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On the Performance Analysis of an Energy Detector over
Composite Generalized Multipath/Gamma Fading Channels

Author 1,and Author 2,

Abstract—In this letter, the performance of an energy detector
(ED) is analysed over different generalized multipath fading
channels namely κ − µ, η − µ and α − µ shadowed by gamma
distribution. The mixture gamma (MG) distribution is used to
model the probability density function (PDF) of the signal-to-
noise-ratio (SNR) for all channels. General tractable unified
closed-form analytic expressions for the performance metrics are
obtained. Both the average detection probability, Pd, and the
average area under the receiver operating characteristics curve
(AUC) which are mainly utilised in evaluating the performance
of ED are derived. To validate our analysis, the numerical results
are compared with the simulated results.

Index Terms—Mixture gamma distribution, κ − µ, η − µ,
α − µ, gamma distribution, energy detector, average detection
probability, average area under the ROC curve.

I. INTRODUCTION

D IFFERENT generalized multipath distributions have
been proposed by Yacoub [1], [2]. These distributions

are the κ − µ, the η − µ and the α − µ which describe the
line-of-sight (LoS), the Non-line-of-sight (NLoS) and the non-
homogeneous communications scenarios respectively.

In the open technical literature, these distributions are used
extensively in studying the behaviour of different communi-
cations systems. In [3] and [4], the performance of energy
detector (ED) that is widely used to perform the spectrum
sensing (SS) in cognitive radio (CR) systems is investigated
over κ − µ fading channel by deriving analytic expression
for the average detection probability, Pd. The performance of
ED over η − µ fading channel using the moment generating
function (MGF) of the received instantaneous SNR is analysed
in [4] and [5]. In the former, the Pd is derived whereas
in the latter, the average area under the receiver operating
characteristics curve (AUC) is evaluated. The behaviour of
ED over α− µ fading channel is introduced in [6].

A part of fading channel is shadowing that may be included
in the probability density function (PDF) of the received
signal-to-noise-ratio (SNR). Thus, in [7], the log-normal dis-
tribution is approximated by a Wald distribution to derive the
expression of the Pd over slow fading channels. However,
this approximation produces expression with an infinite series.
The performance of ED over composite Nakagami-m/gamma
fading channels i.e. KG is studied in [8]. The average AUC
expressions over KG and composite Rician/gamma fading
channels are given in [9] and [10] respectively. But, these
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expressions are complex and include an infinite series that con-
verge slowly and unsteadily. From the previous fast literature
review, the performance of ED over composite κ−µ/gamma,
η − µ/gamma and α − µ/gamma fading channels is not yet
studied. Furthermore, the most derived expressions of the Pd
and the average AUC are either approximated or expressed in
non-closed forms. Motivated by these reasons, in this letter,
we derive analytic expressions of the Pd and the average
AUC over κ − µ/gamma, η − µ/gamma and α − µ/gamma
fading channels. The mixture gamma (MG) distribution that
is proposed by [11] as an accurate approximation method to
model the SNR of wireless channels is used in representing the
PDF of those channels. Although, this approach is utilized by
[11] to derive the expressions of the Pd and the average AUC,
the Pd is expressed as integral form and it is applicable when
the values of the fading parameter and the time-bandwidth
product are integer numbers. Moreover, the average AUC
expression includes two terms with MG distribution and it
is also restricted by the value of the time-bandwidth product
that should be an integer number. In contrast, our derived
expressions are general and given in closed-form.

II. ENERGY DETECTION MODEL

The performance of ED is measured by two probabilities
which are the probability of detection, Pd(γ, λ), and the
probability of false alarm, Pf (λ). These probabilities are
expressed as follows [3]:

Pd(γ, λ) = Qu(
√

2γ,
√
λ) and Pf (λ) =

Γ(u, λ/2)

Γ(u)
(1)

where γ = |h|2Es/N0 is the instantaneous SNR, h is the
channel gain, Es is the transmitted signal energy, N0 is
one-side of the noise power spectral density and λ is the
pre-defined threshold value. Moreover, Γ(., .) is the upper
incomplete gamma function, Γ(.) is the gamma function, and
Qu(., .) is the uth order generalized Marcum-Q function (u is
the time-bandwidth product).

