
Proceedings of the Operational Research Society Simulation Workshop 2016 (SW16)  

A.Anagnostou, K. Hoad, M. Kunc  eds. 
 

 

 

WS-PGRADE WORKFLOWS FOR CLOUD-BASED DISTRIBUTED SIMULATION 
 

 

Nauman R. Chaudhry, Athar Nouman, Anastasia Anagnostou, Simon J. E. Taylor 

 

Department of Computer Science, Brunel University London 

Kingston Lane, Uxbridge, Middlesex, United Kingdom UB8 3PH 

nauman.chaudhry@brunel.ac.uk 
 

ABSTRACT 

Modeling and Simulation (M&S) is used for systems analysis and decision making in existing or new 

systems. Modeling large and complex organizations produces large-scale simulations that are difficult or 

impossible to run on a single computer. Such experiment execution requires high computation. 

Distributed Simulation (DS) allows modeling of large systems as smaller submodels that execute on 

different nodes of a computer network and interoperate with each other in order to compose larger 

systems. Furthermore, cloud computing offers on-demand access to multiple compute resources. 

Consequently, being able to run DS on cloud resources allows for more experimentation with large-scale 

simulations in a cost-effective way. However, deploying DS and in fact Cloud-based DS presents 

significant technical challenges. This paper proposes a framework for deploying DS on the cloud in a 

transparent manner using the CloudSME Simulation Platform based on WS-PGRADE workflows. A 

healthcare case study is used to demonstrate our approach. 
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1 INTRODUCTION 

Modeling and Simulation (M&S) techniques are used to study changes in existing or new systems 

behaviour to help in decision making, where it is too expensive, impractical or even impossible to 

implement in the real world.  M&S is now widely recognised in the areas of defense, computer & 

communication (networks), transport (traffic control system), healthcare, behavioural sciences, ecology & 

environment, biosciences, manufacturing & production, services (e.g., Banks) and economy (Taylor et al 

2012). M&S not only requires skilled domain expertise and programming skills, but also high 

computational resources to simulate large and complex models. Usually, there is memory resource 

limitation for a single execution unit. Furthermore, the simulation execution run time could be substantial. 

Therefore, large-scale models could be distributed into smaller models running on several processors, 

which could remarkably reduce the execution time (Fujimoto, 2000). Distributing a simulation model 

however presents some technical challenges both in technical skills and the availability of distributed 

computing infrastructures. One of the technical challenges is to develop interoperable independent models 

running on different networked computers, while the distributed computing infrastructure has to provide a 

configured environment of networked computers (in some cases geographically dispersed). Having 

Distributed Simulation (DS) models running as a service on cloud resources significantly reduces the 

latter constraint and also increases reusability. The cloud computing paradigm attracts increasing numbers 

of M&S practitioners wishing to perform their simulations on the cloud. Developing solutions for cloud 

computing is also difficult without expertise due to complex technologies. The CloudSME Simulation 

Platform (CSSP), based on CloudBroker and WS-PGRADE/gUSE, was developed to support Modeling 
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& Simulation as a service (MSaaS) in manufacturing and engineering and simplify the deployment of 

M&S software and applications on various cloud resources (Taylor, 2014). 

In this paper, we propose a framework that utilizes the CSSP to run an HLA- based distributed 

simulation as a service and investigate how we can automatically configure and use a DS on cloud 

resources. The paper first introduces the distributed simulation and cloud computing concepts. It then 

presents the CloudSME Simulation Platform followed by the proposed framework for cloud-based 

distributed simulation using WS-PGRADE workflows. A case study is then presented to show how HLA-

based distributed simulation can be easily run on cloud resources i.e., the academic cloud provided by the 

University of Westminster (UoW). 

2 DISTRIBUTED SIMULATION ON THE CLOUD 

Distributed Simulation can be defined as “the distribution of the execution of a simulation program across 

multiple processors” (Fujimoto, 2000). DS techniques, therefore, make it possible for a single model to be 

divided and simulated over several processors or multiple models running in different processors to be 

joined together.  

 In DS systems, the participating simulation models are able to interoperate with each other. The 

simulation models can send information to and receive information from other simulations and be able to 

operate effectively together, i.e., sending the right information to the right destination and at the right 

time, also without adding prohibitive communication time overhead. Hence, data and time 

synchronisation is essential in DS systems.  

 The IEEE 1516 High Level Architecture (HLA) (IEEE, 2010) standard for DS is used to achieve 

interoperability and reusability between simulation models. The standard was originally developed by the 

US Department of Defense (DoD). IEEE 1516 HLA specifies a set of standard rules and processes to 

support DS. 

