Distortional analysis of simply supported box girders with inner diaphragms considering shear deformation of diaphragms using initial parameter method

Yangzhi Ren a,b*, Wenming Cheng b, Yuanqing Wang a, Qingrong Chen b, Bin Wang c

a Key Lab of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing, China, 100084
b Department of Mechanical Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, China, 610031
c College of Engineering, Design and Physical Sciences, Brunel University, London, Uxbridge UB8 3PH, UK.

*:Corresponding author, e-mail address: renyz66@mail.tsinghua.edu.cn

Abstract: In this paper, the distortion of simply supported girders with inner diaphragms subjected to concentrated eccentric loads is investigated using initial parameter method (IPM), in which the in-plane shear deformation of diaphragms is fully considered. A statically indeterminate structure was modeled with inner redundant forces, where the interactions between the girder and diaphragms were indicated by a distortional moment. Considering the compatibility condition between the girder and diaphragms, solutions for the distortional angle, warping displacements and stresses were derived and further simplified by establishing a matrix equation system. The validity of IPM was intensively verified by a finite element analysis and distortional experiments. Parametric studies were then performed to examine the effect of the diaphragm number on the distortional angle, warping displacements and stresses under various ratios of height to span of the girder and the diaphragm thicknesses. Besides, stabilities of the local web plate and mid-span diaphragm were analyzed based on IPM for box girders with symmetrical three inner diaphragms. Results show that the local web plate will buckle before overall yielding with the increment of the eccentric loads P_j, and the mid-span diaphragm is constantly stable in the whole deformation process. It shows that more attentions should be paid on the stability of the local web plate than overall yielding for girders subjected to eccentric loads.

Keywords: simply supported girder; diaphragm; eccentric load; shear deformation; distortion; initial parameter method; finite element analysis; experiment; local stability

1 Introduction

During the past several decades, box girders have been widely applied in buildings and bridges due to their large bending and torsional stiffness. However, they are generally susceptible to the cross-sectional distortion [1] under eccentric loads due to their quadrilateral instability. Therefore, excessive distortional warping and transversal bending stresses will be produced besides the torsional and bending ones in box girders. In a special case, the distortional warping stresses may be significant to the torsional and bending ones. In order to control the distortion, diaphragms are installed at the interior of the girder, which can increase not only the stability of
the local plate, but also the resistance to the warping deformations and stresses [2,3,4].

Researches on the distortion of girders with inner diaphragms have been performed for many decades. The distortion of box girder was initially studied by Dabrowski [5] who first formulated the distortion of box girders with a symmetrical cross section. Li [6,7] proposed that the shear strain of the cross section cannot be ignored when the distortional shear rigidity is significant compared to the distortional warping one for box girders. Wright [8] proposed the Beam on Elastic Foundation (BEF) analogy for the distortion of girders with inner diaphragms, where the diaphragms are analogous to inner supports. Based on BEF, Hsu [9,10] proposed the Equivalent Beam on Elastic Foundation (EBEF) analogy considering the shear strain of the cross section, and found that the EBEF analogy is more versatile than BEF due to its simplicity in analyzing more complex problems such as non-uniform sections and multi-span beams.

Interactions between the girder and diaphragms is the key issue for the distortion of girders with inner diaphragms. A statically indeterminate structure [11] was modeled with redundant forces acting along the junctions between the girder and diaphragms. Moreover, the force method was applied to calculate redundant forces, where elements in the stiffness matrix were obtained from the finite strip method [12]. The numerical results were then extended to multi-span bridges [13] and long-span curved bridges [14]. An outstanding contribution was made by Suetake [15], where the girder was regarded as an assembly of thin plates, and the extended trigonometric series method (ETS) was applied to analyze the stresses and deformations for box girders. Comparisons with FEM results show that ETS has a high accuracy. However, it is inconvenient to apply since there are many simultaneous nonlinear equations to solve even for girders with few diaphragms, e.g. there are up to 720 equations for a girder with two diaphragms.

The wall thickness of diaphragms and the number of diaphragms in a girder will make a significant influence on the displacements and stresses. Park [16,17] proposed a new beam element with nine degrees of freedom per node for girders. Studies showed that the distortional warping and transversal bending stresses were reduced by increasing the diaphragm number. Similar conclusions can be drawn for straight multi-cell box girders with diaphragms [18,19]. For horizontally curved bridges, the rational spacing between adjacent diaphragms was provided [20] according to the ratio between the distortional warping stress and the bending stress. Using FEM, Zhang [21] found that the rational number for diaphragms is 3 to 5 when the ratio of width to height of the cross section is 1.5 and the rational number is 9 when the ratio is 4.5. Li [22] proposed a new finite element solution, and found that the distortional warping stress for cantilever girders can be ignored when the spacing between adjacent diaphragms is less than one fifth of the span; while for simply supported and fixed girders, the spacing is less than one eighth of the span.

Initial parameter method (IPM) was proposed first by Vlasov [23] to analyze the non-uniform torsion of beams. Analogous to IPM in non-uniform torsion, IPM can be extended to analyze distortions of girders. Considering the effect of shear strains of the cross section, Xu [24,25] developed an equation with the variable distortional angle, and established two categories of IPMs of the fourth order, classified by the ratio of the distortional stiffness. Harashima [26] proposed a distortional equation with a distortional warping function, and established the fifth-order IPM. Both IPMs in distortion have a high efficiency compared with FEM. However, IPMs has not been extended into the distortion for girders with inner diaphragms.

For distortions of a girder with inner diaphragms, an assumption of infinite-rigidity
diaphragm was generally made in most studies [16, 20, 27], where the in-plane deformation of diaphragms was totally restrained and warping was free. Similar assumptions can be found in distortion of curved box beams [28], where the distortional angle at the location of diaphragms is set as zero. However, the infinite-rigidity assumption is just an approximation, which is not applicable to thin flexible diaphragms. The main objective of this work is to investigate the distortion of simply supported girders with inner flexible diaphragms under concentrated eccentric loads, where the in-plane shear deformation of diaphragms is fully considered. Interactions between the girder and diaphragms are indicated by a distortional moment. Based on the compatibility condition between the girder and diaphragms, solutions for both the distortional angle and warping function are obtained from the IPM. Taking a simply supported girder with 2, 5 and 9 diaphragms, respectively, as an example, the distortional solutions from IPM were obtained, then verified by a FE analysis and experiments. This was followed by a parametric study, in which distortional deformations and stresses were investigated in terms of the diaphragm number and thickness and the height to span ratio of the girder. Based on the proposed IPM, stabilities of both the local web plate and mid-span diaphragm were examined for girders with three symmetrical inner diaphragms. A series of curves were obtained for the relations between the critical buckling load and the position of diaphragms under various height to width ratios of the cross section.

