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Abstract: A thermodynamic derivation is presented for a fractional rate-dependent cohesive zone model recently proposed by the authors to
combine damage and linear viscoelasticity. In this setting, the assumptions behind the initially proposed damage evolution law are revisited.
In particular, in the original model damage evolution is driven only by the energy stored in the elastic arm of a fractional standard linear solid
model and the relationship between total fracture energy and crack speed is monotonically increasing, with a sigmoidal shape. Here, physical
arguments are discussed, which could support the hypothesis of allowing damage to be driven also by the remaining parts of the free energy.
The implications of these different assumptions are then studied, analytically and numerically, and in both cases the assumption that damage
is also driven by the remaining parts of the energy results in a nonmonotonic relationship between total fracture energy and crack speed, with a
bell rather than sigmoidal shape. The analysis presented provides a novel physical interpretation of the significant differences found in the
rate dependence of fracture in elastomers and glassy polymers. DOI: 10.1061/(ASCE)EM.1943-7889.0001203. This work is made available
under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Introduction

Rate dependence of fracture can be important in many engineering
applications (Xu et al. 2003; Karac et al. 2011; Chan and Siegmund
2004; Oldfield et al. 2013). It can been investigated via “conven-
tional” fracture mechanics, by assuming that fracture energy Gc is
a function of crack speed ȧ—that is, Gc ¼ γðȧÞ. However, this ap-
proach is rather phenomenological, which leads, first, to the
requirement for a large number of experimental tests to identify
the model parameters and, second, to the difficulty of extending
the validity of these models outside the range of conditions within
which tests have been conducted.

As an alternative method, cohesive zone models (CZMs)
are increasingly been used to model fracture. In particular, a num-
ber of rate-dependent CZMs have been proposed (see Musto and
Alfano 2013, 2015; Musto 2014 and references therein for a review
of different approaches and models in the literature). In fact, CZMs
and fracture mechanics can be treated with a unified approach
within the framework of the variational theory of fracture (Bourdin
et al. 2008). The reader is referred to Del Piero (2014) for a sum-
mary of recent developments, which are, however, limited to the
rate-independent case.

When the rate dependence of fracture is mainly the result of
the viscoelastic response of the material across the interface along
which the crack propagates, the CZMs proposed in Musto and
Alfano (2013, 2015) can be used. Common to both models is
the idea that the energy dissipated during the fracture process is
the combination of two different types of dissipation mechanisms,

one associated with the “rupture” of elastic bonds (i.e., decohesion)
and another one associated with viscous flow. Accordingly, by for-
mulating the model within the framework of thermodynamics with
internal variables, two different internal variables are introduced
and associated with these different dissipation mechanisms: a dam-
age parameterD to model the degree of decohesion and a “viscous”
(Musto and Alfano 2013) or “elastoviscous” (Musto and Alfano
2015) part α of the relative displacement to model the viscous
behavior. The term “elastoviscous” is borrowed from Deseri et al.
(2014), as discussed later in more detail.

The second assumption made in Musto and Alfano (2013, 2015)
is that decohesion is rate independent, whereby a rate-independent
law is defined for the evolution of D. The rate dependence of the
overall interface response is therefore the result of the viscous dis-
sipative mechanism introduced in the model. In Musto and Alfano
(2013), viscous dissipation is a quadratic function of α̇ and, in the
absence of damage, the interface response is that of a viscoelastic
standard linear solid (SLS) model. In this way, in the general case
the interface stress is the product of a Volterra convolution operator,
with exponential kernel, and a scaling factor 1 −D, which accounts
for interface damage. For a simple proof of concept the model in
Musto and Alfano (2013) is kept to the simplest level so that a sin-
gle relaxation time is considered, whereby the rate dependence of
the response can be captured only over a limited range of crack
speeds.

To increase the prediction capability of the model presented in
Musto and Alfano (2013), one could simply increase the number of
Maxwell arms of the rheological model, but this requires the cal-
culation of a large number of constants. On the other hand, follow-
ing the work of Nutting (1921), it is widely accepted that the
behavior of most rate-dependent materials is captured with much
better approximation if the exponential kernel in the Volterra con-
volution operator is replaced with a power-law kernel, at least
within limited values of stresses and strains whereby linear viscoe-
lasticity is a valid theory for the undamaged material. It has also
been well known for almost 80 years (Scott Blair 1947) that the
use of a power-law kernel is equivalent to the introduction of frac-
tional derivatives when the problem is written in differential form,
which has led to the development of fractional viscoelasticity.
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Based on these considerations, the model initially proposed in
Musto and Alfano (2013) was refined in Musto and Alfano (2015)
by considering a fractional viscoelastic model for the undamaged
response. In particular, a “fractional” SLS (FSLS) model is used
by replacing the dashpot of the SLS model used in Musto and
Alfano (2013) with a new “Scott Blair element,” in which the stress
is proportional to the fractional derivative of order ν of the relative
displacement, with 0 < ν < 1. This element was called a “spring-
pot” in Musto and Alfano (2015), following (Koeller 1984),
although here, following (Mainardi and Gorenflo 2007), it will
be called the “Scott Blair element” to give credit to the pioneering
work of G. W. Scott Blair, who was the first to introduce this con-
stitutive law and the use of fractional derivatives to model a
mechanical response that is intermediate between the two limit
cases of a Hookean solid (ν ¼ 0) and a Newtonian fluid (ν ¼ 1).

The modification made in Musto and Alfano (2015) made the
CZM capable of capturing the rate dependence of crack propaga-
tion across a rubber interface between the two steel arms of a dou-
ble cantilever beam (DCB), with excellent approximation across
the entire range of experimentally tested speeds, spanning almost
5 logarithmic decades, and with only 7 parameters to be calibrated.
In particular, the model captures the experimentally measured mon-
otonic increase in fracture energy over the tested range of speeds.
Further numerical simulations of the pointwise response show that
the fracture energy Gc predicted by the model is indeed monoton-
ically increasing with the prescribed relative-displacement speed v,
with horizontal asymptotes in the slow and fast limits. This results
in a sigmoidal shape of the Gc − v curve.

