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With the objective of reducing the broadband noise from the interaction of highly 

turbulent flow and airfoil leading edge, sinusoidal leading edge serrations were investigated 

as an effective passive treatment. An extensive aeroacoustic study was performed in order to 

determine the main influences and interdependencies of factors, such as the Reynolds 

number, turbulence intensity, serration amplitude and wavelength as well as the angle of 

attack on the noise reduction capability. A statistical-empirical model was developed to 

predict the overall sound pressure level and noise reduction of a NACA65(12)-10 airfoil with 

and without leading edge serrations in the range of chord-based Reynolds numbers of 

2.5·10
5
 ≤ Re ≤ 6·10

5
. The observed main influencing factors on the noise radiation were 

quantified in a systematic order for the first time. Moreover, significant interdependencies of 

the turbulence intensity and the serration wavelength, as well as the serration wavelength 

and the angle of attack were observed, validated and quantified. The statistical-empirical 

model was validated against an external set of experimental data, which is shown to be 

accurate and reliable. 
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Nomenclature 

A  = amplitude of leading edge serrations [mm] 

λ  = wavelength of leading edge serrations [mm] 

U0  = free stream velocity [ms
-1

] 

ρ0  = fluid density [kgm
-3

] 

c  = sound velocity[ms
-1

] 

Tu  = turbulence intensity [%] 

Re  = chord-based Reynolds number [--] 

C  = airfoil chord length [mm] 

S  = airfoil span [mm] 

H  = nozzle height [mm] 

R  = observer distance in the far-field [m] 

d  = maximum airfoil thickness [mm] 

AoA  = angle of attack [°], equals non-dimensional vertical displacement z/H 

x  = local streamwise (longitudinal) coordinate [mm]  

y  = local anti-streamwise (transversal) coordinate [mm] 

z  = local vertical coordinate [mm] 

OASPL = overall sound pressure level [dB] 

ΔOASPL = overall sound pressure level reduction [dB] 

SPL  = sound pressure level [dB] 

ΔSPL  = sound pressure level reduction [dB] 

f  = frequency [Hz] 

ω  = angular frequency [s
-1

] 

Θ  = polar angle [deg] 

Ma  = Mach number [--] 

LE  = leading edge 

  



I. Introduction 

ECENT research has firmly established sinusoidal leading edge (LE) serrations as an effective passive 

treatment to reduce the broadband noise of an airfoil when exposed to a highly turbulent flow. A reduction in the 

overall sound pressure level of up to ΔOASPL = 7 dB and the sound pressure level reductions ΔSPL > 10 dB in the 

relevant frequency region could be achieved [1–4]. Although different hypotheses on the noise reduction mechanism 

were proposed before, they have hitherto not been comprehensively verified. In general, three mechanisms could be 

responsible for the reduction in the broadband noise. First is the reduced spanwise correlation coefficients as a result 

of incoherent response times of the incoming turbulence; second, a reduction of the acoustic sources as manifested 

in the reduction in pressure fluctuation at the serration peak; and third, a reduction of the streamwise turbulence 

intensity due to the converging flow within the serration gaps [5, 6].  

Up to now, research on the effect of LE serrations focused either on the noise reduction capability, or on the 

aerodynamic performance of the airfoil itself. The effect of sinusoidal LE on the lift and drag forces has been 

analyzed experimentally, numerically and through the use of flow pattern visualization [7, 8]. Moreover, a numerical 

study to optimize the serration design in order to improve the aerodynamic forces on the airfoil was presented [9]. 

Of particular importance is the correlation between the aerodynamic flow behaviors and aeroacoustic noise 

reduction mechanisms. In general, the incoming turbulence amplifies the surface pressure fluctuations close to the 

airfoil LE, which then radiate into broadband noise [10, 11].  

Recently, there have been many studies using high-fidelity numerical flow simulation to provide a physical 

insight of the noise reduction mechanisms by the serration [12–14]. These studies show that the surface pressure 

fluctuation and the far field noise on a serrated leading edge are de-correlated by the serrated LEs. In particular, the 

noise source at the mid-region of the oblique edge becomes ineffective across the mid to high frequency range. The 

serration could cause a significant decrease in the surface pressure fluctuations around the tip and mid-regions of the 

serration and subsequently reduce the broadband noise level. Another noise reduction mechanism is attributed to the 

phase interference and destruction effect between the serration peak and the mid-region of the oblique edge. 

Accordingly, the serration root could still remain effective in the noise radiation. Interestingly, a small modification 

of the serration root has been found to be able to further reduce the LE noise level [15]. The converging nature of the 

serration could also generate a nozzle effect to accelerate the flow within and reduce the level of turbulence intensity 

before the fluid-structure interaction near the stagnation points. Analytical work also begins to emerge that 

R 



generalizes Amiet’s theory of leading edge noise to calculate the airfoil response function subjected to serrated LEs 

of different serration wavelengths and amplitudes and the far field noise radiation [16]. Although the analytical 

model can predict the acoustic power spectral densities that match reasonably well with the experimental results [1], 

the requirement of the iterative solving procedure to calculate the gust response function of the appropriate order 

makes it not straightforward to use. This paper aims to generalize the airfoil noise subjected to LE serrations by 

developing a statistical–empirical model. 

Several parameters have been found to influence the effectiveness of noise reduction by LE serrations, which 

include the Reynolds number (Re), turbulence intensity (Tu), serration amplitude (A/C), serration wavelength (λ/C) 

and angle of attack (AoA). However, up to now, these parameters have been investigated independently, and only 

little effort was made to analyze them as an interrelated system of factors with respect to the noise reduction. This 

serves as motivation for the current work, where a comprehensive statistical–empirical model has been developed 

with the aim to describe the noise radiation of serrated LEs as an interrelated system involving the aforementioned 

five influencing parameters. Note that the current model does not predict the acoustic spectral characteristics for 

individual airfoil of serrated leading edges. Rather, the target value describing the noise radiation and noise 

reduction by the LE serrations is defined as the Overall Sound Pressure Level (OASPL). 

II. Experimental Setup 

In the current study, a cambered NACA65(12)-10 airfoil was chosen due to its relevance in the real-life 

application such as the stator vanes or axial fan blades. As shown in Fig. 1, the airfoil has a chord length of C = 150 

mm and a span width of S = 300 mm. The airfoil geometry consists a removable frontal part (0 < x/C < 0.3) that 

allows various LE serration profiles to be attached. Once attached to the rear part main body, the serrations give the 

appearance that they are cut into the airfoil’s main body. Therefore the maximum chord is always held constant at C 

= 150 mm for all the configurations [2]. The serration geometries are predominantly defined by their amplitude 

(chordwise peak-to-trough value) and wavelength (spanwise peak-to-peak-value). Both parameters would be 

normalized by the airfoil chord length throughout the paper. The shape of the LE serrations is designed according to 

a sinusoidal curve, and the NACA65(12)-10 profile was extruded along the line of this curve. An important feature 

of the current design is the semi-cyclic shape of the serration tips as depicted in Fig. 1. 

 



 

 

Fig. 1 NACA65(12)-10 airfoil showing the main body, the re-attachable leading edges and the definition and 

dimension of the various geometrical parameters. 