2 Structural model

Consider a simply supported box girder with inner diaphragms under concentrated eccentric loads $P_j (j=1,2,\ldots,m)$. The coordinate system $O-xyz$ is illustrated in Fig.1a with the original O at the shear center on one end of the girder. For analysis, the distances between O and the mid-lines of webs B and D are marked by n_1 and n_2 in Fig.1b, respectively. The girder is made of a homogeneous, isotropic and linearly elastic material with its Young’s and shear moduli denoted by E and G, respectively. The girder span is l. The thicknesses of web B and D are t_1 and t_2 and their height is h, while the width of flanges A and C is b and the thickness t_3. The thickness for the ith diaphragm is $t_{pi} (i=1,2,\ldots,n)$ and its mid line is marked by z_{pi}, measured from O. The load P_j is located on the top of web D at z_j.

Fig.2a shows that the eccentric load P_j can be decomposed into three components [29, 30] – the flexural load, the torsional and the distortional load. In Fig.2b, the cross-section rigidly rotates around O with a torsional angle θ under torsional loads. Fig.2c illustrates the transversal deformations in the web and the flange under distortional loads, where u_M and v_M are horizontal
and vertical displacements at node M, respectively. The variation of the right angle at node N is defined as the distortional angle χ, given by $\chi = \chi_1 + \chi_2$. Moreover, the warping displacement w_d and the stress σ_d, produced by the distortional moment B_d, are shown in Fig. 2d. There also exists the shear stress τ_d along the cross-section profile, developed by the distortional moment M_d, as shown in Fig. 2e.

This article will focus on the distortional deformation and stresses of a simply supported box girder with inner diaphragms subjected to concentrated eccentric loads.

3 Distortion of girders without diaphragm

In distortion, when the shear stiffness of the cross section has a significant value in comparison with the warping one, the influence of shear strain of the cross section on deformation and stresses cannot be ignored [6,7]. The distortional differential equation can be expressed as [7]

$$EI_w W(z)''' - EI_c \frac{EI}{Gl} W(z)'' + EI_w W(z) = m_d'$$

(1)

where I_w, I_c, and I_l are distortional warping, frame and shear constants, respectively; $W(z)$ is the distortional warping function; m_d is the distributed distortional moment. The number of the apostrophes of $W(z)$ indicates the first, second and forth differentiations with respect to the z-coordinate.

Under concentrated distortional loads, $m_d = 0$, and the solution for Eq. (1) is given as [26]

$$W(z) = \sum_{i=1}^{4} B_i \phi_i(z)$$

(2)

where $B_i (i=1, 2, 3, 4)$ are coefficients determined by the boundary conditions, and ϕ_i are defined as

$\phi_1 = \cosh(\lambda_1 z) \sin(\lambda_2 z)$, $\phi_2 = \cosh(\lambda_1 z) \cos(\lambda_2 z)$, $\phi_3 = \sinh(\lambda_1 z) \cos(\lambda_2 z)$, $\phi_4 = \sinh(\lambda_1 z) \sin(\lambda_2 z)$

where $\lambda_i (i=1, 2)$ are distortional coefficients.

$$\lambda_1 = \frac{1}{2} \sqrt{\frac{4EI_c}{EI_l} + \frac{EI_c}{Gl}}, \lambda_2 = \frac{1}{2} \sqrt{\frac{4EI_c}{EI_l} - \frac{EI_c}{Gl}}$$
Relations between the warping function and the distortional angle are [7]

\[\chi(z) = \frac{EI_z}{EI_c} W''(z), \quad B_d(z) = -EI_z W'(z), \quad M_d(z) = -EI_z W''(z) \] (3)

Substituting Eq.(2) into Eq.(3), the matrix equation is given by

\[Z(z) = \Phi(z)B \] (4)

where

\[\Phi(z) = \begin{bmatrix} \frac{EI_z}{EI_c} \phi_1'''(z) & \frac{EI_z}{EI_c} \phi_2'''(z) & \frac{EI_z}{EI_c} \phi_3'''(z) & \frac{EI_z}{EI_c} \phi_4'''(z) \\
\phi_1(z) & \phi_2(z) & \phi_3(z) & \phi_4(z) \\
\phi_1'(z) & \phi_2'(z) & \phi_3'(z) & \phi_4'(z) \\
\phi_1''(z) & \phi_2''(z) & \phi_3''(z) & \phi_4''(z) \end{bmatrix} \]

\[B = \{B_1, B_2, B_3, B_4\}^T, \]

\[Z(z) \text{ is the state vector in IPM,} \]

\[Z(z) = \begin{bmatrix} \chi(z), W(z), -\frac{B_d(z)}{EI_c}, \frac{M_d(z)}{EI_c} \end{bmatrix}^T \] (5)

The boundary conditions for a simply supported girder are

\[\chi(0)=0, \quad B_d(0)=0, \text{ for the initial end } z=0; \]

\[\chi(l)=0, \quad B_d(l)=0, \text{ for the ultimate end } z=l. \]

Correspondingly, the state vectors on both ends are

\[Z(0) = \begin{bmatrix} 0, W(0), 0, \frac{M_d(0)}{EI_c} \end{bmatrix}^T, \quad Z(l) = \begin{bmatrix} 0, W(l), 0, \frac{M_d(l)}{EI_c} \end{bmatrix}^T \] (6)

For \(z=0 \), \(Z(0) = \Phi(0)B \), we have

\[B = [\Phi(0)]_{inv} \cdot Z(0) \] (7)

where \([\Phi(0)]_{inv}\) is the inverse matrix of \(\Phi(0) \).

Substituting Eq.(7) into Eq.(4) yields in the state vector \(Z(z) \)

\[Z(z) = P(z) \cdot Z(0) \] (8)

where \(P(z) \) is the transfer matrix, and \(P(z) = \Phi(z) \cdot [\Phi(0)]_{inv}. \)

Eq.(8) is the standard form of IPM for the distortion of girders without diaphragms. However, the transfer matrix \(P(z) \) is complicated. Based on the relations between \(\phi_i(z) \) \((i=1,2,3,4) \) and their differentiations (see Eq.(A1)–Eq.(A3) in Appendix I), the matrix \(P(z) \) is simplified as

\[P(z) = \begin{bmatrix} -SC_1'''(z) & -KC_2'''(z) & -SKC_3'''(z) & KC_4'''(z) \\
S & C_1(z) & C_1(z) & -C_4(z) \\
S & C_1''(z) & C_1''(z) & -C_4''(z) \\
-S & C_1'''(z) & -C_1'''(z) & -SC_1''(z) & C_1''(z) \end{bmatrix} \] (9)

where

\[S = \frac{1}{2\lambda_1^2 + 2\lambda_2^2}, \quad K = \frac{EI_c}{EI_c}, \quad C_1(z) = \frac{\phi_1(z)}{\lambda_1} - \frac{\phi_2(z)}{\lambda_2}, \quad C_4(z) = \phi_1(z) - \frac{\lambda_2^2 - \lambda_1^2}{2\lambda_1\lambda_2} \phi_4(z), \]

\[C_2(z) = \frac{3\lambda_2^3 - \lambda_1^3 - \lambda_2^2 - 3\lambda_2^2}{\lambda_1} \phi_4(z), \quad C_3(z) = \frac{\lambda_2^2 - \lambda_1^2}{2\lambda_1\lambda_2} \phi_4(z), \]

The \(j \)th distortional load in IPM is indicated by a vector \(Z_j \), given by
where \(M_j \) is the distortional moment for the \(j \)th distortional load, and \(M_j = P_j \cdot n_1/2 \) [26]; \(n_1 \) is the distance between the web D and point the original \(O \) (see Fig.1b).

