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Transient stability assessment is playing a vital role in modern power systems. For this purpose, machine learning techniques have been widely 

employed to find critical conditions and recognize transient behaviors based on massive data analysis. However, an ever increasing volume of 

data generated from power systems poses a number of challenges to traditional machine learning techniques, which are computationally intensive 

running on standalone computers. This paper presents a MapReduce based high performance neural network to enable fast stability assessment of 

power systems. Hadoop, which is an open source implementation of the MapReduce model, is first employed to parallelize the neural network. 

The parallel neural network is further enhanced with HaLoop to reduce the computation overhead incurred in the iteration process of the neural 

network. In addition, ensemble techniques are employed to accommodate the accuracy loss of the parallelized neural network in classification. 

The parallelized neural network is evaluated with both the IEEE 68-node system and a real power system from the aspects of computation 

speedup and stability assessment.  
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1. Introduction 

In the recent decades, dozens of large power blackouts have 

occurred. Loss of stability has been widely recognized as the 

most critical factor that leads to power system collapse. 

Meanwhile, modern power systems are exposed to the higher 

risks than ever before due to the increasingly stressed operation 

conditions caused by renewable energy penetrations, electricity 

market gaming, insufficient awareness technique and shortage 

of investments [1]. These situations consequently reduce the 

dynamic stability of power systems when the severe 

disturbances occur.  

Transient stability assessment (TSA) is an effective resort to 

evaluate dynamic security under various operations in control 

centers. To facilitate TSA, machine learning technologies have 

been widely applied in the past two decades, which is well 

summarized in an early literature [2]. Most of the existing 

works of the transient stability identification are focused on 

binary stable state prediction using clustering and classification. 

For example, Support Vector Machine, Decision Tree and 

Artificial Neural Network (ANN) are the widely used 

approaches to detecting instability of power systems by using 

post-fault trajectories within a few cycles [3][4][5]. On the 

other hand, a few of machine learning techniques have been 

investigated to enable dynamic coherency identification of 

power systems, providing critical information for system 

equivalents [6], islanding control [7] and area detection [8]. But 

coherency analysis has limited ability to determine the most 

disturbed units, which may lead to the eventual 

desyncronization.  

Besides awareness of globally stable status, it is important 

for emergency control to understand which generator or group 

of generators has a tendency of desyncronization. Traditional 

stability predicators cannot point out the leading units while the 

coherency-based classification needs a longer time window to 

observe perturbance trajectories. The most feasible solution is 

to establish a set of trained predictors for each generator to 

enable individual identification [9]. But it is admitted that it is 

computational intensive due to the fact that a power system 

normally has hundreds of generators, which generates massive 

volumes of data. Few machine learning techniques have 

considered the impact of the critical unstable generators (CUGs) 

in TSA of power systems. As a result, it has become a challenge 

for standalone machine learning techniques running on single 

computers to deal with TSA taking into account the impact of 

massive CUGs [10]. For this purpose, the application of high 

performance computing techniques has become a necessity.  

This paper presents HBPNN, a high performance back 

propagation neural network using MapReduce computing 

model. Hadoop [11][13][14], which is an open source 

implementation of MapReduce, is first employed to parallelize 

the neural network. The parallelized neural network is further 

enhanced using HaLoop [12] to reduce the computation 

overhead incurred in the iteration process of the neural network. 

In addition, ensemble techniques are employed to maintain 

high accuracy in classification when datasets are split into small 

data chunks and processed in parallel nodes. The parallelized 

neural network is evaluated with both the IEEE 68-node system 

and a real power system from the aspects of computation 

speedup and stability assessment. 

The rest of the paper is organized as follows. Section II 

discusses the related work about the application of machine 

learning techniques for TSA. Section III presents in-detail the 

design of HBPNN. Section IV evaluates the performance of the 

parallelized neural networks and analyzes the experimental 

results. Section V concludes the paper and points out the future 

work. 