 

The angle of attack, α refers to the geometrical angle between the horizontal axis and the chord line of the 

NACA65(12)-10 airfoil. As shown in Fig. 1, the non-dimensional ratio between the vertical LE tip displacement (z) 

and the height of the nozzle outlet (H) is also equivalent to the α. As shown in Table 1, an experimental 

investigation into the aerodynamic performance of the airfoil with a baseline LE in a closed-wind tunnel produces a 



lift coefficient, CL = 0.64 at α = 0
o
. The airfoil was attached to the side-plates extending from both sides of the 

nozzle outlet.  

A pivot-mounted insert of the side-plates facilitates accurate rotation of the airfoil between α = ± 10
o
. Due to the 

relatively low value of H in the current nozzle, measurement beyond α = ± 10
o
 was not attempted. Note that no 

correction of the free jet deflection was applied in the current study. Therefore, it is more effective to use the non-

dimensional quantity of z/H to represent the angle-alignment between the incoming mean flow and the airfoil 

leading edge instead of the geometrical angle α.  

Table 1 Coefficients of lift, drag and lift-to-drag ratio at z/H = 0 and Re = 250,000. Measurements took 

place at the closed wind tunnel at Brunel University London. 

 A/C λ/C CL CD CL/CD 

BSLN -- -- 0.637 0.0342 18.62 

A29λ26 0.19 0.17 0.550 0.0336 16.37 

A22λ18 0.12 0.12 0.540 0.0338 15.95 

A35λ18 0.23 0.12 0.566 0.0356 15.91 

A22λ34 0.12 0.23 0.521 0.0330 15.79 

A35λ34 0.23 0.23 0.564 0.0325 17.36 

A12λ26 0.08 0.17 0.539 0.0335 16.06 

A45λ26 0.30 0.17 0.497 0.0330 15.07 

A29λ7.5 0.19 0.05 0.478 0.0363 13.16 

A29λ45 0.19 0.30 0.586 0.0309 18.97 

 

The noise experiments took place at the open jet wind tunnel of the aeroacoustic facility at Brunel University 

London. The exit nozzle, which has a dimension of 100 mm x 300 mm, is situated inside a semi-anechoic chamber 

(4.0 m x 5.0 m x 3.4 m). It can produce a typical turbulence intensity of between 0.1 % and 0.2 % [17, 2]. The 

maximum jet velocity is about 80 ms
-1

. In order to generate elevated turbulence intensities (Tu) at the freestream, 

several turbulence grids of different mesh size (M) and bar diameter (d) were used. As per the criteria suggested by 

Laws and Livesey [18], all the turbulence grids are biplane square meshes with a constant ratio between the mesh 

size and the bar diameter (M/d = 5). Using the turbulence prediction model by Aufderheide et al. [19], which is 

based on the work of Laws and Livesey [18], five different turbulence grids that were predicted to generate Tu in the 

range of 2.1% and 5.5% were manufactured. The integral length scale of the turbulent eddies was found to be a 

function of Tu, but it was not included as a parameter to be investigated in the current noise modelling analysis. 

In order to determine the Tu, a 1-D hot wire probe was placed at 30 mm downstream of the nozzle exit, which 

coincides with the airfoil leading edge tip when installed. The Tu was measured without a mounted airfoil, but with 



the turbulence grids and side-plates installed. The mean velocity U0 and Tu profiles were recorded at 106 locations 

over the whole nozzle exit area.  

The velocity range of investigation was 10 ms
-1

 ≤ U0 ≤ 60 ms
-1

 in steps of ΔU0 = 10 ms
-1

. All measurements were 

repeated once to reduce the statistical spread and to reduce the uncertainty. After ensuring a uniform turbulence 

distribution in the measurement plane, the Tu for the present study was determined as the average value across the 

plane. The distance of the airfoil’s leading edge to the nozzle exit remains the same for all the turbulence grids. The 

turbulence level near the airfoil’s LE will be shown to be isotropic. Figure 2 demonstrates that the measured 

turbulent energy spectra of the fluctuating velocity agree well with the turbulence model of von Kármán and 

Liepmann for longitudinal isotropic turbulence as per the Eq. (1). The correction function of Rozenberg [20] in Eq. 

(2) was applied to the turbulence model in order to correct the turbulent energy in the high-frequency region close to 

the Kolmogorov scale.         is the velocity fluctuation,     is the integral length scale,    is the streamwise wave 

number and    is a parameter that controls the slope of the high-frequency roll-off. The range of chord-based 

Reynolds number investigated in this study is 2.5x10
5
 ≤ Re ≤ 6x10

5
. The lower limit of the Reynolds number was 

determined by the minimum freestream velocity where isotropic condition of the Tu can still be established. 
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Fig. 2 Comparison of the normalized turbulence energy spectra between the theory (Liepmann) and 

experiment at 300,000 ≤ Re ≤ 600,000 and Tu = 3.9%. The streamwise location of the measurement coincides 

with the airfoil leading edge.  

 

A statistical-empirical model describing the acoustic response, as a function of five influencing parameters, will 

be presented in Section IV. Because of the parameters chosen for the Design of Experiments (DoE), which will be 

discussed in Section III, a total of ten LE sections were investigated. These include one configuration with a straight 

LE to serve as the baseline case (BSLN). To conduct free field measurements of the AGI-Noise (Airfoil-Gust-

Interaction), the airfoil was held by side-plates to keep the airfoil in place and to keep a two-dimensional flow 

profile [2]. Noise measurements at the aeroacoustic wind tunnel were made by a single PCB ½-inch prepolarised 

ICP
®
 condenser microphone at polar angles of Θ = 90 degree at a vertical distance of 0.95 m from the LE of the 

airfoil at mid-span (Fig. 3). The acoustic data was recorded at a sampling rate of 40 kHz, where the measurement 

time was set to 20 s. In the spectral analysis Hamming windows were used for windowing at 50% overlap by using a 

block size of 1024, yielding a frequency resolution of Δf = 43 Hz and resulting in a number of 1718 averaged blocks 

for the generated spectra. All the power spectral density (PSD) presented in this study has a 1 Hz frequency 

bandwidth. 



 

Fig. 3 Schematic of the experimental setup. 

 

The frequency range (f1  ≤  f  ≤ f2) chosen for the analysis in the Overall Sound Pressure Level (OASPL) is set to 

f1 = 300 Hz and f2 = 10 kHz. The decision on f1 is due to the consideration of the cut-off frequency of the anechoic 

chamber. The f2 is decided upon the exclusion of the possible influences by the airfoil self-noise from the trailing 

edge, which is not related to AGI noise. It is known that the OASPL could be very sensitive to the choice of f1.  

A careful sensitivity study was performed to examine the change in OASPL and OASPL with regard to the 

different values of f1. The sensitivity study demonstrates that both the OASPL and OASPL are reasonably 

unaffected at f1 ≥ 200 Hz. Therefore, the current choice of f1 = 300 Hz should be able to characterize the AGI noise 

accurately in the OASPL analysis. Another sensitivity study was also performed to the statistical model, which also 

confirms that the most dominant parameters will remain unaffected as long as f1 ≥ 200 Hz. 