4 Distortion of box girders with inner diaphragms

4.1 IPM solution

For analysis, a statically indeterminate structure is modeled with inner redundant forces acting along the junctions between the girder and the diaphragms. The entire model is shown in Fig.3a and the horizontal and vertical redundant forces \(H_{ej} \) and \(V_{ej} \) are illustrated in the zoomed picture, where the subscript \(e \) indicates the webs and flanges and \(e = A, B, C, D \) (see Fig.1b). The small circles indicate the joints between the girder and diaphragms where redundant forces are located.

![Fig.3 A statically indeterminate system and the equivalent boundaries for the \(i \)th diaphragm](image)

(a) a statically indeterminate system (b) boundary on \(i \)th diaphragm

In order to analyze the interactions between the girder and diaphragms, two assumptions are made:

1) Self balance of the in-plane forces of diaphragms

Under distortional loads, the summation of all vertical and horizontal redundant forces and moments are zero for diaphragms. That is

\[
\sum_{e=A, B, C, D} \sum_{j=2} V_{ej} = 0, \quad \sum_{e=A, B, C, D} \sum_{j=2} H_{ej} = 0, \quad \sum_{e=A, B, C, D} \sum_{j=2} H_{ej} \cdot y_{ej} + \sum_{e=A, B, C, D} \sum_{j=2} V_{ej} \cdot x_{ej} = 0
\]

where \(x_{ej} \) and \(y_{ej} \) are the distances between the redundant forces \(V_{ej}, H_{ej} \) and the original \(O \).

Based on the self balance assumption, only the distortional component for redundant forces is reserved. Referred to the formation of external moment \(M_j \) [26,27], the distortional components of the redundant forces are gathered and indicated by a concentrated distortional moment \(M_{pi} \) for the \(i \)th diaphragm. The interactions between the girder and diaphragms can be indicated by a moment \(M_{pi} (i=1,2,\ldots,n) \). Only \(M_{pi} \), opposite to \(M_j \), will resist the distortional deformation and stresses. In IPM, \(M_{pi} \) is indicated by a vector \(Z_{pi} \), given by

\[
Z_{pi} = \begin{bmatrix} 0, 0, 0, M_{pi} \end{bmatrix}^T
\]

(2) Compatibility condition between the girder and diaphragms

In-plane shear strains of diaphragms are considered, given by \(\gamma_{pi} = M_{pi} / (Gbh_{pi}) \). The
compatibility condition is that the distortional angle at the mid line of diaphragms is opposite to the in-plane shear strain of diaphragms. That is $\chi(z_p) = -\gamma_{pi} (0 \leq i \leq n)$. This is a key aspect for the distortion of girders with inner diaphragms.

Combining Eq.(8) and Eq.(12), the state vector $Z(z)$ can be expressed as

$$Z(z) = P(z)Z(0) - \sum_{i=1}^{R} \int_{z_i}^{z_{i+1}} P(z-z_i)Z_i \, dz_i - \sum_{j=1}^{S} P(z-z_j)Z_j$$ \hspace{1cm} (13)$$

where R and S are the numbers of diaphragms and moments M_j before point z, respectively. The transfer matrices $P(z-z_i)$ and $P(z-z_j)$ are obtained from $P(z)$ by substituting the variable z by ‘$z-z_i$’ and ‘$z-z_j$’.

For $z=l$, Eq.(13) changes into

$$Z(l) = P(l)Z(0) - \sum_{i=1}^{R} \int_{z_i}^{l} P(l-z_i)Z_i \, dz_i - \sum_{j=1}^{S} P(l-z_j)Z_j$$ \hspace{1cm} (14)$$

where the vectors $Z(l)$ and $Z(0)$ are referred to Eq.(6); $W(0)$ and $M_d(0)$ in vector $Z(0)$ can be calculated from the first and third simultaneous equations in Eq.(14). Then, substituting $W(0)$ and $M_d(0)$ into Eq.(13), the distortional angle and the warping function can be obtained as

$$\chi(z) = \frac{\sum_{i=1}^{R} \eta^1_i(z)M_{pi} + \sum_{j=1}^{S} \epsilon^1_4(z,z_j)M_j}{2\lambda_1\lambda_2EI\Phi_{42}(l,l)}$$ \hspace{1cm} (15)$$

$$W(z) = \frac{\sum_{i=1}^{R} \eta^2_i(z)M_{pi} + \sum_{j=1}^{S} \epsilon^2_4(z,z_j)M_j}{2\lambda_1\lambda_2EI\Phi_{42}(l,l)}$$ \hspace{1cm} (16)$$

where

$$\eta^1_i(z) = \frac{2}{\pi^2} \left[\frac{\epsilon^{01}_4 \left(l-z_{pi}, r_{pi} / 2 \right)}{\epsilon^{41}_4 \left(l-z_{pi}, r_{pi} / 2 \right)} \Phi_{42}(z,l) + \frac{\epsilon^{02}_4 \left(l-z_{pi}, r_{pi} / 2 \right)}{\epsilon^{42}_4 \left(l-z_{pi}, r_{pi} / 2 \right)} \Phi_{42}^2(l,z) \right],$$

$$\eta^2_i(z) = \frac{2}{\pi^2} \left[\frac{\epsilon^{01}_4 \left(l-z_{pi}, r_{pi} / 2 \right)}{\epsilon^{41}_4 \left(l-z_{pi}, r_{pi} / 2 \right)} \Phi_{42}^2(l,z) - \frac{\epsilon^{02}_4 \left(l-z_{pi}, r_{pi} / 2 \right)}{\epsilon^{42}_4 \left(l-z_{pi}, r_{pi} / 2 \right)} \Phi_{42}^2(l,z) \right],$$

$$\epsilon^1_4(z,z_j) = A_{42}(z,z_j) - H \left(S + \frac{1}{2} - j \right) \phi_{42}(z_{pi}, r_{pi} / 2 \right) \Phi_{42}(l,l),$$

$$\epsilon^2_4(z,z_j) = A_{42}(z,z_j) + H \left(S + \frac{1}{2} - j \right) \phi_{42}(z_{pi}, r_{pi} / 2 \right) \Phi_{42}(l,l),$$