The aim of this paper is to revisit the third assumption that is
made in both models proposed in Musto and Alfano (2013, 2015),
whereby damage evolution is “driven” by the energy stored in the
elastic arm of either the SLS model (Musto and Alfano 2013) or the
FSLS model (Musto and Alfano 2015). One motivation for revis-
iting this hypothesis is that, for some glassy polymers (i.e., used
below the glass-transition temperature) it is experimentally found
that fracture energy does not increase monotonically with crack
speed. In fact, it can be seen that if damage evolution is driven
not only by the energy in the elastic arm but also by some or
the entirety of the energy within the inelastic arm, the monotonicity
of the Gc − ȧ relationship can be lost. This is discussed in detail in
the paper, and some physical arguments are used to justify the
validity of this alternative modeling choice.

To better achieve the stated aim, a thermodynamic formulation
of the CZM is also presented. To this end, because attention is here
limited to isothermal processes, the (specific) free energy at an in-
terface material point needs to be defined. However, for a general
linear viscoelastic model governed by Volterra integral operators,
the definition of free energy is not unique (Breuer and Onat 1964),
unless a specific mechanical model is considered. This problem has
been widely studied—for example, by enlarging the space of strain
histories and processes and weakening requirements on their regu-
larity. This allows for broadening the set of available free energies
(e.g., Del Piero and Deseri 1996, 1997; Deseri et al. 1999; Fabrizio
and Golden 2002). Such enlarged sets owe the lowest minimal free
energy (e.g., Deseri et al. 1999, 2006; Amendola et al. 2016;
Golden 2016 among many others), whereas the maximal one has
been found to be the relaxed work performed by the stress on the
available processes, as shown by Del Piero (2004).

The nonuniqueness of the free energy is a kernel-independent
issue and so also applies to the fractional CZM proposed by Musto
and Alfano (2015). When an exponential kernel is used, well-
known rheological representations are available based on suitable
combination of springs and dashpots, typically an elastic arm in
parallel with a number of Maxwell arms, and the free energy

can be easily evaluated as the elastic energy stored in the springs.
For a fractional model, even if a rheological analogue is used by
replacing dashpots with Scott Blair elements, such as in Musto
and Alfano (2015), there is no clear separation between elastic
(Hookean solid) and viscous (fluid) behavior in the latter. Here, an
expression is used for the free energy of the Scott Blair element,
which can be derived from a widely used general formula valid for
generic relaxation functions in viscoelasticity (Staverman and
Schwarzl 1952; Bland 1960; Hunter 1961; see also the analysis
of macroscopic dissipation and free energies for power-law materi-
als in Fabrizio 2014). In Deseri et al. (2014) it is shown that this
expression is valid for a rheological analogue of the Scott Blair
element previously introduced by Di Paola and Zingales (2012),
who, building on earlier work by Bagley and Torvik (1983) and
Schiessel and Blumen (1993, 1995), defined a general mechanical
analogue that distinguishes “elastoviscous” behavior, for the
fractional exponent 0 < ν < 1=2, from “viscoelastic” behavior,
for 1=2 ≤ ν < 1.

The structure of the paper is as follows. In a first section, the
main equations governing the fractional CZM presented by Musto
and Alfano (2015) are recalled. In the second section, a thermody-
namic formulation of the model is presented. A number of possible
damage evolution laws are then considered, first by considering
micromechanical arguments in their support and then by reporting
the actual equations that implement them within the CZM formu-
lation. Numerical results are then presented to show the implica-
tions of different model choices and the sensitivity of the results
to the fractional exponent ν. Finally, conclusions are drawn and
the future outlook is discussed.

Formulation of the CZM

The paper focuses on Mode-I (opening) decohesion problems, in
which a crack is expected to form and/or propagate across a pre-
defined interface I . The displacement field is allowed to be discon-
tinuous on I , and the opening relative-displacement component,
normal to I , is denoted δ. For simplicity, and without loss of gen-
erality, a process in which both stresses and displacements are zero
for negative times is considered.

The rate-dependent CZM formulated in Musto and Alfano
(2015), whose governing equations are recalled in this section,
provides the normal interface stress at time t, σðtÞ, as the
following nonlinear functional of the relative-displacement history
δ∶½0; t� → R:

σðtÞ ¼ ½1 −Dðδ; tÞ�σ̄ðδ; tÞ ð1Þ

Here, at each time t, the damage variableD is a nonlinear functional
of δ, whereas σ̄ is the interface stress that would be obtained, in the
absence of damage, as the response of the fractional standard linear
solid (FSLS) model depicted in Fig. 1 to the prescribed history δ.

In Fig. 1, E1 and E2 denote the stiffness values of the springs in
the elastic and inelastic arms, respectively; α and η̂ denote the
relative displacement and material constant of the Scott Blair
element, so that the stress σSB in the Scott Blair element is related
to α through the fractional equation

σSB ¼ η̂0D
ν
t α ð2Þ

where 0D
ν
t represents the fractional derivative operator of order ν,

with 0 < ν < 1.
Setting λ̂ ¼ η̂=E2 and γ̂ ¼ λ̂ðE1 þ E2Þ, σ̄ is the solution to the

following fractional differential equation governing the FSLS
model:

© ASCE D4017001-2 J. Eng. Mech.
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σ̄ þ λ̂0D
ν
t σ̄ ¼ E1δ þ γ̂0D

ν
t δ ð3Þ

Numerically, the solution of Eq. (3) is determined, in this paper
and Musto and Alfano (2015), via the Grünwald-Letnikov expres-
sion of the fractional derivative (Grünwald 1867; Schmidt and Gaul
2002; Padovan 1987), by sampling the histories of δ and σ̄ back-
ward at time intervalsΔtGL, so that the following approximation of
the fractional derivatives is obtained (Musto and Alfano 2015):