 

Table 2 Non-dimensional DoE (Design of Experiments) levels of the different factors of interest.  

 Unit -αDoE -1DoE 0DoE +1DoE +αDoE 

xNondim -- -2.378 -1.0 0.0 +1.0 +2.378 

Re -- 250,000 351,422 425,000 498,578 600,000 

Tu(u) % 2.08 3.07 3.79 4.51 5.50 

ASerr /C -- 0.080 0.144 0.190 0.236 0.300 

λSerr /C -- 0.050 0.122 0.175 0.228 0.300 

z/H -- -0.128 -0.054 0.000 0.054 0.128 

 



A. Measurement Environment 

The range of jet speeds under investigation is 25 ms
-1

  Uo  60 ms
-1

, corresponding to Reynolds’ numbers based 

on the airfoil chord length of 2x5∙10
5 

≤ Re ≤ 6x10
5
, respectively. As shown in Table 2, the minima and maxima 

correspond to each of the five influencing parameters are defined. Preliminary measurements were performed at the 

extreme flow conditions prior to the main acoustic study to ensure that the background noise of the wind tunnel 

facility is well below the AGI-Noise. At the minimum and maximum fan speed, the acoustic spectra of the 

background noise, the baseline airfoil and the airfoil with the A45λ7.5 serrated LE (expected to produce the largest 

reduction in the AGI-noise level [2]) were measured. The acoustic results are shown in Fig. 4. The angle of attack 

was chosen to be at zero degree, and the Tu at the vicinity of the LE is at the maximum of 5.5%. The narrow band 

spectra in Fig. 4 demonstrate that the background noise without the presence of an airfoil in the free jet, but still with 

both the turbulence grid and side-plates, produces a significant lower sound pressure level compared to the cases 

when the airfoil is present. Moreover, the sound pressure level in the case of the airfoil with a serrated LE (A45λ7.5 

case) is always above the background noise, especially in the intermediate frequency region of interest between 300 

Hz and 5 kHz, where the main contribution of the noise reduction is expected to come from the serrations. 

 

 
Fig. 4 Comparison of the far field narrow band spectra at Re = 250,000 and 600,000 between the baseline LE 

(BL), serrated A45λ7.5 LE (Serr) and background (w/o) noises. Note that the background noise is without the 

airfoil but with the same turbulence grid and side-plates installed. Results at Tu = 5.5% and zero angles of 

attack. The OASPL is indicated in the box. 
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B. Amiet’s Flat Plate Comparison 

Figure 5 shows the non-dimensionalized far-field sound pressure level spectra for both the baseline and serrated 

cases. The SPL is scaled with the 4
th

 power of the freestream velocity Uo, while the frequency is scaled with the 

airfoil semi-span and the Uo. The collapse of the spectra demonstrates that the AGI-noise can be accurately scaled 

with Uo
4
 especially for the baseline LE case. A slight deviation can be observed for the serrated LE case, but 

generally the scaling law can still be applied in this case. This particular velocity dependency is consistent with the 

Amiet flat plate model [21]. 

 

Fig. 5 Non-dimensionalized SPL spectra for the baseline and serrated LE at different flow velocities. The 

airfoil is set at z/H = 0 with Tu = 3.79 %. Note that the SPL for the serrated LE is shifted by 30 dB. 

The Amiet model [21] was also used to validate the AGI noise produced by a baseline, straight LE airfoil in the 

current setting. The Amiet’s model was modified slightly by taking into account of the consideration of the airfoil 

thickness according to Gershfeld [22]: 
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where Λuu is the longitudinal integral length scale of the turbulence, Tu is the turbulence intensity, R is the observer 

distance, b the airfoil semi-span, d is the airfoil thickness and     is the normalized longitudinal wavenumber. The 

Λuu and Tu were measured independently. The model takes into account of the cross-power spectral density of the 

surface pressure on the airfoil caused by the turbulence.  



Figure 6 shows the comparison of the power spectral density of the far field noise for the baseline, straight LE at 

three different flow velocities between the theory and experimental results. There is reasonably good agreement with 

Amiet’s flat plate model for the mid-frequency range. The under-prediction at the high frequencies is mainly due to 

the dominance of the trailing edge self-noise. In case of the higher flow velocity, a larger discrepancy between the 

measurement and prediction is observed at the low frequencies. This can be attributed to the larger influence of the 

wind tunnel noise. At more extreme geometrical setting of the remaining parameters (e.g. increased angle of attack), 

however, the comparison between the measured noise and Amiet model becomes less accurate. This is mainly due to 

the increasingly mismatch between the Amiet’s flat plate model and the NACA65(12)-10 airfoil with a significant 

LE curvature at large angle of attack. 

 

Fig. 6 Comparison between the Amiet’s flat plate theory and the experiment results at Tu = 3.8 %, z/H = 0 

and Λuu = 5.8 mm. 

 

III. Statistical – Empirical Modelling Technique 

Prior to the modelling, it is important to first identify meaningful target values for the present study. A set of five 

parameters, namely the Reynolds number (Re), the turbulence intensity (Tu), the serration amplitude (A/C), the 

serration wavelength (λ/C) and the angle of attack (z/H), were selected for the analysis. The main objective of the 

present work is to develop a statistical-empirical model to describe the independent effects and the 

interdependencies among the five influencing parameters on the AGI noise-reduction. For this purpose, the statistical 

Design of Experiments (DoE) approach was used. 



When analyzing a defined physical experimental space by varying several influencing parameters, the classical 

method would be to vary one of the parameters, while the others remain constant. This procedure will then be 

repeated for each parameter of interest (raster method). This might be an easy and effective method to describe the 

influence of these parameters on a certain response variable with a high accuracy, as long as the number of 

parameters is small, and the interdependencies between the parameters are disregarded. 

An increase of the parameters inevitably leads to an exponential rise of the necessary measurement trials (MT). 

According to the n-permutation in Eq. (5), analyzing a system with five parameters (k) and varying the parameters 

on five levels each (n) will result in 3125 trials. This represents a hardly manageable experimental volume. Instead, 

applying the statistical Design of Experiments (DoE) approach as per the Eq. 6 could lead to a significant reduction 

of the experimental volume to 43 trials without a significant loss of information on the system behavior. This 

approach keeps the experimental volume manageable and facilitates the detailed analysis of multiple parameters 

with a reasonably high accuracy. 

 

                              (5) 

                                  (6) 

 

A. Design of Experiments (DoE) Methodology 

The objective of the experimental modelling is the ability to describe the defined experimental space by means 

of functions that take into account of all the influencing parameters of significance (Eq. 7). For this purpose, the 

response variables (RV) have to be defined in order to act as target values of the regression functions. The 

coefficients are determined in accordance to the chosen set of influencing parameters (IP). 
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The Design of Experiments methodology is based on the definition of an experimental space for a setup that 

consists a full factorial core [-1 ... +1], star points [-α ... +α] that label the upper and lower experimental boundaries, 

and a central point [0], which is defined as the experimental adjustment where all the parameters are on their 

intermediary values [23–26]. Based on this experimental composition of the DoE methodology, the analytical 



statistic gathers the population from a subset. A circumscribed central composite design (CCD) was chosen as the 

appropriate experimental design. Circumscribed CCDs are characterized by statistical properties, such as the 

orthogonality or rotatability [27]. 