III. THE MG DISTRIBUTION FOR COMPOSITE
GENERALISED MULTIPATH/GAMMA FADING CHANNELS

The wireless channel can be modelled by the MG distri-
bution. Accordingly, the PDF of the instantaneous SNR, γ,
(fγ(γ)) is given by [11]1

fγ(γ) =

N∑
i=1

αiγ
βi−1e−ζiγ (2)

1Bold α is used here to distinguish between α of the α−µ fading channels
and α of the MG distribution.
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where N and αi, βi and ζi are the number of terms and the
parameters of ith Gamma component respectively. It can be
observed that the main problem in using the MG is deter-
mining N . In [11], the authors have proposed some methods
such as calculating the mean square error (MSE) between the
PDF of the exact distribution and the PDF of the approximate
distribution by the MG distribution to find minimum N that
gives good approximation with high accuracy. For more details
about methods of evaluating N , the reader can refer to [11].
In the reminder of this section, we derive the parameters of
the MG for different composite generalized multipath/gamma
fading channels as follows:

A. κ− µ/gamma Fading Channel

The κ − µ contains two parameters which are κ and µ.
The former represents the ratio between the total power of the
dominant components and the scattered waves whereas the
latter which is also exist in the η−µ and the κ−µ represents
the real extension of the number of the multipath clusters
respectively. The κ−µ/gamma fading channel is a composite
fading channel from the κ − µ fading channel and gamma
distribution which models the shadowing. Accordingly, the
SNR distribution of the κ − µ/gamma fading channel can be
evaluated by averaging [1, eq. (10)] over gamma distribution
[8, eq. (4)] as follows

fγ(γ) =
µ(1 + κ)

µ+1
2 γ

µ−1
2

Γ(k)Ωkκ
µ−1

2 eµκ

×
∫ ∞

0

yk−
µ
2−

3
2 e−

µ(1+κ)γ
y − y

Ω Iµ−1

(
2µ

√
µ(1 + κ)γ

y

)
dy (3)

where k is the shaping parameter, Ω = γ̄
kEs/N0

is the mean
power and Ia(.) is the modified Bessel function of the first
kind and ath order.

By substituting x = µ(1+κ)γ
y in (3), this yields

fγ(γ) = ϑκ−µγ
k−1

∫ ∞
0

e−xg(x)dx (4)

where ϑκ−µ = − µk−
µ−1

2

Γ(k)κ
µ−1

2 eµκ

(
1+κ

Ω

)k
and g(x) =

x
µ
2−k−

1
2 e−

µ(1+κ)γ
Ωx Iµ−1

(
2µ
√
x
)
. The integration in (4), S =∫∞

0
e−xg(x)dx, can be approximated as a Gaussian-Laguerre

quadrature sum as S ≈ ∑N
i=1 wig(xi) where xi and wi are

the abscissas and weight factors for the Gaussian-Laguerre
integration [12, pp. 923]. Consequently, (4) can be expressed
by the MG distribution with parameters

αi =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
µ(1 + κ)

Ωxi
,

θi = ϑκ−µwix
µ
2−k−

1
2

i Iµ−1

(
2µ
√
xi

)
(5)

B. η − µ/gamma Fading Channel

Like the κ − µ fading channel, the η − µ includes two
parameters which are η and µ. The definition of η depends
on the type of format. In format 1, η represents the power

ratio between the in-phase and quadrature scattered compo-
nents in each multipath cluster with 0 < η < ∞. The
respective H and h are expressed by H = (η−1 − η)/4
and h = (2 + η−1 − η)/4 respectively. In format 2, η
stands for the correlation coefficient between the in-phase
and quadrature scattered components in each multipath cluster
with −1 < η < 1. The respective H and h are given by
H = η/(1− η2) and h = 1/(1− η2) respectively [1].

The SNR distribution of the η − µ/gamma fading channel
can be calculated by integrating the η − µ fading channel [1,
eq. (26)] over [8, eq. (4)] to yield

fγ(γ) =
2
√
πhµµµ+ 1

2 γµ−
1
2

Γ(µ)Γ(k)ΩkHµ− 1
2

×
∫ ∞

0

yk−µ−
3
2 e−

2µhγ
y −

y
Ω Iµ− 1

2

(
2µHγ

y

)
dy (6)

By assuming x = 2µhγ
y and following the same procedure

for the κ− µ/gamma fading channel, we find

αi =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
2µh

Ωxi
,

θi = ϑη−µwix
µ−k− 1

2
i Iµ− 1

2

(
H

h
xi

)
(7)

where ϑη−µ = −
√
π2k−µ+ 1

2 hk−
1
2

Γ(µ)Γ(k)Hµ−
1
2

(
µ
Ω

)k
.

C. α− µ/gamma Fading Channel

The α− µ distribution is used to model the non-linear en-
vironment of wireless communications. Due to limited space,
the reader can refer to [2] for further information about this
distribution.