0D
ν
t σ̄ ≅ Δt−νGL½σ̄ðtÞ þ Sσ� 0D

ν
t δ ≅ Δt−νGL½δðtÞ þ Sδ� ð4Þ

where

Sσ ¼
XNh−1

j¼1

Ajþ1σ̄ðt − jΔtGLÞ Sδ ¼
XNh−1

j¼1

Ajþ1δðt − jΔtGLÞ

ð5Þ

Ajþ1, are the Grünwald-Letnikov coefficients, which are given
by the following recursive formula:

Ajþ1 ¼
Γðj − νÞ

Γð−νÞΓðjþ 1Þ ¼
�
j − 1 − ν

j

�
Γðj − 1 − νÞ
Γð−νÞΓðjÞ

¼ j − 1 − ν
j

Aj;A1 ¼ 1 ð6Þ

where Γ = gamma function.
In this way, the numerical solution of Eq. (3) is given by

σ̄ðδ; tÞ ¼ ð1þ λ̂Δt−νGLÞ−1½ðE1 þ γ̂Δt−νGLÞδðtÞ þΔt−νGLðγ̂Sδ − λ̂SσÞ�
ð7Þ

Thermodynamic Formulation and
Damage Evolution Law

Eqs. (1) and (3) can be considered a special case of a more general
model in which damage is coupled with linear viscoelasticity,
which can be rewritten in integral form as follows:

σðtÞ ¼ ð1 −DðtÞÞ
Z

t

0

Gðt − τÞδ̇ðτÞdτ ð8Þ

where G represents the suitable relaxation function, which does not
necessarily have to be defined in terms of internal variables. The
specialization of this general formulation, presented in this section,
to the model of the previous section is provided in the Appendix for
the benefit of the reader.

In the isothermal setting, the second law of thermodynamics
can be expressed by introducing the free energy Ψ as follows:

σδ̇ − Ψ̇ ≥ 0 ð9Þ

Following, for example, the quadratic free energy expression
proposed by Breuer and Onat (1964), the assumption is made that
the free energy can be described with the functional

ΨðtÞ ¼ ½1 −DðtÞ�
Z

t

0

Z
t

0

Kðt − τ1; t − τ2Þδ̇ðτ1Þδ̇ðτ2Þdτ1dτ2
ð10Þ

where K represents the continuous, symmetric, and sufficiently
smooth kernel.

Considering other possible free energy expressions (Fabrizio
and Golden 2003; Amendola et al. 2014) does not alter the nature
of the discussion. Differentiating Eq. (10) and inserting into Eq. (9),
the following relationship is obtained:

�
σðtÞ − ½1 −DðtÞ�2

Z
t

0

Kð0; t − τÞδ̇ðτÞdτ
�
δ̇ðtÞ

þ ½1 −DðtÞ�
Z

t

0

Z
t

0

�
−∂K

∂t
�
δ̇ðτ1Þδ̇ðτ2Þdτ 1dτ2

þ ḊðtÞ
Z

t

0

Z
t

0

Kðt − τ 1; t − τ2Þδ̇ðτ1Þδ̇ðτ2Þdτ1dτ2 ≥ 0 ð11Þ

Following the Coleman-Noll procedure, given the lack of
constraint on the sign of δ̇, yields

σ ¼ ½1 −DðtÞ�2
Z

t

0

Kð0; t − τÞδ̇ðτÞdτ ð12Þ

Comparing with Eq. (8), one hasZ
t

0

Gðt − τÞδ̇ðτÞdτ ¼ 2

Z
t

0

Kð0; t − τÞδ̇ðτÞdτ ð13Þ

which represents a further restriction for K but not sufficient to
determine it uniquely (Breuer and Onat 1964).

The first term in Eq. (11) being zero, it can then be appreciated
that a possible choice of sufficient conditions for the validity of the
inequality, for an arbitrary relative-displacement history, is that Ḋ
be positive (damage irreversibility) and that

Z
t

0

Z
t

0

�
−∂K

∂t
�
δ̇ðτ1Þδ̇ðτ2Þdτ 1dτ2 ≥ 0 ð14Þ

which is also valid for the case without damage.
A number of possible choices that can be made for the damage

evolution law in the CZM will now be considered. First, the prob-
lem will be discussed from a physical and micromechanical point
of view; then a simplified analysis is presented to show that a
nonmonotonic Gc − ȧ is expected if damage is driven by the whole
energy; finally the related equations describing damage evolution
are presented and each of the three considered damage evolution
laws is analytically studied.

Damage Evolution: Micromechanical Standpoint

For an elastomeric material, such as the one considered in Musto
and Alfano (2013, 2015), it seems necessary to consider the elastic
energy in the elastic arm only as the damage driver. This conclusion
is based on considering the microscopic properties of elastomers. In

Fig. 1. Rheological representation of cohesive zone specialization of
the FSLS model

© ASCE D4017001-3 J. Eng. Mech.
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the absence of cross-linking, “green” rubber does not display a
positive long-term relaxation modulus. It is then natural to identify
the elastic arm in the proposed rheology as representative of the
cross links (and possibly the elastic polymer/filler interaction for
a filled compound). Instead, the elastic energy stored in the inelastic
arm of the FSLS model is more appropriately considered as related
to the entropic elasticity characteristic of elastomeric materials.
For this reason, it does not seem directly relevant to the fracturing
process.