 For the DS interface and the implementation of the HLA standard, there are several Run-Time 

Infrastructure (RTI) implementations presently available, some are commercial RTIs, such as Pitch pRTI, 

MAK High Performance RTI, RTI NG Pro etc., and others are open source RTIs, such as Open HLA, 

CERTI, poRTIco etc. Figure 1 illustrates the HLA IEEE 1516-2010 standard, where each federate 

represents a simulation model and all the participating federates joined together represent a federation, 

communicating through the RTI. 

 
Figure 1 High Level Architecture 

  

 DS is typically used to model large and/or complex systems which require a significant amount of 

computing resources. It however requires domain specialist to not only model the system, but also in 

some cases manage the distributed computing infrastructure. Having access to required distributed 

computing infrastructure can sometimes be challenging. Therefore running DS as a Service on cloud 

eliminates the simulation modelers’ challenges for maintaining and accessing the infrastructure. 

 Computing power as a utility was introduced in the 1960s (Hill et al 2013). “Cloud computing” refers 

to accessing internet-based computing resources and as a term first appeared in the mid-2000s. The 

National Institute of Standards and Technology (NIST) has made efforts to standardize the terminology of 
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cloud computing (NIST, 2013). Mell and Grance (2011) and NIST (2013) define cloud computing as “a 

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider interaction”. Cloud 

computing provides flexibility to the users for its computational resources, applications, access, etc. that 

could be tailored according to the user needs. Cloud services can also be deployed according to the 

security requirements of the organizational structure. Cloud computing offers three defined service 

models, i.e., Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service 

(IaaS).  

Cloud computing can support parallel and distributed simulation as a service by providing the 

required high performance computing infrastructure and its maintenance. Along with the benefits of cloud 

computing there also some concerns such as security of data, reliability of services and slower execution 

of code than code execution on cluster node (Fujimoto et al 2010). There are also difficulties for DS used 

with optimistic synchronization protocols. An approach was proposed to accelerate the execution speed of 

federates at comparable speed (Li et al 2013). A PaaS RTI-supporting architecture was proposed by 

combining RTI and web services to run on central servers, so as to provide DS platform to simulation 

users on WAN (Feng et al 2010; Zhang et al 2012). The latest work is more focused on the associated 

problems and usage of public clouds (Vanmechelen et al 2013; Yoginath et al 2013). A multi-agent 

system approach was proposed for model partitioning between the execution nodes on the cloud 

(D’Angelo et al 2014) 

In order to support reusability and interoperability specific cloud services need to be developed to 

support M&S. M&S as a Service (MSaaS) is considered as a separate cloud service model as it allows 

users standardized access to build their own simulation models by specialized configured software to run 

simulation experiments (Taylor et al 2014). 

3 CLOUDSME SIMULATION PLATFORM 

The CloudSME Simulation Platform was developed by the Cloud-based Simulation platform for 

Manufacturing and Engineering project (www.cloudsme.eu) funded by the European Commission. The 

main aim of the project was to develop cloud-based simulation services and platforms that enable Small 

and Medium Enterprises (SMEs), mainly in manufacturing and engineering, to access simulation software 

and services, and speed-up simulation experimentation by using cloud resources and other Distributed 

Computing Infrastructures (DCIs) such as grids, HPC clusters, etc. CloudSME supports MSaaS by 

combining PaaS and SaaS and allowing simulation software and services providers to build SaaS 

solutions for end-users and ultimately deliver MSaaS.  

 The simulation software accessing mechanism should hide entirely potential heterogeneity and 

complexity of cloud platform, as well as permit the usage of various clouds that may use different cloud 

middleware. CSSP achieves this by the combination of WS-PGRADE/gUSE workflow deployment and 

development services (provided by MTA SZTAKI, HU) (Kacsuk et al 2012) and Cloud Broking services 

(provided by CloudBroker, CH). In other words, it acts as PaaS that supports simulation services 

deployment, as well as access, in user-transparent way, to various cloud and  HPC resources. 

