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Distributed simulation represents a solid discipline and an effective approach for handling the increasing complexity in the 

analysis and design of modern Systems and Systems of Systems (SoSs). The IEEE 1516-2010 - High Level Architecture (HLA) is 

one of the most mature and popular standards for distributed simulation and it is increasingly exploited in a great variety of 

application domains, ranging from aerospace to energy, due to its capabilities to enable the interoperability and reusability of 

distributed simulation components . However, the development of fully fledged simulation models, based on the IEEE 1516-2010 

standard, is still a challenging task and requires considerable development effort that often results not only in an increase  in 

development time but also in low reliability. In this context, the paper presents  the HLA Development Kit Framework, a general-

purpose, domain independent software framework that aims to ease the development of HLA-based simulations by letting the 

developers to focus on the specific aspects of their simulation rather than dealing with the common HLA functionalities . 

Moreover, the so obtained simulation code is independent of any specific HLA platform thus enabling its deployment and 

execution on any desired implementation of the HLA standard provided it is written in Java. The effectiveness of the proposed 

framework is shown in the context of the Simulation Exploration Experience (SEE), a project organized by SISO (Simulation 

Interoperability Standards Organization) and led by NASA that involves several U.S. and European Institutions. 
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1. INTRO DUCTIO N 

Over the years, large-scale systems have increased in complexity and sophistication since, in general, they are composed of several 

components, which are often designed and developed by organizations belonging to different engineering domains, including 
mechanical, electrical, and software. As systems get increasingly complex, their design and develo pment become more difficult and 

therefore new Modeling and Simulation (M&S) techniques, methods and tools are emerging also to benefit from distributed 
simulation environments  (Banks et al, 2009; Falcone and Garro, 2015; Möller, 2013). In this context, the IEEE 1516-2010 - High 

Level Architecture (HLA) standard (IEEE Std. 1516-2010) attempts to handle this complexity by providing a specification of a 
distributed infrastructure in which simulation units can run on standalone computers and communicate with one another in a 

common simulation scenario. 

HLA development was initiated and sponsored by the U.S. Department of Defense to facilitate the integration of distributed 
simulation models within a common architecture. Although it was initially developed to sup port military applications, it has been 

used in non-military industries for its many advantages related to the interoperability and reusability of distributed simulation 
components. In the HLA standard a distributed simulation is called a Federation, and it is composed of several HLA simulation 

entities, each called a Federate, which can interact among them by using a Run -Time Infrastructure (RTI). The RTI represents a 
backbone of a Federation execution that provides a set of services to manage the inter-Federates communication and data exchange. 

They interact with RTI through the standard services and interfaces to participate in the d istributed simulation execution. Each 

Federation has a Federation Object Model (FOM) that is created in accordance with the Object Model Template (OMT) defined by 
the standard. A FOM includes the definition of Objects (ObjectClass) and Interactions (InteractionClass) 0. An ObjectClass is 

composed of a set of attributes whose values define the state of the object at any point during the simulation execution; whereas, an 
InteractionClass defines an event that a Federate can generate or react to during a simulation. It is composed of a set of parameters 

that define its characteristics. These two kinds of information are exchanged through a publish/subscribe model by using the 
services provided by the RTI. A Federate can register an Object, which is an instance of an ObjectClass, and then change the values 

of its attributes. Other Federates that are subscribed to that ObjectClass can discover the related instances and then receive attribute 

value updates. The Interactions work in a similar way, except that interactions have associated a set of parameters and are n ot 
persistent (an interaction is “destroyed” after being consumed). 

Building complex and large distributed simulations systems  using HLA is a challenging task and requires considerable development 
experience. Indeed, it requires expert engineers with knowledge and experience in distributed systems, simulation, middleware and 

software programming. The main problem is that the development and testing of HLA Federates are generally difficult, complex, 
and resource-intensive not only because of the complexity of the IEEE 1516 family standards but also due to the lack of proper 

documentations and ready-to-use examples. Moreover, developers have to spend a considerable effort to handle common HLA 
functionalities, such as the management of the simulation time, the connection on the RTI, and the management of common RTI 



exceptions. As a result, they cannot fully focus on the specific aspects of their own simulations (the HLA Federates). In this context, 
the paper proposes an effective solution to enable the agile development of HLA-based simulation in which the common HLA 

aspects are clearly separated from the specific aspect of the Federates under development. Specifically, the paper presents a general-
purpose and domain independent toolkit that consists of a Java-based development framework, called HLA Development Kit 

Framework (DKF), and an accompanying documentation comprehensive of a user guide and reference examples. Indeed, the DKF 

allows developers to focus on the specific aspects of their own HLA Federates rather than dealing with t he common HLA 
functionalities that are managed by the DKF core components. Moreover, the DKF-based simulation code is independent of any 

specific RTI implementation and thus it can be executed on a desired RTI implementation, such as PITCH (Pitch Technologies, 
2016), VT/MÄK (MÄK VR-Forces, 2016), PoRTIco (The PoRTIco project, 2016), CERTI (Certi Project, 2016). The above 

outlined capabilities demonstrated their benefits not only for expert HLA developers but also for HLA novice practitioners (e.g. 
undergraduates students) involved in the Simulation Exploration Experience (SEE), an educational distributed simulation project 

organized by SISO (Simulation Interoperability Standards Organization) and led by NASA that involves several U.S. and European 

Institutions (Simulation Exploration Experience (SEE) project, 2016). 

The rest of the paper is organized as follows. Related works are discussed in Section 2. Section 3 presents the HLA Development 

Kit with particular focus on the architecture and main services provided by the HLA Development Kit software Framework (DKF). 
In Section 4, the development of a HLA Federate from scratch based on the DKF is exemplified in the context of the SEE project 

and compared with its development without using the DKF. Quantitative analysis of the benefits provided by the DKF is presented 
in Section 5. Finally, conclusions are drawn and future research directions are presented . 

2. RELATED WO RK 

Several research efforts focused their attention on the creation of HLA simulation and development environments, mainly aiming at 

providing an integrated toolchain for creating and simulating complex systems by using specialized modeling tools and 
methodologies. 

For MATLAB/Simulink users different packages and toolboxes are available for implementing HLA simulators such as the 
Forwardsim HLA Toolbox for MATLAB (The Forwardsim HLA Toolbox for MATLAB, 2016), which provides a user interface that 

allows developers to fully design and customize their HLA Federates. Another tool is the HLA/DIS Toolbox for MATLAB and 
Simulink  (MÄK VR-Forces, 2016) that is based on the Forwardsim HLA Toolbox for MATLAB and it provides a library of Simulink 

blocks specifically designed for the integration of HLA services into Simulink models. It greatly simplifies Federation development 
and model reuse, as well as enabling organizations to more efficiently participate in multinational simulations or implement 

distributed simulation models locally. 

Another tool that enables developers to effectively manage the structure and assets of an HLA Federate starting from a FOM file is 
the PITCH Developer Studio (Möller, 2013). This software allows programmers to reduce the HLA learning curve by providing 

functionalities for creating and exporting auto-generate C++/Java code classes based on the structure of the HLA Federate. 

A domain specific HLA software framework was created by the Danish Maritime Institute (DMI) (Villimann, 1999). This 

framework defines a range of real-time simulation concepts to support the more informal concepts available at DMI with an HLA 
environment. The simulation framework provides mechanisms to simplify the development of real-time simulators. FEDEF is 

another domain specific framework developed by the Defence R&D Canada – Atlantic that defines a set of APIs to support both the 

DMSO 1.3 and IEEE HLA 1516-2000 standards. It also provides different capabilities to simplify many programming tasks that are 
normally required when developing a Federate in the military domain (Van Spengen, 2010). 

Other HLA frameworks are based on GRID and Cloud computing infrastructures thus providing a way to model and study complex 
multi-actor systems by using the typical characteristics and capabilities provided by those infrastructures (Pitch Technologies, 2016; 

Xie et al, 2015). Moreover, both GRID and Cloud computing infrastructures offer to the users the possibility to access in a 
transparent way to the computing services remotely through the Internet, freeing them of the burdens associated with managing 

computing resources and facilities. These characteristics make HLA-based distributed simulations much more powerful and widely 

accessible to users who do not have ready access to high performance computing platforms (Fujimoto et al, 2010; Taylor, Turner et 
al, 2012). 