In polymers used below the glass-transition temperature, the
elastic energy is primarily stored in the van der Waals interaction
between neighboring chains. Indeed, the covalent links along the
polymeric chain are not only stronger but loaded to their maximum
capacity in a rather small quantity [Berger et al. (2003) estimate
only 5% of chains are fully loaded even in a highly crystalline
ultra-high-molecular-weight polyethylene (UHMWPE)]. The pres-
ence of crystalline and amorphous regions (Kausch 2005) may add
complexity to the picture and is not relevant to the qualitative dis-
cussion presented here, although it could well be if a more accurate
and detailed micromechanical description were to be attempted.
For these reasons, it seems plausible to consider all the elastic en-
ergy as a driver to damage. It is acknowledged that, even for glassy
polymers, there will still be an entropic contribution (first associ-
ated with plastic hardening by Haward 1993), but its magnitude is
certainly far less than in elastomeric materials.

It is recognized that the presented picture is at this stage more
heuristic than quantitative and does not take into account the
important role of viscoplasticity; however, for what will be shown
in this section and in the next one, it seems in agreement with ex-
perimental evidence of nonmonotonic behavior of fracture energy
versus applied rate in some glassy polymer resins, as noted, for
example, by Frassine et al. (1993, 1995).

Nonmonotonicity of Fracture Energy with Crack Speed

For simplicity, the CZM proposed in Musto and Alfano (2013)
is considered. This CZM can be schematized with a SLS model
whose response is scaled by a factor 1 −D to account for damage
and to investigate different options for the damage evolution law in
addition to what is considered in Musto and Alfano (2013). How-
ever, the considerations made here will be more general and will
help explicate the analysis later in the paper and the numerical
results presented for the fractional CZM presented in Musto and
Alfano (2015), but again considering a wider range of damage
evolution laws.

If it is assumed that failure occurs suddenly (i.e., D instantane-
ously increases from 0 to 1) when the elastic arm reaches a
predefined energy level, the fracture criterion turns out to be dis-
placement based. The macroscopic fracture energy is then given by
the elastic energy in the elastic arm plus the work done on the
inelastic arm until the (fixed) failure total relative displacement.
The fracture energy is therefore the sum of the elastic energy in
the springs at the moment of failure plus the energy dissipated
in the dashpot because of viscosity, and it turns out to be increasing
for an increasing rate of applied displacement. In the slow limit, the
spring in the Maxwell arm is completely relaxed such that no en-
ergy is spent there, and the viscous dissipation in the dashpot is zero
so that the fracture energy attains its minimum value. In the fast
limit, the dashpot does not have time to undergo any displacement,
so the viscous dissipation is zero again; however, the spring is fully
elongated and therefore the maximum elastic energy is spent in
the Maxwell arm and the overall fracture energy attains its maxi-
mum value.

If all the elastic energy is chosen to drive damage, then inter-
esting behavior arises. First, it is worth recalling that, for the case
under examination, “all the elastic energy” means the sum of the
energies in the two springs of the elastic and inelastic (Maxwell)
arms. For isothermal processes and in the absence of damage, this
would be equal to the specific free energy at the interface point,
whose definition is unique in this case (Graffi and Fabrizio 1989).

To investigate this case, for illustration purposes a constant rel-
ative displacement rate δ̇ ¼ υ is considered. Again, it is assumed
that failure occurs suddenly when the sum of the elastic energies in
the elastic arm and the Maxwell arm reaches a threshold energy.
The fracture energy Gc equals the work Wf done by the stress up
to failure and, as a function of the constant applied relative
displacement rate υ, is given by

Gc ¼ Wf ¼
Z

tf

0

σðτÞυdτ ð15Þ

where tf represents the time at which failure occurs, itself a func-
tion of the rate υ.

It is argued that Gc is not necessarily monotonic with υ. Indeed,
there could exist a rate ῡ for which Gc is maximum.

To see this, the energy D dissipated in the Maxwell arm up to a
point in time t is considered. This is given by the work done on the
element minus the stored energy in the elastic Maxwell spring, and
is nonmonotonic: it is continuous and tends to zero for vanishingly
slow and fast applied υ (up to a fixed relative displacement).
Because it is also required to be non-negative at all times, it dis-
plays a maximum, say for υ ¼ ῡ.

If it is now assumed that the strain rate ῡ is applied, failure will
occur at time t̄f .

The macroscopic fracture energy will be given by

Ḡc ¼ Ē1f þ Ē2f þ D̄f ð16Þ

where Ē1f and Ē2f = energies in the elastic and Maxwell arms, re-
spectively, at t̄f; and D̄f = energy dissipated in the Maxwell arm
between times 0 and t̄f .

If the applied rate υ is now infinitesimally varied, failure will
occur at times tþ and t− for increased and decreased applied rate,
respectively.

The fracture energy will vary of an amount dGc:

dGc ¼ dE1f þ dE2f þ dDf ð17Þ

but

dE1f þ dE2f ¼ 0 ð18Þ

as required by the fracture criterion and dDf ¼ 0 by the choice of
taking υ ¼ ῡ. BecauseDf is a maximum, this proves thatGc attains
a maximum, too, at t̄f.

Remark 1. Other physical mechanisms and models capable
of reproducing nonmonotonicity of the Gc − υ (or, equivalently,
Gc − ȧ) relationship do exist; a review is given in Musto (2014).
To the best of the authors’ knowledge, though, current explanations
are of a structural nature. For example, the celebrated “viscoelastic
trumpet”model by De Gennes (1997) explains the decrease in frac-
ture energy on reaching a crack speed threshold by invoking the
finiteness of the test specimen. Explanations based on crack-tip
branching (Kinloch and Young 1983) or periodic interface void for-
mation (Musto 2014) are based on structural features as well. On
the other hand, the model presented herein is fully local and able to
exhibit nonmonotonicity even for a single material point.

© ASCE D4017001-4 J. Eng. Mech.
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Such behavior is very interesting in that the descending branch
of the Gc − υ function can be associated with instabilities, such as
stick-slip behavior (Maugin 1999; Kumar and Ananthakrishna
2010; Ciccotti et al. 2004; Kovalchick et al. 2014).