$H(x)$ is the unit step function. $H(x)=1$ for $x>0$ and $H(x)=0$ for $x<0$. The derivatives are:

$$\Phi_{xy}(x,y) = \begin{bmatrix} \phi_{y}^{''}(x) & \phi_{y}^{'(y)}(x) \end{bmatrix}, \quad \Phi_{xy}(x,y) = \begin{bmatrix} \phi_{x}^{''}(x) & \phi_{x}^{'(y)}(x) \end{bmatrix},$$

$A_{ik}(x,y) = \frac{d^i}{dx^i} \frac{d^j}{dy^j} (x,y)$.
where $\varphi_m^{(i)}(x)$ and $\varphi_n^{(i)}(y)$ are the ith differentiation of functions $\varphi_m(x)$ and $\varphi_n(y)$. $\varphi_n^{(-1)}(-y)$ is the integral of function $\varphi_n(y)$, given by

$$
\int \varphi_n(y) \, dy = \frac{2\lambda_n^2 EI}{t_{p(R+1)}} (1 + \frac{E_G b h}{\lambda_n})
$$

When the calculated point z is located in the thickness of $(R+1)$th diaphragm ($z_{p(R+1)} - t_{p(R+1)}/2 \leq z \leq z_{p(R+1)} + t_{p(R+1)}/2$), an additional angle χ_{add} and function W_{add} should be involved,

$$
\chi_{add} = \frac{M_{p(R+1)}}{2\lambda_n^2 EI t_{p(R+1)}} \left[2\lambda_n^2 \varphi_n^{(-1)}(z - z_{p(R+1)} + t_{p(R+1)}/2) \right]
$$

$$
W_{add} = \frac{M_{p(R+1)}}{2\lambda_n^2 EI t_{p(R+1)}} \left[z - z_{p(R+1)} + t_{p(R+1)}/2 \right]
$$

where $z_{p(R+1)}$, $t_{p(R+1)}$ and $M_{p(R+1)}$ are the mid-line location, the thickness and the distortional moment of the $(R+1)$th diaphragm, respectively.

Based on Eqs.(15)~(18), both the angle $\chi(z)$ and the function $W(z)$ are related to M_j and M_{pi}.

Since M_j has been given in Eq.(10), solutions rest in M_{pi}.

4.2 Derivation of M_{pi}

The compatibility condition gives the equation

$$
\sum_{j=1}^{n} \xi^j \varphi_n^{(j)}(z_{pT}) M_{pi} + \sum_{j=1}^{n} \xi^j \varphi_n^{(j)}(z_{pT}, z_j) M_j - \frac{\varphi_n^{(j)}(l, l)}{t_{pT}} \left[\varphi_n^{(j)} \left(\frac{t_{pT}}{2} \right) - 2\lambda_n^2 \left(1 + \frac{E_G b h}{\lambda_n} \right) \right] M_{pT} = 0
$$

for the Tth diaphragm ($T=1,2,\ldots,n$), where

$$
\xi^j \varphi_n^{(j)}(z_{pT}) = \frac{2}{t_{pi}} \left[\xi_{31} \left(l - z_{pi}, \frac{t_{pi}}{2} \right) \varphi_n^{(j)}(z_{pT}, l) + \xi_{11} \left(l - z_{pi}, \frac{t_{pi}}{2} \right) \varphi_n^{(j)}(l, z_{pT}) \right]
$$

$$
- H \left(T - \frac{1}{2} - t \right) \frac{2\varphi_n^{(j)}(l, l)}{t_{pi}} \xi_{31} \left(z_{pT} - z_{pi}, \frac{t_{pi}}{2} \right)
$$

$$
\xi^j \varphi_n^{(j)}(z_{pT}, z_j) = A_{34}(z_{pT}, z_j) - H \left(k_T + \frac{1}{2} - j \right) \varphi_n^{(j)}(z_{pT} - z_j),
$$

k_T is the number of distortional loads before the Tth diaphragm.

The matrix equation system for Eq.(19) is

$$
\eta \cdot M_{pT} + \varepsilon = 0
$$

where $M_p = [M_{p1}, M_{p2}, \ldots, M_{pn}]^T$; $\eta = \begin{bmatrix} \xi^1 \varphi_n(z_{p1}) & \varphi_n(z_{p1}) \\ \xi^2 \varphi_n(z_{p2}) & \varphi_n(z_{p2}) \\ \vdots & \vdots \\ \xi^n \varphi_n(z_{pn}) & \varphi_n(z_{pn}) \end{bmatrix}$;

$$
\varepsilon = \begin{bmatrix} \sum_{j=1}^{n} \xi^j \varphi_n^{(j)}(z_{p1}, z_j) M_{j1} + \sum_{j=1}^{n} \xi^j \varphi_n^{(j)}(z_{p2}, z_j) M_{j2} + \sum_{j=1}^{n} \xi^j \varphi_n^{(j)}(z_{pn}, z_j) M_{jn} \end{bmatrix}^T
$$

and the diagonal elements in matrix η is

$$
R_{ij} = \xi^j \varphi_n(z_{pi}) - \frac{\varphi_n^{(j)}(l, l)}{t_{pi}} \left[\varphi_n^{(j)} \left(\frac{t_{pi}}{2} \right) - 2\lambda_n^2 \left(1 + \frac{E_G b h}{\lambda_n} \right) \right]
$$
Consequently, $M_{\mu i}$ can be obtained by

$$M_{\mu i} = -\sum_{j=1}^{m} Q_{ij} M_j$$ \hspace{2cm} (21)$$

according to the Cramer rule. $Q_{ij} = |\eta_i|/|\eta|$, where $|\eta|$ indicates the determinant of η, and η_i is the same of η except for the ith column $[\eta_1, \eta_2, \ldots, \eta_n]^T$.

4.3 Simplification of $\chi(z)$ and $W(z)$

Substituting Eq.(21) into Eq.(15), and the angle $\chi(z)$ changes into

$$\chi(z) = \frac{\sum_{j=1}^{n} \left(\frac{1}{n} \eta_i(z) Q_{ij} \right) M_j}{2\lambda_2 EI (l, l)}$$ \hspace{2cm} (22)$$

where n and m are the total numbers of diaphragms and distortional loads, respectively.