2. Related Work 

As wide area monitoring systems (WAMS) are now being 

deployed in large number of power systems, phasor 

measurement unit (PMU) is playing an ever increasingly vital 

role in dynamic security assessment [15]. A number of 

researches have been carried out to assess transient stability 

using PMU data. Among these research efforts, PMU 

trajectories based indicators are considered as efficient 

estimators to understand dynamic behaviors of power systems, 

especially in severe disturbances. For example, Alvarez et al 

proposed seven trajectory based indices, which are suitable for 

fuzzy inference on real-time dynamic vulnerability [16]. 

Furthermore, Makarov et al. [17] presented a review on 

PMU-based security assessment offering a clear roadmap for 

further development.  

Machine learning techniques have been widely employed 

for instability detection or stability margin estimation. 

However, few studies have been carried out for TSA by 

identifying CUGs in power systems due to massive volumes of 

data generated from the large number of the CUGs. For this 

purpose, this paper employs Back Propagation Neural Network 

(BPNN) to identify CUGs in a timely manner. 

BPNN has proven to be effective in classification due to its 

gradient-descent feature that results in its remarkable function 

approximation. However, large-scale data processing brings a 

significant challenge to BPNN in computation. Rizwan et al. 

[18] employed a neural network on solar energy estimation. It is 

admitted that the large volume of data makes the data 

processing become an extremely complex task, which affects 

the training efficiency severely. Wang et al. [19] pointed out 

that large-scale neural network becomes one of the mainstream 

tools for processing massive data. Passaro et al. [10] also 

applied adaptive neural network to evaluate stability for every 

single generator, aiming at providing more detailed stability 

information. But real power systems usually have hundreds of 

generators. It is admitted that standalone neural networks 

running on single computers can hardly handle the problem in a 

reasonable time. 

In order to speed up the efficiency of BPNN, distributed 

computing technologies have been employed [20], [21] and 

[22]. Gu et al. [23] presented a parallel neural network using 

in-memory data processing techniques to accelerate neural 

network. However, in their work the training data is simply 

segmented into data chunks without considering accuracy loss. 

Liu et al. [24] presented a MapReduce based parallel BPNN in 
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processing a large set of mobile data. This work further 

employs AdaBoosting algorithm to accommodate the loss of 

accuracy of the parallelized neural work. Although 

AdaBoosting is a popular sampling technique, it may enlarge 

the weights of wrongly classified instances, which would 

deteriorate the algorithm accuracy. Another major limitation of 

this research lies in that it does not consider the high overhead 

of Hadoop in dealing with input and output files in the iteration 

process. 

To solve the issue of processing large-scale data using 

BPNN in power system for stability analysis especially for 

identification of CUGs, the presented work in this paper 

employs HaLoop to reduce the high overhead incurred in 

computation iterations. It also proves feasibility of MapReduce 

based high performance neural network on efficient stability 

assessment, providing a general tool to parallelize the machine 

learning algorithms to facilitate coordinated training to a large 

number of generators. 

3. The Design of HBPNN 

3.1 BPNN 

BPNN has been proved to be effective in classification. It 

employs feed forward and back propagation mechanisms to 

train the parameters of the network.  

In the feed forward phase, let 

 wij denote weight from i
th

 neuron to j
th

 neuron, 

 θj denote bias for varying the activity of the j
th

 neuron, 

 olj denote output of the j
th

 neuron from last layer, 

 ocj denote output of the j
th

 neuron of the current layer, 

 Ij denote input of the j
th

 neuron in hidden and output layers. 

    Therefore, Ij can be represented by: 

                                   j ij lj j

i

I w o                                     (1) 

In the neuron, the non-linear equation is sigmoid function, 

therefore the output of the j
th

 neuron from the current layer to 

next layer can be represented by: 

                                     
1

 
1 j

cj I
o

e





                                           (2) 

The output layer finally outputs its ocj. The feed forward 

phase completes.  