Damage Evolution Laws

In this section, the damage evolution law for the fractional CZM
proposed in Musto and Alfano (2015) will be revisited and
modified to allow the possibility of letting damage be driven not
only by the energy in the elastic arm but also by some of, or
the whole, remaining part of the free energy. To this end, the
following (specific) energy variable Y is introduced:

Y ¼ Y1 þ aY2 þ bYSB ð19Þ
where two parameters a and b are discussed below; Y1 and
Y2 represents the elastic energies in the springs of the elastic and
inelastic arms, respectively, for the undamaged material, given by

Y1 ¼
1

2
E1δ2 Y2 ¼

1

2
E2ðδ − αÞ2 ð20Þ

and YSB represents the free energy in the Scott Blair element. For
this one a choice needs to be made, and the following general ex-
pression of the free energy, derived from Staverman and Schwarzl
(1952), Bland (1960), and Hunter (1961) and specialized to the
Scott Blair element, is considered:

YSBðtÞ ¼
η̂

2Γð1 − νÞ
Z

t

0

Z
t

0

ð2t − τ1 − τ2Þ−να̇ðτ1Þα̇ðτ2Þdτ 1dτ2
ð21Þ

As discussed in the “Introduction,” this choice can be physically
justified by considering for the Scott Blair element the mechanical
analogue proposed in Di Paola and Zingales (2012) and Deseri et al.
(2014).

The double integral in Eq. (21) is evaluated numerically by
dividing the interval ½0; t� into a number N of sufficiently refined
subintervals ½ti; tiþ1�, for each of them considering the midpoint τ i
and evaluating both 2t − τ1 − τ 2 and α̇ at τ i and τ j, for
i; j ¼ 1; : : : ;N. Furthermore, α̇ is calculated as the midpoint finite
difference.

The two parameters a and b can range between 0 and 1, and
three possible cases will be considered:
• a ¼ b ¼ 0: in this case, damage is driven only by the energy

in the elastic arm of the FSLS model, as in Musto and Alfano
(2015);

• a ¼ 1; b ¼ 0: in this case, damage is driven by the energies in
the two springs of the elastic and inelastic arms; and

• a ¼ b ¼ 1: in this case, damage is driven by the entire free
energy (i.e., including the energy stored in the Scott Blair
element of the FSLS model).
The damage evolution law is then written as follows:

Ḋ ≥ 0 Y − Yc ≤ 0 ðY − YcÞḊ ¼ 0 ð22Þ
where Yc represents an energy threshold value. If Yc is kept fixed,
sudden failure occurs because, as soon as Y ¼ Yc, Ḋ can attain any
positive value, which normally results in D increasing instantane-
ously from 0 to 1. This brittle response would be difficult to handle
computationally and would not be realistic for quasi-brittle or
ductile material interfaces. This is why in CZMs a regularized law
is typically used, whereby Yc is taken as a function of D. Here the
same type of regularization is used as in Musto and Alfano (2015),
given by

Yc ¼
G0

ð1 − βDÞ2 ð23Þ

In the rate-independent case (or here in the slow and fast limit),
this expression results in the widely used bilinear traction-
separation law (Musto and Alfano 2015). The initial energy thresh-
oldG0 is the “initiation” value that the energy needs to reach before
decohesion starts.

Remark 2. It is important to underline that, in general, Y is not
equal to the partial derivative of the free energy with respect to D,
except for the case a ¼ b ¼ 1, as discussed in the Appendix.
Indeed, it is often assumed that the damage-driving energy is the
partial derivative of the free energy with respect to damage, but it is
not necessary for thermodynamic consistency, for which it is suf-
ficient to have Ḋ ≥ 0, as already observed.

Further Analysis of the Three Possible Damage
Evolution Laws

The choice of free energy in the Scott Blair element is equivalent to
specializing the general form of the free energy considered in
Eq. (10) to the following:

ΨðtÞ ¼ ½1 −DðtÞ�½ðY1ðtÞ þ Y2ðtÞ þ YSBðtÞ� ð24Þ
The “rupture dissipation”Πr, which is the energy lost per unit of

time as a result of decohesion but not including the viscous dissi-
pation, is given by the third term of Eq. (11) in the general case,
which here specializes to

ΠrðtÞ ¼ ½Y1ðtÞ þ Y2ðtÞ þ YSBðtÞ�ḊðtÞ ð25Þ
The total “rupture energy” dissipated is given byZ þ∞

0

Πrdt ð26Þ

Damage Driven by the Entire Free Energy
From Eq. (22) one has that Ḋ is always non-negative and, when
Ḋ > 0, it must be Y ¼ Yc. If a ¼ b ¼ 1 in Eq. (19) (i.e., if damage
is driven by the entire free energy), the result is

Y1ðtÞ þ Y2ðtÞ þ YSBðtÞ ¼ YðtÞ ð27Þ
and thereforeZ þ∞

0

Πrdt ¼
Z þ∞
0

YðtÞḊðtÞdt ¼
Z

1

0

YcðDÞdD

¼
Z

1

0

G0

ð1 − βDÞ2 dD ¼ G0

1 − β
¼ Gcr ð28Þ

In other words, if damage is driven by the whole free energy, the
energy dissipated because of decohesion is always the same and
equal to Gcr ¼ G0=ð1 − βÞ. The three values Gcr, G0, and β are
model input parameters, but only two of them are independent;
the other is obviously obtainable from the other two.

The rest of the energy dissipated is due to viscous dissipation
and can be indicated by Gcυ. In the general case, from Eq. (11) the
result is

Gcυ ¼
Z þ∞
0

�
½1 −DðtÞ�

Z
t

0

Z
t

0

�
−∂K

∂t
�
δ̇ðτ1Þδ̇ðτ2Þdτ1dτ2

�
dt

ð29Þ

The whole measured fracture energy, Gc, which is the total en-
ergydissipated per unit of cracked surface, is the sumofGcr andGcυ:
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Gc ¼ Gcr þGcυ ð30Þ
The first term is constant, whereas Gcυ is always positive and

tending to zero in the slow and fast limits. Therefore, when the
whole energy is used to drive damage, it is expected that the Gc −
δ̇ curve (analogous to the fracture energy with regard to crack
speed, Gc − ȧ, normally considered in fracture mechanics) has a
bell shape, which is a result analogous to the one obtained earlier
for a simplified analysis of a nonregularized damage evolution law.

