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1 Introduction

We congratulate the authors of Spokoiny, Wang and Haerdle (henceforth SWH)
for their important and interesting contribution to the development of local quan-
tile regression. Quantile regression has been used in a number of disciplines to
explore the relationship between the response and covariates at both the center
and extremes of the conditional distribution. Since Koenker and Bassett (1978)
first introduced the linear quantile regression, nonparametric kernel smoothing
quantile regression has attracted much attention in literature (Fan and Gijbels,
1996; Yu and Jones, 1998; Hall, Wolff and Yao, 1999; Cai and Xu, 2008; Dette and
Volgushev, 2008; Chen and Mller, 2012; among others). An important issue in
nonparametric smoothing techniques is the selection of smoothing parameter or
bandwidth. Bandwidth selection in nonparametric smoothing quantile regression
requires not only data-driven but also quantile-driven. The main contribution of
SWH’s paper lies in their adaptive bandwidth selection rule for kernel smooth-
ing quantile regression. That is, their bandwidth selection rule is adaptive and
novel, although the regression estimator named qMLE in their equation (8) is
simply equivalent to a local polynomial quantile regression or a type of kernel-
based weighting ‘check function’ approach, such as the local linear single-kernel
approach of Yu and Jones (1998).

Our discussion is organized as follows. We first comment the asymmetric
Laplace distribution (henceforth ALD) based quantile regression approach and
bandwidth selection in Sections 2 and 3 respectively. In particular, we point out
that SHW’s bandwidth selection rule is well-adaptive for smoothing moderate or
central quantile curves but may loss adaptation for smoothing extreme quantile
curves. We then propose an alternatively adaptive bandwidth selection rule based
on a normal scale-mixture representation of ALD and show that this alternative
version is well-adaptive for smoothing extreme quantile curves. Finally in Section
4 we point out that adaptive bandwidth selection rules may be able to avoid the
problem of crossing quantile curves (calculated for various τ ∈ (0, 1)).
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2 ALD

All likelihood functions used may never be the exact ones in practice but some
are useful. ALD-based likelihood function unlikely matches many real situations,
but it is working in practice.

The local likelihood function in SWH’s paper is a local ALD-based likeli-
hood function. This local likelihood function is a nonparametric extension of
the parametric ALD-based likelihood function (Yu and Moyeed, 2001). ALD-
based inference has nowadays become a powerful tool for formulating different
quantile regression techniques, including nonparametric extension of ALD for
nonparametric Bayesian quantile regression (Gelfand and Kottas 2003; Kottas
and Krnjajic, 2009; Thompson et al. 2010). Moreover, another recent discus-
sion paper in Bayesian Statistics by Lum and Gelfand (2012) makes an excellent
spatial extension of ALD for spatial data analysis. This is interesting especially
given the fact the true underlying distribution in practical problems is almost
never ALD. SWH also note on their pages 12 and 14 that likelihood in their
method is not necessarily coincide with ALD. In fact, their extensively numer-
ical studies conclude that “mis-specification of (model) error distribution from
ALD would not contaminate our results significantly.” This is consistent with
early attempts carried out by Koenker and Machado (1999) and Yu and Moyeed
(2001). Koenker and Machado (1999) develop goodness of fit inference processes
for quantile regression based on ALD and show that asymptotic work even if the
underlying distribution is not ALD. Yu and Moyeed (2001) and Yu and Stander
(2007) argue based on empirical results that even if the underlying distribution
is not ALD, the results would be reasonable. This is also consistent to a recently
theoretic justification by Sriram, Ramamoorthi and Ghosh (2011). DWH may
need to cite some of these publications while they introduce their ALD-based
local likelihood function. The local ALD-based likelihood approach in the paper
plays an important role of consistency check of estimators and the derivation of
the adaptive bandwidth selection rule.

3 Bandwidth selection

There are several methodologies for automatic smoothing parameter selection.
One class of methods chooses the smoothing parameter value to minimize a cri-
terion that incorporates both the tightness of the fit and model complexity. Such
a criterion can usually be written as a function of the error mean square, and
a penalty function designed to decrease with increasing smoothness of the fit.
Examples of specific criteria are generalized cross-validation (Craven and Wahba
1979) and the Akaike information criterion (AIC: Akaike 1973). These classical
selectors have two undesirable properties when used with local polynomial and
kernel estimators: they tend to undersmooth and tend to be non-robust in the
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sense that small variations of the input data can change the choice of smooth-
ing parameter value significantly. Hurvich, Simonoff, and Tsai (1998) obtained
several bias-corrected AIC criteria that limit these unfavorable properties and
perform comparably with the plug-in selectors (Ruppert, Sheather, and Wand
1995).