An experimental design is defined as rotatable, if the variance of the probability distribution is a function of the 

distance between the star point and the central point, and not of the direction, as is the case with orthogonality. 

Given a set of points within the experimental space at a constant distance to the central point, the rotatable design 

shows a consistent accuracy in the prediction for all the points. With regards to the statistical analysis, this property 

is highly advantageous [23]. On the contrary, the orthogonal designs are advantageous because they can avoid the 

confounding of the effects. This enables the determination of all the regression coefficients independently [28, 29].  

In general, the α-values (star point locations) are higher than the coordinates of the central core (αDoE > 1), thus 

represent the limits of the experimental space. Consequently, each factor is varied as a combination of the five non-

dimensional levels [+α, +1, 0, -1, -α]. A special design is the combination of both the properties in orthogonality and 

rotatability. As the requirements of orthogonality are not completely grantable while simultaneously guaranteeing 

the rotatability, this design is defined as pseudo-orthogonal and rotatable. It combines the advantages of both 

properties, especially because the resulting confounding is of negligible magnitude (< 0.02%). 

As already described, the Design of Experiments approach is limited to describing the experimental space of 

interest by the functions of first and second order as well as linear interdependencies between the single influencing 

parameters (Eq. 7). In order to choose a valid model, preliminary investigations are necessary to ensure that the 

system satisfies these conditions. With this purpose all the five influencing parameters were analyzed individually in 

a preliminary study and their effects on the target values were evaluated carefully. This analysis, in combination 

with the defined experimental design, results in the test matrix as shown in Table 2, which also includes the upper 

and lower parameter settings. The total number of measurement point is 43, in addition to 16 repetitions for the 

central point in order to define a system-characteristic statistical spread, and to guarantee the desired statistical 

features. The trials of the strategically planned experiment were performed in a random order and they were 

repeated twice to obtain the average values. This procedure is to secure the reduction and elimination of unknown 

and uncontrollable quantities. Additionally, the analysis of the statistical significance allows the elimination of 

parameters with impacts on the response variable that is smaller than the statistical spread. 

 



B. Response Variables 

The response variables (RV) can be described by means of all influencing parameters in the first and second 

order as well as the interdependencies between the influencing parameters (Eq. 7). Defining the response variables is 

a crucial part of evaluating the experimental data. They are expected to describe the system with the necessary 

accuracy. This study focuses on the overall sound reduction of serrated LE compared to a baseline LE, and does not 

predict the SPL at a particular frequency. Consequently, the response variables of interest are limited to the OASPL. 

To define a sound pressure reduction level, information on both the baseline and the serrated LE are necessary. It is 

important to note that single microphone measurements were performed, hence, information on the sound 

directivity, overall sound power levels and sound power reduction are not available. 

However, the dependencies of the sound generation itself are also of interest because it facilitates the analysis of 

the influence of each case on the reduction independently. As shown in Eq. (8), the noise produced by a baseline LE 

is a function of the Reynolds number, turbulence intensity and angle of attack. In the case of serrated LE, additional 

influences of the serration wavelength and amplitude must be taken into consideration (Eq. 9). 
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Note that pref = 2x10
-5

 Pa and the frequency range of interest is between 300 Hz and 10 kHz. Subtracting the 

OASPLSerr from the OASPLBL gives the overall sound pressure level reduction ΔOASPL (Eq. 10). 
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IV. Selection of Key Noise Results 

Generally, as shown in Fig. 7a, the serration amplitude is the main factor in reducing the broadband noise. At Re 

= 425,000, Tu = 3.79% and z/H = 0, the LE serration is found to be the most effective in frequency range between 

850 Hz and 3500 Hz, where an average sound pressure level reduction of up to ΔSPL ≈ 10 dB is achieved by the 

largest serration amplitude (A/C = 0.3).  



The turbulence intensity by itself was found to be another important factor that can dictate the level of broadband 

noise reduction. The narrow band spectra subjected to Tu = 2.08%, 3.79% and 5.5% under influencing parameters of 

Re = 425,000, z/H = 0, /C = 0.175 and A/C = 0.19 are plotted in Fig. 7b. It can be seen that the ΔSPL increases with 

increasing level of Tu. This effect is especially distinct in the intermediate frequency range of approximately 800 Hz 

to 4 kHz. It is important to note that the frequency range corresponding to the scenario when ΔSPL > 0 broadens 

when the Tu increases. Increasing the Tu from low to intermediate values causes an increase of the upper frequency 

limit where noise reduction is still effective. A high Tu also leads to an increase of the noise reduction towards the 

low frequencies. More specifically, the level of broadband noise radiation for the baseline LE, and thus the 

OASPLBL, increases with the level of Tu. Consequently, the noise reduction capabilities of the serrated LE are also 

the most effective at the elevated Tu condition. 

  
a) b) 

Fig. 7 The SPL spectra for the baseline (BL) and serrated airfoil at a) different serration amplitudes (A/C), 

where the vertical dashed lines indicate the frequency bandwidth of the noise reduction (850 Hz < f < 3.5 

kHz), and b) different levels of Tu. The baseline LE and serrated LE are represented by the straight and 

dashed lines, respectively. Spectra correspond to the different Tu levels are shifted by 0 dB, 15 dB and 30 dB. 

 

The noise reduction due to the serrated LE should increase linearly with frequency (at mid-to-high frequencies) 

until it is masked by the self-noise at high frequency, and little reduction should be expected at low frequencies. 

These characteristics can also be re-produced in the current experimental results. Figure 8 shows the ΔSPL spectra 

for a number of cases involving different serration wavelengths and amplitudes, as well as the turbulence intensities 

and Reynolds number. When the serration amplitude is fixed but with different serration wavelengths (Fig. 8a), the 

spectra demonstrate a linear increase of ΔSPL from mid-to-high frequencies until reaching ΔSPL ≈ 12dB for the one 
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with the smallest serration wavelength. After reaching this peak, the ΔSPL begins to drop at higher frequency due to 

the prominence of the self-noise radiation. As shown in Fig. 8b, when the serrated leading edge is subjected to 

different flow velocities, it produces the ΔSPL spectral shape that is very similar to those presented by Narayanan et 

al. [1] and Chaitanya et al. [3], i.e. the effective frequency range underpinning the ΔSPL will increase with 

increasing flow velocity. Figure 8c shows the influence of the serration amplitude on the ΔSPL spectra, which 

demonstrates that larger level of noise reductions can be achieved with a larger serration amplitude. This observation 

is consistent with the results reported by Narayanan et al. [1]. Finally, Fig.8d shows the influence of the freestream 

turbulence intensity on the noise reduction, which is consistent with the earlier results. 