In the back propagation phase, let 

 Errj denote the error-sensitivity of certain layer, 

 tj denote the desirable output of neuron j in the output layer, 

 Errk denote error-sensitivity of one neuron in the last layer, 

 wkj represent corresponding weight of Errk. 

    Therefore, Errj in the output layer and in the hidden layers 

can be represented by Eqs. (3) and (4): 

                          1 (( ) )j j j j jErr o o t o                                   (3) 

                          )1(j j j k kj

k

Err o o Err w                                 (4) 

 The weight wij and bias θj can be tuned using, where η 

denotes the learning speed: 

                                ij ij j jw w Err o                                    (5) 

                                 j j jErr                                         (6) 

The back propagation phase completes. Afterward, a second 

round of training starts. BPNN terminates if Eqs. (7) or (8) 

satisfied, or a certain number of iterations has been reached. 

                    2 2( [ ]) ( [( ) ])min E e min E t o                      (7) 

                  min
TTE e e min E t o t o        

                (8) 

    For executing a classification task, a trained BPNN only 

needs to execute the feed forward phase. The classification 

result can be achieved from the output layer of the network. 

3.2 Time-domain Simulation 

The time-domain simulation of power system is modeled by 

means of differential algebraic equations (DAEs), the details of 

the model can be found in [25]. The outputs of the simulation, 

which are the status trajectories, can be utilized as the simulated 

PMU data for further analysis. In this study, an open-source 

package PST [26] is employed to simulate dynamic trajectories 

of concerned parameters for random faults in a certain interval 

of cycles. 

 

3.3 BPNN Based Transient Stability Assessment 

If a power angle difference ∆δij between any two generators i 

and j exceeds a specified threshold, for example 270 or 360 

degree, the status of the system is considered as unstable. 

Alternatively, the criterion using the center of inertia (COI) is 

usually applied to identify power system stability, which is 

expressed as 

max    i COI i                                   (9) 

1 1

1
,    

n N

COI i i T i

i iT

M M M
M

 
 

   .                (10) 

where, δi and Mi represent rotor angle and inertia constant of 

generator i, MT is the sum of Mi, N is the number of generators 

and δmax is instability threshold which is defined as 180 degree 

in this paper.  

    The training phase of BPNN based TSA is illustrated in Fig. 

1. 

 
Figure 1: A BPNN based TSA. 
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In Fig. 1 f1, f2… fK are the inputs of the network. The output 

is usually an integer value with 0 indicating instability while 1 

for stability. After the training process is accomplished, if a 

fault occurs, the features obtained from a few cycles of the 

post-fault trajectories will be fed into the trained network to 

extrapolate stability status within the subsequent several 

seconds. The majority of the existing works focus on improving 

accuracy of global stability prediction by improving the 

standalone BPNNs [8] as well as novel input features [27]. 

However, the stability margin, a value quantifying how far the 

current condition is from the loss of synchronization, is a 

crucial indicator that enables a clearer awareness of the 

dynamic impact level.  

In this work, two trajectory based stability margin indicators, 

TSI and IS [28] are used as training targets, which are given as 

follows: 

max

max

360 ( )
100,    100 100

360 ( )

T
TSI TSI
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where, δ(T)max is the maximal power angle difference between 

any generator pairs during the period of T, δi(t) is power angle 

of generator i at time point t. 

Although there exists a wide range of features in previous 

works, most of them share the similar parameters. According to 

these studies, the combination of these features can achieve an 

adequate accuracy of stability prediction. Moreover, these 

features are not only related to stability status but also contain 

the inherent information of stable margins. Therefore, the same 

set of input features is selected for BPNN training.  

 

3.4 CUG Identification 

CUGs are defined as the first group of the generators whose 

rotor angle is different from the rest generators exceeds a given 

threshold. Actually, CUGs are the most potential candidates of 

generator tripping that can be utilized to reduce transient power 

mismatch in a timely manner [29]. Fig. 2 shows the power 

angle trajectories of different CUGs in the IEEE 68-node 

testing system.  