Damage Driven by the Energy in the
Two Springs of the FSLS Model
If damage is driven by the energy in the two springs of the FSLS
model, but not by the energy in the Scott Blair element, then a ¼ 1
and b ¼ 0 in Eq. (19), so that one has

YðtÞ ¼ Y1ðtÞ þ Y2ðtÞ ð31Þ
Therefore, in this case Eq. (28) becomesZ þ∞

0

Πrdt ¼
Z þ∞
0

½Y1ðtÞ þ Y2ðtÞ þ YSBðtÞ�ḊðtÞdt

¼
Z þ∞
0

½Y1ðtÞ þ Y2ðtÞ�ḊðtÞdtþ
Z þ∞
0

YSBðtÞḊðtÞdt

¼
Z þ∞
0

YðtÞḊðtÞdtþ
Z þ∞
0

YSBðtÞḊðtÞdt

¼ Gcr þ
Z þ∞
0

YSBðtÞḊðtÞdt ð32Þ

and the total energy dissipated per unit of cracked surface is
given by

Gc ¼ Gcr þGcυ þ
Z þ∞
0

YSBðtÞḊðtÞdt ð33Þ

Although here Gcυ has the same expression as in Eq. (29), be-
cause of different damage evolution the values are normally not the
same. Nevertheless, they are expected to be of a similar order of
magnitude. Hence, the presence of the third non-negative term
in Eq. (35) means that the total fracture energy is larger than in
the previous case, where damage is driven by the whole free energy.
On the other hand, the additional third term tends to zero in the slow
and fast limit such that the Gc − δ̇ curve is expected to have a bell
shape in this case, too.

Damage Driven by the Energy in the Elastic Arm Only
If damage is driven by the energy in the elastic arm only, then
a ¼ b ¼ 0 and YðtÞ ¼ Y1ðtÞ, so thatZ þ∞
0

Πrdt ¼
Z þ∞
0

Y1ðtÞḊðtÞdtþ
Z þ∞
0

½YSBðtÞ þ Y2ðtÞ�ḊðtÞdt

¼ Gcr þ
Z þ∞
0

YSBðtÞḊðtÞdtþ
Z þ∞
0

Y2ðtÞḊðtÞdt

ð34Þ
and the total energy dissipated per unit of cracked surface is
given by

Gc ¼ Gcr þ Gcυ þ
Z þ∞
0

YSBðtÞḊðtÞdtþ
Z þ∞
0

Y2ðtÞḊðtÞdt

ð35Þ

The fourth term represents the energy dissipated in the spring of
the inelastic arm, which is therefore added to the total fracture
energy (and not embedded in Gcr). Not only is this term expected

to further raise the Gc − δ̇ curve, but, unlike the second and third
terms, it increases with the applied speed, tending to a maximum in
the fast limit; therefore, it is expected to result in a qualitative
change in the curve from a bell shape to a sigmoidal shape.

Remark 3. It is worth underlining that, regardless of the choice
of damage-driving energy, in the proposed model the damage evo-
lution law [Eq. (22)] is written in a rate-independent form because
the damage increase is driven by the current value only of the avail-
able energy; also, the energy threshold Yc is a function of the cur-
rent value of damage D, but does not depend on its rate or its
history. This is a deliberate choice that is related to the other choice
of considering damage and viscous deformation as two conceptu-
ally independent phenomena (even if they interact because they
may occur at the same time), whereby damage and viscous dissi-
pations are provided separately by the second and third term of
Eq. (11). In other words, although the damage evolution is rate in-
dependent, the rate dependence of the whole interface response is
the result of the rate dependence of the viscous deformation.

A possible different choice could have been to assume that the
current damage evolution is also a function of the damage history.
However, contrary to the presented model, in which damage is
only driven by energy, assuming damage evolution to be a func-
tion of its history would be equivalent to assuming that the effec-
tive fraction of the interface on which the ‘undamaged’
viscoelastic behaviour applies (see also Alfano and Sacco 2006
for the concepts of ‘damaged’ and ‘undamaged’ part of an infini-
tesimal interface area) also plays a direct role in determining its
evolution.

On the other hand, although assuming that damage evolution is
function of damage history might seem appealing with a view to
modeling the commonly assumed “nonlinear viscoelastic” behav-
ior next to the crack tip, the excellent match between experimental
and numerical results found in Musto and Alfano (2015) might
question the need to do so.

Numerical Results and Discussion

In this section, numerical results will be presented for the pointwise
interface response to a prescribed (opening) relative displacement δ
at constant rate δ̇ ¼ υ. Two cases are studied. The first is the rubber
interface within the double cantilever beam (DCB) considered
in Musto and Alfano (2015), in which all interface parameters
are the same as in Musto and Alfano (2015) and, in particular,
the fractional exponent used is 0.23. For this reason, it will be de-
noted “elastoviscous” case (Di Paola and Zingales 2012; Deseri
et al. 2014).

In the second case, the same values for Gcr, G0, E1, and E2 are
taken but ν and λ̂ are changed. The aim is to consider a “viscoelas-
tic” case symmetric to the first “elastoviscous” case with respect to
the value ν ¼ 0.5 that separates elastoviscous from viscoelastic
behavior according to the definitions in Di Paola and Zingales
(2012) and Deseri et al. (2014). Therefore, for this second case
the fractional exponent ν is taken equal to 0.77. In order to have
the same (fractional) relaxation time, which can be taken equal
to λ̂1=ν and for the first case is equal to 37.39 s, the value λ̂ ¼
37.390.77 ¼ 16.256sν is chosen. The input parameters are summa-
rized in Tables 1 and 2.