  

  

Fig. 8 The SPL spectra at different a) serration wavelengths λ, b) Reynolds number Re, c) serration 

amplitude A and d) turbulence intensity Tu. Frequency normalized by Strouhal number Sr = f∙C0/U, where 

C0 is the baseline chord length and U the free stream velocity. 
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Tu = 2.1%

Tu = 3.8%

Tu = 5.5%

A29λ26 

Tu = 3.8% 

U = 43.5 ms
-1

 

Tu = 3.8% 
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a) b) 
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A. General System Information 

All four response variables were analyzed with the design of experiment methodology described earlier. Figure 9 

shows the comparison of the experimentally-observed and the regression-predicted OASPL values produced by a 

serrated LE. The diagonal line represents a perfect match between the observed and predicted OASPL. Figure 9 

shows that the measured OASPL for the serrated airfoil have an excellent agreement with the model, resulting in a 

standard deviation of 0.15 – 0.17%. 

 

Fig. 9 Check of fit for the statistical-empirical model. Plot of observed vs. predicted values of the OASPL 

level produced by a serrated LE. There are 59 measurement points. 

 

The radiated noise by a baseline LE was also analyzed at different Reynolds numbers, turbulence intensities and 

angles of attack. Note that the influence parameters of serration amplitude and serration wavelength are not included 

in the noise prediction for the baseline airfoil. The statistical spread rises slightly, however, when defining the 

ΔOASPL as uncertainties of the baseline and the serration prediction accumulate. For the first time, a ranking of the 

main factors and the interdependencies by means of their influence on the broadband noise reduction is presented. 

The Pareto diagrams in Fig. 10 show the enhancing (> 0) and suppressing (< 0) effects of the influence parameters 

on the target values. The ΔOASPL characterizes the sound reduction capability of the LE serrations. The diagram 

(Fig. 10b) shows that, in contrast to the response variables of the serrated noise in the absolute value of OASPL (Fig. 

10a), the most dominant factor affecting the level of broadband noise reduction is the serration amplitude. The 

Reynolds number, previously the strongest enhancing factor for the absolute OASPL, seems to become less 

important for the sound reduction capability. Moreover, an increased influence of the serration wavelength on the 



sound reduction is apparent in a linear and quadratic form. In general, the most significant dependencies of the 

overall sound pressure level reduction (ΔOASPL) demonstrated in this study are consistent with the findings of 

previous studies [3, 2, 30–33, 5, 34, 35]. 

  
a) b) 

Fig. 10 Pareto diagrams. Ranking of enhancing (> 0) and suppressing (< 0) effects. The vertical line 

indicates the level of statistical significance (p = 5 %). Distinction between the linear (L) and quadratic (Q) 

effects are indicated. Response variable for a) OASPL by a serrated LE, and b) ΔOASPL. 

 

The resulting sound pressure level for both the straight and serrated LEs, as well as the corresponding sound 

reduction, can be predicted with respect to the different influence parameters by the regression functions in Table 3. 

The model predicts the response variables by taking into account the statistically significant factors. Terms in red 

and italic represent factors whose influence is smaller than the statistical spread, and they can be added to the error 

term. This can reduce the complexity of the regression functions and keep the number of variables to a minimum. 

 

Table 3 Functions of response variables defined as linear combination. Terms in red and italic indicate the 

influences which are smaller than the limit of the statistical significance (p = 5%). 

Term OASPLBL = OASPLSerr = ΔOASPL = 

 [dB] [dB] [dB] 

Constant 1.116E+01 6.780E+00 2.123E+00 

Re (L) +1.478E-04∙Re +1.437E-04∙Re +4.002E-06∙Re 

Re (Q) -1.049E-10∙Re² -9.310E-11∙Re² -1.175E-11∙Re² 

Tu (L) +1.234E+01∙Tu +1.491E+01∙Tu -2.426E+00∙Tu 

Tu (Q) -1.281E+00∙Tu² -1.472E+00∙Tu² +1.922E-01∙Tu² 

A/C (L) -- -3.800E+01∙A/C +4.994E+01∙A/C 

A/C (Q) -- +3.249E+01∙(A/C)² -6.538E+01∙(A/C)² 

λ/C (L) -- +1.352E+01∙ λ/C -1.835E+00∙λ/C 

λ /C (Q) -- +3.531E+01∙ (λ/C)² -5.787E+01∙(λ/C)² 

 z/H (L) -1.142E+01∙z/H -1.357E+01∙z/H +4.658E+00∙z/H 

z/H (Q) -5.152E+01∙(z/H)² -5.638E+00∙(z/H)² -4.574E+01∙(z/H)² 

Re ∙ Tu +6.323E-07∙Re∙Tu +1.715E-07∙Re∙Tu +4.608E-07∙Re∙Tu 

Re ∙ A/C -- +2.327E-05∙Re∙A/C -1.876E-05∙Re∙A/C 

Re ∙ λ/C -- -2.221E-05∙Re∙ λ /C +1.709E-05∙Re∙λ/C 



Re ∙ z/H -8.150E-06∙Re∙z/H +1.574E-05∙Re∙z/H -2.389E-05∙Re∙z/H 

Tu ∙ A/C -- -2.349E+00∙Tu∙A/C +1.951E+00∙Tu∙A/C 

Tu ∙ λ/C -- -4.268E+00∙Tu∙ λ/C +3.847E+00∙Tu∙λ/C 

Tu ∙ z/H +3.069E+00∙Tu∙z/H +2.115E+00∙Tu∙z/H +9.546E-01∙Tu∙z/H 

A/C ∙ λ/C -- +2.290E+01∙A/C∙ λ /C -2.521E+01∙A/C∙λ/C 

A/C ∙ z/H -- +6.987E+00∙A/C∙z/H -1.649E+01∙A/C∙z/H 

λ/C ∙ z/H -- -4.926E+01∙ λ/C∙z/H 4.524E+01∙λ/C∙z/H 

The intermediate effect on the influencing parameters within the experimental space on the overall noise 

reduction is plotted in Fig 11. The serration amplitude has the highest intermediate effect with an almost linear 

relationship between the A/C and ΔOASPL, before reaching an asymptotic level when the A/C is increased further. 

The serration wavelength /C shows a non-linear behavior where the optimum is achieved at intermediate 

wavelength, beyond which the noise reduction capability is weakened considerably. The predicted profile for the 

influence of the turbulence intensity Tu exhibits a large level of noise reduction at high Tu levels. On the contrary, at 

a band of low Tu, low level of noise reduction is predicted. This is in agreement with the measurements shown in 

Fig. 7b, where a high Tu is identified to be able to cause a high level of broadband noise radiation from a baseline 

airfoil. This in turn facilitates an increase of the noise reduction capability when a serrated LE is used. However, it is 

important to note that the effects of the individual parameters on the overall noise reduction in Fig. 11 cannot be 

attributed to the serrated LEs only. This is because different levels of Re, Tu and angle of attack (z/H) can also affect 

the baseline straight LE. Thus, a more detailed analysis of the noise reduction by the serration requires an 

independent analysis of the noise radiation by the baseline and serrated airfoil, respectively. 

  

Fig. 11 Intermediate impact of the influencing parameters on the ΔOASPL, including the error band. The 

horizontal blue band indicates average noise reduction by the use of serrated LEs.  