The SNR distribution of composite α − µ fading channel
and gamma distribution i.e. α − µ/gamma can be computed
by using [2, eq. (1)] and [8, eq. (4)] as follows

fγ(γ) =
αµµγ

αµ
2 −1

2Γ(µ)Γ(k)Ωk

∫ ∞
0

yk−
αµ
2 −1e

−µγ
α/2

yα/2
− y

Ω dy (8)

where α > 0 is the non-linear fading parameter.
By using the substitution x = µγα/2

yα/2
and following a

similar procedure of the κ−µ/gamma fading channel, the MG
distribution parameters for the α − µ/gamma fading channel
are expressed by

αi =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
µ2/α

Ωx
2/α
i

,

θi = ϑα−µwix
µ− 2k

α −1
i (9)

where ϑα−µ = − µ2k/α

Γ(µ)Γ(k)Ωk
.

IV. AVERAGE DETECTION PROBABILITY

The average detection probability, Pd(λ), can be evaluated
by [7, eq. (9)]

Pd(λ) =

∫ ∞
0

Pd(γ, λ)fγ(γ)dγ (10)
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When u ∈ R i.e. u is a real number, the Pd(λ) can be
expressed as follows [see Appendix A]

Pd(λ) = 1− 2−uλue−
λ
2

Γ(1 + u)

N∑
i=1

αiΓ(βi)

(1 + ζi)βi

×Φ2

(
βi, 1; 1 + u;

λ

2
,

λ

2(1 + ζi)

)
(11)

where Φ2(., .; .; ., .) is the bivariate confluent hypergeometric
function defined in [13, pp. 1031, eq. (9.261.2)]. It can be
noted that, Φ2(., .; .; ., .) is not available in common math-
ematical package such as MATLAB and MATHEMATICA
software packages. Thus, a series convergence should be
assumed by limited number of terms, R, with truncation error,
ER.

To evaluate R, Φ2(., .; .; ., .) in (11) should be expressed in
terms of an infinite series. This can be obtained by invoking
[13, pp. 1031, eq. (9.261.2)] and using the identity (a+ b)c =
(a)c(a+ c)b to yield

ER =

N∑
i=1

αiΓ(βi)

(1 + ζi)βi

∞∑
n=0

(1)n
(1 + u)nn!

(
λ

2

)n
×1F1

(
βi; 1 + u+ n;

λ

2(1 + ζi)

)
(12)

where (.)R and 1F1(.; .; .) are the Pochhammer symbol and the
confluent hypergeometric function respectively. It can be noted
that in (12), 1F1(.; .; .) is monotonically decreasing with n.
Accordingly, after doing similar mathematical simplifications
to [14], yielding

ER ≤
(1)R(λ2 )R

(1 + u)RR!

N∑
i=1

αiΓ(βi)

(1 + ζi)βi
1F1

(
1; 1 + u+R;

λ

2

)
×1F1

(
βi; 1 + u+R;

λ

2(1 + ζi)

)
(13)

When u is an integer number i.e. u ∈ Z, the Pd(λ) can be
computed by substituting the Pd(γ, λ) of (1) and (2) into (10)
with the help of [15, eq. (9)] and [13, pp. 340, eq. (3.35.3)].
After some mathematical operations, this yields

Pd(λ) =
e−

λ
2

Γ(2− u)

N∑
i=1

αiΓ(βi − u+ 1)

(1 + ζi)βi−u+1

×Φ1

(
βi − u+ 1, 1; 2− u;

1

1 + ζi
,

λ

2(1 + ζi)

)
(14)

where Φ1(., .; .; ., .) is another form of the bivariate conflu-
ent hypergeometric function defined in [13, pp. 1031, eq.
(9.261.1)]. This function is not yet implemented in MATLAB
and MATHEMATICA software packages. Therefore, a series
convergence should be assumed.

Using [13, pp. 1031, eq. (9.261.1)], the series in (14) can
be written in terms of 1F1(.; .; .) as follows

ER =

N∑
i=1

αiΓ(βi − u+ 1)

(1 + ζi)βi−u+1

∞∑
n=0

(βi − u)n(1)n
(2− u)nn!

(
1

1 + ζi

)n
×1F1

(
βi − u+ n; 2− u+ n;

λ

2(1 + ζi)

)
(15)

Similar to (12), 1F1(.; .; .) is monotonically decreasing with
n. Consequently, after some mathematical manipulations, this
yields

ER ≤
(βi − u)R(1)R

(2− u)RR!

N∑
i=1

αiΓ(βi − u+ 1)

(1 + ζi)βi−u+1

(
1

1 + ζi

)R
×2F1

(
βi − u+R, 1; 2− u+R;

1

1 + ζi

)
×1F1

(
βi − u+R; 2− u+R;

λ

2(1 + ζi)

)
(16)

where 2F1(., .; .; .) is another model of the confluent hyperge-
ometric function.