The number of calculation steps is $m \times n$ in Eq.(22) and it would be time-consuming for girders with many diaphragms under many distortional loads. For solution, a matrix equation is established, given by

$$\eta \cdot \psi = \alpha$$ \hspace{2cm} (23)$$

where

$$\psi = \begin{pmatrix} \psi_{i1} & \psi_{i2} & \ldots & \psi_{in} \\ \psi_{i2} & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ \psi_{in} & \ldots & \ldots & \psi_{in} \end{pmatrix}; \quad \alpha = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix}$$

and the elements in matrix α are

$$\alpha_{gk} = \begin{cases} \sum_{j=1}^{n} \left[\frac{1}{n} \eta_i(z) \eta_k(z) \right] M_j & (g \neq k) \\ \sum_{j=1}^{n} \left[\frac{1}{n} \eta_i(z) \eta_k(z) \right] M_j & (g = k) \end{cases}$$ \hspace{2cm} (24)$$

In this approach, the distortional angle $\chi(z)$ can be simplified as

$$\chi(z) = \frac{1}{2\lambda_2 EI (l, l)} \sum_{i=1}^{n} \psi_i$$ \hspace{2cm} (25)$$

For the warping function $W(z)$, a matrix equation can also be established similar to Eq.(23), and the elements α_{gk} ($g, k = 1, 2, \ldots, n$) in matrix α are

$$\alpha_{gk} = \begin{cases} \sum_{j=1}^{n} \left[\frac{1}{n} \eta_i(z) \eta_k(z) \right] M_j & (g \neq k) \\ \sum_{j=1}^{n} \left[\frac{1}{n} \eta_i(z) \eta_k(z) \right] M_j & (g = k) \end{cases}$$

Therefore, the function $W(z)$ can be simplified as

$$W(z) = \frac{1}{2\lambda_2 EI (l, l)} \sum_{i=1}^{n} \psi_i$$ \hspace{2cm} (25)$$

Taking the node N (see Fig.1b) of the cross section as an example, the distortional warping displacement w_{uN} and the stress σ_{uN} are given by
where β_d is the ratio of the distortional warping stresses between nodes J and N, and

\[\beta_d = \frac{3bt_1 + ht_2}{3ht_1 + bt_2} \]

5 Verifications of IPM

5.1 Verifications with FEA

To verify the proposed IPM, simply supported girders with 2, 5 and 9 diaphragms are investigated for three diaphragm thicknesses, respectively by FEA using a commercial code ANSYS. All girders are modeled with the Young’s modulus $E=2.1\times10^{11}$ Pa, the Poisson’s ratio $\nu=0.3$, the span $l=1$ m, the width $b=0.1$ m, the height $h=0.2$ m and the flanges and webs thicknesses $t=0.01$ m. Diaphragms are evenly distanced along the span with the thicknesses $t_d=0.005$ m, 0.01 m and 0.02 m, respectively.

Figs. 4a, b and c show the meshing grids of the girders and diaphragms using Shell63 element in FEA model, where translations in the x- and y- axial directions and rotations about the y- and z-axes on both ends are restrained. A convergent test shows that 1650 to 2026 elements are adequate in terms of the diaphragm number. Fig.4d shows the loading conditions, where two concentrated distortional loads are applied along the flange and web in cross sections $z_1=0.45l$ and $z_2=0.55l$, and $P_h=1.25$ kN and $P_v=2.5$ kN, respectively.

![Meshing grid, ending boundaries and loading conditions in FEA model](image)

Fig. 4 Meshing grid, ending boundaries and loading conditions in FEA model

Figs. 5 to Fig. 7 show 3D contours of the distortional warping deformations and stresses for simply supported girders with 2, 5 and 9 diaphragms, respectively. The ‘amp’ indicates the amplified factor for deformations. It is seen that the largest displacement and stress occur at the junction between webs and flanges at the loading sections. With the increment of diaphragm number, the largest stress reduces from 5.51 MPa to 1.55 MPa and the displacement from 1.61 μm to 0.268 μm, and frame deformations at the loading sections clearly become small.
Fig. 5 3D contours of a girder with two diaphragms under distortional loads ($t_p = 0.01\text{m}, \text{amp}=3000$)

Fig. 6 3D contours of a girder with five diaphragms under distortional loads ($t_p = 0.01\text{m}, \text{amp}=10000$)

Fig. 7 3D contours of a girder with nine diaphragms under distortional loads ($t_p = 0.01\text{m}, \text{amp}=20000$)

Fig. 8 to Fig. 10 show the distortional angle, warping displacements and stresses at node N from IPM and FEA for simply supported girders with 2, 5 and 9 diaphragms, respectively, in the relative diaphragm thickness $t_p/t=0.5, 1$ and 2. The distortional angle in FEA results can be calculated by

$$\chi(z) = \frac{UX_N - UX_M}{h} + \frac{UY_N - UY_I}{b}$$ (27)

where UX_N and UX_M are x-axial displacements at nodes N and M (see Fig. 1b), respectively; UY_J and UY_N are y-axial displacements at nodes J and N, respectively.

Fig. 8 The distortional angle, warping displacements and stresses between IPM and FEA for a simply supported girder with two diaphragms of different diaphragm thicknesses

Good agreements are observed between IPM and FEA in Fig. 8 to Fig. 10 for the distortional angle, warping displacements and stresses for simply supported girders with inner diaphragms. Compared the girders braced by 2 diaphragms with those by 5 and 9 diaphragms, it’s worth noting
that the mid-span diaphragm effectively restrains the transversal deformation.

For the distortional angle, the largest error between IPM and FEA occurs at the loading sections, where the FEA result is 23.68% higher than the IPM one for girders with two diaphragms, and reduces to 13.86% for those with five diaphragms and 10.18% for those with nine diaphragms. Since there is no diaphragms or stiffeners at the loading sections, the error between IPM and FEA can be attributed to the local stress concentration. So the distortional angle obtained from IPM is susceptible to the influence of stress concentration.

Fig. 9 The distortional angle, warping displacements and stresses between IPM and FEA for simply supported girders with five diaphragms varying with three diaphragm thicknesses.

Fig. 10 The distortional angle, warping displacements and stresses between IPM and FEA for simply supported girders with nine diaphragms varying with three diaphragm thicknesses.
In addition, the influence of shear strains of the cross section on distortional deformations and stresses are examined in Fig.11 for simply supported girders with 2 and 5 diaphragms, where the compatibility condition between the girder and diaphragms is considered. It is seen that the shear strain of the cross section makes little effect on warping displacements and stresses, but a large influence on the distortional angle. The largest difference occurs at the loading sections $z = 0.45l$ and $z = 0.55l$, which is 14.9% for girders with 2 diaphragms and 17.8% with 5 diaphragms. Also, the error at the mid span for girders with 2 diaphragms is 13.3%. Thus shear strains of the cross section cannot be ignored when the transversal deformation of girders is considered.