B. Interdependency of serration wavelength and turbulence intensity (λ/C ∙ Tu) 

A significant effect identifiable in the response variable ΔOASPL was found to be an interdependency of the 

serration wavelength and the turbulence intensity (λ/C·Tu), as can be seen in the Pareto diagram (Fig. 10b). At low 

Tu, small serration wavelengths are needed in order to achieve a high level of noise reduction, as exhibited by the 

red color region in Fig. 12. As the Tu is related to the integral length scale Λuu of the incoming gust, large serration 

wavelengths are expected to be less effective in the de-correlation effects especially if the incoming gust is 

characterized by small turbulent eddies. Previous investigations suggested that serration wavelengths should be 

small to achieve good level of noise reduction, although in general the impact of the serration wavelength is not as 

dominant as the serration amplitude [3, 5, 2]. The interdependency in Fig. 12 shows that the optimum serration 

wavelength highly depends on the incoming Tu level. Low to intermediate Tu support the previous findings that a 

smaller serration wavelength is more desirable. However, at high Tu, serration wavelengths of intermediate values 

are far more effective in reducing the OASPL, as shown in Fig 12. This agrees with the finding of a recent work [3], 

where the optimum serration wavelength is found to be twice the size of the incoming turbulent structure in the form 

of the integral length scale Λuu. An optimal set of Tu and λ/C leads to a reduction of the fluctuating acoustic pressure 

of about 53% to that produced by the baseline airfoil. 

 

Fig. 12 Influence of interdependency between the serration wavelength (λ/C) and turbulence intensity (Tu) 

on the ΔOASPL. Other influencing factors remain on intermediate levels (Re = 425,000, A/C = 0.19, z/H = 0).  



In order to gain a deeper insight in the underlying principles, the acoustic spectra at Re = 400,000, A/C = 0.2 and 

z/H = 0 have been analyzed in more detail. Figure 13 shows the influence of the serration wavelength at Tu = 5.5% 

(Fig. 13a) and at Tu = 3.2% (Fig. 13b) and compares them to the baseline case. In general, high turbulent inflow 

causes an OASPL which is about 4.5 dB higher compared to the low turbulent case for the baseline airfoil. The 

serrated LEs respond more sensitively at high Tu for the OASPL regardless the level of the serration wavelength, 

where up to 4.8 dB in OASPL could be achieved. For the low Tu case, however, there is a wider spread of the noise 

reduction efficiency among the different serration wavelengths, where a low serration wavelength tends to achieve 

higher noise reduction especially in the low frequency region of 300 Hz ≤ f ≤ 2 kHz. This supports the 

interdependency described previously as the level of noise reduction differs only slightly when varying the serration 

wavelength at high Tu; at low or intermediate Tu, large serration wavelengths become ineffective in the noise 

reduction. Moreover, in the low frequency region the noise reduction for the intermediate to large serration 

wavelengths mainly takes place at frequencies f ≤ 4 kHz. However, in the high Tu case the noise reduction occurs up 

to f = 6 kHz albeit the comparatively low energy level in the high frequency region prevents significant changes in 

the overall sound pressure level. 



  

Fig. 13 Narrow band spectra for the different serrations wavelength at a) Tu = 5. 5% and b) Tu = 3.2%. 

The remaining parameters remain on constant, intermediate levels at Re = 400.000, z/H = 0, A/C = 0.2. 

 

C. Interdependency of angle of attack and serration wavelength (z/H ∙λ/C) 

In addition to the interdependency between the turbulence intensity and serration wavelength described 

previously, another interdependency between the angle of attack and the serration wavelength (z/H ·λ/C) was also 

found to be significant, as shown in Fig. 14. In general, the level of noise reduction by the serrated LEs is the 

maximum at zero angle of attack, which is in agreement with other authors [2, 3]. However, at a large negative z/H 

(or AoA), small serration wavelengths are needed to achieve a reasonably large noise reduction (red color region), 

whereas serration wavelengths of intermediate dimensions are preferable at large positive z/H. The underlying 

principle of this interdependency could be related to the specific semi-cyclic shape of the LE serrations relative to 

the stagnation point of the incoming flow. In the case of zero angle of attack, the serration wavelength that can 

achieve the largest noise reduction is defined by how well it can de-correlate the spanwise coherence of the 

turbulence eddies, and how efficient it can facilitate a “nozzle” effect to accelerate the flow from the serration tip to 

the serration root and reduce the Tu level. At a negative z/H, the projected area of the upper surface of the LE will 
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cause a significant impingement upon the incoming gusts. In this case, the use of small wavelength serrations is a 

logical choice.  

 

Fig. 14 Influence of interdependency between the serration wavelength and angle of attack (λ/C · z/H) on 

the ΔOASPL. Other influencing factors remain on the intermediate levels (Re = 425,000, A/C = 0.19, Tu = 

3.8%).  

 

This is because a small serration wavelength will cause many three-dimensional undulations on the upper surface 

of the LE, which will maintain the serration effect to achieve the interaction noise reduction. 

In the case of a positive z/H, the incoming flow will naturally impinge on the lower surface of the LE. However, the 

planar geometry at the lower surface of the serrated LE means that the three-dimensional undulation can no longer 

be achieved by using a small serration wavelength. Instead, a larger serration wavelength is preferable to avoid the 

direct impingement between the incoming gusts and the LE geometry.  

Of particular interest is the impact of this interdependency (z/H ·λ/C) on the narrow band spectral characteristic. 

It has already been known that the smallest serration wavelength does not necessarily lead to a maximum noise 

reduction across the whole frequency range [2]. A first indicator for the effect of small serration wavelengths on the 

noise can be found in the high frequency region above 10 kHz (Fig. 15), where all the different serration 

wavelengths actually lead to noise increase. It is clear that the largest noise increase occurs at the smallest serration 

wavelengths. However, this effect is neglected in the present study because the lower and upper frequency limits for 



the OASPL analysis are taken at 300 Hz and 10 kHz, respectively. Within this frequency range, the noise reduction 

capability usually improves when the serration wavelength reduces.  

 

Fig. 15 Narrow band spectra produced by the baseline and serrated LEs of different serration wavelength 

at Re = 400,000, Tu = 3.7%, A/C = 0.2 and z/H = 0. 

 

 

                    a)           b) 

Fig. 16 Contours of SPL as a function of f and Uo. The serrated LEs have the common influence 

parameters of A/C = 0.2, z/H = 0 and Tu = 3.7%, but at different a) λ/C = 0.1 and b) λ/C = 0.05. 

 

The impact of the serration wavelength on the low frequency region can be examined in Fig. 16 where the noise 

reduction SPL of a serrated LE with the intermediate (λ/C = 0.1) and a small serration wavelength (λ/C = 0.05) are 

compared with each other as a function of the inflow velocity and frequency. Above f = 1 kHz the noise reduction is 
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significantly higher for the small serration wavelength (Fig. 16b). However, as indicated by the circled black region 

in Fig. 16a, the level of noise reduction is higher for the intermediate wavelength in a frequency range of 500 Hz  f 

 1.2 kHz. As a result, the ΔOASPL is slightly higher for the intermediate λ/C = 0.1 case. 