The adaptive bandwidth selection rule in SWH’s paper is different from the
rule-of-thumb rule of Yu and Jones (1998) and AIC rule of Cai and Xu (2008). It
does add a nice option to the bandwidth selection menu for practitioners. But,
comparing to a rule-of-thumb rule, the method needs special care to implement
in practice. In fact, besides fixing a finite ordered set of candidates of bandwidth,
the implementation of the method is subject to three-type of parameter selection:
significant level α of test, test power r and a set of critical values. Critical values
are simulated via their condition (12) but this condition is not easy to check.
Some of us may question: is it worth using sophisticated procedures for choosing
the smoothing parameter in quantile regression when one often requires to present
or estimate several quantile curves together?

Furthermore, the method may loss adaptation for smoothing extreme quantile
curves. Taking the Lidar data analysis as an example, DWH’s paper displays the
smoothed 90% quantile curve for this data in their Figure 1, which looks good.
And this is also true for other moderate or central quantile curves. However, we
seem to see from smoothing extreme quantile curves in Figure 1 here, the proposed
bandwidth selection rule results in over-smoothing phenomenon, whatever the
selection of α and r. Figure 1 displays the smoothed 99% and 1% quantile curves
using DWH’s method, and shows that when the curves start to switch smoothness,
the rule is not adaptive so that the estimated curves are too smoothing out of
the data ranges. A possibly theoretical interpretation for this problem is: when
τ → 0, the weighted ‘check function’ ρτ (Yi−ψT

i θ)wi takes constant 0 if Yi > ψ
T
i θ

(also, when τ → 1 and if Yi < ψT
i θ). This may result in that the proposed

significant test always picks constant bandwidth for smoothing extreme quantile
curves although this is not a problem for the local quantile regression estimation
equation. We want to point out that this over-smoothing problem will be solved
by a new version of adaptive bandwidth selection rule. See the details from the
Section 4 below.

3.1 An alternative qMLE and pointwise bandwidth selec-
tion

Reed and Yu (2009) and Kozumi and Kobayashi (2011) note that, under the as-
sumption of ALD-based ‘working likelihood’, the quantile regression model error
ǫ can be represented as a scale mixture of normal variable, that is,

ǫ = µz + τ
√
ze,
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where µ = 1−2τ
τ(1−τ)

, δ2 = 2
τ(1−τ)

, z ∼ Exp(1) and e ∼ N(0, 1), and z and e are

independent. Hence, DWH’s mode (1)
(

Yi = f(Xi) + ǫi

)

could be re-written as

Yi = f(Xi) + µzi + δ
√
ziei.

That is, for given z = (z1, z2, ...., zn) and x = (X1, X2, ..., Xn),

Yi ∼ N
(

f(Xi) + µzi, δ
2zi

)

,

i.e., the joint conditional density of Y = (Y1, Y2, ..., Yn) is given by

f(Y |z,x) =
n
∏

i=1

1√
2π δ

√
zi

exp{−(Yi − f(Xi)− µzi)
2

2δ2zi
}.

Clearly, if z is fixed in advance, then the local log-likelihood (DWH’s equation
(7)) can be replaced by a Gaussian-type of local likelihood function:

LNew(W, θ) ≡ − log(
√
2πδ)

n
∑

i=1

wi −
1

2

n
∑

i=1

log(zi)wi−

− 1

2δ2

n
∑

i=1

(Yi − f(Xi)− µzi)
2

zi
wi −

n
∑

i=1

ziwi.

Now, once a local pth-degree polynomial ψT
i θ is used to approximate f(x) at

X = x, the corresponding local qMLE at x could be defined via maximization of
LNew(W, θ) above:

θ̃(x) ≡
(

θ̃0(x), θ̃1(x), ..., θ̃p(x)
)

= argmaxθ∈ΘLNew(W, θ)

= argminθ∈Θ

n
∑

i=1

(Yi − ψiθ − µzi)
2

δ2zi
wi,

where θ̃0(x) estimates f(x), and θ̃m(x) estimates the derivatives of f(x). Further,

let ψ = (ψ1, .., ψn)
T and wk = diag

(

w
(k)
1

δ2z1
, ..., w

(k)
n

δ2zn

)

, we have

θ̃k(x) =
(

ψwkψ
T

)

−1

ψwk(Y + µz).