5.2 Verifications with experiments

For further verification of the IPM, a series of experiments were performed using four groups of samples – girders with no diaphragms, one, two and three diaphragms, subjected to distortional loads. Diaphragms are equally distanced along the span. Both girders and diaphragms were fabricated from carbon structural steel plates (yield strength 235MPa) of 8mm thickness. All girders are 3 meters long, with height $h = 0.6m$ and width $b = 0.346m$, giving a 30° angle between the diagonal and the web. All girders are sealed by a steel plate of 6mm thickness on both ends. To simultaneously produce two concentrated distortional loads, as in Fig.4d, two steps were taken as follows

(1) For distortional loads, as shown in Fig.12, units were designed with two groups of wheels anti-symmetrically about the shear center O of the cross section. This is to decompose the horizontal power force P_{source} produced by FCS hydraulic servo system into two orthogonal loading components P_h and P_v.

(2) For concentrated loads, as shown in Fig.13, four stiff units of 1.5m in length and 0.15m and 0.350m in width, respectively, were welded onto flanges and webs symmetrically over the mid span, and the loading sections were hence located at $z_1 = 0.75m$ and $z_2 = 2.25m$, respectively.

During the experiments, compressive loadings were applied along the diagonal of the cross section by two anti-symmetrical wheel units, as shown in Fig.12a. The entire experimental setup is shown in Fig.14a, including two FCS hydraulic servo loading systems, two connection beams, two wheel units, four stiff units, the tested girder and two supports. The maximum loading was set to 5t with a loading speed of 2mm/s, controlled by a loading equipment in Fig.14b.
Fig. 13 Stiff units

Fig. 14 Entire experimental scheme

Fig. 15 The scheme of tested points

Compared with those from IPM, the transversal displacements and distortional angle are depicted in Fig. 16 for girders without diaphragms under the source loading of 5t. There exist some errors between the IPM and experimental results at the singularity points A1 for x-axial displacement and B10 and B11 for y-axial displacement, which are mainly caused by the residual...
strains of welding and manufacturing. Eliminating the influences induced by singularity points, fitting lines were obtained from experimental results by applying the quadratic fitting method provided in the software MATLAB. Fig.16 shows reasonable agreements between two results.

Fig.16 Comparison of transversal displacements and angle between IPM and experiments under 5t loading

For distortional warping stresses, strains ($\varepsilon_{d,0}$, $\varepsilon_{d,45}$, and $\varepsilon_{d,90}$) in three directions were measured at points A1~A6 using strain gauges shown in Fig.17a and recorded by the static strain equipment in Fig.17b. The warping stress is calculated as

$$\sigma_d = \frac{E}{1-\nu^2}(\varepsilon_{d,90} + \nu\varepsilon_{d,0})$$

where $E=2.1\times10^{11}$Pa and $\nu=0.3$.

Fig.17 Strain measurements

Fig.18 shows calculated distortional warping stresses on the tested points A1~A6 for girders with (a) no diaphragm, (b, c) one diaphragm, (d, e) two diaphragms and (f) three diaphragms, respectively. It is seen that the warping stresses obtained from the IPM and experiments have the same up-and-down trend and with apexes at A3 for girders with diaphragms. The errors mainly come from the drop of δ_h (Fig.12a) between two horizontal source forces, which are mainly caused by the residual strain during manufacturing and welding. And this will produce torsional warping stress besides the distortional one.
6 Parametric study

In this section, the effects of the ratio of height to span of the girder \(h/l \), the diaphragm thickness \(t_p \) and number \(n \) are examined on the distortion of simply supported girders with equally distanced inner diaphragms, where the loading and boundary conditions are referred to those in Section 5.1.

Fig. 19 shows the non-dimensional warping stress \(\sigma_d/\sigma_{d0} \) for node N at the loading section \(z=0.45l \) varying with the ratios \(h/l \) and \(t_p/t \), where \(\sigma_{d0} \) is the warping stress of girders without diaphragms. It is seen that except for the girder with two diaphragms under \(h/l=0.1 \), the non-dimensional stress \(\sigma_d/\sigma_{d0} \) remains less than 1 and becomes smaller with the increment of \(n \), \(t_p/t \) and \(h/l \), respectively. Besides, the \(\sigma_d/\sigma_{d0} \) decreases substantially when the number of diaphragms reduces from 2 to 1, or increases from 2 to 3, clearly indicating that the mid-span diaphragm plays a significant role in the reduction of distortional warping stress.

Fig. 20 shows the non-dimensional distortional angle \(\chi/\chi_0 \) at the loading section \(z=0.45l \) varying with \(h/l \) and \(t_p/t \), where \(\chi_0 \) is the distortional angle for girders without diaphragms. It is seen that except for the girder with two diaphragms under \(h/l=0.1 \), the non-dimensional distortional angle \(\chi/\chi_0 \) remains less than 0.25 and becomes smaller with the increment of \(n \), \(t_p/t \) and \(h/l \), respectively. This implies that the inner diaphragms are capable of restraining the transversal deformation of the cross section, especially when \(n>3 \). Similarly, compared with the distortional angle at \(n=2 \), those at \(n=1 \) and 3 decrease significantly due to the restraint by the mid-span diaphragm.
Fig. 19 The non-dimensional warping stress σ_d/σ_{d0}

Fig. 20 The non-dimensional distortional angle χ/χ_0

Fig. 21 The non-dimensional warping displacement w_d/w_{d0}

Fig. 21 shows the non-dimensional warping displacement w_d/w_{d0} for node N at the loading section $z=0.45l$ varying with the ratios h/l and t_p/t, where w_{d0} is the warping displacement for girders without diaphragms. It is seen that except for the girder with two diaphragms under $h/l=0.1$, the non-dimensional displacement w_d/w_{d0} in Fig. 21a remains less than 1.0 and converges to a fixed value between 0.1 and 0.2 for large diaphragm numbers.

7 Buckling of both the local web plate and the mid-span diaphragm

Taking a simply supported girder with uniform three inner diaphragms as an example, Fig. 22 shows 3D contours for the warping displacements and stresses, where the measurement, loading
and boundary conditions are referred to those in Section 5.1. It is seen from Fig.22 that the maximum displacement occurs at the local web plate at the loading sections, and the maximum stress occurs at the edge of the mid-span diaphragm, which may result in local buckling. It is thus necessary to check the stabilities for both local web plate and mid-span diaphragm.

In this section, the proposed IPM was carried to analyze the critical buckling values P_{cr1} and P_{cr2} for the eccentric load P_j according to the stabilities of the local web plate and the mid-span diaphragm, respectively. Inner diaphragms include one fixed (diaphragm II) at the mid span and two (diaphragms I and III) symmetrical to the mid-span one. The loading and boundary conditions are referred to those in Section 5.1.