 CloudSME has developed MSaaS solutions for two types of end-users. That is, a) simulation software 

providers and b) end-users who use simulation for their business processes improvement or as part of 

their business offering. Currently, eight simulation software providers are involved in the project 

including 2MORO (FR), INGECON (ES), ASCOMP (CH), SIMUL8 (UK), SIMSOFT (TR), CMCL 

(UK), DHCAE (DE), and OUTLANDISH (UK) that offer different simulation tools. Moreover, different 

end-users are includes CUTTING TOOLS (UK), EUROBIOS (FR), PODOACTIVA (ES), SAKER 

SOLUTIONS (UK), PROYFE (ES), HOBSONS (UK), BASEPRO (IT), G-VOLUTION (UK), 

PROCENG (CH), TIDYBOOKS (UK), OZDEKAN (TR), GOKDOGAN (TR), and IOR (IT). 

Furthermore, the Repast Simphony open source simulation software was deployed as MSaaS in CSSP 

(Taylor et al 2014). The latter, Repast MSaaS, is used in this study for the implementation of the case 
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study. CloudSME is led by the Centre for Parallel Computing at the University of Westminster (UK). The 

cloud-based products development and end-user adoption is managed by Brunel University (UK). 

UNIZAR (ES), University of Westminster (UK), SZTAKI (HU), and CloudSigma (CH) provide cloud 

resources. 

 Figure 2 illustrates the CSSP components organized into three layers reflecting the cloud computing 

stack. These layers include the Simulation Application Layer (SaaS), the Cloud Platform Layer (PaaS), 

and the Cloud Resource Layer (IaaS). Moreover, the Cloud Platform layer consists of two parts, i.e., WS-

PGRADE/gUSE and CloudBroker Platform (CBP).  

 CBP provides adapters for the available cloud resources that enable the creation, running, and 

managing of simulation software images on cloud virtual instances. The simulation software in order to 

be offered as MSaaS must have been deployed on the respective cloud resources. The deployment process 

varies and depends on the operating system. Generally, a simulation software executable and runtime 

scripts are stored in a repository and are called for instantiation and job configuration when requested. 

The MSaaS Application Patterns and Deployment configurations are formed by these scripts and 

executables. The CBP services can be accessed directly using its API or via the WS-PGRADE web-based 

workflow management system. WS-PGRADE can be access using two different APIs, described in detail 

in Taylor et al (2014). 
 

 
Figure 2 CloudSME Simulation Platform 

  

 WS-PGRADE is used for workflow creation. Workflows are directed acyclic graphs that can be 

configured and stored on a workflow server (gUSE). They consist of nodes, job functionality, and arcs, 

channels for file transfer among the nodes. A node may have one or more input and output ports (green 

and grey squares, respectively) and each port is denoted by an integer number. A workflow determines 

the sequence and dependences of a simulation run. An example can be seen in Figure 3. The specific 

workflow consists of three nodes that perform different jobs. Initialize Node has one output port (port 0) 

linked with the input port (port0) of the next node Execution Node. Execution Node will start performing 

its assigned task only after receiving the required input from Initialize Node. Once this task completes 

execution, it will generate an output file which will pass through its output port (port1) to the next node. 

Results Node receives the Execution Node’s output through its input port (port0) and then starts executing 

its task.  

 

Figure 3 WS-PGRADE generic workflow 

  

Execution 

Node 
  

0 1 Initialize 

Node 
 

0 
 

Results 

Node 
 

0 



Chaudhry, Nouman, Anagnostou, and Taylor 
 

 For flexibility. workflows are “agnostic” and therefore has the functionality to run on any DCI as long 

as the interface is supported by the workflow manager via the DCI Bridge. CBP is seen as a separate DCI.  

4 CLOUD COMPUTING FRAMEWORK FOR DISTRIBUTED SIMULATION 

This section explains the proposed framework for  DS execution on the cloud. As mentioned before, it is 

important to access cloud resources transparently and therefore hide the underlying complexity from the 

end-user. To do so, the proposed framework enables the execution of DS on the cloud in a simplified way 

by using workflows in the CSSP. The main requirement for the implementation of the framework is the 

cloud deployment of the RTI and the simulation software as well as their dependencies. In our case, these 

are the poRTIco RTI implementation of IEEE 1516-2010 and the Repast Simphony Toolkit. Both are 

java-based software and therefore Java runtime must be installed too. Figure 4 illustrates the workflow in 

order to execute the DS which consists of four nodes plus as many model nodes as the number of 

federates in the federation. For example, “Initialize”, “Manager”, “Model-1”, “Model-2”, … “Model-n”, 

“Execution” and “Collect Results” are all job nodes. Each job node has its own input and output ports. 