This clearly shows that an alternatively adaptive ‘local quantile regression’
based on a ‘mean regression model’ can be developed. In particular, a new
adaptive bandwidth selection rule for local quantile regression is proposed. Then,
the localized likelihood ratio test for consistent check of estimators will be given
by a simple quadratic-type of test statistic:

Tlk =
(

θ̃l(x)− θ̃k(x)
)T (

ψwlψ
T

)(

θ̃l(x)− θ̃k(x)
)

.
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Further, according to Serdyukova (2012), the propagation conditions now become:

for a given α ∈ (0, 1] and r > 0 the critical values ζ1, ..., ζK satisfy

E|(θ̃k(x)− θ̂k(x))
T (ψwkψ

T ) (θ̃k(x)− θ̂k(x))| ≤ αC(p, r),

for all k = 2, ..., K, where C(p, r) = 2rΓ(r + p/2)/Γ(p/2).

We note that the LNew(W, θ) involves in a specification of vector z, and we
point out that z could be fixed in advance via a sample from a data-driven inverse
Gaussian distribution. In fact, note that the joint likelihood function of (Y , z)
is give by

f(Y , z|x) =
n
∏

i=1

1√
2π τ

√
zi

exp{−(Yi − f(Xi)− µzi)
2

2τ 2zi
}

n
∏

i=1

exp(−zi).

Therefore, the conditional density of f(z|Y ) is given by

f(z|Y ) ∝ f(Y , z)

∝
n
∏

i=1

1√
zi

exp
(

−1

2
[
(Yi − f(Xi)− µzi)

2

δ2
z−1
i + (

µ2

δ2
+ 2)zi]

)

. (1)

That is, zi, z2, ...., zn are iid with a generalized inverse Gaussian (GIG) distribu-
tion:

f(z|Y ) ∝ z
1
2
−1

i exp
(

−1

2
[
(Yi − f(Xi)− µzi)

2

δ2
z−1
i + (

µ2

δ2
+ 2)zi]

)

∼ GIG
(

1

2
,
(Yi − f(Xi)− µzi)

2

δ2
, (
µ2

δ2
+ 2)

)

.

An advantage of this local Gaussian conditional likelihood function over
DWH’s method is that the derived bandwidth has better adaptation when τ
tends to zero or 1. Figure 2 display the bandwidth sequence (upper panel) and
smoothed quantile curves for quantiles 99% (left) and 1% (right) based on the
Lidar data set, which provide much better fitting than those curves presented in
Figure 1. The dependency structure change on smoothness is more adaptive than
the bandwidth sequence in Figure 1. This local Gaussian conditional likelihood
function method also works well for other moderate or central quantile curves.
Figure 3 shows that the method gives quite similar estimates to SWH’s method
for τ = 0.5 and 0.9 quantile curves.

4 Quantile crossing

Nonparametric quantile regression methods, including kernel smoothing quantile
regression, sometimes suffers quantile crossing. But the proposed bandwidth se-
lection rule in SWH’s method seems to have no quantile crossing phenomenon
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Fig. 1. Smoothed quantile curves for Lidar data with τ = 0.99 (left)
and τ = 0.01 (right) by DWH’s local likelihood function
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Fig. 2. Smoothed quantile curves for Lidar data with τ = 0.99 (left)
and τ = 0.01 (right) by local Gaussian conditional likelihood function
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Fig. 3. Smoothed quantile curves for Lidar data with τ = 0.5 (left) and
τ = 0.9 (right) by local Gaussian conditional likelihood method
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when several smoothed quantile curves are provided together. See the top figure of
Figure 4, which displays five quantile curves with τ = c(0.05, 0.25, 0.50, 0.75, 0.95)
for the Lidar data, using DWH’s adaptive bandwidth and proposed Guaussian
likelihood based adaptive bandwidth respectively. This indicates the advantage of
local bandwidth selection rule. Whereas most of published articles on the topic,
which include constrained smoothing spline (He, 1997; Bondell, Reich and Wang,
2010), double-kernel smoothing (Yu and Jones, 1998; Jones and Yu, 2007) and
monotone constraint on conditional distribution function (Hall, Wolff and Yao,
1999; Dette and Volgushev, 2008) among others, focus on development of new
methods rather than adaptive bandwidth selection for avoiding quantile cross-
ing. DWH show, even working with ‘local constant’ kernel smoothing quantile
regression via

q̂τ (x) = argmina

n
∑

i=1

ρτ (Yi − a)Kh(x−Xi),

adaptive bandwidth selection rule may not have quantile crossing either.
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Fig. 4. Smoothed quantile curves for Lidar data with τ =
c(0.05, 0.25, 0.5, 0.75, 0.95)with SWH’s method (left) and with local Gaus-
sian conditional likelihood method (right)

The right figure of Figure 4 shows that non-quantile crossing is also true for
the rule in Section 3.1, which is based on local Gaussian conditional likelihood
function.
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