V. AVERAGE AREA UNDER THE ROC CURVE

The average area under the receiver operating characteristics
(AUC) curve, Ā, is given by [10, eq. (18)]

Ā =
1

2uΓ(u)

∫ ∞
0

λu−1e−
λ
2 Pd(λ)dλ (17)

By substituting (11) into (17) with the aid of [13, pp. 1031, eq.
(9.261.2)], [13, pp. 340, eq. (3.35.3)] and Γ(a+b) = (a)bΓ(a),
Ā for u ∈ R can be expressed in closed-form as follows

Ā = 1− Γ(2u)

u[2uΓ(u)]2

N∑
i=1

αiΓ(βi)

(1 + ζi)βi

F1

(
2u, 1, βi; 1 + u;

1

2
,

1

2(1 + ζi)

)
(18)

where F1(., ., .; .; ., .) is the double variables Appell hypergeo-
metric function [13, pp. 1018, eq. (9.180.1)] and its a standard
built-in function available in MATHEMATICA software.

When u ∈ Z, Ā is expressed by

Ā =
1

2uΓ(2− u)

N∑
i=1

αiΓ(βi − u+ 1)

(1 + ζi)βi−u+1

×F1

(
βi − u+ 1, 1, u; 2− u;

1

1 + ζi
,

1

2(1 + ζi)

)
(19)

The expression in (19) is evaluated by using (14) and (17) with
the help of [13, pp. 1031, eq. (9.261.1)] and [13, pp. 340, eq.
(3.35.3)] and doing some mathematical simplifications.

VI. NUMERICAL RESULTS

In this section, the analytical results of an ED over κ −
µ/gamma, η−µ/gamma and α−µ/gamma fading channels are
compared with the simulated results. Monte Carlo simulations
with 106 iterations are utilized to compare with the numerical
results. In all figures, the numerical results are represented by
sold lines with marks whereas the simulated results are shown
by star mark. To obtain mean squared error (MSE) between
the exact PDF and the approximate PDF ≤ 10−6, the number
of terms, N , is chosen to be 15 for all channels.

Fig. 1 and Fig. 2 show the complementary receiver operating
characteristics (CROC) which plots the average probability
of missed-detection, Pmd(λ), (Pmd(λ) = 1 − Pd(λ)) versus
Pf (λ) and the complementary AUC (1-Ā) versus average SNR
respectively. In Fig. 1, the numbers of terms, R, required in
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Fig. 1. Complementary ROC curves over κ− µ/gamma, η − µ/gamma and
α− µ/gamma fading channels for µ = 0.5, k = 4.5, γ̄ = 15 dB and u = 1.5.

evaluating (12) at Pf = 0.1 with seven figure accuracy for
α−µ/gamma, η−µ/gamma and κ−µ/gamma are 20, 21 and
22 respectively. It can be noted that the results in both figures
can not be calculated by [11, eq. (29)] and [11, eq. (33)]. This
is because the former can be applied when the values of βi
i.e. k and u are integer numbers and the latter can be used
when u is an integer number.

VII. CONCLUSIONS

The performance of ED over composite κ − µ/gamma,
η−µ/gamma and α−µ/gamma fading channels has been anal-
ysed in this letter. Both the average Pd and the average AUC
expressions have been derived by using the MG distribution.
These expressions are novel, general, unified, exact, and non-
limited by any condition. The results show an improvement in
the detectability of ED with any increasing in the value of k.
The performance of ED over different composite fading chan-
nel models such as Nakagami-m/gamma and Rician/gamma
can be deduced from the derived expressions.

APPENDIX A
PROOF OF (11)

When u ∈ R, the Pd(γ, λ) of (1) can be expressed by [15,
eq. (34)] as follows

Pd(γ, λ) = 1−
(λ

2

)u
e−

2γ+λ
2 Φ̃3

(
1; 1 + u;

λ

2
,
γλ

2

)
(20)

where Φ̃3(.; .; ., .) is the regularized bivariate confluent hyper-
geometric function defined in [15, eq. (4)].

Substituting (2) and (20) into (10) with the aid of [15, eq.
(4)] and

∫∞
0
fγ(γ)dγ , 1, this yields

Pd(λ) = 1− λue−
λ
2

2uΓ(1 + u)

N∑
i=1

αi

∞∑
l=0

∞∑
m=0

(1)l
(1 + u)l+ml!m!(λ

2

)l(λ
2

)m ∫ ∞
0

γm+βi−1e−(1+ζi)γdγ (21)

Using [13, pp. 340, eq. (3.35.3)] to evaluate the integral in
(21) and invoking the identity Γ(a+b) = (a)bΓ(a), the desired
result in (11) is obtained.
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