meaning that s can perform a from state q and
reach, afterwards, the state q′. We also write q a−−→ meaning that s can
perform a from state q.

2. We write q
σ

==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm ∈ Q,
with q = q0 and q′ = qm, such that for all 0 ≤ i < m we have that
qi

ai+1−−−−→ qi+1.
3. If there exists q′ such that qin

σ
==⇒ q′ then we say that σ is a trace of s

and we write s
σ

==⇒ . We let L(s) denote the set of traces of s. A trace σ

of s is said to be a quiescent trace if qin
σ

==⇒ q′ for a quiescent state q′.

Although traces do not include probabilistic information, we will include such
information when defining implementation relations. As explained in Section 2,
we require schedulers in order to reason about distributed testing of PIOTSs.

4. Deterministic schedulers

In this section we outline the previously defined notion of deterministic
schedulers, which have been called global schedulers [17], and how such a sched-
uler interacts with a system. We use the term deterministic to emphasise the
difference between these and the probabilistic schedulers introduced in Section 5.
We then explain how implementation relations can be defined in terms of deter-
ministic schedulers. The essential idea is that a deterministic scheduler defines
a possible environment; their use allows us to reason about how a PIOTS might
behave with different environments. In the next section we will define a more
general type of scheduler that quantifies the probabilities of actions performed
by the environment.

14

qin

!o1

?i1

?i′2

Out ∪ {δ}

!o′′2

!o1

Out ∪ {δ}

!o′2

Out ∪ {δ}

!o′′2

?i1

Out ∪ {δ}

δ

Out ∪ {δ}

δ

Out ∪ {δ}

!o′2

?i1

Out ∪ {δ}

qin

?i1

!o′
2

?i′2

Out ∪ {δ}

!o1

Out ∪ {δ}

!o′′2
δ

Out ∪ {δ} Out ∪ {δ}

Figure 8: Deterministic schedulers

Definition 8 Let In and Out be sets of inputs and outputs, respectively. A
deterministic scheduler for In and Out is a tuple G = (Q′, In, Out, T ′, q′in) such
that Q′ is a finite set of states, with q′in ∈ Q′ its initial state, and T ′ ⊆ Q′ ×
Act×Q′ its transition relation that satisfies the following:

• The graph having vertex set Q′ and edges set T ′ is a tree with the exception
of its leaves, which will have self-loop transitions labelled by each of the
outputs belonging to Out and by δ.

• For all q ∈ Q′, one of the following possibilities holds:

– There exists one a ∈ In and q′ �= q such that (q, a, q′) ∈ T ′. This is
the only transition leaving q.

– For all b ∈ Out∪{δ}, there exists a unique qb ∈ Q′, qb �= q, such that
(q, b, qb) ∈ T ′ and all the states qb are pairwise different. These are
the only transitions leaving q.

– The only outgoing transitions are self-loops labelled by each action
belonging to Out∪{δ}. In this case we say that the state is terminal.

The language of G contains all the (finite) traces that can be performed by
the scheduler. Overloading the notation used to define the traces of a PIOTS
we have L(G) = {σ ∈ Act∗|∃q′ ∈ Q′ : q′in

σ
==⇒ q′}.

If a trace σ has been observed then a scheduler can be in a state where it
supplies an input or it may be in a state where it waits and observes either
output or quiescence (in practical terms, quiescence is usually observed through
a timeout). If the scheduler has finished supplying inputs then it may have
moved to a leaf state from which it can only observe outputs and quiescence.

At times we will want to be able to define a scheduler that determines the
probability, in a system, associated with a particular trace σ. This is achieved
using the following type of scheduler, which will prove to be extremely useful in
a number of proofs.

15

Definition 9 Let In and Out be sets of inputs and outputs, respectively, and
σ ∈ Act∗. The deterministic scheduler generated by σ, denoted by SG(σ),
is a deterministic scheduler (Q, In, Out, T, qin) such that (Q, T) are inductively
constructed from the initial call SG ′(σ, qin, {qin}, ∅), as follows:

SG ′(σaux, q, Qaux, Taux)=

⎧⎪⎨
⎪⎩
(Qaux, T0) if σaux = ε

SG ′(σ′
aux, q

′, Q1, T1) if σaux = xσ′
aux ∧ x ∈ In

SG ′(σ′
aux, q

′, Q2, T2) if σaux = xσ′
aux ∧ x ∈ Out ∪ {δ}

where the state q′ is fresh and T0, Q1, T1, Q2, and T2 are defined as follows:

T0 = Taux ∪ {(q, a, q)|a ∈ Out ∪ {δ}}
Q1 = Qaux ∪ {q′}
T1 = Taux ∪ {(q, x, q′)}
Q2 = Q1 ∪ {qa|a ∈ (Out ∪ {δ})\{x}} (states qa are fresh)
T2 = T1 ∪ {(q, a, qa), (qa, y, qa)|a ∈ (Out ∪ {δ})\{x}, y ∈ Out ∪ {δ}}

In Figure 8 (right) we present SG(?i1!o
′
2?i

′
2) assuming that In = {?i1, ?i′2}

and Out = {!o1, !o′2, !o′′2}. Let us note that the main difference between general
deterministic schedulers and schedulers generated by a trace is that the former
can have more than one output branch having a non-trivial continuation (e.g.
in the previous graph, some of the leaves in the intermediate level might be
further extended). Next we define the application of a deterministic scheduler
G to a system s; this defines a PLTS s ‖ G that quantifies the probability of
observing a trace σ if PIOTS s interacts with scheduler G.

Definition 10 Let s = (Q, In, Out, T, qin) be a PIOTS with a set of ports O and
G = (Q′, In, Out, T ′, q′in) be a deterministic scheduler for In and Out. We define
the application of G to s, denoted s ‖ G, as the PLTS s′ = (Q′′,Act, T ′′, (qin, q′in))
such that Q′′ ⊆ Q×Q′ is the set of states reachable from the initial state under
the set of transitions T ′′. We have that ((q1, q′1), a, (q2, q′2), p) ∈ T ′′ if and only
if a ∈ Act, (q1, a, q2, p) ∈ T and (q′1, a, q

′
2) ∈ T ′.

It is trivial to prove that this composition produces a PLTS.

Example 2 The application of the deterministic schedulers presented in Fig-
ure 8 to the PIOTS presented in Figure 7 produce the PLTSs given in Figure 9.

Since we consider PIOTSs that are not output-divergent, the composition
of a deterministic scheduler and a process defines a PLTS with only finitely
many traces that do not end in δ. To see that this is the case, first note that
a deterministic scheduler is a finite tree whose leaves are labelled with output
loops. Thus, the only way in which the composition of a deterministic scheduler
and a process could have infinitely many traces that end in a single δ is if this
composition can reach a state where the deterministic scheduler is in a leaf state;
the composition can then follow an infinite path in which all of the transitions

16

qin

!o1

?i1

?i′2

δ

qin

?i1,
1
4

!o1,
1
3

δ

!o′2,
2
3

?i′2

δ

?i1,
3
4

δ

Figure 9: Application of schedulers to PIOTSs producing PLTSs.

are labelled with outputs. However, this is not possible since processes are not
output divergent.

Since the composition of a deterministic scheduler and a process defines a
PLTS with only finitely many traces that do not end in δ, the implementation
relation ≡ is suitable. The next result [17] makes use of this property to show
that the application of deterministic schedulers to processes keeps the symmetry
of the � relation.

Proposition 1 Let r, s ∈ PIOTS(In, Out) and Gr,Gs be deterministic sched-
ulers for In and Out. Then we have that r ‖ Gr � s ‖ Gs if and only if
s ‖ Gs � r ‖ Gr.

Two implementation relations have been defined using deterministic sched-
ulers and ≡ [17].3 First we define the stronger of the two implementation re-
lations, which requires that for any deterministic scheduler G we have that the
PLTSs that result from combining the implementation and specification PIOTSs
with G are equivalent under ≡.

Definition 11 Given s, r ∈ PIOTS(In, Out), we write r ≡s
d s if for all G,

deterministic scheduler for In and Out, we have r ‖ G ≡ s ‖ G.