Fig. 2 shows the traction-separation curves obtained in the
elastoviscous case by considering the three damage evolution laws
obtained by choosing a ¼ b ¼ 0 in Eq. (19) for a first set of sim-
ulations, a ¼ 1 and b ¼ 0 for a second set, and, finally a ¼ b ¼ 1
for a third set. In each simulation, the relative displacement is pre-
scribed, at constant speed, with constant increments that in most

© ASCE D4017001-6 J. Eng. Mech.
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cases are 0.1 mm. In few cases, it can be seen in Figs. 2(b and c)
that at fast rates the “failure” relative displacement reduces to val-
ues lower than 1 mm. For these cases, in order to increase the ac-
curacy of the results and in particular the accuracy of the
computation of Gc (equal to the area under the curve), the pre-
scribed incremental displacement has been reduced to 0.025 mm.
In addition to this precaution, the accuracy of the analysis has been
checked and the time increments in Eq. (7) and those for the
numerical integration of Eq. (21) are small enough so that their

further reduction would lead to negligible changes that could
not be visually appreciated in the plots.

Fig. 3 shows the fracture energy Gc against the prescribed
relative-displacement speed υ for the elastoviscous case [Fig. 3(a)]
and for the viscoelastic case [Fig. 3(b)]. The first observation that
can be made is that the results are in agreement with the analyses
made earlier in this paper. In particular, when damage is driven only
by the energy in the elastic arm, the fracture energy monotonically
increases with applied speed. In contrast, when damage is driven
either by the energy in both springs or, indeed, by the entire free
energy, including the energy stored in the Scott Blair element, the
curve is nonmonotonic, has a maximum, and in the fast and slow
limits tends to the same value Gcr. This can be better seen in Fig. 4,
where the curves for the case a ¼ b ¼ 0 have been eliminated to
better appreciate the other ones.

A second interesting observation is that, when damage is driven
only by the energy in the elastic arm, the fracture energy in the fast
limit reaches values that are approximately 20 times higher than
those in the slow limit, which could also be observed in Musto
and Alfano (2015). In contrast, because of the very different behav-
ior in the other two cases, Gc does not increase more than approx-
imately 3 times the slow-limit valueGcr before decreasing toGcr in
the fast limit.

The input parameters are meaningful for the elastoviscous case
and a ¼ b ¼ 0 because in this case the model captures the exper-
imental results reported in Musto and Alfano (2015) with very good
agreement. In all other cases, the analysis presented in this paper is
only qualitative. Nevertheless, the results in this section suggest
that the two different assumptions, discussed earlier with some
physical arguments—that the damage can be driven only by the

Table 1. Input Parameters Used in Both Cases

Parameter Value

Gcr (Nmm−1) 1.50
G0 (Nmm−1) 0.6
E1 (MPa) 0.469
E2 (MPa) 9.09

Table 2. Input Parameters Used in Each of the Two Cases

Parameter Value

Elastoviscous case
λ̂ (sν ) 2.3
ν 0.23

Viscoelastic case
λ̂ (sν ) 16.256
ν 0.77

Fig. 2. Traction-separation curves for (a) a ¼ b ¼ 0; (b) a ¼ 1, b ¼ 0; (c) a ¼ b ¼ 1

© ASCE D4017001-7 J. Eng. Mech.
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energy in the cross links or by the energy in all of the polymer
chains—could potentially explain the significant difference in the
rate dependence of the fracture energy experimentally observed in
elastomers or glassy polymers.

When a fractional model is used, the additional question that
arises is whether the free energy in Scott Blair elements can con-
tribute to damage evolution. This is not obvious because, unlike the
energy in the spring of the inelastic arm, the elastic energy stored in
a Scott Blair element cannot be released instantaneously. At high
speeds, the energy stored tends to zero, together with the viscous
energy dissipated, but at intermediate speeds it is difficult to argue
whether or not the energy stored in the Scott Blair element can be
released quickly enough to be available for damage evolution. The
answer to such a question will probably only come by linking the
modeling approach proposed here with a detailed micromechanical
analysis using an appropriate multiscale scheme to bridge the
scales.

The different results for the elastoviscous and viscoelastic cases
are as expected. Because in the elastoviscous case more elastic
energy is stored in the elastic arm, the peak of the Gc − υ curve
is extremely reduced and there is a more marked difference with
the case where a ¼ 1; b ¼ 0. For the viscoelastic case, the differ-
ence is greatly reduced because of the increased amount of elastic
energy stored in the Scott Blair element. This suggests that the issue

of whether the energy in the Scott Blair element can or cannot con-
tribute to damage evolution is, as expected, more important for the
elastoviscous case.

Conclusions

In this paper, the fractional rate-dependent CZM proposed by
Musto and Alfano (2015) has been revisited. A thermodynamic
derivation has been presented, first in a form that can be applicable
to a more general case in which a linear viscoelastic model is com-
bined with damage. To specialize the formulation to the fractional
model, a choice has been made regarding the free energy in the
Scott Blair element of FSLS model, based on a general expression
widely used in linear viscoelasticity (Staverman and Schwarzl
1952; Bland 1960; Hunter 1961), which has been shown to be valid
for a mechanical analogue of a Scott Blair element (Di Paola and
Zingales 2012; Deseri et al. 2014).