The HLA DKF presented in this paper differ from the above mentioned approaches in several aspects. In particular, differently from 
a proprietary and commercial solution that requires tool-specific knowledge and training, the HLA Development Kit is an open 

source project released under the open source policy Lesser GNU Public License (LGPL) and can be freely and easily customized  
and/or extended to cover and deal with both domain independent and domain specific aspects (as was the case with the SEE-

specific extension presented in Section 4). In addition, the DKF provides advanced facilities that allow keeping the code compact, 

readable and reliable (see Sections 3 and 5). 

TABLE 1 contains a comparison of some general aspects of the above mentioned HLA frameworks. Only Forwardsim HLA Toolbox 

for MATLAB and PITCH Developer Studio supports all the versions of the HLA standard. The version 1.2.0 of the HLA 
Development Kit (DKF)  currently supports both the IEEE HLA 1516.1-2000 and IEEE HLA 1516.1-2010, whereas it does not 



provide compatibility with the oldest version of the standard, which is the HLA 1.3. The Danish Maritime Institute (DMI) HLA 
framework  and FEDEF support both the HLA 1.3 and IEEE HLA 1516.1-2000 versions. 

The code generated by all the frameworks with the exception of the PITCH Developer Studio can be executed on the main 
HLA/RTI platform implementation such as PITCH (Pitch Technologies, 2016), VT/MÄK (MÄK VR-Forces, 2016) and PoRTIco 

(The PoRTIco project, 2016). Moreover, the code is in the Java language for the Danish Maritime Institute (DMI) HLA framework  

and the HLA Development Kit (DKF) ; whereas it is in C++ for FEDEF. The PITCH Developer Studio, unlike the others, is able to 
generate the code both in Java and C++. 

Concerning the user license, the HLA Development Kit (DKF)  is the only framework to be released under the Open Source GNU 
Lesser General Public License (LGPL) license; whereas the Forwardsim HLA Toolbox for MATLAB and PITCH Developer Studio 

are commercial. The technical documentations of both the Danish Maritime Institute (DMI) HLA framework  and FEDEF do not 
give information about their user licenses  and terms of use. Moreover, these two frameworks are domain specific and can be used to 

ease the development of HLA Federates only in the military domain. The other ones  are general-purpose and domain independent; 

this means that they can be exploited to create and manage HLA simulation components in different application domains. 

All the frameworks provide technical documents in which all the details concerning its  architecture and how to install and use it 

are well-explained. In addition, the HLA Development Kit (DKF) offers to developers a set of reference examples of HLA 

Federates created by using the DKF and some video tutorials, which show how to create both the structure and the behavior of a 

HLA Federate by using the Kit. Finally, the PITCH Developer Studio provides some ready-to-run examples through its website. 

Since the HLA Development Kit (DKF) is an open source project it has a community of users that offer support to developers in 

using the DKF framework. Developers can post problems, concerns and solutions by using the official forum (The HLA 

Development Kit project, 2016). Some of the others framework such as the Danish Maritime Institute (DMI) HLA framework  and 

FEDEF do not provide support because these are specific for military applications and thus arguably less popular in the scientific 

community; whereas the PITCH Developer Studio gives support to programmers through its customer support service (Pitch 

Technologies, 2016). 
 

Table  1: Comparison among HLA frameworks: General aspects.  

 
Danish Maritime 

Institute (DMI) HLA 

framework 

Forwardsim HLA Toolbox 

for MATLAB  

HLA Development Kit 

(DKF) 

PITCH Developer 

Studio 
FEDEF 

Version - - 1.2.0 5.2.0.1 - 

HLA Standard 
HLA 1.3/ 

IEEE HLA 1516-2000 

HLA 1.3/ 
IEEE HLA 1516-2000/ 
IEEE HLA 1516-2010 

IEEE HLA 1516-2000/ 
IEEE HLA 1516-2010 

HLA 1.3/ 
IEEE HLA 1516-2000/ 
IEEE HLA 1516-2010 

HLA 1.3/ 
IEEE HLA 1516-

2000 

HLA/RTI 
Supported 
Platform 

PitchRTI, VT MAK, 
poRTIco 

PitchRTI, VT MAK, 
poRTIco 

PitchRTI, VT MAK, 
poRTIco 

PitchRTI 
PitchRTI, VT 

MAK, poRTIco 

Programming 
Language 

Java Simulink Java Java/C++ C++ 

License - Commercial LGPL Commercial - 

Application 
domain 

Military General General General Military 

Documentation Technical documents 
Technical 
documents 

Technical documents/ 
Ready-to-run examples/ 

Video Tutorials 

Technical documents/ 
Ready-to-run examples 

Technical 
document 

Open Community 
Support  

NO NO YES NO NO 

Official website - http://www.forwardsim.com/ 
https://smash-

lab.github.io/HLA-
Development-Kit/ 

http://www.pitch.se/ - 

 

A comparison of some main aspects related to the HLA standard of the introduced HLA frameworks are described in TABLE 2. The 
here presented HLA DKF, unlike the others, is the only one that provides and manages the life cycle of a HLA Federate. As a 

consequence, a developer has only to define the specific behavior of its HLA Federate without worrying about low-level 

implementation details since the DKF manages them. Concerning the Simulation model, the Danish Maritime Institute (DMI) HLA 



framework , FEDEF and HLA Development Kit (DKF)  provide functionalities to manage only time-stepped Federate; whereas the 
two commercial frameworks also support the event-driven model. Moving to the time management aspect, the two commercial 

HLA/RTI frameworks, which are the Forwardsim HLA Toolbox for MATLAB and PITCH Developer Studio, are able to manage 
Federates with and without HLA Time Management; whereas the HLA Development Kit (DKF), Danish Maritime Institute (DMI) 

HLA framework  and FEDEF provide support only to HLA Time Management mechanisms based on Time Advance Grant (TAG) 

and Time Advance Request (TAR) 0. 

The HLA components created by using the capabilities provided by the Danish Maritime Institute (DMI) HLA framework  and 

FEDEF are executed in a single-threaded mode because these frameworks do not handle multithreading mechanisms; this means 
that there may be performance issues as the Federation execution gets bigger. These multithreading aspects do not affect the others 

because they create Federate taking into account these characteristics during the generation of the source code. 

Concerning the communication pattern, all the frameworks do not provide complex protocols over the basic Publish/Subscribe  

mechanism as defined in the HLA standard; but according to the roadmap of the HLA Development Kit (DKF)  (The HLA 

Development Kit project, 2016), different communication patterns over Publish/Subscribe are under development and planned to 
be released in the future version of the DKF. 

Table 2: Comparison among HLA frameworks: HLA standard aspects.  

 

Danish Maritime 

Institute (DMI) HLA 
framework 

Forwardsim HLA 

Toolbox for 
MATLAB 

HLA Development Kit 

(DKF) 

PITCH Developer 

Studio 
FEDEF 

Federate lifecycle NO NO YES NO NO 

Simulation model time-stepped 
time-stepped/ 
event-driven 

time-stepped 
time-stepped/ 
event-driven 

time-stepped 

Federate execution 
model 

Single-thread Multi-threads Multi-threads Multi-threads Single-thread 

T ime management 
Based on T ime Advance 
Grant (TAG) and T ime 
Advance Request (TAR) 

With and Without 
HLA Time 

Management  

Based on T ime Advance 
Grant (TAG) and T ime 
Advance Request (TAR) 

With and Without 
HLA Time 

Management  

Based on T ime 

Advance Grant 
(TAG) and T ime 
Advance Request 

(TAR) 

Communication pattern Publish/Subscribe Publish/Subscribe Publish/Subscribe Publish/Subscribe Publish/Subscribe 

 

In TABLE 3 the functionalities offered by the above considered HLA frameworks are delineated and compared. All the frameworks 
provide functionalities to manage the simulation time, mechanisms to handle the connection (set-up, hold-up and close-up) of an 

HLA Federate to the RTI and features to facilitate publishing and updating of ObjectClasses and InteractionClasses on the RTI. 