This implementation relation requires the same scheduler to be used when
comparing two processes. In effect, it therefore requires that we know how
the environment behaved when interacting with the system under test (the
environment is modelled as a scheduler). However, it may not be reasonable to
assume that we can know how the environment behaves and so, when comparing
PIOTSs r and s we need to allow the possibility that we have used different
schedulers. This leads to the following weaker implementation relation [17].

3The original names of the relations were ≡s
g and �w

g , where the g stands for global, as our
deterministic schedulers were formerly called.

17

s

In

!o1,
1
2

In

!o′2
δ

?i1

In

!o1

In ∪ {δ}

!o′2,
1
2

In

!o1

In ∪ {δ}

r

In

!o′2,
1
2

In

!o1
δ

?i1

In

!o1

In ∪ {δ}

!o1,
1
2

In

!o′2

In ∪ {δ}

Figure 10: PIOTSs s and r where r �w
d s but we do not have that r ≡s

d s

Definition 12 Given s, r ∈ PIOTS(In, Out), we write r �w
d s if for all Gr,

deterministic scheduler for In and Out, there exists Gs, deterministic scheduler
for In and Out, such that r ‖ Gr ≡ s ‖ Gs.

It is obvious that r ≡s
d s implies r �w

d s. We show in Figure 10 that, in
general, r �w

d s does not imply r ≡s
d s [17].

The rest of the paper explores how these two implementation relations
change if we use probabilistic schedulers.

5. Extending schedulers with probabilistic choice

The schedulers we defined in the previous section were deterministic in the
following sense: after observing a trace either they wait to observe output (or
quiescence) or they attempt to apply a unique input. An alternative is to allow
probabilistic schedulers. In this section we introduce the notion of a probabilistic
schedulers and define the composition of a probabilistic scheduler and a PIOTS.
We then show how one can determine the probability of such a composition pro-
ducing trace σ; in the next section we will use this to define new implementation
relations that use probabilistic schedulers.

There are a number of ways of defining probabilistic schedulers. One option
would be to have a scheduler that, after a trace, can be in a state where it can
apply any one of a number of inputs (or choose not to apply an input), with
probabilities being placed on these options. We have decided to use an alter-
native, but essentially equivalent, way of introducing probabilities: we chose to
include a new (unobservable) action τ to label transitions associated with prob-
abilistic choice. This choice will ease the task of reasoning about the application
of schedulers to systems because the relevant probabilistic information will be
always attached to τ transitions. In addition, since observations are (linear)
traces, it is easy to simulate the previously mentioned alternative notion, with
probabilistic choices between different inputs, with our probabilistic schedulers.
Essentially, our probabilistic schedulers will have a number of states in which

18

they can make probabilistic choices and all transitions leaving such a state s will
be labelled τ and have an associated probability. The other states will be similar
to the states of deterministic schedulers. Thus, a probabilistic scheduler will use
probabilistic choice over τ transitions to determine how it should behave. We
will let Actτ denote the extended alphabet Act ∪ {τ}.

Definition 13 Let In and Out be sets of inputs and outputs, respectively. A
probabilistic scheduler for In and Out is a tuple G = (Q′, In, Out, T ′, q′in) such
that Q′ is a finite set of states, with q′in ∈ Q′ its initial state, and T ′ ⊆ Q′ ×
Actτ ×Q′ × [0, 1] is its transition relation. The transition relation T ′ satisfies
the following conditions:

• The graph induced by T ′ is a tree with the exception of its leaves, which will
have self-loop transitions labelled by outputs and δ, all with probability 1.

• For all q ∈ Q′, one of the following possibilities hold:

– There exist probabilities p1, . . . , pk ∈ (0, 1] and distinct states q1, . . . , qk ∈
Q\{q} such that for all 1 ≤ j ≤ k : (q, τ, qj , pj) ∈ T ′ and

∑
j pj = 1.

These are the only transitions leaving q.

– There exists one a ∈ In and q′ �= q such that (q, a, q′, 1) ∈ T ′. This
is the only transition leaving q.

– For all b ∈ Out∪{δ}, there exists a unique qb ∈ Q′, qb �= q, such that
(q, b, qb, 1) ∈ T ′ and all the qb are pairwise different. These are the
only transitions leaving q.

– The only outgoing transitions are self-loops labelled by each action
belonging to Out ∪ {δ}, all having probability 1. In this case we say
that the state is terminal.

The language of G contains all the (finite) traces of visible actions that can
be performed by the probabilistic scheduler. Formally, a1 . . . an ∈ Act∗ belongs
to L(G) if there exist q1, q

′
1, . . . , qn, q

′
n such that q′in

τ∗,p1−−−−→ q1, q1
a1,1−−−−→ q′1,

q′1
τ∗,p2−−−−→ q2, q2

a2,1−−−−→ q′2, . . ., q′n−1
τ∗,pn−−−−−→ qn and qn

an,1−−−−→ q′n, where we

have that q
τ∗,p−−−−→ q′ holds if there is a sequence of zero or more consecutive τ

transitions from q to q′ such that the product of their associated probabilities is
equal to p (we assume that q τ∗,1−−−−→ q holds).

Deterministic schedulers are clearly special cases of probabilistic schedulers
in which there are no τ transitions and so all transitions are labelled with prob-
ability 1. The addition of artificial probability 1, to transitions labelled with
actions in Act, is a technicality to simplify the computation of probabilities
associated with sequences of actions. Specifically, if we apply a probabilistic
scheduler to a system, to obtain a PLTS, we will multiply the probabilities of
the actions in the system by the probability of the same action in the scheduler.
Since the latter will always be equal to 1 we simply obtain the former values.

19

qin

q0

q1 q2 q3

q4 q5 q6 q7 q8 q9

qA qB qC qD qE

?i1

τ, 1
2 τ, 1

4

τ, 1
4

?i′2

Out ∪ {δ}

!o1 !o′2 !o′′2

Out ∪ {δ}

δ Out ∪ {δ} ?i1

Out ∪ {δ}?i′2

Out ∪ {δ}

!o1

Out ∪ {δ}

!o′2

Out ∪ {δ}

!o′′2

Out ∪ {δ}

δ

Out ∪ {δ}

Figure 11: Example of a probabilistic scheduler

Therefore, these probabilities will not influence the probabilistic choices taken
in the PIOTSs where probabilistic schedulers will be applied. In Figure 11 we
give an example of a probabilistic scheduler, where as usual In = {?i1, ?i′2} and
Out = {!o1, !o′2, !o′′2}. We now formally define how a probabilistic scheduler is
composed with a PIOTS.

Definition 14 Let s = (Q, In, Out, T, qin) be a PIOTS and G = (Q′, In, Out, T ′, q′in)
be a probabilistic scheduler. We define the application of the probabilistic sched-
uler G to s, denoted by s ‖ G, as the labelled transition system (Q′′,Actτ , T ′′, (qin, q′in))
such that Q′′ ⊆ Q×Q′ is the set of states reachable from the initial state (qin, q

′
in)

under the set of transitions T ′′. We have that ((q1, q′1), a, (q2, q′2), p) ∈ T ′′ if and
only if one of the following holds.

1. a = τ , q1 = q2, and (q′1, τ, q′2, p) ∈ T ′.
2. a ∈ Act, (q1, a, q2, p1) ∈ T , (q′1, a, q′2, 1) ∈ T ′, and p = p1.

In the appendix of the paper (see Proposition 3) we prove that the compo-
sition of a PIOTS and a probabilistic scheduler produces a PLTS.

We now need to generalise our previous definition of the probability of a trace
σ being observed since this was for processes that do not have τ transitions.
First, we define the notion of path: a sequence of consecutive transitions, whose
labels are from Actτ , that can be performed. In order to avoid the repetition of
the definition, we will introduce the concept of label for probabilistic schedulers
and PLTSs.