 

 
Figure 2: Four scenarios of CUGs. 

 

The unstable generators is belonged to the CUGs, because 

their leading (or lagging) rotor angle against other units must 

exceed the given threshold which is usually set to be equal or 

little smaller than the wide-accepted instability criterion. For 

example, Fig.2 (a) and Fig.2 (b) illustrate rotor angle 

trajectories of the CUGs, which also contain all the unstable 

generators. In this situation, all the generators are determined as 

unstable ones at the end of observation time window, 150 

cycles. But before that, none of generators reaches the CUG 

threshold criterion. Therefore, the strict two-cluster instability 

pattern corresponds to the situation that all the generators are 

CUGs, such as the case of Fig.2 (d). However, unlike Fig.2 (a), 

Fig.2 (b) and Fig.2 (d), Fig.2 (c) offers the different pattern in 

which the CUGs only are part of unstable units. Although 

belongs to the leading cluster, ahead of other leading generators, 

the two generators indicated in Fig.2 (c) meet the CUGs 

identification criterion at the very beginning of time windows. 

These two units are considered to be the most effective objects 

for the further control strategy.  

For this purpose, the cycles of post-fault rotor angle 

trajectories are clustered to identify CUGs from unstable 

generators, which are used as the target outputs of BPNN in the 

training process:  

1). Execute five seconds time-domain simulation for a 

permanent fault followed by a clearing action, then collect the 

output rotor angle trajectory of each generator. 

2). Scan any two rotor angle trajectories cycle by cycle from 

the initial point of post-fault duration. If there is an angle 

difference ∆δij exceeding critical unstable threshold, the power 

system is considered to be critical unstable, meanwhile, record 

this time point t. 

3). Extract rotor angle trajectory δi(t+∆t) for each generator, 

where ∆t refers to CUG validation interval. However, if takes 

∆t as a relatively long period, such as 3s, it is almost not 

possible to distinguish them from the subsequent unstable 

generators. According to the experience, ∆t is preferably set to 

be 50 cycles, i.e. 1s. 

4). Perform k-means clustering to divide all the δi(t+∆t) 

trajectories into two groups. Then calculate the COI trajectory 

of the clustered rotor angles for each group with time interval 

t+∆t using (10). 
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5). If the following constraint cannot be satisfied, the generators 

contained in group k which breaks (13) are tagged as the CUGs 

with a binary integer of 1. 

°
 ( ) ( ) 180 ,   {1,2}k COI COIt t t t k             (13) 

Following the above identification procedure, the CUGs of 

the 16-machines testing system illustrated in Fig. 2 can be 

indicated as follows: 

 

Table 1: Critical Unstable Generator Indicator Examples 
 Critical Unstable Generator Indicator 

(a) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

(b) 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

(c) 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

(d) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

In Table 1, the CUG status is tagged by using the binary 

values, one means CUG and zero means non-CUG.  

3.5 Parallelizing BPNN 

3.5.1  MapReduce, Hadoop and HaLoop 

MapReduce is a distributed computing model in enabling 

big data processing. The model supplies two types of functions 

Map and Reduce. Map operates the mapping functions for 

major computing tasks whilst Reduce operates the collecting 

and outputting operations. The data in the processing flow is 

modeled using (Key (K)-Value (V)) pairs. Map processes each 

input key-value pair {K1, V1} and outputs intermediate output 

{K2, V2}. Reduce collects the output pairs with the same keys 

and executes merging, shuffling operations. At last Reduce 

outputs the final results {V2}. 

Hadoop framework is an open source implementation [11] 

of MapReduce. The framework offers scalability, fault 

tolerance, load balancing, and a series of benefits for parallel 

and distributed computing in both homogeneous and 

heterogeneous environments. HaLoop [12] is also based on 

MapReduce and reuses most of the source code of Hadoop but 

facilitates data intensive applications with iterations.  