“Initialize” node contains one input port (port 0) and one output port (port 1). This job takes a text file in 

input port (port 0), containing the list of federates names to be part of the DS federation, as an input and 

pass it to “Manager” node through output port (port 1). “Manager” node has three inputs (port 0, port 1 

and port 2) and one output port (port 3). This node represents the Manager federate that ensures that all 

federates has joined the federation when starting the execution of the DS. “Manager” node prepares the 

Manager Federate executable and pass it to the “Execution” job node. “Model-1”, “Model-2”, … “Model-

n” job nodes contain two inputs (port 0 and port 1) and an output port each. Users provide the model files 

(model.tar file) and required data (input.tar file) in the input ports 0 and 1, respectively. “Execution” job 

node takes all the required files on input ports (port 0, port 1 etc.) in order to run the DS. Finally, “Collect 

Results” job node collects the final simulation results for further analysis and decision making. This 

framework also supports scalability. More federates can be added by adding Model job nodes in the 

workflow. 

 

Figure 4 Framework for Cloud-based Distributed Simulation 

5 CASE STUDY 

To demonstrate the applicability of the proposed framework, we developed a simple federation of an 

Emergency Medical Services (EMS) model (Anagnostou et al 2013). EMS consists of two main 

organizations, the Ambulance Services and the Emergency Departments in the area of coverage. Each 

organization is modeled as an independent federate using the appropriate simulation technique. For 

example, the Ambulance Services model includes objects that should be able to interact with each other 

and the environment, namely the call operator should be able to interact with the ambulance crew and 

allocate an ambulance to an emergency call, the ambulance crew should be able to find the appropriate 
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hospital and select the best route. Therefore, for the Ambulance Service model, Agent-Based Simulation 

(ABS) was utilized. Emergency Departments usually are process-oriented, where the entities, in this case, 

patients do not interact and are not aware of the environment; they are just driven by the process through 

different activities. Hence, Discrete Event Simulation (DES) was selected for modeling the Emergency 

Departments. For demonstration purposes, the EMS federation consists of two federates; one Ambulance 

Service and one Emergency Department. The federates interoperate via RTI implementation that 

coordinates the data exchange and synchronizes the time in order to maintain causality. Emergency 

Departments have both ambulance and walk-in arrival points. Ambulance patients are received from the 

Ambulance Services federate while walk-in patients arrive locally in the Emergency Department federate. 

Therefore a patient agent from the Ambulance ABS federate is transferred with all its attributes to the 

Emergency Department DES federate and becomes an entity. Patient arrivals in a hospital affect the 

availability of resources. Emergency Department resource availability is updated locally in the DES 

federate. Emergency Department availability is communicated with the ABS federate via the RTI. The 

Ambulance Services federate uses this information in order to find the appropriate hospital for a patient 

transfer and therefore it is essential to have the most up-to-date value. The whole federation is developed 

with open source tools. The federates are developed in the Repast Simphony Toolkit 

(repast.sourceforge.net) and the RTI in the poRTIco IEEE 1516-2010 implementation 

(www.porticoproject.org).  

5.1 Cloud Deployment 

To enable the execution of distributed simulation on the cloud, we need to deploy the RTI implementation 

on the cloud. poRTIco, an open source, fully supported, cross-platform RTI which implements the HLA 

standard IEEE 1516-2010 is deployed on UoW public academic cloud (OpenStack – provided by 

University of Westminster, UK) supported by the CSSP. These cloud resources support only Linux 

applications. In order to be able to run the DS on the available cloud resource, we developed a Shell 

Script executable for poRTIco deployment. The other requirement was to have the relevant simulation 

package, i.e., Repast symphony, as well as their dependencies, namely Java runtime installation. 

5.2 Workflow Creation 

The workflow creation is supported by the WS-PGRADE. The first step is to create the workflow using 

the graph editor, a Java Network Launch Protocol (JNLP) application, which provides drag-and-drop 

user-friendly environment, where the structure of the workflow can be created. Figure 5 illustrates the 

graph editor, where the bigger squares denote jobs and the attached smaller squares denotes input and 

output ports (green and grey squares, respectively). Each port will be denoted by a number. Each job can 

have more than one input and output. Initialize, Manager, Ambulance, Hospital, Execution and Results 

are job nodes. Each job node has its own input and output ports. Initialize node will receive the 

federatelist.txt file, containing the name of federates to join the federation, on the input port (port 0). This 

file will be forwarded through output port (port 1) of Initialize node to Manager node on its input port 

(port 0). Manager, Ambulance and Hospital nodes will receive the model files (model.tar) and its 

parameters (batch_params.xml) for each model/federate. Ambulance node also requires data files 