The novel thermodynamic derivation of the model provides a
clearer framework to address and revisit the fundamental assump-
tions made regarding the damage evolution law. In Musto and
Alfano (2015), similarly to the work by Musto and Alfano (2013)
for a rate-dependent CZM building on a baseline viscoelastic model
with an exponential kernel, damage is assumed to be driven by the

Fig. 3. Fracture energy versus applied speed for the three damage evolution laws considered: (a) elastoviscous case (υ ¼ 0.23); (b) viscoelastic case
(υ ¼ 0.77)

Fig. 4. Enlarged curves showing fracture energy against applied speed: (a) elastoviscous case (υ ¼ 0.23); (b) viscoelastic case (υ ¼ 0.77)
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elastic energy stored in the elastic arm of the FSLS model. This
results in a relationship between total (measured) fracture energy
and crack speed (or prescribed relative displacement speed) that
is monotonically increasing and has a sigmoidal shape.

Here this hypothesis has been reconsidered, first by discussing
the problem from a micromechanical, albeit rather qualitative, point
of view. Two other possible assumptions for damage evolution have
been considered. One assumes that damage is driven by the ener-
gies in the two springs of the elastic and inelastic arms; the other
assumes that damage is driven by the entire free energy (i.e., includ-
ing the energy stored in the Scott Blair element of the FSLS model).
The three possible laws have been studied analytically and numeri-
cally, with the main finding being that, by assuming that damage is
also driven by the remaining parts of the energy, a nonmonotonic
relationship between total fracture energy and crack speed is
obtained having a bell rather than a sigmoidal shape.

The effect of the fractional exponent ν has been shown to be
significant, to the point that for low values [elastoviscous case
(Di Paola and Zingales 2012; Deseri et al. 2014)] the rate depend-
ence of the fracture energy is significantly reduced if damage is
driven by the entire free energy.

The analysis presented here is mainly qualitatively, yet it sug-
gests a physical interpretation, entirely original to the best of the

authors’ knowledge, for the significant differences found in the
rate dependence of fracture in elastomers and glassy polymers.
Although it would be misleading to draw clear conclusions from
this investigation, in the authors’ opinion the results presented
can open very promising lines of research leading to better under-
standing of the rate dependence of fracture in polymeric materials.
In particular, it is suggested that further studies in this direction
should build on the powerful tools available in computational
micro- and nanomechanics and multiscale analysis, supported by
advanced micro- and nanoscale experiments.

Appendix. Thermodynamic Formulation Specialized
to the FSLS Model with Damage

In this appendix, the general thermodynamic formulation presented
in the paper for a general damage-viscoelastic model written using
a Volterra convolution operator is specialized to the case of the
model considered in the paper. In the latter, the material response
is that of a FSLS model, scaled by the damage factor 1 −D.

As earlier observed, the free energy is given by Eq. (24), which
is here expanded for the sake of clarity. Setting ΨðtÞ ¼
Ψ̂½δðtÞ;DðtÞ;αðtÞ;α�, one has

Ψ̂ðδðtÞ;DðtÞ;αðtÞ;αÞ ¼ 1 −DðtÞ
2

�
E1δðtÞ2 þ E2½δðtÞ − αðtÞ�2 þ η̂

Γð1 − νÞ
Z

t

0

Z
t

0

ð2t − τ1 − τ2Þ−να̇ðτ 1Þα̇ðτ 2Þdτ1dτ2
�

ð36Þ

Notice that Ψ̂ depends both on the current value of δ, D, and α at time t and on the entire history α∶½0; t� → R of the internal variable.
By differentiation with respect to time, the dissipation inequality [Eq. (11)] here specializes as follows:

ðσðtÞ − ½1 −DðtÞ�fE1δðtÞ þ E2½δðtÞ − αðtÞ�gÞδ̇ðtÞ þ ½1 −DðtÞ�
�

η̂
Γð1 − νÞ

Z
t

0

ðt − τÞ−να̇ðτÞdτ − E2½δðtÞ − αðtÞ�
�
α̇ðtÞ

þ ½1 −DðtÞ� η̂ν
Γð1 − νÞ

Z
t

0

Z
t

0

ð2t − τ1 − τ2Þ−ð1þνÞα̇ðτ 1Þα̇ðτ 2Þdτ1dτ 2 þ ΠrðtÞ ≥ 0 ð37Þ

where ΠrðtÞ = rupture dissipation introduced in Eq. (25).

Noting that

E1δðtÞ þ E2½δðtÞ − αðtÞ� ¼ σ̄ ð38Þ

where σ̄ represents the interface stress in absence of damage, using
standard thermodynamic arguments, Eq. (1) is obtained.

Likewise, noting that

1

Γð1 − νÞ
Z

t

0

ðt − τÞ−να̇ðτÞdτ ¼ 0D
ν
t α ð39Þ

and that E2½δðtÞ − αðtÞ� ¼ σSB, where σSB = stress in the Scott
Blair element, Eq. (2) is recovered.

The third term in Eq. (37) is the viscous dissipation (per unit of
time) at time t, Πυ, which only occurs in the Scott Blair element in
this case:

Πυ ¼ ½1 −DðtÞ� η̂ν
Γð1 − νÞ

Z
t

0

Z
t

0

× ð2t − τ 1 − τ 2Þ−ð1þνÞα̇ðτ1Þα̇ðτ2Þdτ1dτ2 ð40Þ

The viscous dissipation is always non-negative because the
double convolution is always positive. The rupture dissipation is
also always non-negative because Ḋ ≥ 0 in Eq. (25).

Finally, it is worth noting that the partial derivative of the free
energy with respect to the damage is given by

∂Ψ̂
∂D ¼ 1

2

�
E1δðtÞ2 þ E2ðδðtÞ − αðtÞÞ2 þ η̂

Γð1 − νÞ

×
Z

t

0

Z
t

0

ð2t − τ1 − τ 2Þ−να̇ðτ1Þα̇ðτ2Þdτ 1dτ2
�

ð41Þ

As observed earlier in the paper, although ∂Ψ̂=∂D is often as-
sumed to be the damage-driving energy in the damage evolution
law, this is not necessary and only happens in the model proposed
in this paper when a ¼ b ¼ 1 in Eq. (19).
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