 

3.5.2  Bootstrapping and Majority Voting 

Bootstrapping is a kind of sampling algorithm [30]. 

Benefiting from sampling with replacement, the bootstrapped 

samples are able to simulate the sample distribution of the 

original dataset. Therefore, in our parallelization work, 

although the original training dataset is divided into subsets, 

due to the employment of the bootstrapping, the generalization 

of the trained neural network can be maintained to some extent. 

Majority voting is able to indicate the major element from a 

dataset based on voting. It enables HBPNN to create a strong 

classifier using a number of weak classifiers so that the 

classification accuracy can be maintained. 

 

3.5.3  HBPNN Design 

Motivated by our previous work [35], the algorithm contains 

two phases including the generation of the bootstrapped 

samples and the parallelization of the BPNN. Initially, HBPNN 

inputs the original training dataset and generates a number of m 

bootstrapped samples according to the number of mappers 

employed. Each sample is saved in one data chunk in the 

HDFS. The data structure for each saved training instance in the 

data chunk is defined as below: 

{instancei, classj, instancetype} 

instancei represents the i
th

 instance in a data chunk; classj 

represents the j
th

 class that instancei is belonged to; The 

instancetype field is filled a string "training" to inform the 

algorithm that instancei is a training instance. 

Afterward, the parallelization phase starts. Each mapper 

firstly initializes the BPNN algorithm and then inputs one data 

chunk. Therefore the instances saved in the data chunk can be 

finally input into the mapper one by one. If the instance type is 

"training", the BPNN in the mapper starts the training phase 

using the instance. In this case, the instancei is employed to 

execute the feed forward phase using Eqs. (1) and (2) whilst the 

classj is employed to execute the back propagation phase using 

Eqs. (3) to (6). As long as all the instances marked as "training" 

have been processed, the BPNN has been trained. As a result, a 

number of m trained classifiers (mappers) are created in the 

Hadoop cluster. 

In the classification phase, each testing instancet is input into 

all the m mappers. In each mapper, instancet is classified by the 

BPNN using Eqs.(1) and (2). And then the mapper outputs an 

intermediate output in the {key-value} form: 

{ instancet, classl} 

classl denotes the classification result of instancet of one 

mapper. So that m mappers output m outputs. 

HBPNN starts one reducer to collect the intermediate 

outputs from m mappers. After sorting and merging, a 

collection of the key instancet with a number of m classified 

results is formed: 

 

Inside the collection, majority voting is executed to select 

the final classification result which is ultimately output in the 

form of : 

{instancet, result} 

where result represents the final classification result. TABLE II 

indicates the pseudo code of HBPNN. 

Table 2: HBPNN Algorithm 

Algorithm: HBPNN 

In the training phase 

1. HBPNN generates a number of m bootstrapped training samples 

which are save in m data chunks in HDFS. 

2. Each data chunk is input into one mapper. 

3. Each mapper initializes one BPNN. 

4. For each mapper: 

    BPNN inputs one instance instancei. 

    If instancei is a "training" instance 
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      BPNN trains its parameters 

  Until all the training instances are processed. 

In the classification phase 

5. For each testing instance instancet: 

    All the m mappers input instancet. 

    BPNN in each mapper executes feed forward to classify instancet. 

    Each mapper outputs { instancet, classl}. 

6. One reducer collects the classified results of instancet from all 

mappers. 

7. In the reducer, a collection of instancet is formed: 

8. Majority voting is executed in the reducer to select the ultimate 

classification result for instancet. 