However, concerning the latest point, it is worth noting that the HLA Development Kit (DKF)  is the only framework that uses the 

Java annotation mechanism to directly inject the structure of an HLA Federate in the Java code. These metadata are also used by the 
DKF core components at run-time to inspect and check if an HLA Federate is compliant with the related definition in the FOM (see 

Section 3). Moreover, the HLA Development Kit (DKF)  offers support in managing time standard conversions  between the wall-

clock and simulation time 0, and some functions to check the status of the MS Windows Firewall because in some distributed 
simulations it is necessary that all the computers that are participating in the simulation scenario have the firewall disabled (e.g. the 

Simulation Exploration Experience (SEE) project). In addition, the HLA Development Kit (DKF) provides a logging service useful 
to track down any problems or errors occurred during the execution of an HLA Federate; this information is stored into the dkf.log 

file. 

Both the Forwardsim HLA Toolbox for MATLAB and PITCH Developer Studio are able to manage synchronization points, data 

distribution management (DDM) with logical regions services, and functionalities to transfer the ownership of an ObjectClass 

among Federates. 

Despite the availability of different HLA frameworks; there are few training initiatives worldwide to promote their adoption. One of 

the most important is an annual event, formerly named “Smackdown” and now renamed Simulation Exploration Experience (SEE) 
that has been organized, since 2011, by SISO in collaboration with NASA and other research and industrial partners  (Simulation 

Exploration Experience (SEE) project, 2016). The main objective of SEE is to provide undergraduate and postgraduate students 
with practical experience of participation in international projects related to M&S and, especially, to the HLA standard and 

compliant tools. The reference simulation scenario of the SEE Project concerns a human settlement called “Moonbase” composed 

of scientific equipment, storage buildings, rovers and other elements to allow astronauts to live and work on the Moon. The 
Modeling & Simulation Group (MSG) at Brunel University London has participated in the SEE Project since 2013. The group has 



investigated issues concerning the development and standardization of distributed simulation for industry and healthcare (Taylor, 
Fishwick, et al, 2012; Taylor et al, 2014), as well as hybrid Federations consisting of real-time, discrete-event and agent-based 

simulations (Taylor, Turner, et al, 2012). 

The main issue that arose from the SEE 2014 event was the complexity of the development. The students based their work on 

previous code developed by the group. However, the broad knowledge base of domain specific knowledge, distributed simulation 

(both Federate development and RTI interfacing) and the SEE event scenario still presented a major challenge due to the range of 
possible implementation approaches and the lack of clear development guidelines and tutorials.  For these reasons the SEE project 

represented an excellent testbed for proving the effectiveness of the DKF and its SEE specific extension; this experience is 
discussed in the following Sections. 

Table 3: Comparison among HLA frameworks: Functionalities.  

Feature 
Danish Maritime 
Institute (DMI) 

HLA framework 

Forwardsim 
HLA Toolbox 
for MATLAB  

HLA Development Kit 
(DKF) 

PITCH 
Developer Studio 

FEDEF 

Mechanisms to manage the connection (set-

up, hold-up and close-up) of a HLA Federate 
to the RTI. 

YES YES YES YES YES 

Mechanisms to facilitate the management and 
the publication of FOM modules. 

NO YES YES YES NO 

Mechanisms to facilitate the management of 
the configuration parameters. 

NO YES YES YES NO 

Mechanisms to facilitate publishing and 

updating of ObjectClasses and 
InteractionClasses on the RTI. 

YES YES 
YES 

(Through Java annotations) 
YES YES 

Mechanisms to manage the simulation time. YES YES YES YES YES 

Mechanisms for time standard conversions. NO NO YES NO NO 

Synch Points support. NO YES NO YES NO 

IP Configuration checker. NO YES YES YES NO 

MS Windows Firewall state checker. NO NO YES NO NO 

Logging NO NO YES NO NO 

Ownership transfer and data distribution 
management with regions. 

NO YES NO YES NO 

 

3. THE HLA DEVELO PMENT KIT FRAMEWO RK 

The HLA Development Kit Framework  aims at easing the development of HLA Federates by providing the following resources: (i) 
a software framework  (the DKF) for the development in Java of HLA Federates; (ii) a technical documentation that describes the 

DKF; (iii) a user guide to support developers in the use of the DKF; (iv) a set of reference examples of HLA Federates created by 
using the DKF; and, (v) video-tutorials, which show how to create both the structure and the behavior of a HLA Federate by using 

the DKF. In the following, the attention is focused on the DKF and, specifically, on its architecture and underlying Federate model-
behavior. 

3.1 The HLA Development Kit Framework  

The DKF is a general-purpose, domain independent framework, released under the open source policy Lesser GNU Public License 

(LGPL), which facilitates the development of HLA Federates 0. Indeed, the DKF allows developers to focus on the specific aspects 
of their own Federates rather than dealing with the common HLA functionalities, such as the management of the simulation time; 

the connection/disconnection on/from the HLA RTI; the publish ing, subscribing and updating of ObjectClass and InteractionClass 
elements. The DKF is designed and developed by the SMASH-Lab (System Modeling And Simulation Hub - Laboratory) of the 



University of Calabria (Italy) working in cooperation with the NASA JSC (Johnson Space Center), Houston (TX, USA). It is fully 
implemented in the Java language and is based on the following three principles: 

1. Interoperability, DKF is fully compliant with the IEEE 1516-2010 specifications; as a consequence, it is platform-
independent and can interoperate with different HLA RTI implementations (e.g. PITCH (Pitch Technologies, 2016), 

VT/MÄK (MÄK VR-Forces, 2016), PoRTIco (The PoRTIco project, 2016), CERTI (Certi Project, 2016)); 

2. Portability, DKF provides a homogeneous set of APIs that are independent from the underlying HLA RTI and Java 
version. In this way, developers could decide the HLA RTI and the Java run-time environment at development-time; 

3. Usability, the complexity of the features provided by the DKF framework are hidden behind an intuitive set of APIs.  

The design and implementation of the DKF has been centered on typical Software Engineering methods and, in particular, on an 

agile software development process. Furthermore, it has been developed according to the concept of Object HLA, in this way, the 
development of HLA Federates could benefit also from the Object HLA features and functionalities provided by the Pitch 

Developer Studio (Möller, 2013) or similar IDE. 

To promote the adoption and experimentation of the HLA Development Kit and its DKF, the Kit has been specialized in the SEE 
HLA Development Kit with the aim to ease the development of HLA Federates in the context of t he Simulation Exploration 

Experience (SEE) project (Simulation Exploration Experience (SEE) project, 2016). The SEE-specific features (as an example, the 
possibility to easily implementation SEE Dummy and Tester Federates) aim not only at reducing the development efforts but also at 

improving the reliability of SEE Federates and thus reducing the problems arising during the final integration and testing ph ases of 
the SEE project (Simulation Exploration Experience (SEE) project, 2016). Moreover, this SEE extension allows to prove how, 

starting from a domain independent core of the DKF, conceived for supporting the development of general-purpose HLA Federate, 

it is possible to easily add and integrate application-specific extensions for supporting the development of domain specific Federates 
(Anagnostou et al, 2015a; Anagnostou et al, 2015b; Bocciarelli et al, 2015). 

The following subsections are devoted to present both the architectural and behavioral aspects of the DKF also with reference  to its 
SEE-specific extension (the SEE-DKF). 