Definition 15 Let t be either a PLTS or a probabilistic scheduler. A path
of t is a sequence (qin, a1, q2, p1)(q2, a2, q3, p2) . . . (qk, ak, qk+1, pk) of consecutive
transitions. We denote by Paths(t) the set of paths of t. If ρ is a path then pre(ρ)
denotes the set of prefixes of ρ and so pre((qin, a1, q2, p1) . . . (qk, ak, qk+1, pk)) =
{(qin, a1, q2, p1) . . . (qi, ai, qi+1, pi)|1 ≤ i ≤ k}. Given path ρ we let label (ρ) be

20

inductively defined as follows.

label(ρ) =

⎧⎨
⎩

ε if ρ = ε
a label(ρ′) if ρ = (q, a, q′, p)ρ′ ∧ a �= τ
label (ρ′) if ρ = (q, τ, q′, p)ρ′

Finally, given ρ ∈ Paths(t) we let prob(t, ρ) be inductively defined as follows.

prob(t, ρ) =

{
1 if ρ = ε
p · prob(ρ′) if ρ = (q, a, q′, p)ρ′

For completeness, we let prob(t, ρ) = 0 if ρ does not belong to Paths(t).

Let us suppose that σ is the label of a path of a process t that contains
transitions with label τ . In order to assign the probability of observing σ from t,
we cannot simply sum the probabilities of the paths with label σ since, for
example, if path ρ has label σ and can be followed by a transition (q, τ, q′, p)
then path ρ(q, τ, q′, p) also has label σ; if we include the probabilities of both
then we essentially ‘double count’. We will therefore sum the probabilities of
the minimal paths of t that have label σ.

Definition 16 Let t be either a probabilistic scheduler or a PLTS and σ ∈ L(t)
be a trace of t. We let prob(t, σ) be defined as follows.

prob(t, σ) =
∑

ρ∈Paths(t)

{| prob(t, ρ)|label (ρ) = σ ∧ (ρ′ ∈ pre(ρ) \ {ρ} ⇒ label (ρ′) �= σ) |}

For completeness, if σ is not a trace of t then we let prob(t, σ) = 0.
Given a set of sequences of visible actions c ⊆ Act∗, we let prob(t, c) =∑

σ∈c prob(t, σ).

Intuitively, prob(t, σ) aggregates the probabilities associated with different
paths of t labelled by a sequence of visible actions σ such that the path does not
end with a non-empty sequence of τs (this is imposed by the second condition
of the sum because if ρ has a proper prefix with the same label as ρ then we
know that ρ finishes with one or more occurrences of τ).

We now explore how probabilistic schedulers can be used to define imple-
mentation relations.

6. Implementation relations

In this section we first define a new implementation relation that extends ≡s
d

with the use of probabilistic schedulers rather than just deterministic schedulers.
We then consider weaker implementation relations.

Definition 17 Let s, r ∈ PIOTS(In, Out). We write r ≡s
p s if for all G, prob-

abilistic scheduler for In and Out, we have r ‖ G ≡ s ‖ G.

21

This is a very natural notion of correctness: schedulers are models of the en-
vironment and so this says that, irrespective of how the environment behaves,
the observations one might make with respect to r and s should be the same
and should also have the same associated probabilities. One might use such an
implementation relation in development since it allows one to replace a specifi-
cation s by r and know that this will not change the observations that might
be made.

The following is an immediate consequence of Proposition 6 (see the ap-
pendix of the paper for the proof).

Theorem 1 Let s, r ∈ PIOTS(In, Out). We have that r ≡s
d s holds if and only

if r ≡s
p s holds.

Thus, if we are interested in the strong implementation relation then it is
sufficient to reason about deterministic schedulers. We now consider a weaker
notion of correctness and find that here the use of probabilistic schedulers does
make a difference. The new implementation relation extends �w

d with the use
of probabilistic schedulers rather than just deterministic schedulers.

Definition 18 Let s, r ∈ PIOTS(In, Out). We write r �w
p s if for all Gr,

probabilistic scheduler for In and Out, there exists Gs, probabilistic scheduler for
In and Out, such that r ‖ Gr ≡ s ‖ Gs.

Recall that r ≡s
p s indicates that the processes have the same probability

attached to each class of traces after applying the same probabilistic scheduler;
r �w

p s means that the application of a probabilistic scheduler to r can always
be simulated by the application of another (possibly different) one to s. This
captures the situation in which we cannot know how the environment behaves;
we can only check that the observations made are consistent with the specifi-
cation within some (possibly different) environment. This notion of correctness
corresponds to the power of testing in situations in which one cannot know the
global behaviour of the environment since one is not able to control or observe
its global traces.

Example 3 Consider the PIOTSs s and r, with In1 = {?i1}, In2 = ∅, Out1 = ∅
and Out2 = {!o2, !o′2} depicted in Figure 12 (left). These processes are not related
under ≡s

p; it is sufficient to consider SG(!o2?i1!o
′
2) and note that

prob(s ‖ SG(!o2?i1!o
′
2), [!o2?i1!o

′
2δ]) = 1

�= 0 = prob(r ‖ SG(!o2?i1!o
′
2), [!o2?i1!o

′
2δ])

We have that s �w
p r does not hold either. In this case, it is sufficient to

consider again SG(!o2?i1!o
′
2) applied to s and observe that there does not exist

a probabilistic scheduler Gr such that prob(r ‖ Gr, [!o2?i1!o
′
2δ]) = 1. On the

contrary, we have r �w
p s. Let Gr be a scheduler for r. We will show that there

exists a scheduler Gs for s such that r ‖ Gr ≡ s ‖ Gs. There are three types of
relevant schedulers:

22

s

s1 s2 s3

s4 s5

s6 s7

?i1

{?i1, δ} !o2

!o2

{?i1, δ}

?i1

{?i1, δ}

!o2

?i1

?i1

!o′
2

{?i1, δ}

r

r1 r2 r3

r4 r5

r6 r7

?i1

{?i1, δ} !o2

!o2

{?i1, δ}

?i1

{?i1, δ}

!o2

?i1

?i1

!o2

{?i1, δ}

Gr

Γ1 Γ2

Γ3 Γ4 Γ5

!o′2
!o2

δ

(?i1)
n

!o′2 !o2 δ

Gs

Γ1 Γ2

Γ3 Γ5

Γ4

!o′2
!o2

δ

!o′2

!o2
δ

(?i1)
n

Figure 12: PIOTSs and the relations ≡s
p and �w

p

• The scheduler initially offers input ?i1.

• The scheduler initially offers output twice.

• The scheduler initially offers output and then offers one or more inputs ?i1.

In the first two cases it is trivial to see that using Gr = Gs we have the fulfillment
of ≡. In the last case, it is enough to swap all the occurrences of inputs with
the first occurrence of !o2 to build the scheduler Gs (see Figure 12 (right)). This
is admissible, in particular, because the inputs and the output are performed at
different ports. It can be checked that r ‖ Gr ≡ s ‖ Gs.

The proof of the following result is an immediate consequence of properties
of the PIOTSs presented in the previous example.

Proposition 2 Let s, r ∈ PIOTS(In, Out). We have that r ≡s
p s implies r �w

p

s but the converse is not true. In addition, the relation �w
p is not symmetric,

that is, r �w
p s does not imply s �w

p r .

Previously, we saw that we do not change the distinguishing power if we
consider probabilistic schedulers in the scope of our strong relation. However,
this is not the case for the weak versions. The following result is immediate
from Propositions 8 and 9 (see the appendix of the paper).

Theorem 2 Let s, r ∈ PIOTS(In, Out). We have that if r �w
d s holds then

r �w
p s holds but the converse is not the case.

Similar to our previous work, which used deterministic schedulers, the weak
implementation relation allows the use of different schedulers Gr and Gs with r
and s. The aim is for this to capture uncertainty regarding how the environment
behaves, with this uncertainty being a consequence of the distributed nature of
interactions between the SUT and its environment. However, the (human) tester
can choose the test case to apply and so has some information regarding how

23

s

In

!o1,
1
2

In

!o′2
δ

?i1

In

!o1

In ∪ {δ}

?i′2

In

!o′2

In ∪ {δ}

!o′2,
1
2

In

!o1

δ

?i1

In
!o1

In ∪ {δ}

?i′2

In

!o′2

In ∪ {δ}

r

In

!o1,
1
4

In

!o′2
δ

?i1

In

!o1

In ∪ {δ}

?i′2

In

!o′2

In ∪ {δ}

!o′2,
3
4

In

!o1

δ

?i1

In
!o1

In ∪ {δ}

?i′2

In

!o′2

In ∪ {δ}

Figure 13: PIOTSs s and r where neither r �w
d s nor s ≡s

p r hold

the environment behaves during testing, even if they do not have a global view.
For example, the tester will have chosen the inputs that can be applied. As
a result, one would expect Gr and Gs to be related in some way. Specifically,
we can prove that the projections of these two schedulers must be the same.
In other words, Gr and Gs can be different but if we observe them in different
ports then the observations coincide (see Proposition 10 in the appendix of the
paper).