9. Until all the testing instances are classified, algorithm terminates. 

 

3.6 Feature Selection 

Assume that a PMU has been deployed on each generator 

bus, full parameter trajectories of generators as well as related 

indices proposed in previous literatures can be introduced as 

features. However, many of features are strongly correlated 

with others. Therefore, the Pearson correlation coefficients 

(PCC) method [31] is used to reduce the redundancy of 

statistical index-based features. Any two features d1 and d2 

satisfying |PPCd1d2|>0.85 condition are regarded to be highly 

correlated. TABLE III and TABLE IV illustrate the selected 

features fed to train HBPNN for the CUGs and global stability 

respectively. Specifically, the size of the time window used to 

observe features is from the fault clearing time Tcl to the 

following 10 cycles that is represented as Te. 

 

Table 3: Input Features of Stability and Margin of HBPNN 

Symbol Definition 

acc
iP  

The accelerating power of each generator at the time of one 

cycle after the fault clearing. 

,i idv d

dt dt

 
 
 

 
The rate of change of both bus voltage and angles of each 

generator [9]. 

KEsum 
The total value of generators’ kinetic energy at the time of one 

cycle after fault clearing, given in [30]. 

ISGA An integral square generator angle index given in [28]. 

RTImax Maximal RTI index [33] in the interval from Tcl to Te 

Varea 
The maximal integral area of voltage amplitude variation of all 

the generator busbars, given in (14). 

 

Table 4: Input Features of CUGs of HBPNN 

Symbol Definition 

Tcl

iKE   
The kinetic energy of this generator at the time of one cycle after 
the fault clearing, which is given in [30]. 

ISGSi 
The integral area of rotor speed deviation between generator i and 

COI, which is given in (15). 

( )COI

i t  
The absolute value of rotor angle deviate between generator i and 

COI at each cycle point from Tcl to Te 

Vi(t) 
The voltage amplitude of generator i at each cycle point from Tcl to 

Te including pre-fault value 

 

Beside the referred features, the above tables also include 

two defined indices, Varea and ISGSi, which can be formulated 

as follows: 

 0

area max ( ( ))
Te

i i
Tcl

V V V t dt                    (14) 

2[ ( ) ( )]
Te

i i i COI
Tcl

ISGS M t t dt                 (15) 

where, ωi(t) and ωCOI(t) represent rotor speed of generator i and 

COI at the time point t respectively, Tcl is the time point of fault 

clearing and Te represents the time window used to observe the 

features. 

 

3.7  Automated Sample Generation 

In this work, a random fault simulator has been developed to 

generate massive samples [34]. Random fault refers to 

stochastic three-phase short circuits of any transmission lines. 

In addition, fault clearing time is randomly set to 0.1s to 0.35s. 

The samples generation is listed as below: 

1). Load base case, if the initial outage exists, trip the 

component and calculate power flow. 

2). Change P and Q on each bus by multiply a random 

number in the range of [0.8, 1.4] to simulate the load level, 

distribute unbalance load to all the generators in proportion to 

their base generation. 

3). Implement three-phase fault on a randomly selected 

component at time Tf, clear fault at Tf+μ, where μ is a random 

decimal in [0.1, 0.35]. 

4). Perform time-domain simulation for above randomly 

configured operation and fault scenario, collect output 

trajectories to calculate features defined in TABLE III and 

TABLE IV as well as the related targets. 

 

3.8 The Architecture of HBPNN 

After random faults simulation is accomplished, the entire 

samples are stored in HDFS. HBPNN separates the training 

data into pieces, and employs bootstrapping to generate 

bootstrapped samples. Each piece is saved in one data chunk. 

And then HBPNN initializes distributed neural networks in 

multiple mappers. These networks can be categorized into three 

types, the CUG identification, stability assessment and margin 

assessment. Afterwards, each mapper inputs one data chunk 

and executes the training for the large-scale input data. As long 

as the stability, margin and CUG networks are sufficiently 

trained, they can be utilized as the enhanced classifiers of TSA. 

When the testing data is fed into HBPNN, the parallel neural 

network can efficiently classify each instance and output its 

final classification. Fig. 3 shows the overall architecture of 

HBPNN. 
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Figure 3: The architecture of HBPNN. 