3.2 Architecture of the DKF 

The architecture of a DKF-based Federation is composed of three main layers (see Figure 1): (i) Application Layer, which contains 
the Federates that can interact with both the DKF and the HLA RTI by using their APIs; (ii) DKF Layer, which represents the core 

of the architecture and provides a set of domain independent APIs that are used to access the DKF capabilities; and (iii) HLA RTI 
Infrastructure, which represents the RTI that host the Federation (e.g. PITCH (Pitch Technologies, 2016), VT/MÄK (MÄK VR-

Forces, 2016), PoRTIco (The PoRTIco project, 2016), CERTI (Certi Project, 2016)). Some application-specific extensions of the 

DKF can be also introduced (e.g. the SEE-specific ones). 

 

Figure 1. The architecture of a DKF-based Federation. 

 
The DKF provides a set of services  that are independent both of application domains and HLA RTI implementations . Each service 

defines some Java classes and interfaces that implement specific functionalities. The DKF architecture is shown in Figure 2. The 
Core Services layer, represents the kernel of the DKF and provides a set of low level services to manage a DKF-based application. 

It is composed of eight services. 

The Data Management Service (DMS)  manages publishing, subscribing and the data updating of both an ObjectClass and an 

InteractionClass 0. The DKF framework introduces a set of annotations to manage an ObjectModel (ObjectClass and 
InteractionClass), each of which covers a specific core concept involved in the HLA Object Model specification, and it is 

applicable to a piece of the program code so as to guide the core components of the DKF in managing ObjectModels. Annotations 

represent a form of metadata that provide data about a program that is not part of the program itself, thus they do not have direct 
effect on the operation of the code that they annotate (Anagnostou et al, 2015a; Anagnostou et al, 2015b; Bocciarelli et al, 2015). 



Annotations have a number of uses, among them: (i) Information for the compiler, which can be used by the compiler to detect 
errors or suppress warnings; (ii) Compile-time and deployment-time processing, in which software tools can process annotation 

information to generate code, XML files, and so forth; and (iii) Runtime processing, which can be used to examine the structure of 
objects/classes at runtime. 

Table 4: The @O bjectClass annotation. 

HLA Object Model 
Specification 

Annotation class 
name 

Target Field in 
the code 

Annotation field 
name 

Description 

Object Class @ObjectClass Class, Interface 

name 
Manages the namespace of the object class and 
handles their relationships. 

sharing Manages the sharing of the object class. 

semantic Define the semantic of the object class. 

Attribute @Attribute Class Attribute 

name Manages the attributes defined for the object class. 

coder 
Defines the coder to be used to code and decode the 
attribute. 

sharing Manages the sharing of the attribute. 

ownership Handles the ownership of the attribute. 

updateType Manages the update of the attribute. 

updateCondition 
Stores the condition that defines how and when the 

attribute has to be updated on the RTI. 

order Handles the order type of the attribute. 

transportation Defines the transportation type for the attribute. 

semantic Define the semantic of the attribute. 

 

Table 5: The @InteractionClass annotation. 

HLA Object Model 

Specification 
Annotation class 

name 

Target Field in 

the code 

Annotation field 

name 
Description 

Interaction Class @InteractionClass Class, Interface 

name Manages the namespace of the interaction class. 

transportation 
Defines the transportation type for the interaction 

class. 

sharing Manages the sharing of the interaction class. 

order Handles the order type of the interaction class. 

semantic Define the semantic of the interaction class. 

Parameter @Parameter Class Attribute 

name 
Manages the parameter defined for the interaction 
class. 

coder 
Defines the coder to be used to code and decode 
the parameter. 

semantic Define the semantic of the parameter. 

 

In the DKF framework, two Java annotation classes, which have to be used by programmers so as to create an instance of an 
ObjectModel compatible with the DKF, have been defined: @ObjectClass and @InteractionClass. The first one provides 

annotations for the definition of ObjectClass instances; whereas the second annotation class specifies concepts to define and handle 



InteractionClass instances. These two classes are used by the DKF core components at runtime to examine the structure of an 
ObjectModel instance. The structures of the above introduced annotation classes are summarized in Table 4 and Table 5, 

respectively. 

The Logging Service (LS)  allows data on the activity carried out by a simulation to be stored into the dkf.log file. It is very useful for 

finding out problems or errors occurred during the execution of a simulation, and for understanding how the DKF core services 

work. 

The Simulation Time Service (STS)  provides to developers some factory method that can be used to handle the two standard HLA 

logical time representations: HLAinteger64Time and HLAfloat64Time 0, and defines mechanisms for controlling the advancement 
of the time during the execution of a simulation. These mechanisms are coordinated with other components responsib le for 

delivering information. 

 

Figure  2. The architecture of the DKF. 

 
The FOMs Management Service (FMS)  offers functionalities for retrieving and processing FOM files. More in detail, a set of 
components allow a DKF-based Federate to navigate the FOM tree and get the needed data by using a  XPath expression (XQuery 

1.0 and XPath 2.0 Functions and Operators , 2016). 

The Caching Service (CS)  represents a caching system used during the execution of a DKF-based application for optimizing access 
to data. 

The Data Access Service (DAS) defines some low level services to retrieve resources in a file system. 

 

Figure  3. The architecture of the SEE-DKF specific extension. 

 

The Coding/Decoding Service (CDS)  defines all the standard HLA functionalities for coding and decoding both ObjectClass and 
InteractionClass instances (IEEE Std. 1516-2010). 



Finally, the Configuration Service (CfS) defines a collection of services that manage the configuration parameters provided by a 
.json file. These parameters include the name of the Federation Execution, the RTI connection details (e.g. IP address, port, etc.) , 

and details about the simulation time. 

Figure 3 shows the architecture of the SEE-DKF, a specific domain dependent extension of the DKF that provides some SEE 

domain specific services, which are used by the core components of the DKF to handle the main aspects related to a SEE 

Federation (Simulation Exploration Experience (SEE) project, 2016), such as transformations among SEE Coordinate Reference 
Frames, the publishing and subscribing of PhysicalEntities, and the management of Space FOMs (Anagnostou et al, 2015a; Falcone 

et al, 2014; Taylor et al, 2014). The SEE-DKF architecture is organized in two main services sections . 

The Frame section provides a set of services to manage basic space elements, and defines features for representing the position, 

geometry and characteristics of space objects such as planets and stars . Moreover, various algorithms to handle them are provided 
(conversions, propagations, etc.). It also defines data on the International Celestial Reference Frames (The International Celestial 

Reference Frames, 2016) and includes algorithms and functionalities to manage them. Moreover, the Frame section has a factory 

module that provides several predefined planet instances (e.g. Sun, Earth, Moon, etc.) with their specific characteristics (e.g. mass, 
volume, velocity, etc.) that developers can easily instantiate and use. 

The SpaceTime section, defines mechanisms to handle epochs and dates that are commonly defined by specifying a point in a 
specific time scale. This section also provides many time standards such as Terrestrial Time (TT) and Universal Time Coordinate 

(UTC), and defines some epochs (e.g. Julian Epoch (JE), Modified Julian Epoch (MJE) and j2000 Epoch). 

The Utility Service (US) provides several miscellaneous functions to manage both space elements and the space simulation time. 

The Apache Common Math library, is a standard library of lightweight, self-contained mathematics and statistics components 

addressing the most common practical problems not immediately available in the Jav a programming language or commons-lang 
(The Apache Commons Mathematics Library, 2016). It is used by the Frame services to perform mathematics operations on arrays 

and matrices. 

 

 

Figure 4. The architecture of a DKF-based Federate  with the SEE Domain Extension . 

 
3.3 Federate Behavioral Model 

The example architecture of a Federate created by using the capabilities of both the DKF and its SEE-specific extensions is shown 

in Figure 4 by using a UML Class Diagram; in the following its main classes are briefly described. 

The classes SEEAbstractFederate and SEEAbstractAmbassador, which are in grey, define the behavior of a SEE Federate, while 

the classes in yellow belong to the DKF application independent part (see Figure 4). 

The SEEAbstractFederate class implements the methods of the DKFAbstractFederate class. This latter class provides 

functionalities to configure and connect/disconnect a Federate to/from a Federation Execution. Moreover, it is worth noting that, in 

the SEE context, all the Federates are exclusively time constrained (can receive Time Stamp Order (TSO) messages) except the 



Environment Federate, provided by NASA and which leads the Federation execution, that is also time regulating (can send Time 
Stamp Order (TSO) messages) and acts as a Pacing/Clock Federate (Fujimoto, 2010); the DKF has been thus adapted to handle this 

situation. 