Finally, we study the relation induced by having both r �w
p s and s �w

p r.
We define a new implementation relation, based on this condition, and study
how it relates to ≡s

p.

Definition 19 Let s, r ∈ PIOTS(In, Out). We write r ≡w
p s if we have both

r �w
p s and s �w

p r.

This relation is trivially reflexive and symmetric. It is easy to see that it
is also transitive, because �w

p is transitive. Therefore, we have the following
result.

Lemma 1 The relation ≡w
p is an equivalence.

At this point, it is legitimate to ask whether both equivalence relations,
≡s

p and ≡w
p , coincide. However, we have a result similar to the well-known

relation between simulation and bisimulation: two processes may simulate each
other and still not be bisimilar. We trivially have that s ≡s

p r implies s ≡w
p r.

However, the other implication does not hold in general.

Theorem 3 Let s, r ∈ PIOTS(In, Out). We have that s ≡s
p r implies s ≡w

p r.
However, there exist s, r ∈ PIOTS(In, Out) such that s ≡w

p r holds but s ≡s
p r

does not hold.

Proof. Consider the PIOTSs s and r shown in Figure 13. Using an argument
similar to the one used in the proof of Proposition 9 (see the appendix of the
paper) it is easy to see that we have both r �w

p s and s �w
p r. Therefore,

24

s ≡w
p r. However, s ≡s

p r does not hold. We choose a deterministic scheduler G
that provides input ?i1 after !o1!o′2 but not after !o′2!o1. This gives [!o1!o′2?i1!o1δ]
a probability of 1

4 in r ‖ G while it gives a probability of 1
2 in s ‖ G .

7. Conclusions and future work

If the system under test has multiple physically distributed ports, we place
a separate independent tester at each port, and there is no global clock then we
are testing in the distributed test architecture. Previous work defined implemen-
tation relations, for testing from a PIOTS in the distributed test architecture.
The initial work noted that an observation defines an equivalence class of traces
and one cannot simply sum the probabilities of the traces in such an equivalence
class. As a result, the initial work applied only to a restricted class of PIOTS,
with this later being generalised through the use of deterministic schedulers to
resolve races.

Deterministic schedulers, previously used to define implementation relations,
essentially model the environment of the SUT. When testing from probabilis-
tic models it seems natural to allow the SUT’s environment to be probabilistic
and so in this paper we generalised previous work by defining implementa-
tion relations using probabilistic schedulers. Interestingly, it transpired that
the introduction of probabilities into schedulers does not change our stronger
implementation relation ≡s

p. However, this stronger implementation relation
corresponds to the case where we can know the global behaviour of the environ-
ment, and so we can use the same scheduler when comparing the SUT and the
specification. In practice, it seems likely that one will not be able to know the
global behaviour of the environment and this motivates the definition of a weaker
implementation relation. Under this, for r to be a correct implementation of
s it is sufficient that for any possible environment (probabilistic scheduler for
r), the behaviour of r in this environment is equivalent to the behaviour of s in
some (possibly different) environment. This weaker notion of correctness is not
an equivalence relation and is weaker than the corresponding implementation
relation for deterministic schedulers. One can use the weaker implementation
relation �w

p to define an equivalence relation ≡w
p in which r ≡w

p s if and only if
we have that r �w

p s and s �w
p r. This implementation relation is an equivalence

relation but is strictly weaker than ≡s
p.

There are several lines of future work. First, we have shown that the pairs
of probabilistic schedulers, used under �w

p , must relate in certain ways but we
might wish to place further restrictions on such pairs of probabilistic schedulers.
Such restrictions might correspond to information that the tester has about the
behaviour of the environment. There is also the question of how one might
efficiently generate tests for testing from our new implementation relations.

[1] G. J. Myers, The Art of Software Testing, 2nd Edition, John Wiley and
Sons, 2004.

[2] R. M. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A. Simons,

25

S. Vilkomir, M. Woodward, H. Zedan, Using formal specifications to sup-
port testing, ACM Computing Surveys 41 (2).

[3] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Software Testing, Verification and Reliability 22 (5) (2012)
297–312.

[4] A. R. Cavalli, T. Higashino, M. Núñez, A survey on formal active and pas-
sive testing with applications to the cloud, Annales of Telecommunications
70 (3-4) (2015) 85–93.

[5] R. Marinescu, C. Seceleanu, H. L. Guen, P. Pettersson, A Research
Overview of Tool-Supported Model-based Testing of Requirements-based
Designs, Vol. 98 of Advances in Computers, Elsevier, 2015, Ch. 3, pp. 89–
140.

[6] M. Shafique, Y. Labiche, A systematic review of state-based test tools,
International Journal on Software Tools for Technology Transfer 17 (1)
(2015) 59–76.

[7] W. Grieskamp, N. Kicillof, K. Stobie, V. Braberman, Model-based qual-
ity assurance of protocol documentation: tools and methodology, Software
Testing, Verification and Reliability 21 (1) (2011) 55–71.

[8] I. Hwang, A. R. Cavalli, M. Lallali, D. Verchère, Applying formal meth-
ods to PCEP: an industrial case study from modeling to test generation,
Software Testing, Verification and Reliability 22 (5) (2012) 343–361.

[9] J. Peleska, Industrial-strength model-based testing - state of the art and
current challenges, in: 8th Workshop on Model-Based Testing, MBT’13,
EPTCS 111, 2013, pp. 3–28.

[10] C. Braunstein, A. E. Haxthausen, W.-L. Huang, F. Hübner, J. Peleska,
U. Schulze, L. V. Hong, Complete model-based equivalence class testing for
the ETCS ceiling speed monitor, in: 16th Int. Conf. on Formal Engineering
Methods, ICFEM’14, LNCS 8829, Springer, 2014, pp. 380–395.

[11] R. V. Binder, B. Legeard, A. Kramer, Model-based testing: where does it
stand?, Communications of the ACM 58 (2) (2015) 52–56.

[12] J. Tretmans, Model based testing with labelled transition systems, in: For-
mal Methods and Testing, LNCS 4949, Springer, 2008, pp. 1–38.

[13] J. T. C. ISO/IEC JTC 1, International Standard ISO/IEC 9646-1. Infor-
mation Technology - Open Systems Interconnection - Conformance testing
methodology and framework - Part 1: General concepts, ISO/IEC, 1994.

[14] R. M. Hierons, M. G. Merayo, M. Núñez, Implementation relations for the
distributed test architecture, in: Joint 20th IFIP TC6/WG6.1 Int. Conf. on
Testing of Software and Communicating Systems, TestCom’08, and 8th Int.

26

Workshop on Formal Approaches to Software Testing, FATES’08, LNCS
5047, Springer, 2008, pp. 200–215.

[15] R. M. Hierons, M. G. Merayo, M. Núñez, Implementation relations and test
generation for systems with distributed interfaces, Distributed Computing
25 (1) (2012) 35–62.

[16] R. M. Hierons, M. Núñez, Testing probabilistic distributed systems, in:
IFIP 30th Int. Conf. on Formal Techniques for Distributed Systems,
FMOODS/FORTE’10, LNCS 6117, Springer, 2010, pp. 63–77.

[17] R. M. Hierons, M. Núñez, Using schedulers to test probabilistic distributed
systems, Formal Aspects of Computing 24 (4-6) (2012) 679–699.

[18] B. Sarikaya, G. v. Bochmann, Synchronization and specification issues in
protocol testing, IEEE Transactions on Communications 32 (1984) 389–
395.

[19] R. Dssouli, G. v. Bochmann, Error detection with multiple observers, in:
5th WG6.1 Int. Conf. on Protocol Specification, Testing and Verification,
PSTV’85, North-Holland, 1985, pp. 483–494.