4 Experimental results 

4.2 HBPNN Validation  

In order to evaluate the performance of HBPNN, a number 

of experiments have been carried out in a physical Hadoop 

computer cluster with 1Gbps network bandwidth. The cluster 

contains five nodes, in which 4 nodes are Datanodes and the 

other one is Namenode. The deployed frameworks are Hadoop 

and HaLoop. In addition, the cluster configurations and details 

of the generated dataset are listed in TABLE V and TABLE VI 

respectively.  

 

Table 5:Cluster Detail 
 CPU Memory SSD OS 

Namenode Core i7@3GHz 8GB 750GB Fedora 

Datanodes Core i7@3.8GHz 32GB 250GB Fedora 

   

Table 6:Dataset Detail 
Data Instance length Number of class Output 

CUG 24 2 [0,0] and [0,1] 

 

As each input in input layer of HBPNN only accepts the 

value between 0 and 1, each instance is normalized before 

inputting into HBPNN. For one instance instancek={a1 a2 a3 … 

ain}, let amax, amin, nai denote the maximum element, minimum 

element and normalized ai respectively, then 

                      min

max min

i
i

a a
na

a a





                              (16) 

The precision p can be calculated using: 

                       100%
r

p
r w

 


                            (17) 

where, r and w represent the number of correctly classified  and 

wrongly classified instances respectively. 

4.2.1  Precision Validation 

In the experiments 1000 training instances and 1000 testing 

instances were generated. Ten mappers were employed and 

each of them processed the training instances varied from 10 to 

1000. Fig.4 (a) shows that the accuracy of HBPNN increases 

with an increasing number of training instances. Fig.4 (a) also 

indicates that when the number of training instances is small, 

the HBPNN based on bootstrapping sampling outperforms the 

original BPNN in terms of accuracy.  

 

   
      (a). Precision comparisons                     (b). Precision stability 
Figure 4: Comparison between HBPNN and Standalone BPNN. 

 

Fig. 4 (b) shows the stability HBPNN in processing small 

numbers of training instances for five times. This experiment 

focuses on the algorithm stability. In the tests, HBPNN and the 

original BPNN were trained by only ten instances. Although a 

less number of training instances leads to low accuracy, the 

results show HBPNN is more stable than BPNN in all the five 

cases. And even with such a less number of the training 

instances, HBPNN can also gives higher accuracy than the 

standalone BPNN. 

4.2.2  Computation Efficiency  

A number of tests were conducted to evaluate the efficiency 

of HBPNN in computation using Hadoop and HaLoop 

respectively. It can be observed from Fig. 5(a) that along with 

an increasing size of data, the parallel HBPNN performs faster 

than the standalone BPNN. It is worth noting that the HaLoop 

based HBPNN is slightly faster than the Hadoop based HBPNN 

due to the reduced computation overhead in dealing with 

iterations which is further illustrated in Fig. 5 (b).  

 

 
              (a) Increasing data sizes           (b) Efficiency of Hadoop and HaLoop 

Figure 5:  Efficiency validation in different distributed platforms. 

 

4.3 HBPNN Application 

 HBPNN was applied in two power system cases. The first 

case is a 68-node testing system including 16 generators. The 

second case is a real power system of Sichuan Grid in China, 

which has 878 busbars, 1096 lines and 109 generators. The 

details of the data samples are listed in Table VII. The 

configurations of HBPNN are shown in Table VIII. 