The SEEAbstractAmbassador class implements the DKFAbstractFederateAmbassador class in order to interact with the RTI 

services. 

Finally, the ExecutionThread class handles the execution of a HLA Federate in the simulation environment. 

The DKFAbstractFederate class also provides and manages the life cycle of a SEE Federate according to the behavioral model that 

is shown in Figure 5 through a UML Statechart diagram. As a consequence, a SEE working team has only to define the specific 
behavior of its SEE Federate without worrying about low-level implementation details since the DKF manages them. Specifically, 

the pro-active part of the behavior of a Federate is specified in the proactive composite state, which is accessed between a TAG 
(Time Advance Grant) and a TAR (Time Advance Request); whereas, the re-active part of the behavior of a Federate is specified in 

the reactive composite state so as to indicate how to handle the RTI callbacks about the interactions/objects that the Federat e has 

subscribed. Please note that the current vers ion of the DKF and its SEE specific extension only support the implementation of time-
stepped Federates as it is the reference simulation model in the SEE project; however, ongoing efforts are geared to also supporting 

event-driven simulations (see Falcone and Garro 2016). 

 

 

Figure 5. The life  cycle  of a SEE Federate. 

 
With reference to the Federate life cycle depicted in Figure 5, in the load configuration state, the DKF loads the configuration 

parameters from a .json file. A transition to the startup state happens if the configuration parameters are valid and during the state 
transition a connection to the SEE Federation execution is performed. Otherwise, if the configuration parameters are invalid a state 

transition to the shutdown state is performed. In this latter state, all the resources engaged by the SEE-DKF classes are de-allocated 

through the dealloc resource operation, and then the life cycle terminates . In the startup state, the connection status is checked. If 
the connection is not established the lifecycle ends with a transition to the shutdown state, otherwise, three operations are done: (i) 

locateRTI, the parameters of the specific HLA/RTI implementation (e.g. PITCH (Pitch Technologies, 2016), VT/MÄK (MÄK VR-
Forces, 2016), PoRTIco (The PoRTIco project, 2016), CERTI (Certi Project, 2016)) are located and loaded; (ii) setRTIParameters, 

the parameters loaded in the previous operation are set up according to the configuration parame ters defined in a .json; and (iii) 
connectOnRTI, a connection to the Federation execution is performed. 

A transition to the initialization state is performed if the connection has been properly established; in this state, the SEE Federate 

could perform additional operation for exchanging initialization objects before entering the running state (and thus the time 
advancement loop: waiting for a TAG  proactive state  make a TAR), as an example, the Federate could publish and subscribe 



some SEE information (e.g. ReferenceFrames, InteractionClasses, etc.). After that, the time management thread is activated and a 
transition to the running state is performed. The running state is composed of two sub-states operating in an AND-decomposition 

fashion. The proactive behavior sub-state deals with the pro-active part of the Federate behavior through three states: (i) Waiting for 
TAG: the DKF waits for the “TAG (Time Advance Grant) Callback” from the RTI. When the callback is received a transition to the 

proactive state is performed; (ii) proactive state: the “logical time” is updated, the pro-active behavior of the specific SEE Federate 

defined in the proactive composite state by the SEE working team is executed, and then a transition to the make TAR request state is 
performed; (iii) make TAR request: the DKF requests to the RTI the grant for the next “logical time”. The reactive behavior sub-

state deals with the re-active part of the behavior of the Federate: upon reception of RTI callbacks related to subscribed elements in 
the Callback listener, a transition to the reactive state is performed where the received information is handled through the execution 

of the reactive behavior of the specific SEE Federate defined in the reactive composite state. Note that, due to the AND 
decomposition in the running state, its child states are parallel states ; this implies that the proactive behavior and reactive behavior 

are concurrently executed. As a consequence, the concurrency between the reactive and proactive tasks of a Federate has to be 

properly managed by the developer; indeed, the current version of the DKF/SEE-DKF does not provide specific mechanisms to 
handle these concurrent aspects and thus it relies on the standard synchronization mechanisms provided by the Java language and 

related SDK. 

When the simulation ends a transition from the running state to the shutdown state is performed and, during the state transition, the 

HLA Federate is disconnected from the RTI. 

4. DEVELO PING A FEDERATE: BEFO RE AND AFTER 

The previous section has shown that the DKF and its domain specific extensions can hide a significant amount of complexity 

related to the development of HLA Federates . Based on this, to demonstrate that the DKF can be used to simplify Federate 

development we now present a short case study. We focus on the Excavator agent-based simulation we developed in REPAST 

SIMPHONY as part of the SEE event in 2015 to show students how to create an agent-based simulation that can interoperate with 

other simulations in the lunar scenario. Students could explore how excavator “robots” could self-organize in the coordination of 

the extraction of lunar regolith materials and the degree to which REPAST could facilitate the study of these algorithms. In this 

short case study, in order to focus on distributed simulation issues we present a single agent with simplified input/output 

requirements. We therefore first introduce this simplified version of the excavator simulation and then discuss how this could be 

implemented without and with the DKF. 

4.1 The Excavator Agent-based Simulation 

REPAST SIMPHONY is a free and open-source agent-based simulation environment (Fortino et al, 2004; North, et al 2013). A 

REPAST agent-based simulation is created by using the ContextBuilder interface. In this class, the environment (i.e. the coordinate 

system that “places” the agents), the initial number of agents (and types/classes) that are located in the environment, and other basic 
settings are specified. The attributes and methods of each agent are specified in an agent’s class. Each agent interacts with other 

agents and the environment via their methods. Time is managed in a REPAST simulation by the scheduler. A method can be 
annotated as being scheduled and will therefore include the frequency and priority that the method occurs. When a REPAST 

simulation runs, the simulation environment enters a cycle that calls the scheduler, the scheduler then runs the methods in priority 
order according to their frequency, and advances time at a specified time step until some terminating condition is met. In terms of 

distributed simulation, we need to be able to “plug” this simulation into a Federate, synchronize time advancement between the 
Federate (and therefore the Federation), and send and receive information to and from the simulation to represent the Excavator’s 

interaction with other simulations. 

A (simplified) single excavator agent explores its environment by coordinating with a UAV. The UAV simulation was developed 
by Liverpool University (Simulation Exploration Experience (SEE) project, 2016). The UAV slowly “flies” over the lunar surface 

detecting potentially interesting minerals. The UAV periodically broadcasts the results of its on -going survey to the excavator (in 
this case a single reading with the target coordinates), the excavator updates its local map and heads towards the target site. When 

the excavator reaches the site, it “mines” the mineral and adds it to its hopper that carries the excavated regolith. Once the hopper is 
full the excavator returns to its origin point and deposits the regolith material in a pile. The now empty excavator returns to where it 

left off and continues mining. 

The agent-based simulation consists of three main classes: the JExcavatorsBuilder, Excavator and Mineral. JExcavatorsBuilder 
implements the REPAST ContextBuilder interface to create the simulation environment; a continuous space with a superimposed 

grid in which the excavator(s) move around. An Excavator has several internal variables that specify where it is currently located on 
the grid, its origin point, the amount of cargo it carries, and a map with the current target coordinate from the UAV. For the 

distributed simulation, the agent-based simulation needs to be able to receive the Cartesian coordinates of the target location from 
the UAV (UAVx, UAVy) and to send the Cartesian coordinates of its own current location to other Federates that need to 

coordinate with it (EXCx, EXCy) (including the visualization Federate that shows the entire scenario during the execution of the 

SEE distributed simulation). 