[20] R. Dssouli, G. v. Bochmann, Conformance testing with multiple observers,
in: 6th WG6.1 Int. Conf. on Protocol Specification, Testing and Verifica-
tion, PSTV’86, North-Holland, 1986, pp. 217–229.

[21] S. Boyd, H. Ural, The synchronization problem in protocol testing and its
complexity, Information Processing Letters 40 (3) (1991) 131–136.

[22] W. Chen, H. Ural, Synchronizable checking sequences based on multiple
UIO sequences, IEEE/ACM Transactions on Networking 3 (1995) 152–157.

[23] R. M. Hierons, H. Ural, UIO sequence based checking sequences for dis-
tributed test architectures, Information and Software Technology 45 (12)
(2003) 793–803.

[24] G. Luo, R. Dssouli, G. v. Bochmann, Generating synchronizable test se-
quences based on finite state machine with distributed ports, in: 6th IFIP
Workshop on Protocol Test Systems, IWPTS’93, North-Holland, 1993, pp.
139–153.

[25] H. Ural, D. Whittier, Distributed testing without encountering controlla-
bility and observability problems, Information Processing Letters 88 (3)
(2003) 133–141.

[26] W.-J. Wu, W.-H. Chen, C. Tang, Synchronizable test sequence for multi-
party protocol conformance testing, Computer Communications 21 (13)
(1998) 1177–1183.

[27] K.-C. Tai, Y.-C. Young, Synchronizable test sequences of finite state ma-
chines, Computer Networks and ISDN Systems 30 (12) (1998) 1111–1134.

27

[28] L. Cacciari, O. Rafiq, Controllability and observability in distributed test-
ing, Information and Software Technology 41 (11–12) (1999) 767–780.

[29] O. Rafiq, L. Cacciari, Coordination algorithm for distributed testing, The
Journal of Supercomputing 24 (2) (2003) 203–211.

[30] A. Khoumsi, T. Jéron, H. Marchand, Test cases generation for nondeter-
ministic real-time systems, in: 3rd Int. Workshop on Formal Approaches to
Testing of Software, FATES’03, LNCS 2931, Springer, 2003, pp. 131–146.

[31] R. M. Hierons, Reaching and distinguishing states of distributed systems,
SIAM Journal on Computing 39 (8) (2010) 3480–3500.

[32] R. M. Hierons, H. Ural, The effect of the distributed test architecture on
the power of testing, The Computer Journal 51 (4) (2008) 497–510.

[33] S. Haar, C. Jard, G.-V. Jourdan, Testing input/output partial order au-
tomata, in: Joint 19th IFIP TC6/WG6.1 Int. Conf. on Testing of Software
and Communicating Systems, TestCom’07, and 7th Int. Workshop on For-
mal Approaches to Software Testing, FATES’07, LNCS 4581, Springer,
2007, pp. 171–185.

[34] G. v. Bochmann, S. Haar, C. Jard, G.-V. Jourdan, Testing systems specified
as partial order input/output automata, in: Joint 20th IFIP TC6/WG6.1
Int. Conf. on Testing of Software and Communicating Systems, Test-
Com’08, and 8th Int. Workshop on Formal Approaches to Software Testing,
FATES’08, LNCS 5047, Springer, 2008, pp. 169–183.

[35] H. Ponce de León, S. Haar, D. Longuet, Unfolding-based test selection
for concurrent conformance, in: 25th IFIP WG 6.1 Int. Conf. on Testing
Software and Systems, ICTSS’13, LNCS 8254, Springer, 2013, pp. 98–113.

[36] H. Ponce de León, S. Haar, D. Longuet, Model-based testing for concurrent
systems: unfolding-based test selection, International Journal on Software
Tools for Technology Transfer 18 (3) (2016) 305–318.

[37] H. Ponce de León, S. Haar, D. Longuet, Distributed testing of concurrent
systems: Vector clocks to the rescue, in: 11th Int. Colloquium on Theo-
retical Aspects of Computing, ICTAC’14, LNCS 8687, Springer, 2014, pp.
369–387.

[38] I. Christoff, Testing equivalences and fully abstract models for probabilistic
processes, in: 1st Int. Conf. on Concurrency Theory, CONCUR’90, LNCS
458, Springer, 1990, pp. 126–140.

[39] K. Larsen, A. Skou, Bisimulation through probabilistic testing, Information
and Computation 94 (1) (1991) 1–28.

[40] R. Segala, Testing probabilistic automata, in: 7th Int. Conf. on Concur-
rency Theory, CONCUR’96, LNCS 1119, Springer, 1996, pp. 299–314.

28

[41] C. Gregorio, M. Núñez, Denotational semantics for probabilistic refusal
testing, in: 1st Int. Workshop on Probabilistic Methods in Verification,
PROBMIV’98, ENTCS 22, Elsevier, 1999, pp. 111–137.

[42] R. Cleaveland, Z. Dayar, S. Smolka, S. Yuen, Testing preorders for proba-
bilistic processes, Information and Computation 154 (2) (1999) 93–148.

[43] M. Núñez, Algebraic theory of probabilistic processes, Journal of Logic and
Algebraic Programming 56 (1–2) (2003) 117–177.

[44] N. López, M. Núñez, I. Rodríguez, Specification, testing and implemen-
tation relations for symbolic-probabilistic systems, Theoretical Computer
Science 353 (1–3) (2006) 228–248.

[45] L. Cheung, M. Stoelinga, F. Vaandrager, A testing scenario for probabilistic
processes, Journal of the ACM 54 (6) (2007) Article 29.

[46] R. M. Hierons, M. G. Merayo, Mutation testing from probabilistic and
stochastic finite state machines, Journal of Systems and Software 82 (11)
(2009) 1804–1818.

[47] I. Hwang, A. Cavalli, Testing a probabilistic FSM using interval estimation,
Computer Networks 54 (7) (2010) 1108–1125.

[48] Y. Deng, A. Tiu, Characterisations of testing preorders for a finite proba-
bilistic π-calculus, Formal Aspects of Computing 24 (4-6) (2012) 701–726.

[49] S. Georgievska, S. Andova, Probabilistic may/must testing: retaining prob-
abilities by restricted schedulers, Formal Aspects of Computing 24 (4-6)
(2012) 727–748.

[50] D. P. Gruska, Information flow testing, Fundamenta Informaticae 128 (1-2)
(2013) 81–95.

[51] Y. Deng, R. v. Glabbeek, M. Hennessy, C. Morgan, Real-reward testing for
probabilistic processes, Theoretical Computer Science 538 (2014) 16–36.

[52] M. Gerhold, M. Stoelinga, Model-based testing of probabilistic systems,
in: 19th Int. Conf. on Fundamental Approaches to Software Engineering,
FASE’16, LNCS 9633, Springer, 2016, pp. 251–268.

[53] R. v. Glabbeek, S. Smolka, B. Steffen, Reactive, generative and stratified
models of probabilistic processes, Information and Computation 121 (1)
(1995) 59–80.

[54] M. Bravetti, A. Aldini, Discrete time generative-reactive probabilistic
processes with different advancing speeds, Theoretical Computer Science
290 (1) (2003) 355–406.

29

[55] R. Segala, A compositional trace-based semantics for probabilistic au-
tomata, in: 6th Int. Conf. on Concurrency Theory, CONCUR’95, LNCS
962, Springer, 1995, pp. 234–248.

[56] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes,
Nordic Journal of Computing 2 (2) (1995) 250–273.

[57] R. Segala, Modeling and verification of randomized distributed real-time
systems, Ph.D. thesis, MIT, Dept. of Electrical Engineering and Computer
Science (1995).

[58] L. Cheung, N. Lynch, R. Segala, F. Vaandrager, Switched PIOA: Paral-
lel composition via distributed scheduling, Theoretical Computer Science
365 (1-2) (2006) 83–108.