 

Figure 17 shows the SPL spectra produced by the baseline and serrated LEs of a slightly larger serration 

wavelength (λ/C = 0.175) at different angles of attack AoA (or z/H). At first glance, it is clear that the largest level of 

noise reduction occurs at z/H > 0 and across the widest frequency range (Fig. 17a). The level and frequency range of 

the noise reduction are lessened as the z/H decreases. However, a closer examination shows that the sensitivities of 

the SPL and OASPL to the z/H are different between the baseline and serrated LEs. For the baseline LE, the lowest 

OASPL is achieved at z/H < 0 what is mainly due to the low level of noise radiation in the frequency range of 2 kHz 

≤ f ≤ 4 kHz. The largest level of OASPL produced by the baseline airfoil, on the other hand, is achieved at z/H = 0. 

The noise level produced at z/H > 0 lies in between. For the serrated LE, the lowest level of the OASPL is achieved 

at z/H > 0. As the z/H slowly decreases, the level of OASPL increases. This contradictory behavior between the 

baseline and serrated LEs for the noise radiation should be taken into consideration when examining the 

interdependency (z/H ·λ/C) for the SPL or OASPL. 

In Fig. 17c, when the airfoil is set at z/H = –0.128, there is little noise reduction at 1.2 kHz  f  3.8 kHz because 

of the opposite trends in SPL produced by the baseline airfoil (reduction in the SPL level) and serrated airfoil 

(increase in the SPL level), respectively. At f > 3.8 kHz, the serrated LE even causes a significant noise increase 

which is not due to the experimental error as we have re-tested it many times. Rather, the presence of the serration 

wavelength actually facilitates cross-flow from the projected upper surface of the LE, through the serration air gaps 

and exits the lower surface of the LE. This particular fluid–structure interaction causes the noise to increase at high 

frequency that will otherwise be absence in a baseline LE. This conjecture is supported by the clear trend from other 

results where the noise increase at high frequency will gradually cease to exist when the angle of attack increases. 

 



   
a) b) c) 

Fig. 17 Narrow band spectra (300 Hz < f < 10 kHz) for the noise produced by the baseline LE (solid lines) 

and serrated LE (dotted lines) at a) z/H = 0.128, b) z/H = 0 and c) z/H = -0.128 

 

D. Model Refinement 

Complementary measurements were carried out in the outer regions of the defined experimental space to test the 

stability of the statistical model, especially at the extreme settings of the influencing parameters. The measurement 

results were found to fit well to the model, although an increase of prediction uncertainty was observed with 

multiple factors on the extreme levels, which statistically represents a large distance between the central point and 

the measurement locations. In general, the model was found to predict the absolute level of noise radiation (SPL and 

OASPL), and the level of noise reduction (SPL and OASPL) reasonably accurate. 

However, up to now, the model is based on a data set of 59 measurement trials, including the measurement of the 

central point for 17 times in a randomized order to describe the statistical spread of the model. In order to improve 

the stability of the developed model, additional data points were incorporated from an independent previous study, 

which took place under the same measurement conditions, but with different leading edge serrations and flow 

parameters [2]. The measurement results from the previous study are combined with the current model to increase 

the total measurement points to 285. This improved model serves as a data base to predict the noise radiation by the 

serrated LE at various configurations, as well as the noise reduction when compared with the baseline airfoil. The 

additional measurement results are based on eight serration designs (see the table within the Fig. 18a), which were 

tested in a velocity range of 20 ms
-1

 ≤ U0 ≤ 60 ms
-1

, or Reynolds number of 200,000 ≤ Re ≤ 600,000, respectively. 

The turbulence level was varied by interchanging three grids that yield Tu = 3.2 %, 3.7 % and 5.5 %. The angle of 

attack was altered from -0.102 ≤ z/H ≤ 0.128, or -8 deg ≤ AoA ≤ +10 deg, respectively. The extended model was 

found to fit well to the initially developed algorithm as indicated by the regression curve for the OASPL in Fig. 18b. 
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The fit of regression shows a good match of high order when comparing between the observed and predicted values 

for the OASPL by the serrated LE. 

 

  
a) b) 

Fig. 18 Check of model validity for the serrated LE noise (OASPLSerr). a) Pareto diagram for the extended 

model. The insert table shows the test matrix for additionally serration parameters at 200,000 ≤ Re ≤ 600,000 

and -0.102 ≤ z/H ≤ 0.128 from [2] and b)  Plot of observed vs. predicted values of the OASPLSerr comprising 

285 measurement points (initial reference model is shown in Fig. 9). 

 

If the original model (Fig. 10a) is compared with the refined one (Fig. 18a), the dependencies are found to be the 

same order and magnitude for the OASPL and OASPL. When examine the Fig. 18a, the modified interdependency 

plot between the Re and λ/C for the OASPL of serrated airfoil remains almost unaffected by the additional data 

points, although it is expected to be more reliable due to the increased data pool. This is manifested in Fig. 19 where 

the blue circles indicate the underlying set of data on which the model was established. Despite a significant increase 

of the amount of experimental data in Fig. 19b, the shape and magnitude of the interdependency remain almost 

constant. 

To conclude, the additional data pool in the modified model has a negligible impact on the main factors and the 

reliability of the original model which uses less data points. Furthermore, all the interdependencies remain very 

similar although there are slight changes in the magnitude as a result of the additional data pool. Therefore, the 

results presented in this section confirm that the original statistical-empirical model is still stable and reliable. 

 

  A, mm 30 45 

λ
 ,

 m
m

 7.5 x x 

15 x x 

30 x x 

45 x x 

 



  

a) b) 

Fig. 19 Comparison of interdependency between the (Re · λ/C) for the a) original model, and b) improved 

model by the use of additional data points (circles) obtained from [2]. 

 

E. Polyoptimum of noise reduction and noise radiation 

The purpose of the current system is to reduce the broadband LE noise caused by the interaction between the 

high turbulent inflow conditions and the LE. Therefore, in addition to the main focus on achieving high level of 

noise reduction as defined by the relative difference between airfoils with straight and serrated LEs, it is also 

desirable to produce low absolute magnitude of the overall sound pressure. An algorithm has been developed to 

define a polyoptimum of the radiated noise and the noise reduction capability by the serrated LEs.  

Of further interest is the qualitative information on the impact of the different influencing parameters on the 

polyoptimum. As shown in Fig. 20 the independent response variables OASPLSerr and ΔOASPL were weighted with 

an emphasis on the reduction of the OASPL. This means that the OASPL is weighted linearly between 50 – 70 dB 

where 50 dB equals to an acceptability of 100%. In contrast, the ΔOASPL accounts for zero percent acceptability at 

2 dB with a slope of 2 until reaching the desired optimum of 10 dB overall noise reduction (100% acceptability). 

 



 

Fig. 20 Weighted functions of the single analyzed response variables. 

 

Figure 21 shows the polyoptimum of noise radiation and noise reduction with serrated LEs. The first row shows 

the dependencies on the noise radiation (OASPL) where the Re effect is clearly the most influential. It is then 

followed by the Tu and A/C. The /C and z/H, on the other hand, can be considered as the secondary importance. 