When the REPAST agent-based simulation starts, the initialization of the environment happens in the JExcavatorBuilder class. At 
this stage, the grid is populated with an Excavator agent at location 0,0. At the first simulation time unit, the model calls the 

scheduler and executes all the scheduled methods with the modeler-defined frequency and priority configurations (if not defined by 
the modeler the schedule would follow the REPAST default configurations). In the case study, each agent has a step() method 

where all agent actions are implemented. This method is annotated as scheduled and therefore it is added to the scheduler. In this 

example, the Excavator’s step() method is called. The first action in the step method reflects the communication with the UAV by 
receiving the next location (if any) and updating the map by calling updateMap(). 

The excavator then checks to see if it is full and needs to return to origin. If it does, it moves towards the origin. If not, it moves 

towards the target location. Arriving at the origin point it will unload its cargo and then move towards the next target location. 

Arriving at a target location it will “mine” for a period of time and update its load. In this simplified scenario the agent therefore 

needs to receive a target location from the UAV and to send its current location to the other simulations (Federates) in the 

distributed simulation. The scheduled step() method in REPAST is reported in Appendix A.1. 

4.2 Implementing a Federate without using the SEE-DKF 

To create a Federate of this agent-based simulation we first identify the incoming and outgoing communication of the Excavator 

Federate, i.e. the information that the Federate will receive and send from/to other Federates. This is specified in the Federate 

Object Model (FOM). 
In the “normal” Federate implementation, the middleware was developed using poRTIco RTI implementation  (The PoRTIco 

project, 2016). Generally, to create an HLA Federate from scratch, two classes need to be added to a model: (i) a concrete Federate 

class, here referred as Federate, that manages the life-cycle of the Federate and defines the behavior of the model to be simulated. 
This class uses the mechanisms provided by the RTI Ambassador for sending information to the other Federates through the RTI 

(IEEE Std. 1516-2010); and (ii) its Federate Ambassador class by implementing the NullFederateAmbassador interface, which 
defines a set of methods that define how the RTI sends information to the Federate in response to the changes  in the state of the 

Federation execution 0. A FOM XML schema needs also to be created. For our Excavator implementation, these two classes and 
the FOM file were based on the examples of the Federate and Federate Ambassador classes and modular FOMs that come with the 

poRTIco RTI (The PoRTIco project, 2016). The examples were helpful but assumed a certain level of HLA expertise. Learning 

how to implement a distributed simulation was very demanding. We implemented two HLA functionalities, data exchange and time 
synchronization. 

The HLA specification supports several forms of communication. For example, every Object and its attributes and every Interac tion 
and its parameters can be published by a Federate. Other Federates subscribe to these. Both publish and subscribe mechanisms are 

declared manually in the Federate class. Data exchange in poRTIco is achieved by calling ObjectClassHandle and 
InteractionClassHandle for every instance that requires data exchange. In the Federate class, handle variables for all Object 

attributes and all Interaction parameters that need to be communicated must be declared. To do this, the modeler must create these 
handle variables. Then these handle variables must be added to the respective Collections, different for Objects and Interactions. 

These Collections must be then registered for updates, publish and/or subscribe. The method that does that is  the 

publishAndSubscribe()  method in the Federate class (see Appendix A.2). 

The final step is to do the actual updates. This involves updating the handle variables values and encode them. An example of the 

update method for updating the Excavator Cartesian coordinates is shown in Appendix A.3. 

The Federate Ambassador is responsible for receiving attribute values and decoding them (the Object attributes that Federate has 

subscribed). An example code for receiving updates from the UAV Object is shown in Appendix A.4 along with the implemented 
decode method. 

As mentioned earlier, together with the Federate and its Federate Ambassador classes, the FOM XML schema needs to be created 

too. A portion of the FOM module is reported in Appendix A.5. 

Generally, the FOM in both the “normal” and DKF implementations is the same  for specifying the publish/subscribe ObjectClasses 

and InteractionClasses. However, in the “normal” implementation all data types must be explicitly stated in the FOM. If the 
Federation exchanges many different data types, this part of FOM can be substantial (see Appendix A.6). 

Time synchronization is achieved by using HLA time services and REPAST scheduler. REPAST is a time-driven simulator, 
therefore the time strategy that is implemented in the Excavator Federate is based on Time Advance Requests (TARs). The 

Excavator Federate after updating EXCx and EXCy attributes requests time advancement through the RTI Ambassador. Then, the 

Federate Ambassador, after receiving the updated UAVx and UAVy attributes from the UAV Federate, grants time advancement to 
the Excavator Federate using the Time Advance Grant (TAG) method. The snapshot code in Appendix A.7 shows the above 

described methods. 

An instance of the Excavator Federate, and subsequently an instance of Federate Ambassador too, is created when initializing the 

simulation in the REPAST Context Builder and is added in the same context as the agents. In this implementation , the update 
attributes method of the Federate must be modified to reflect the subscribed attributes. This method then can be called manua lly 



from the scheduled methods in the agent-based simulation (i.e. an update attribute method is called from the moveExcavator() 
method within the scheduled step() method in the Excavator class). 

4.3 The Development Process based on SEE-DKF 

As noted above, the SEE-DKF was developed as the “lunar” domain extension for the DKF. Rather than trying to follow examples 
from various RTI implementation, the DKF has a development process. This has four main steps: 

1. Build a model of the Federate that specifies: the objects that the Federate manages (as specified in the FOM), the attributes of 

these objects and the coders to handle such attributes. It is possible to use the basic coder set provided in the SEE-DKF or to 
implement new coders based on the SEE-DKF classes; 

2. Build a concrete Federate that specifies the behaviour of the model defined at (1). It is required to extend the 
SEEAbstractFederate abstract class provided by the SEE-DKF and implement three methods according to the Federate life-

cycle that is provided and completely managed by the SEE-DKF (see Figure 5), specifically: (a) a method for initializing 
operations before entering the “running state” (a configureAndStart() method); (b) a method for specifying the active part of the 

behavior of the Federate (doAction() method) executed between a TAR and a TAG; and (c) a method (update() method) that 

specifies the re-active part of the behavior of the Federate, i.e. how to handle the RTI callbacks about the interactions/objects 
that the Federate has subscribed; 

3. Implement the Federate Ambassador. This step requires extending the SEEAbstractFederateAmbassador; typically, since no 
specific implementation is required, the child class has only to define its constructor which in turn calls the parent one: all the 

typical Ambassador’s features are provided and managed by the SEE-DKF; 

4. Implement a main class so as to instantiate and run the developed Federate. 

In the following, after presenting the reference simulation scenario, the above sketched process will be exemplified with respect to 

the development of a Federate in the context of the SEE Project (Simulation Exploration Experience (SEE) project, 2016). 

4.4 Using the DKF to Develop the Excavator Federate 

The above description of the simple excavator focuses on a single excavator agent. The mining operation may be also of interest to 

other simulations (e.g. an astronaut who takes away mined materials for processing). To create a Federate based on the above 
introduced agent-based simulation, the SEE-DKF main steps have been followed. 

In step (1) a FOM that describes the input and output of the simulation was exploited. In this case the FOM represents the single 
Excavator object with UAVx, UAVy, EXCx and EXCy as noted above. All are HLAinteger32BE datatype. To begin the creation 

of the Federate, the Excavator class has been annotated to match the FOM as follows (see Section 3.2): 

1.  @ObjectClass(name = "PhysicalEntity.Excavator") 
2.  public class Excavator { … 

To create the I/O from the simulation to the rest of the Federation, the Excavator class was augmented with attributes and coders. 

For example, to enable the sharing of the X, Y coordinates of the excavator the following attributes and coders have been added to 

the declarations: 

1.  @Attribute(name = "EXCx", coder = HLAinteger32BECoder.class)  
2.  private Integer EXCx; 
3.  @Attribute(name = "EXCy", coder = HLAinteger32BECoder.class)  
4.  private Integer EXCy; 

At the end of the step() method described above, the two calls 

1.  setEXCx(getPointX()); 
2.  setEXCy(getPointY()); 

have been added to update the current position of the excavator. Similar attributes and coders for the other attributes described in 
the FOM have been added. 