Appendix A: Composition of a PIOTS and a probabilistic scheduler
is a PLTS

Proposition 3 Let s = (Q, In, Out, T, qin) be a PIOTS and G = (Q′, In, Out, T ′, q′in)
be a probabilistic scheduler. We have that s ‖ G is a PLTS with alphabet
Actτ = In ∪ Out ∪ {δ, τ}.
Proof. Since we only consider states reachable from the initial state (qin, q

′
in),

it is enough to show that the sum of the probabilities departing from each pair
(q, q′) ∈ Q×Q′ is equal to 1. We consider three cases:

1. All the transitions leaving q′ are labelled by τ . The first rule of the def-
inition of T ′′ (see Definition 14) will produce a transition for each of the
transitions departing from q′. The addition of the associated probabilities
will be 1 because the probabilities are taken from the scheduler.

2. The unique transition departing from q′ is an input ?i. Since s is input-
enabled, there are transitions labelled by ?i leaving q. The second rule of
the definition of T ′′ will generate a transition for each of these transitions.
Again, the addition of the corresponding probabilities is equal to 1 because
the probabilities are, in this case, the ones from the PIOTS.

3. There are transitions leaving q′ labelled by each action in Out ∪ {δ} and
these are all the transitions departing from q′. We distinguish two cases:
(a) q has outgoing transitions labelled by outputs. In this case, we also

know that q cannot have outgoing transitions labelled by δ. The
second rule of the definition of T ′′ will generate a transition for each of
these transitions and since the addition of the associated probabilities
in s is equal to 1, so it is in the composition.

(b) q does not have outgoing transitions labelled by outputs. In this
case, q must have an outgoing transition labelled by δ (because it is
a quiescent state) and since this transition has probability 1, again
applying the second rule of the definition of T ′′, we have the same
probability in the composition.

30

Appendix B: Auxiliary results concerning the relation between ≡s
p

and ≡s
d

In this appendix we study results that are used to prove Theorem 1. Specifi-
cally, we explore properties of probabilistic schedulers that will be used to reason
about ≡s

p. We will be reasoning about equivalence classes of traces. It will tran-
spire that, given a trace σ of r ‖ G, we will want to reason about certain special
prefixes of traces in [σ]: those that are the longest prefixes that end in inputs.

Definition 20 Let σ ∈ Act∗ be a sequence of visible actions. We define preIn(σ)
to be the longest prefix of σ that ends in input (if σ contains no inputs then we
let preIn(σ) = ε).

Let us suppose that σ is a trace of the composition of a scheduler and a
process. If we consider a path of the composition r ‖ G that has label σ then
the probability of σ in G must, by definition, be the same as the probability of
preIn(σ) in G. A number of proofs will use this result.

Definition 21 Let σi ∈ Act∗ be a sequence of visible actions such that there
exists σ′ ∈ [σ] with σi = preIn(σ

′). We define c(σ, σi), the set of traces generated
by σi, to be the set of traces in [σ] that have σi as a prefix. If σ can be deduced
from the context then we simply write ci. We define Cσ to be the set {ci|∃σ′ ∈
[σ] : σi = preIn(σ

′)}.

Example 4 Let σ =?i1?i
′
2!o1δ be a sequence of visible actions. If we consider

the probabilistic scheduler depicted in Figure 11, then we have two longest pre-
fixes ending in input corresponding to sequences belonging to [σ]: σ1 =?i1?i

′
2

(sequence, including a τ , from qin to q4) and σ2 =?i1!o1?i
′
2 (sequence, including

a τ , from qin to qA). Therefore, we have c(σ, σ1) = {?i1?i′2!o1δ} (we will use
the shorthand c1) and c(σ, σ2) = {?i1!o1?i′2δ} (we will use the shorthand c2).

Proposition 4 Let σ ∈ Act∗ be a sequence of visible actions. We have that Cσ
is a partition of [σ].

Let G be a probabilistic scheduler, σ ∈ Act∗ be a trace of G, and ci ∈ Cσ
be the set of traces generated by σi. For all σ′ ∈ ci we have that prob(G, σ′) =
prob(G, σi).

The proof of the first result is easy, by the definition of Cσ, while the proof
of the second result relies on the fact that a probabilistic scheduler does not
attach probabilities other than 1 to outputs and δ. In addition, regardless of
the chosen path, once the last input is observed we have that all outputs and
δ are always available. Note that prob(G, σi) can be equal to zero if there is no
trace in G having prefix σi, despite the fact that σi is the prefix of a sequence of
actions that cannot be distinguished from σ, a trace of G. For example, consider
the probabilistic scheduler G depicted in Figure 11. We have, on the one hand,
prob(G, ?i′2?i1) = 0 while, on the other hand, prob(G, σ) = 1

2 for all σ being
a sequence of visible actions starting with ?i1?i

′
2 and followed by one or more

31

actions belonging to Out∪ {δ}. In addition, we have that ?i′2?i1 is the prefix of
a sequence of actions belonging to [σ] (for instance, if σ =?i1?i

′
2!o1 then ?i′2?i1

is the prefix of ?i′2?i11 and this sequence belongs to [σ]). A trivial, but useful,
corollary of the previous result is the following.

Corollary 1 Let G be a probabilistic scheduler and σ ∈ Act∗ be a trace of G.
We have that prob(G, [σ]) = ∑

c∈Cσ
prob(G, c).

We now show how the different probabilities prob(r ‖ G, ci) relate to the
sum of probabilities defined by SG(σi), the deterministic scheduler generated
by σi (see Definition 9).

Proposition 5 Let s = (Q, In, Out, T, qin) be a PIOTS, G = (Q′, In, Out, T ′, q′in)
be a probabilistic scheduler, and σδ be a trace of s ‖ G. For each c(σ, σi) ∈ Cσ
the following holds

prob(s ‖ G, c(σ, σi)) = prob(G, σi) · prob(s ‖ SG(σi), c(σ, σi))

Proof. During the rest of the proof we use ci to denote ci(σ, σi). We first observe
that, by definition, we have that

prob(s ‖ G, ci) =
∑
σ′∈ci

prob(s ‖ G, σ′)

Let P = {ρ ∈ Paths(G)|label(ρ) = σi∧ (ρ′ ∈ pref(ρ)\{ρ} ⇒ label(ρ′) �= σi)} be
the set of minimal paths of G that have label σi. We will use proof by induction
on the length of the longest path in P . In the base case we have that P = {ε}
and so σi = ε. But then ci = {ε} and so prob(G, σi) = 1, prob(s ‖ G, ci) = 1 and
prob(s ‖ SG(σi), ci) = 1. The result therefore follows.

We now consider the inductive case. The inductive hypothesis is that the
result holds if all paths in P have length less than k (k > 0) and we suppose
that the length of the longest path in P is k. Note that either all paths in P
start with a transition with label τ or there is some a ∈ Act such that all paths
in P start with a transition with label a. We now consider these two cases.

Case 1: the label of the first transition of all paths in P is τ . Let us suppose
that P contains distinct paths tr1ρ1, . . . , tr�ρ� for transitions tr1, . . . , tr� and
paths ρ1, . . . , ρ�. Let pi be the probability associated with tri and let Gi be the
probabilistic scheduler defined by starting G after tri (that is, we consider G but
replace its initial state by the ending state of tri). By the definition of s ‖ G,
we have that

prob(s ‖ G, ci) =
�∑

j=1

pj · prob(s ‖ Gj , ci)

By the inductive hypothesis, we know that

prob(s ‖ Gj , ci) = prob(Gj , σi) · prob(s ‖ SG(σi), ci)

32

We now have that

prob(s ‖ G, ci) =
�∑

j=1

pj ·prob(s ‖ Gj , ci) =
�∑

j=1

pj ·prob(Gj , σi)·prob(s ‖ SG(σi), ci)

By construction we also have that prob(G, σi) =
∑�

j=1 pj · prob(Gj , σi). We
therefore have that prob(s ‖ G, ci) = prob(G, σi)·prob(s ‖ SG(σi), ci) as required.