![Fig.22 3D contours of warping displacement and stress of girders with three uniform inner diaphragms ($\varphi=5\text{mm}$)](image)

Fig.22 3D contours of warping displacement and stress of girders with three uniform inner diaphragms ($\varphi=5\text{mm}$)

Fig.23 shows the mixed stress boundary condition for the local web plate between the loading section and the mid span, in which $a = 0.05l$. Under distortional loads, the warping stress σ_d varies linearly from σ_{d1} at the loading section to $\sigma_{d2} (=\beta\sigma_{d1})$ at the mid span and from $\sigma_{d1(2)}$ on the top to $-\sigma_{d1(2)}$ at the bottom. There also exists a constant shear stress $\tau_{d1} (=\eta\sigma_{d1})$ on all four sides of the cross-section, and a parabola τ_{d2} on both lateral sides. Both shear stresses can be obtained from [26]

$$
\tau_d(s,z) = -\frac{M_d(z)}{I_t} \left(S_d(s) - \int r_d(s) \rho_d(s) ds \right)
$$

(30)

where $M_d(z)$ is the distortional moment in Fig.2; I_t is the distortional warping constant in Eq.(1); t is the thickness of local web plate, given by $t = 0.01\text{m}$; F is the cross-sectional area; $\rho_d(s)$ is the distance between the distortional center [6] and the mid line of the cross-sectional profile; $S_d(s)$ is the second moment of area, given by $S_d(s) = \int \tilde{w} ds$, \tilde{w} is the distortional sectorial coordinate [7], \tilde{s} is the circumferential coordinate around the cross-sectional profile.

Under the mixed stress boundary condition, the out-of-plane deformation w_p for local web plate can be indicated by the combination of two orthogonal sinusoidal functions in z- and y-axial directions, given by

$$
w_p = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{u\pi z}{a} \sin \frac{v\pi y}{h}
$$

(31)

where u and v are the numbers of half waves in z- and y-axial directions; A_{mn} is the undetermined
coefficient, which is the maximum of the combination of two sinusoidal functions.

\[\sigma_{d} = \sigma_{d1} \left(1 - \frac{2}{h} y \right) \left(1 - \frac{1 - \beta}{a} z \right) \]

\[\tau_{d} = \tau_{d1} + \tau_{d2} = \sigma_{d1} \eta + \sigma_{d1} \left(1 - \frac{\beta}{a \eta} \right) \left(y - \frac{y^2}{h} \right) \]

where \(\beta \) is the ratio of the warping stresses \(\sigma_{d1} \) to the \(\sigma_{d2} \); \(\eta \) is the ratio of the warping stress \(\sigma_{d1} \) to the constant shear stress \(\tau_{d1} \). Both ratios are calculated from IPM.

To obtain the critical buckling stress \(\sigma_{d1}^{cr} \) for the local web plate, Galerkin equation [32] is applied, given by \((p, q=1, \ldots, \infty)\)

\[\int_{0}^{\pi} \int_{0}^{\pi} \left(\frac{u_{d1}^2}{a} + \frac{v_{d1}^2}{a} \right) \int_{0}^{\pi} \int_{0}^{\pi} \sin \frac{u \pi x}{a} \sin \frac{v \pi y}{h} \sin \frac{p \pi x}{a} \sin \frac{q \pi y}{h} dz \, dy = 0 \]

Substitute Eqs.(31)–(33) into Eq.(34), the latter is changed into

\[\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{nm} \left(-\tau_{d1} \left(\frac{u \pi}{a} \right)^2 \right) \int_{0}^{\pi} \left(1 - \frac{2}{h} y \right) \left(1 - \frac{1 - \beta}{a} z \right) \sin \frac{u \pi x}{a} \sin \frac{v \pi y}{h} \sin \frac{p \pi x}{a} \sin \frac{q \pi y}{h} dz \, dy = 0 \]

where the definite integrals on variables \(u \) and \(p \) are given in Tab.1; and the integrals on \(v \) and \(q \) are obtained by replacing \(u \) and \(p \).

Eq.(35) can be translated into a matrix equation set and the determinant of the coefficient matrix should be zero as the coefficient \(A_{nm} \) cannot be zero. Therefore, the critical stress \(\sigma_{d1}^{cr} \) can be obtained.

In addition, since the dimension of the coefficient matrix affects the calculation accuracy, the critical stresses \(\sigma_{d1}^{cr} \) were examined first in Fig.24 under different dimensions of the coefficient matrix.
matrix. In the calculation, the span $l=1\text{m}$, the height $h=0.25\text{m}$, the width $b=0.1\text{m}$, the thicknesses for webs and flanges $t=0.01\text{m}$, and the diaphragm thickness $t_p=0.005\text{m}$. It is seen that the critical stress $(\sigma_{d1})_{cr}$ tends to a converged value as the dimension of the coefficient matrix increases from 2×2 to 4×4. However, calculation time increases significantly from 12s to 51220s. Considering both the accuracy and time, the 3×3 coefficient matrix is regarded most appropriate to calculate the critical stress $(\sigma_{d1})_{cr}$.

<table>
<thead>
<tr>
<th>Definite integrals</th>
<th>$u=p$</th>
<th>$u\neq p$ and $u+p$: even</th>
<th>$u\neq p$ and $u+p$: odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int_0^a u \frac{z \sin p \frac{z}{a}}{a} dz$</td>
<td>$\frac{a}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\int_0^a u \frac{z \cos p \frac{z}{a}}{a} dz$</td>
<td>0</td>
<td>0</td>
<td>$-\frac{2a}{\pi}p$</td>
</tr>
<tr>
<td>$\int_0^{a^2} u \frac{z \sin p \frac{z}{a}}{a} dz$</td>
<td>$\frac{a^2}{4}$</td>
<td>0</td>
<td>$-\frac{a^2}{\pi}p$</td>
</tr>
<tr>
<td>$\int_0^y u \frac{\cos y \sin p \frac{y}{a}}{a} dy$</td>
<td>$-\frac{a^2}{4a\pi}$</td>
<td>$\frac{pa^2}{\pi(u^2-p^2)}$</td>
<td>$-\frac{a^2}{\pi(u^2-p^2)}$</td>
</tr>
<tr>
<td>$\int_0^y u \frac{\cos y \sin p \frac{y}{a}}{a} dy$</td>
<td>$-\frac{a^2}{4a\pi}$</td>
<td>$\frac{pa^2}{u(m^2-p^2)}$</td>
<td>$\frac{4pa^2}{\pi(u^2-p^2)}$</td>
</tr>
</tbody>
</table>

Fig.24 Convergence of critical distortional warping stress $(\sigma_{d1})_{cr}$

In order to obtain P_{cr1}, a linear relationship is established between the critical moment M_{cr1} and the critical stress $(\sigma_{d1})_{cr}$:

$$\frac{M_{cr1}}{M_e} = \frac{(\sigma_{d1})_{cr}}{(\sigma_{d1})_e} \tag{36}$$

where M_{cr1} is the critical value for external moment M_j based on the stability of the local web plate, given by $M_{cr1}=P_{cr1}n_1/2$. M_e is the unit external moment, i.e. $M_e=1\text{Nm}$. $(\sigma_{d1})_e$ is the corresponding warping stress on top of the web at the loading section $z=0.45l$, produced by the unit moment M_e.