In step (2), the SEEAbstractFederate class has been extended to create the ExcavatorFederate class. Within the ExcavatorFederate 
class the configureAndStart()  method remained unchanged (i.e. it reaches the JSON config file and starts the Federation). The 

doAction() method is shown below. 

1. protected void doAction() 
2.   { 
3.     for (Object obj : RunState.getInstance().getMasterContext()) 
4.       { 
5.        if(obj instanceof Excavator) // update the excavator on RTI 
6.          ((Excavator) obj).step(); 



7.        super.updateElement(obj);  
8.       } 
9.   } 

This method advances the agent-based simulation by first obtaining the current state (context) of the simulation, finding all agents 
(objects) and then “manually” running the step() method in the agents. In this example, the single excavator agent’s step() method is 

executed. It then calls updateElement(obj) to output the new state of the excavator Federate’s attributes. 

Step (3) simply extended the SEEAbstractFederateAmbassador class with the ExcavatorFederateAmbassador. Step (4) was 

unnecessary, as the simulation had already been developed. The only addition to these steps was that of the ExcavatorFederate 
and ExcavatorFederateAmbassador to the context (JExcavatorsBuilder) to include them in the scope of the agent-based 

simulation. The overall class diagram is shown in Figure 6. 

 

Figure 6. The architecture of the Excavator Federate. 
 

TABLE 6 summarizes the main differences in implementing HLA Federations with and without the DKF. In SEE 2015, under 
guidance from the Brunel team, an undergraduate Computer Science student created the “distributed” side of the Excavator agent 

moderately quickly. This left more time for him to concentrate on the “simulation” aspects of the Excavator and its interactions with 
other simulations in the SEE event. 

Table 6: Comparison in building DKF and no-DKF based Federate. 

 Without DKF With DFK 

Object / attribute 
declaration  

Manually declared in 
Federate Class 

Annotated in Object Class 

Interaction / parameter 
declaration 

Manually declared in 
Federate Class 

Annotated in Interaction 
Class 

Attribute / parameter 

update 
Manually for each element 

Collectively for each 

Object/Interaction 

Data Types Coders Explicitly stated in FOM Using DKF coder package 

T ime advance 
Scheduled and managed in 

Repast  

Managed by HLA/RTI via 

DKF 



5. DKF QUANTITATIVE ASSESSMENT 

This section presents a quantitative analysis of the quality of the code produced by using the DKF and aims at highlighting the 

benefits provided by its exploitation in the SEE project. 

Software complexity is a primary topic in Software Engineering and has involved many researchers over the years. To analyze the 

quality of a software, it is necessary to measure the software source code in quantized form. Software metrics is one of the most 
traditional and effective way to measure the software system and they are related to various constructs like class, coupling, cohesion 

and inheritance. To evaluate the complexity of the source code of an SEE-DKF based HLA Federate, five standard metrics, which 

are proposed by various researchers, have been considered (Yu and Zhou, 2010). 

SLOC (Source Line of Code) is the most widely used metric for measuring the size of a software program. It is used to count the 

number of any line that is not a comment or blank line irrespective of the number of statements per line (also called executable 
statements). SLOC is easy to understand, fast to count, independent of the program language and it is a good metric to measure and 

evaluate the quantitative characteristics of a source code via the physics length. Typically, a method should be broken up if it has 
more than 50 lines of code; whereas a class should be split up and its functionalities delegates to other classes or sub-classes if it has 

over 750 lines of code. In this way, it is possible to increase both readability and maintainability of the software (Yu and Zhou, 
2010). 

CCM (Cyclomatic Complexity Metric) is one of the most commonly used metric in many commercial and non-commercial tools for 

code complexity measurement. The CCM is based on graph theory and measures the complexity of a software module by analyzing 
its control flow structure. In particular, the control flow structure is represented as a graph G(V, E), in which nodes (V) are used to 

represent decision or control statements; whereas  edges (E) represent the control paths which define the program flow. The value of 
the CCM is the number of linearly independent paths and therefore, the minimum count of paths that should be tested, because any 

path can be expressed as a linear combination of some linearly independent paths. The CCM value gets an assessment of the 
complexity and indirectly of the maintainability of a software (see Table 7). 

HCM (Halstead Complexity Metric) measures the complexity of a software directly from source code analyzing its operators and 

operands. The operators are symbols used in expressions to specify the manipulations to be performed, whereas the operands are the 
basic logic unit to be operated. In particular, HCM measures the logic volume of a software by using four numeric values: (i) the 

number of non-repetitive operators (n1); (ii) the number of non-repetitive operands (n2); (iii) the total number of operators (N1); 
and, (iv) the total number of operands (N2). This metric represents a strong indicator of code complexity and it is often used as 

maintenance metric and to evaluate development risk: higher values imply lower maintainability (Yu and Zhou, 2010). 

NF (number of function)  represents the total number of functionalities that are present in a software. This metric can be used to 

estimate the limits of code readability. In this context, a function that has a large number of code lines (e.g. greater than 800) should 

be decomposed, thus ensuring better clarity of individual code segments . 

Table 7: Cyclomatic complexity value ranges. 

Cyclomatic 
Complexity 

Code Evaluation 
Risk 

Evaluation 

1 - 10  

The software code is considered simple 
and easy to understand and test. 

No much 
risk 

11 - 20 

The software code is quite complex but 
still be comprehensible; however testing 
becomes more difficult due to the greater 

number of possible branches. 

Moderate 
risk 

21 - 50 

The software code is complex and has got 

a very large number of potential execution 
paths that and can only be fully 
understandable and tested with difficulty 
and effort . 

High 
risk 

> 50 
The software code is extremely complex 
and unmaintainable. 

Very high 
risk 

Finally, NC (number of classes)  represents the number of concrete, abstract and interface classes. It provides  an indicator of the 

extensibility of the software. Typically, the lower are the values of these metrics the lower is the complexity of the source code and 
thus higher should be the code compactness, readability and reliability (Basili and Perricone,1984; Yu and Zhou, 2010). 

These six metrics are evaluated by considering the source codes of the UNICOM Federate, another simulation in the SEE event that 
provides communication services to the other entities populating the Moon base scenario and is substantially more complex than the 

Excavator agent (Falcone et al, 2014). 

Table 8: METRICS AT PACKAGE LEVEL. 



Metric 
UNICOM Federate 

SEE-DKF Pitch Developer Studio 

NC 17 72 

NF 94 784 

SLOC 744 6186 

CCM (average) 1,20 1,63 

HCM 

Number of distinct operators (n1) 22 38 

Number of distinct operands (n2) 312 1454 

Total number of operators (N1) 1337 4150 

Total number of operands (N2) 513 13217 

Software length (N) 1850 17367 

Software vocabulary (n) 334 1492 

Volume (V) 1,584*10
4
 1,831*10

5
 

Level (L) 0,1495 0,4784 

Difficulty (D) 47,13 172,71 

Programming Effort  (E) 7,469*10
5
 3,162*10

7
 

Error Estimate (B) 5,28 61,03 

Programming Time (T) 4,149*10
4
 1,756*10

6
 

More in detail, one source code is based on the SEE-DKF whereas the other one is that produced by the Pitch Developer Studio 

(Möller, 2013), which is a high quality IDE for HLA programming. The metrics have been calculated by using the Google CodePro 
AnalytiX tool, which is an application, developed by Google Inc., that allows developers to perform code measurement and 

comparison with user-defined programming standards and that is used by several large organizations , ranging from 
aerospace/defense to automotive/transport companies, to control their programming process. 

Although the DKF framework, and its domain dependent extension SEE-DKF, does not cover all the IEEE 1516-2010 
functionalities that are instead covered by the Pitch Developer Studio, the results reported in Table 8 show that the source code of 

an HLA Federate created by using the DKF/SEE-DKF is easy to manage and maintain even when compared to the same code 

produced by the Pitch Developer Studio. 

Moreover, all the classes produced by using the SEE–DKF have CCN value less than twenty (see Table 8); as a consequence, these 

classes are easy to manage/extend by programmers (see (Yu and Zhou, 2010) for a discussion). 