Case 2: the label of the first transition of each path of P is a for some a ∈ Act.
Note that, by the definition of a probabilistic scheduler, we therefore have that
all paths in P start with the same transition. Let us suppose that P contains
distinct paths trρ1, . . . , trρ� for transition tr and paths ρ1, . . . , ρ�. Define σ′

such that σ = aσ′. Further, let G′ be the probabilistic scheduler produced by
starting G in the state reached by tr and let c′i be the set of traces formed by
deleting prefix a from the traces in ci (that is, c′i = {γ|aγ ∈ ci}). By definition,
we have that prob(s ‖ G, ci) =

∑ {| p · prob(q̂ ‖ G′, c′i)|(qin, a, q, p) ∈ T |}, where
q̂ is equal to s but with q as the initial state (instead of qin). Further, by the
inductive hypothesis, for all (qin, a, q, p) ∈ T we have that prob(q̂ ‖ G′, c′i) =
prob(G′, σ′

i) · prob(q̂ ‖ SG(σ′
i), c

′
i), where σ′

i is such that σi = aσ′
i. We therefore

have that

prob(s ‖ G, ci) =
∑

{| p · prob(G′, σ′
i) · prob(q̂ ‖ SG(σ′

i), c
′
i)|(qin, a, q, p) ∈ T |}

We can pull out the constant term prob(G′, σ′
i) to give

prob(s ‖ G, ci) = prob(G′, σ′
i) ·

∑
{| p · prob(q̂ ‖ SG(σ′

i), c
′
i)|(qin, a, q, p) ∈ T |}

By the definition of s ‖ SG(σi), we have

prob(s ‖ SG(σi), ci) =
∑

{| p · prob(q̂ ‖ SG(σ′
i), c

′
i)|(qin, a, q, p) ∈ T |}

and so we get

prob(s ‖ G, ci) = prob(G′, σ′
i) · prob(s ‖ SG(σi), ci)

The result now follows from observing that prob(G, σi) = prob(G′, σ′
i) since the

transitions of G labelled with a �= τ all have probability 1.
We now explore how our new implementation relation ≡s

p, defined in terms
of probabilistic schedulers, relates to the corresponding implementation relation
≡s

d defined in terms of deterministic schedulers.

Proposition 6 Let s, r ∈ PIOTS(In, Out). We have that r ≡s
d s holds if

and only if for every G, probabilistic scheduler for In and Out, we have that
r ‖ G ≡ s ‖ G.

Proof. The right to left implication is immediate from the definitions, since
every deterministic scheduler can be seen as a probabilistic scheduler without τ
transitions, and so we focus on the left to right implication.

33

qin

Γ3

Γ1 Γ2

τ, 1
2

τ, 1
4

τ, 3
4

?i1 ?i′2

τ, 1
2

?i1

qin

Γ2

Γ1 Γ3

τ, (18 + 1
2)

?i1

τ,
1
8

1
8+

1
2

τ,
1
2

1
8+

1
2

τ, 3
8

?i′2
qin

Γ1 Γ2 Γ3

τ, 1
8

?i1

τ, 3
8

?i′2

τ, 1
2

?i1

Figure 14: Examples of equivalent probabilistic schedulers

We assume that r ≡s
d s and we are given a probabilistic scheduler G. We are

required to prove that for all σ ∈ Act∗ we have that prob(r ‖ G, [σδ]) = prob(s ‖
G, [σδ]).

Let σ1, . . . , σk denote the longest prefixes of elements of [σδ] that end in
input. Further, consider c1, . . . , ck ∈ Cσδ as given in Definition 21, that is, ci is
the set of traces in [σδ] that have prefix σi. By Proposition 4, the ci provide
a partition of [σδ] and we have prob(r ‖ G, [σδ]) =

∑k
i=1 prob(r ‖ G, ci) and

prob(s ‖ G, [σδ]) = ∑k
i=1 prob(s ‖ G, ci).

For each σi, consider the deterministic scheduler SG(σi). By Proposition 5,
prob(r ‖ G, ci) = prob(σi,G) · prob(r ‖ SG(σi), ci) and prob(s ‖ G, ci) =
prob(σi,G) · prob(s ‖ SG(σi), ci). Since r ≡s

d s, for all 1 ≤ i ≤ k we have
that prob(r ‖ SG(σi), ci) = prob(s ‖ SG(σi), ci). Thus, for all 1 ≤ i ≤ k we
have that prob(r ‖ G, ci) = prob(s ‖ G, ci). The result now follows from ob-
serving that prob(t ‖ G, [σδ]) =

∑k
i=1 prob(t ‖ G, ci) and prob(s ‖ G, [σδ]) =∑k

i=1 prob(s ‖ G, ci).

Appendix C: Auxiliary results concerning the relation between �w
d

and �w
p

In this appendix we study results that are used to prove Theorem 2. First,
we introduce an operator to (probabilistically) combine probabilistic schedulers
and define a notion of equivalence between probabilistic schedulers.

Definition 22 Let In and Out be sets of inputs and outputs, respectively. Let
G1, . . . ,Gk be probabilistic schedulers, with k ≥ 1 and Gj = (Q′

j, In, Out, T
′
j , q

j
in),

and pj, with 0 < pj ≤ 1 be k probabilities such that
∑

pj = 1. We define∑k
j=1 pj ·Gj to be the probabilistic scheduler (

⋃
Q′

j∪{q′in}, In, Out, T ′, q′in), where
q′in is a fresh state and T ′ =

⋃
T ′
j ∪ {(q′in, τ, qjin, pj)|1 ≤ j ≤ k}.

We say that two probabilistic schedulers G and G′ are equivalent, denoted by
G ≈ G′, if for all PIOTS s we have s ‖ G ≡ s ‖ G′.

34

In Figure 14 we give three equivalent probabilistic schedulers. The proof of
the next result is trivial. Below we will extend it to show that a probabilistic
scheduler is always equivalent to a probabilistic combination of deterministic
schedulers.

Lemma 2 Let s be a PIOTS, σδ ∈ Act∗ be a sequence of visible actions,
G1, . . . ,Gk be probabilistic schedulers and consider G =

∑k
i=1 pi · Gi. The follow-

ing holds

prob(s ‖ G, [σδ]) =
k∑

i=1

pi · prob(s ‖ Gi, [σδ])

We now show that a probabilistic scheduler G is equivalent to a probabilistic
choice

∑k
i=1 pi · Gi in which each Gi is a deterministic scheduler. Essentially,

we lift all the τs of the probabilistic scheduler and place them as transitions
outgoing from the initial state of the resulting probabilistic automata.

Proposition 7 Let G be a probabilistic scheduler. There exist deterministic
schedulers G1, . . . ,Gk and probabilities 0 < p1, . . . , pk ≤ 1 with

∑k
i=1 pi = 1 such

that G ≈ ∑k
i=1 pi · Gi.

Proof. We will use proof by induction on the length of the longest path in G
(that does not include cycles). The result follows immediately for the base case
where all paths are of length 0 since G must be the trivial scheduler, in which
we have a unique state, the initial state, and all the transitions are self-loops,
one per each action belonging to Out ∪ {δ}. This is a deterministic scheduler
and it is enough to let p1 = 1.

We now consider the inductive case and use the inductive hypothesis that
the result holds for every G whose longest path has length at most �. There are
three cases, which depend on the transitions leaving the initial state of G.

Case 1: The only transition leaving the initial state of G has label ?i ∈ In and
this takes G to a state q that defines a scheduler G′. By the inductive hypothesis,
G′ ≈ ∑k

i=1 pi · G′
i, for some positive probabilities p1, . . . , pk and deterministic

schedulers G′
1, . . . ,G′

k. The result now follows from the fact that G ≈ ∑k
i=1 pi ·Gi

in which Gi applies input ?i and then becomes G′
i.

Case 2: All transitions leaving the initial state have label τ . Let us suppose
that there are m such transitions and that for all 1 ≤ i ≤ m there is a τ transition
with probability pi to a probabilistic scheduler Gi. By the inductive hypothesis,
for all 1 ≤ i ≤ m we have Gi ≈ ∑ki

j=1 p
i
j · Gi

j , for some positive probabilities
pi1, . . . , p

i
ki

and deterministic schedulers Gi
1, . . . ,Gi

ki
. Thus, G is equivalent to

a probabilistic scheduler in which for all 1 ≤ i ≤ m and 1 ≤ j ≤ ki there is
a path with two τ transitions, with probabilities pi and pij, to a deterministic
scheduler Gi

j . This probabilistic scheduler can be rewritten by replacing such
a path by a single τ transition with probability pi · pij to Gi

j . The result thus
follows.