The effects of the influencing parameters on the noise reduction (OASPL) are shown in the second row of Fig. 21. 

With the exception of the Tu, the rest of the influencing parameters exert reverse trend between the OASPL (for the 

serrated LEs) and the OASPL. For example, an increase of the Re would increase the OASPL. As a result, the 

OASPL will reduce. A maximum noise reduction of ΔOASPL = 7.5 dB, while maintaining a relatively low noise 

radiation of OASPL = 53.8 dB, is reached at the minimum Re, Tu and /C in combination with the maximum A/C 

and z/H. As shown in the third row in Fig. 21, the contribution of each of the parameters to the polyoptimum, which 

is defined as the acceptability, spreads over large margins. In order to achieve a minimum absolute level of noise 

radiation while maintaining a high noise reduction capability of the serrations, one could utilize the algorithm of the 

polyoptimum to optimize the effective degrees of freedom when other design parameters are fixed. 

 



 

Fig. 21 Polyoptimum of the OASPL (top row) and the noise reduction capability ΔOASPL (center row), as 

defined by the function of acceptability (bottom row and Fig. 20) 

 

F. Model Validation with External Data 

To validate the statistical-empirical model developed in this paper, the predicted OASPL and OASPL are 

compared with external data obtained independently in the DARP Aeroacoustic Wind Tunnel at the Institute of 

Sound and Vibration Research (ISVR), University of Southampton [3]. The model was scaled in accordance with the 

different experimental conditions (e.g. microphone measurement locations) before the comparison was made. The 

airfoil used in ISVR is the same type (NACA 65(12)-10) with a chord length C = 150 mm and a span of S = 450 mm. 

The authors forced a bypass transition of the boundary layer from laminar to turbulent by the tripping tapes in order 

prevent the production of the laminar instability tonal noise [3]. At elevated level of freestream turbulence the LE 

noise is considered to be the dominant noise source. Therefore in this case the boundary layer tripping can be 

assumed to have no influence on the radiated noise [36, 37]. The tests in ISVR were performed by the use of serrated 

sinusoidal LEs, defined by the amplitude, with a peak-to-trough ratio of 2h and the wavelength λ. Note that there is a 

difference in the definition of the serration parameters, where ISVR adopted the “same wetted-area” principle. This 

means that for the same serration amplitude, A = 2h, the serration peak would extend the initial airfoil chord length 



by h, giving an overall chord of (C + h). Accordingly, the serration root would, retracted by h, give an overall chord 

of (C – h).  

The turbulence intensities at the ISVR were generated at Tu = 2.5% and 3.2%, and the incoming flow velocities 

are U0 = 20 ms
-1

, 40 ms
-1

,
 
and 60 ms

-1
. The difference in distance of the far field microphone location is corrected by 

use of the monopole scaling law according to Eq. (11). 

                        
  

  
                  

  

  
         (11) 

 

where R1 and R2 are the absolute distances between the source and the observer (measurement location) at a polar 

angle of Θ = 90 deg. Differences in the span were also compensated by a linear scaling. Twelve measurement points 

were analyzed at zero angles of attack and Tu = 2.5%. The Reynolds numbers were matched at Re = 394,000 and 

624,000. The serration amplitudes are varied by 0.1 < A/C < 0.35, and the serration wavelengths are varied by 0.05 < 

/C < 0.25. 

Applying the specific boundary conditions of the ISVR test rig to the current model yields the predictions of the 

OASPL for both the baseline and serrated airfoils, which are shown in Fig. 22. It is clear that excellent agreement 

has been achieved between the predicted and measured data. The overall noise reduction ΔOASPL also demonstrates 

a good agreement with the predictions, although with a slightly larger discrepancy due to the accumulated errors in 

the OASPL radiated by both the baseline and serrated airfoils. 

 

  
a) b) 

Fig. 22 Validation of the current statistical-empirical model with external experimental data provided by 

ISVR, University of Southampton [3] at different a) serration amplitudes, and b) serration wavelengths. 

Predicted OASPL with serrated LE (solid lines) and OASPL (dotted lines). The circle and diamond symbols 

represent the experimental results by the ISVR. 

 

The OASPL reduces when the serration amplitude increases, as predicted by the model. The influence of the 

serration wavelength shows a different behavior. The predicted data underlines a decreasing OASPL with 



increasing serration wavelength (Fig. 22b). This trend contradicts with the ISVR’s experimental findings, which 

show that the OASPL increases slightly with the serration wavelength. The discrepancies between the predicted 

and measured values are up to 1.2 dB at the largest serration wavelength. Altogether, the current statistical model 

can still be regarded as a robust tool for the predictions of the AGI-broadband noise subjected to serrated LEs. 

V. Conclusion 

An experimental aeroacoustic study was performed to quantify the effects of five influencing parameters on the 

Airfoil-Gust-Interaction broadband noise of a NACA65(12)-10 airfoil and the noise reduction achieved by the 

serrated leading edges. For the statistical-empirical modelling, the Design of Experiments (DoE) technique was 

utilized to reduce the experimental volume to a manageable amount in order to gain information on the 

interdependencies of each influencing parameter and to develop a prediction tool that describes the overall noise 

radiation. The model, initially based on 59 measurement points, was validated to be accurate. It is then further 

stabilized by extensive additional data set. It shows an accurate performance at settings close to the defined central 

point of the experimental space, and is only slightly less accurate in the outer regions of the pre-defined setting 

ranges. When the predicted results are compared with the external data which was acquired in a separate 

experimental setting, the excellent agreement indicates that a robust and reliable statistical-empirical model has been 

developed in this study. The aeroacoustic results allow the current paper to reach the following conclusions: 

- A clear ranking and quantification of the influencing parameters, where the Reynolds number (Re) and the 

freestream flow turbulence intensity (Tu) are the main contributors to the broadband noise emissions. On 

the other hand, the serration amplitude (A/C), followed by the Re and the serration wavelength (λ/C) would 

represent the main factors for an effective broadband noise reduction. 

- Identification of a significant interdependence of the serration wavelength and the freestream turbulence 

intensity (λ/C·Tu) with regard to the overall noise reduction capability. This feature could be linked to the 

characteristic size of the incoming gust relative to the size of the serration wavelength. 

- Identification of a significant interdependence of the angle of attack and the serration wavelength (z/H·λ/C) 

with regard to the overall noise reduction capability. This characteristic behavior could be assigned to the 

three-dimensional effects when the flow is approaching the airfoil and the location of the stagnation points 



for the mean flow. The mechanism that causes an increased level of noise radiation at the low serration 

wavelength has also been suggested. 

- An algorithm to achieve the polyoptimum of low-absolute level of noise radiation, as well as high-level of 

noise reduction has been developed. This will serve as a first step towards practical applications in order to 

optimize the effective degrees of freedom in the serration design process. 

The current model has not yet considered additional influencing parameters such as the serration curvature and 

the curvature angle of the airfoil leading edge, which could otherwise expand the model to other airfoil geometries. 

This gap provides an incentive for future work to improve the robustness and fidelity of the current model.  
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