6. CONCLUSION 

HLA is undoubtedly one of the most mature and popular standard for distributed simulation. Due to its capabilities to enable the 

interoperability and reusability of distributed simulation components, it is increasingly exploited in a great variety of applications in 
both military and civil domains. However, the development of full-fledged simulation models, based on HLA, is still a challenging 

task. In this context, the paper has proposed an effective solution to enable the agile development of HLA -based simulations based 

on the HLA Development Kit, a general-purpose, domain independent toolkit that provides a software framework (the DKF), with 
related documentation, user guide and reference examples. The effectiveness of the DKF has been exemplified in the context of the 

Simulation Exploration Experience (SEE), an international project organized by SISO and led by NASA that involves several U.S. 
and European Institutions in the distributed simulation of a “Moonbase”. In terms of developing educational resources for HLA 

development, the DKF presents a solid foundation for future expansion. The SEE event is exciting in that students can create a wide 
variety of simulations and take part in an international project. 

The SEE-DKF is therefore an example of how the DKF can be extended to be domain specific. Future work on DKF includes the 

further development, testing and evaluation of the DKF and its domain specific extensions so as to also provide interesting 
education and research resources to easily develop distributed simulations in various application domains . 
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APPENDIX 

This appendix reports the code that has been developed for creating an HLA Federate starting from a REPAST-based agent 

without using the functionalities provided by the SEE-DKF. 

A.1 The Simulation step of the Excavator agent in REPAST 

1. @ScheduledMethod(start=1, interval=1) 
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2. public void step(){ 
3.     updateMap(ExcavatorMap, UAVx, UAVy); //This updates its map with the next target from the UAV 
4.     checkCargoLimit(returnOrigin); 
5.     moveExcavator(grid.getLocation(this), returnOrigin, ExcavatorMap, EXCx, EXCy); //This moves the Excavator X,Y 
6.   } 

A.2 The publishAndSubscribe() method of the Excavator Federate 

1. private void publishAndSubscribe() throws RTIexception 
2.    {  // get all the handle information for the attributes of ObjectRoot.Excavator 
3.       this.classHandle = rtiamb.getObjectClassHandle("HLAobjectRoot.Excavator"); 
4.       this.exHandle = rtiamb.getAttributeHandle(classHandle, "ex"); 
5.       this.eyHandle = rtiamb.getAttributeHandle(classHandle, "ey"); 
6.       this.uxHandle = rtiamb.getAttributeHandle(classHandle, "ux"); 
7.       this.uyHandle = rtiamb.getAttributeHandle(classHandle, "uy"); 
8.       AttributeHandleSet attributes = rtiamb.getAttributeHandleSetFactory().create(); 
9.       attributes.add(exHandle); 
10.      attributes.add(eyHandle); 
11.      attributes.add(uxHandle); 
12.      attributes.add(uyHandle); 
13.      rtiamb.publishObjectClassAttributes(classHandle, attributes); 
14.      rtiamb.subscribeObjectClassAttributes(classHandle, attributes); 
15.      ...  
16.   } 

A.3 The updateAttributeValues() method of the Exavator Federate 

The code reported below updates the handle variables with the encoded Excavator’s coordinates, put them in the attributes 
Collection, and send them to the RTI with a timestamp. 

1. public void updateAttributeValues(int EXCx, int EXCy) throws RTIexception 
2.    { 
3.        AttributeHandleValueMap attributes = rtiamb.getAttributeHandleValueMapFactory().create(2); 
4.        // 2 is the initial capacity of the newly created map 
5.  
6.        HLAinteger32BE exValue = encoderFactory.createHLAinteger32BE(EXCx); 
7.        HLAinteger32BE eyValue = encoderFactory.createHLAinteger32BE(EXCy); 
8.  
9.        attributes.put(exHandle, exValue.toByteArray()); 
10.       attributes.put(eyHandle, eyValue.toByteArray()); 
11. 
12.       HLAfloat64Time time = timeFactory.makeTime(fedamb.federateTime+fedamb.federateLookahead); 
13.       rtiamb.updateAttributeValues(objectHandle, attributes, generateTag(), time); 
14.   } 

A.4 Receiving and decoding updates by the Excavator Federate Ambassador 

The following code is defined in the Excavator Federate Ambassador for receiving updates from the UAV Object: 

1. for(AttributeHandle attributeHandle : theAttributes.keySet()) 
2. { 
3.        // uxHandle and uyHandle hold the UAV Cartesian coordinates and are updated in the UAV Federate 
4.        if(attributeHandle.equals(federate.uxHandle)){ 
5.   UAVx=decodeInt(theAttributes.get(attributeHandle)); 
6.      } 
7.        if(attributeHandle.equals(federate.uyHandle)){ 
8.   UAVy=decodeInt(theAttributes.get(attributeHandle)); 
9.      } 
10. } 

The decoder for the above received data is reported below: 

1.  private int decodeInt(byte[] bytes) 
2.  { 
3.       HLAinteger32BE value = federate.encoderFactory.createHLAinteger32BE(); 
4.       try 
5.         { 
6.           value.decode(bytes); 
7.         } 
8.       catch(DecoderException de) 



9.         { 
10.          log("Decoder Exception: "+de.getMessage()); 
11.        } 
12.      return value.getValue(); 
13. } 

A.5 The FOM module of the Excavator Federate 

The snapshot of code that describes the published EXCx coordinate, which is an attribute of the Excavator class, is shown below: 

1. <objects> 
2.   <objectClass> 
3.      <name>HLAobjectRoot</name> 
4.      <sharing>Neither</sharing> 
5.         <objectClass> 
6.            <name>Excavator</name> 
7.            <sharing>PublishSubscribe</sharing> 
8.            <semantics>NA</semantics> 
9.               <attribute> 
10.                 <name>ex</name> 
11.                 <dataType>HLAinteger32BE</dataType> 
12.                 <updateType>Conditional</updateType> 
13.                 <updateCondition>NA</updateCondition> 
14.                 <ownership>NoTransfer</ownership> 
15.                 <sharing>PublishSubscribe</sharing> 
16.                 <dimensions>NA</dimensions> 
17.                 <transportation>HLAreliable</transportation> 
18.                 <order>TimeStamp</order> 
19.                 <semantics>NA</semantics>  
20.              </attribute> 
21.   ... 
22.   </objectClass> 
23. </objects> 

A.6 DataTypes in the FOM module of the Excavator Federate 

In the Excavator FOM only an Integer data type has been defined. The snapshot of code in XML is shown below: 

1. <dataTypes> 
2.   <basicDataRepresentations> 
3.     <basicData> 
4.       <name>HLAinteger32BE</name> 
5.       <size>32</size> 
6.       <interpretation>Integer in the range [-2̂ 15, 2 1̂5 - 1] </interpretation> 
7.       <endian>Big</endian> 
8.       <encoding>32-bit two's complement signed integer. The most significant bit contains the sign</encoding> 
9.     </basicData> 
10. ... 
11.  </basicDataRepresentations> 
12. </dataTypes> 

A.7 Time synchronization 

The method below implements TAR requests and belongs to the Excavator Federate class. This method is annotated as scheduled 
and therefore it is added to the REPAST scheduler. 

1.  @ScheduledMethod(start=1,interval=1, priority = ScheduleParameters.LAST_PRIORITY) 
2.  public void advanceTime() throws RTIexception 
3.    { 
4.      fedamb.isAdvancing = true; 
5.      HLAfloat64Time time = timeFactory.makeTime(fedamb.federateTime + timestep); 
6.      rtiamb.timeAdvanceRequest(time); 
7.  
8.     while(fedamb.isAdvancing) 
9.       { 
10.          rtiamb.evokeMultipleCallbacks(0.1, 0.2); 
11.       } 
12.   } 

The method below handles TAGs and belongs to the Federate Ambassador class. 



1.  @Override 
2.  public void timeAdvanceGrant(LogicalTime time) 
3.    { 
4.       this.federateTime = ((HLAfloat64Time)time).getValue(); 
5.       this.isAdvancing = false; 
6.    } 

 