(input.tar) and these are received through the input port (port 0). Manager, Ambulance and Hospital nodes 

will generate the output, which are then fed to the Execution node in its input ports 0, 1 and 2 

respectively. Execution node will run the federation and generate the results file which is then transferred 

to Results node for further analysis. 
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Figure 5 WS-PGRADE graph editor 

5.3 Workflow Configuration 

The graphical workflow is configured at the WS-PGRADE web portal (see Figure 6). In each of the job 

nodes, the first step is to select the type of DCI. As mentioned earlier, CSSP’s cloud resources are 

managed by CB. CB account authentication is needed in order to be able to access the portal. Then the 

software or own executable that will execute in the workflow and the executable (shell script file) are 

selected. From the available cloud resources, once a selection of the instance type is made, an estimation 

of the job cost is displayed. Initialize.sh executable will be selected for Initialize node which will confirm 

that the federatelist.txt is received. Manager.sh will be selected for Manager node. Model.sh will be 

selected for Ambulance and Hospital modes. Finally the software that will execute the DS in the 

Execution node (in this case Repast_multi 1.0) and the executable (shell script file) will be selected. The 

next step is to configure the input and output ports. Initialize node contains one input and one output port. 

This job takes the text file, containing the list of federates names to be part of the federation (distributed 

simulation), in the input port and pass this file that is required for Manager job node through the output 

port. Manager node has three inputs and one output ports. This node represents the Manager federate. It 

will be ensured that all federates have joined the federation during the DS execution. Manager node 

prepares the Manager Federate executable and passes to the Execution node. Ambulance and Hospital 

nodes contain three and two inputs respectively and one output port. Users provide the required model.tar, 

batch_params.xml and input.tar on the input port 0, 1, and 2 respectively. As explained earlier,  model.tar 

contains the simulation model source code, batch_params.xml contains the input parameters and input.tar 

contains the data files which required for the execution of the model. Execution job node takes all the 

required files in the respective input ports in order to run the DS and will export the resulting files from 

the job run in the output port. The output files can be downloaded after the completion of the job. 

5.1 Workflow Execution 

Execution job node contains three inputs, i.e. Manager, Ambulance and Hospital tar files and produce 

one output after execution. In this experiment, we run the distributed simulation on the single instance 

(see Figure 7). OpenStack Nova University of Westminster UoW has the following hardware 

specification for instance: 

 

• Small (CPU: 1, Cores: 1, Memory: 2 GB) 

• Medium (CPU: 1, Cores: 2, Memory: 4 GB) 

• Large (CPU: 1, Cores: 4, Memory: 8 GB) 

• Extra Large (CPU:1, Cores:8, Memory: 16 GB) 
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Figure 6 Workflow Configuration 

 

 We can run distributed simulation on any of above hardware specification instances by specifying the 

instance type at the time of job configuration. Multiple CPU cores will improve the performance. In this 

experiment, distributed simulation federation has three federates. Each federate runs on a different core. 

So, we will select the instance type which has three or more cores. In our case, we run this simulation on 

Large instance.  

 

Figure 7 Workflow execution on the cloud 

5.2 Experiment Results 

The speed of the simulation execution depends on the number of federates and simulation time period. In 

our example, we had three federates running on three different cores, a manager federate and two 

Emergency Medical Services (EMS) federates, namely Ambulance federate and Hospital federate. A 
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smaller 24 hour simulation time was selected for our experiment. It was observed that in case of small 

jobs the preparation time is much higher than the actual simulation execution time. But as the simulation 

gets bigger or the simulation time is increased then the preparation time will be insignificant. Figure 8 

presents a breakdown time of Execution node and illustrates the execution time from the job submission 

stage till the final stage. It was noted that in our simulation run one third of the total execution time was 

for the simulation run while the rest was for the preparation and finalising of cloud instance. However, as 

the simulation time or the complexity of the simulation will increase, the running time percentage will 

also increase. Although the assembling time and preparation time depends on the availability of the cloud 

service, but in an ideal situation it will remain approximately similar. 
 

 
Figure 8 Workflow execution on the cloud 

6 CONCLUSIONS 

This paper has presented a framework for running HLA-based distributed simulation using WS-PGRADE 

workflow on the CloudSME Simulation Platform. By doing so, it hides the deployment complexity of 

cloud-based distributed simulation from users. Using this framework, we are able to execute varied size 

federations on the cloud. This framework offers great opportunities for the distributed simulation 

community to make the technology widely accessible for runnung larger scale distributed simulations. 

Future work involves performance testing of the framework on different clouds and cloud-based clusters. 
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