Case 3: All transitions leaving the initial state of G are labelled with an
output or δ. Let Ga denote the probabilistic scheduler reached from the initial

35

state of G by a ∈ Out ∪ {δ}. By the inductive hypothesis, for all a ∈ Out ∪
{δ} we have Ga ≈ ∑ka

j=1 p
a
jGa

j , for some positive probabilities pa1 , . . . , p
a
ka

and
deterministic schedulers Ga

1 , . . . ,Ga
ka

. We now apply the following process. For
each a ∈ Out ∪ {δ} we choose some 1 ≤ ia ≤ ka and this defines a tuple
of Ga

ia
with associated probabilities. Let p1 denote the smallest such probability

(p1 = min{paia |a ∈ Out∪ {δ}}). Then we construct a deterministic scheduler G1

that, after output a, becomes the deterministic scheduler Ga
ia

. We also give G1

probability p1. Further, we reduce the probability associated with each Ga
ia

by p1, eliminating the Ga
ia that now have zero probability. This step reduces

the number of Ga
j being considered. We repeat this process until all Ga

j have
been removed. This provides us with a sequence G1, . . . ,Gk of deterministic
schedulers and probabilities p1, . . . , pk such that G ≈ ∑k

i=1 pi · Gi and so the
result follows.

Example 5 Consider the equivalent probabilistic schedulers depicted in Fig-
ure 14 and suppose that Γ1, Γ2 and Γ3 do not have occurrences of τ . The third
probabilistic scheduler has the expected combination of probabilities and deter-
ministic schedulers corresponding to the other two probabilistic schedulers.

The following shows that the weaker version of our implementation relation
for probabilistic schedulers is not stronger than the weaker version for deter-
ministic schedulers.

Proposition 8 Let s, r ∈ PIOTS(In, Out). If r �w
d s then for every proba-

bilistic scheduler G there is a probabilistic scheduler G′ such that r ‖ G ≡ s ‖ G′.

Proof. We assume that r �w
d s and we are given probabilistic scheduler G. We

are required to prove that there is a probabilistic scheduler G′ such that for all σ
we have that prob(r ‖ G, [σδ]) = prob(s ‖ G′, [σδ]).

By Proposition 7 we have that G is equivalent to a sum
∑k

j=1 pj · Gj of
deterministic schedulers. Since r �w

d s, for all 1 ≤ j ≤ k we have that there
exists G′

j such that for all σ we have that prob(r ‖ Gj , [σδ]) = prob(s ‖ G′
j , [σδ]).

Thus, we let G′ =
∑k

j=1 pj · G′
j and the result follows.

Proposition 9 There are PIOTSs r, s such that for every probabilistic sched-
uler Gr there is a probabilistic scheduler Gs such that r ‖ Gr ≡ s ‖ Gs but where
r �w

d s does not hold.

Proof. Consider the PIOTSs s and r shown in Figure 13 (left and right, respec-
tively). To see that r �w

d s does not hold it is sufficient to choose a deterministic
scheduler Gr that provides input ?i1 after !o1!o′2 but not after !o′2!o1. This gives
[!o1!o

′
2?i1!o1δ] a probability of 0.25 in r||Gr and clearly there is no determinis-

tic scheduler Gs that provides the same probability for [!o1!o
′
2?i1!o1δ] in s||Gs.

Thus, it is sufficient to prove that for every probabilistic scheduler Gr there is
a probabilistic scheduler Gs such that r ‖ Gr ≡ s ‖ Gs. Any useful probabilistic
scheduler Gr has choices after !o1!o

′
2 and !o′2!o1. Let p1 denote its probability

36

of sending ?i1 after !o1!o
′
2, p2 denote its probability of sending ?i′2 after !o1!o

′
2,

and p3 denote its probability of not sending input after !o1!o
′
2. Similarly, let

p4 denote its probability of sending ?i′2 after !o′2!o1, p5 denote its probability
of sending ?i′2 after !o′2!o1, and p6 denote its probability of not sending input
after !o′2!o1. Now we define a probabilistic scheduler Gs in the following way:
after either !o1!o

′
2 or !o′2!o1 the scheduler sends ?i1 with probability p1+p4

2 , it
sends ?i′2 with probability p2+p5

2 , and it sends no input with probability p3+p6

2 .
Now observe that there are only four4 equivalence classes of traces we have to
consider under ≡, [!o1!o′2δ], [!o1!o′2?i1!o1δ], [!o1!o′2?i′2!o′2δ], and [!o1!o

′
2δ], and the

probabilities in both r||Gr and s||Gs are 1, p1+p4

2 , p2+p5

2 , and p3+p6

2 respectively.
We have that Theorem 2 is an immediate consequence of the previous two

results.
Finally, we explore the relationship between probabilistic schedulers implied

by the definition of �w
p and, as a consequence, also how such schedulers must

be related for the deterministic case. We start by describing a restriction on the
probabilistic schedulers that we need to use. Intuitively, we can restrict ourselves
to probabilistic schedulers not having redundant nodes, that is, a node at which
input is applied such that the interaction of the probabilistic scheduler and the
process cannot lead to this node being reached. If a probabilistic scheduler
has such a node, for a given system s, then it does not matter the possible
continuations after that node because they will never be applied.

Definition 23 Let s = (Q, In, Out, T, qin) be a PIOTS and G = (Q′, In, Out, T ′, q′in)
be a probabilistic scheduler. We say that G is non-redundant for s if and only
if, for every state q′ ∈ Q′ of G such that there exists q′′ ∈ Q′ and ?i ∈ In such
that (q′, ?i, q′′, 1) ∈ T ′, if σ is the label of the path from q′in to q′ then σ ∈ L(s).
If this condition does not hold then G is redundant for s.

Let us suppose that G has a state q′ at which input can be applied such that
σ is the label of the path from the root of G to q′ and σ is not a trace of s.
Then one can make q′ a leaf node and the resultant probabilistic scheduler G′

will be such that s ‖ G ≡ s ‖ G′. Thus, it is sufficient to consider probabilistic
schedulers that are non-redundant for their corresponding processes.

Proposition 10 Let r, s ∈ PIOTS(In, Out) be PIOTSs and Gr,Gs be non-
redundant probabilistic schedulers for r and s, respectively. If r ‖ Gr ≡ s ‖ Gs,
then for all o ∈ O we have πo(L(Gr)) = πo(L(Gs)).

Proof. It is sufficient to prove that πo(L(Gr)) ⊆ πo(L(Gs)); the opposite direction
πo(L(Gs)) ⊆ πo(L(Gr)) then follows by symmetry. Moreover, by the definition

4Formally speaking, we have to consider also those classes with occurrences of inputs and δ
in the middle of the trace (for example, the classes [!o1!o′2δ?i

′
2!o

′
2δ] and [!o1?i1?i′2!o

′
2?δ]). How-

ever, in this particular case, the probabilities associated with these classes coincide with the
ones corresponding to the classes constructed with traces without these additional occurrences
of δ.

37

of probabilistic schedulers, it is sufficient to consider elements of πo(L(Gr)) that
end in input.

Let σo ∈ πo(L(Gr)) that ends in input. So there exists some trace σδ ∈ L(Gr)
such that σo is a prefix of πo(σ). Let us suppose that σ = σ1σ2 such that σ2

is a longest suffix of σ that contains no inputs. Since Gr is non-redundant for
r we have that σ1 ∈ L(r) and so σ1 ∈ L(r ‖ Gr). Thus, since r is not output-
divergent, there is some σ3 such that σ1σ3δ ∈ L(r ‖ Gr). Since r ‖ Gr ≡ s ‖ Gs,
there is some σ′ ∼ σ1σ3 such that σ′δ ∈ L(s ‖ Gs). But this implies that
πo(σ

′) ∈ πo(L(Gs)). Since σo is a prefix of πo(σ1σ3) and σ′ ∼ σ1σ3, we have
that σo is a prefix of πo(σ

′). But πo(σ
′) ∈ πo(L(Gs)) and so σo is a prefix of a

trace of πo(L(Gs)). The result now follows from πo(L(Gs)) being prefix closed.

38