 

Table 7: Generated Data of Test System 

 

68-node system Sichuan power grid 

Instance 
Number 

Data Size 
(MB) 

Instance 
Number 

Data Size 
(MB) 
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CUG 12000 93.75 12000 638.78 

Stability 12000 11.72 12000 118.03 

Margin 12000 11.79 12000 117.62 

 

Table 8: Details of HBPNN for the Test 

Scenario 
Mapper 

number 

BPNN 

number 

Input 

68node/Sichuan 

Hidden layer 

neurons 
Output 

CUG 8 8 24/24 15 2 

Stability 4 4 52/331 15 2 

Margin 4 4 52/331 15 2 

 

In this evaluation, the algorithm precision of the generators 

status prediction is tested. In terms of precision, when the 

number of training instance is large, the presented algorithm 

HBPNN has the same precision compared to that of the 

standalone HBPNN. Therefore, the following only lists the 

precision of the HBPNN without comparison with a standalone 

HBPNN algorithm. 

 

 
Figure 6:  Precision of predicted CUGs. 

The figure recording the CUGs predicting precision of test 

systems indicates that HBPNN is of satisfactorily high 

precision in identifying the generators transient status during 

the post-fault trajectories of the power system. The average 

precisions for all generators of the two test systems are 99.19% 

and 98.63% respectively. 

In order to validate the feasibility of HBPNN in these two 

cases, 2400 new samples including random multiple faults 

scenarios were simulated for each testing system. The details of 

the sample sets are shown in TABLE IX.  

 

Table 9: Details of new testing samples 
 68-node system Sichuan power grid 

Stable Unstable Stable Unstable 

N-1 688 112 758 42 

N-2 621 179 682 118 

N-k (k≥3) 436 364 523 277 

 

Fig.7 shows the two example scenarios of the Sichuan grid 

in the status of stable and unstable cases respectively. The 

features related trajectories in 10 cycles were fed into the 

trained HBPNN, which is able to quickly provide predicted 

values of the concerned targets. TABLE X shows that HBPNN 

accurately classifies the two scenarios. In addition, Fig.8 

illustrates the accuracy of HBPNN of processing 2400 samples 

generated by the respective testing systems. It can be observed 

that the accuracy of the algorithm is more than 90%.  

 

 
Figure 7: The rotor angle trajectories of two applied scenarios of Sichuan grid. 

 

Table 10: Comparison of target and HBPNN output for two test 

scenarios 

 

Scenarios 1 (Stable) Scenarios 2 (Unstable) 

Target 
Output 

HBPNN 
Output 

Target 
Output 

HBPNN 
Output 

CUG Null Null 7, 9, 11, 64 7, 9, 11, 64 

Stability 1 1 0 0 

TSI 39.69 41.76 -96.74 -94.62 

IS 1.396 1.329 1.0063 1.0027 

 

 
Figure 8:.  The accuracy of HBPNN in classification in the two testing systems. 

 

Fig. 9 shows that the parallel HBPNN is more efficient than 

the standalone BPNN in the two testing power systems when 

the size of data samples is large as shown in Fig.9 (c). However, 

the parallel HBPNN is slower than the standalone BPNN when 

the size of data is small as shown in Fig. 9(a) and Fig. 9(b) due 

to the fact that both Hadoop and HaLoop have extra system 

overheads. Nevertheless, the HaLoop parallelized HBPNN is 

always faster than the Hadoop parallelized HBPNN due to the 

reduced computation overhead in dealing with iterations.  

 

  
    (a). 68-node  testing system                 (b). Sichuan power grid system. 
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(c). Sichuan power system with data duplication 

Figure 9: The computation efficiency of HBPNN on the testing power systems. 

5 Conclusion 

 

In this paper we have presented HBPNN, a high 

performance distributed neural network algorithm for fast 

stability assessment in power systems. HBPNN is designed 

using Hadoop to train large-scale training data in parallel to 

speed up the training process. It further employs HaLoop to 

reduce the iterative overhead occurred in the training process. 

HBPNN also employs ensemble techniques to maintain high 

accuracy in parallelized classification. The work in this paper is 

able to establish a highly scalable computing architecture to 

enable comprehensive transient stability awareness technique, 

including global stability prediction, stable margin estimation 

and CUGs detection.   
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