Fig.25 gives the critical load P_{cr1} varying with the location z_{p1} of diaphragm I for various ratios h/b, based on the stability of the local web plate. It is seen that the critical load P_{cr1} increases remarkably when diaphragm I is located close to the loading section $z_1=0.45l$, implying that installation of a diaphragm at the loading section will enhance effectively the stability of the local web plate.
While for the mid-span diaphragm (diaphragm II) subjected to pure shear boundary conditions, the critical value \((M_{p2})_c\) for moment \(M_{p2}\) is given by [33,34]

\[
(M_{p2})_c = \frac{E \pi^4 t_{p2}^2}{\xi (1-\nu^2)}, \quad (h/b \leq 2)
\]

\[
(M_{p2})_c = \left(\frac{89h}{200b} + \frac{b}{3h}\right) \frac{E \pi^4 t_{p2}^2}{1-\nu^2}, \quad (h/b > 2)
\]

(37)

where \(\xi = \frac{384b^2h^2}{9(h^2+b^2)^2} \sqrt{\frac{706}{625} + \frac{81(h^2+b^2)}{25(h^2+9b^2)}} + \frac{81(h^2+b^2)}{25(h^2+9b^2)}\); \(\nu\) is the Poisson’s ratio and equals to 0.3; \(t_{p2}\) is the thickness of mid-span diaphragm and \(t_{p2}=0.005\)m.

Based on Eq.(21), the critical moment \(M_{cr2}\) for external moment \(M_j\) can be calculated by

\[
M_{cr2} = \frac{(M_{p2})_c}{Q_{21} + Q_{22}}
\]

(38)

where \(Q_{21}\) and \(Q_{22}\) are defined in Eq.(21).

Furthermore, based on equation \(M_j=P_j n_1/2\) [26], the critical load \(P_{cr2}\) can be finally obtained from Eq.(38). For the stability of the mid-span diaphragm, Fig.26 gives the critical load \(P_{cr2}\) varying with the location \(z_{p1}\) of diaphragm I for various values of \(h/b\). It is seen that the critical load \(P_{cr2}\) increases remarkably when diaphragm I is located close to the loading section \(z_1=0.45l\), indicating increased resistance to buckling.

Back to the girder with equally-distanced three inner diaphragms in Fig.22, the girder will reach its yield strength limit of 235MPa when the eccentric load \(P_j\) is 650kN, which is much smaller than the critical buckling load \(P_{cr2}\) of 8743kN at \(z_{p1}/l=0.25\) for the ratio \(h/b=2\) according to the stability of the mid-span diaphragm. Simultaneously, the plastic yield load of 650kN is much larger than the critical load \(P_{cr1}\) of 12.2kN at \(z_{p1}/l=0.25\) according to the stability of the local web plate. This implies that buckling of the local web plate will be the primary failure mode with the increment of eccentric loads \(P_j\). Hence attentions should be paid on the stability of the local web plate for the design of girders subjected to eccentric loads.
Conclusions

In this paper, the initial parameter method (IPM) is applied to investigate the distortion of simply supported girders with inner diaphragms subjected to concentrated eccentric loads, where in-plane shear deformation of diaphragms is considered. The main conclusions can be drawn as follows:

1. Compared with results from FEA and experiments, accurate analyses can be obtained by IPM for the distortional angle, warping displacements and stresses for simply supported girders with inner diaphragms. Both the in-plane shear deformation of diaphragms and the compatibility condition between the girder and diaphragms are taken into account in IPM. Besides, comparison of results between considering the shear strain of the cross section and not shows that the shear strain of the cross section cannot be ignored when calculating the distortional angle.

2. Both the distortional angle and warping stresses decrease with the increment of the ratio of height to span, the number of diaphragms and their thickness. The warping displacement converges to a fixed value between 0.1 and 0.2 for large diaphragm numbers. And the mid-span diaphragm plays a key role in reducing the distortional deformations and stresses for girders under symmetrical loads.

3. Stabilities of the local web plate and the mid-span diaphragm were both investigated for box girders with symmetrical three inner diaphragms. Results show that both the local web plate and the mid-span diaphragm increase their resistance to buckling when the diaphragm I is located close to the loading sections. Moreover, the local web plate will buckle first as the primary failure mode. Therefore, attentions are needed on the stabilities of the local web plate for simply supported girders under eccentric loads.

Based on the IPM, it is possible to improve the warping displacements and stresses of simply supported girders through optimizing the positions and wall thickness of diaphragms. Future work are needed for (1) optimization of the distortion of girders with diaphragms; (2) mechanical properties of girders with perforated diaphragms.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) [grant number: 51175442 and 51675450].
Appendix I

The relationships between $\varphi_i(z)$ ($i=1,2,3,4$) and their differentiations is

$$\varphi'_i = \lambda_1 \varphi_4 + \lambda_2 \varphi_2, \quad \varphi'_2 = \lambda_1 \varphi_3 - \lambda_2 \varphi_4, \quad \varphi'_3 = \lambda_1 \varphi_2 - \lambda_2 \varphi_4, \quad \varphi'_4 = \lambda_1 \varphi_1 + \lambda_2 \varphi_3; \quad (A1)$$

$$\varphi''_i = (\lambda_1^2 - \lambda_2^2) \varphi_1 + 2 \lambda_1 \lambda_2 \varphi_3, \quad \varphi''_2 = (\lambda_1^2 - \lambda_2^2) \varphi_2 - 2 \lambda_1 \lambda_2 \varphi_4, \quad \varphi''_3 = (\lambda_1^2 - \lambda_2^2) \varphi_3 - 2 \lambda_1 \lambda_2 \varphi_1; \quad (A2)$$

$$\varphi''''_i = (\lambda_1^3 - 3 \lambda_1 \lambda_2^2) \varphi_1 + (3 \lambda_1^2 \lambda_2 - \lambda_2^3) \varphi_2, \quad \varphi''''_2 = (\lambda_1^3 - 3 \lambda_1 \lambda_2^2) \varphi_2 - (3 \lambda_1^2 \lambda_2 - \lambda_2^3) \varphi_1; \quad \varphi''''_3 = (\lambda_1^3 - 3 \lambda_1 \lambda_2^2) \varphi_3 - (3 \lambda_1^2 \lambda_2 - \lambda_2^3) \varphi_1. \quad (A3)$$

Reference

