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A cold atmospheric pressure plasma source was investigated as an alternative 

pre-treatment for carbon fibre reinforced epoxy substrates prior to bonding.  

For reference, common surface pre-treatments were also investigated (peel 

ply, manual abrasion, and grit blasting). In the aerospace industry, the peel 

ply, is usually added to one side of the composite surface during manufacture 

and peeled off prior to bonding.  

Peel ply can be used independently or in combination with other techniques. 

The strength of the bonded joints of the different pre-treatments was assessed 

through tensile lap shear tests. It was found that combining peel ply with 

plasma increased the joint strength by 10% whereas manual abrasion or grit 

blasting after peel ply improved the strength of the joints by 15% and 20% 

respectively. 

The effect of pre-treating the composite substrate side without peel ply (bag 

side) was also investigated. The strength of the joints produced without any 
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pre-treatment was increased by 99% for manual abrasion, 134% for grit 

blasting and by 146% for plasma.  

Comparing both surfaces of the composite substrates, it was found that using 

peel ply improved the performance of the joints by 91%.  

In order to understand better the effects of the different pre-treatments, surface 

characterisation of the substrates (surface roughness, surface free energy, 

and analysis of chemical changes) was also conducted.  

The effect of roughness did little to affect the strength values (for both surfaces 

of the composite). The adhesive used in this research was very good at wetting 

the surface, regardless of the roughness.  

However, when the adhesive was able to wet the surface, the relationship 

between bond strength and surface free energy was unclear.  

Plasma was shown to increase levels of oxygen at the surface and 

reduce/eliminate the concentration of fluorine at the surface on the bag side of 

the composite.  
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 Introduction  
 

 Background  

The necessity in automotive and aerospace industries to increase fuel 

efficiency is achievable by weight reduction. With the proper design, 

engineering polymers can offer greater properties than metals. Reinforced 

polymers are a type of composite material where the limitations of the polymer 

such as fatigue sensitivity, low strength and stiffness can be overcome by 

reinforcing it with fibres.  

Fibre reinforced polymers (FRPs) have increasingly become attractive in 

recent decades for many applications in aerospace, automotive and marine 

industries due their superior specific strength (strength-to-weight ratio) and 

specific modulus (stiffness-to-weight ratio) compared to aluminium and steel 

[1, 2]. 

The fibres can be carbon, glass, aramid, basalt or polyethylene. Other lesser 

used fibres include wood or asbestos. The most common fibre reinforcements 

used in advanced composites applications, especially in aerospace, are 

carbon fibres. Glass fibres are commonly used for infrastructure and marine 

applications while aramid fibres are used in aerospace and military 

applications. In comparison to metals, FRPs are lighter and corrosion 

resistant.  

Table 1 compares the strength and stiffness of these fibres against aluminium 

and steel.  
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Table 1 Properties of synthetic fibres; aluminium, steel and asbestos have 
been included for comparison [3] 

Material Density 
(g/cm3) 

Young’s 
Modulus 

(GPa) 

Tensile 
Strength  

(MPa)   

Aluminium 2.70 69 77 

Steel mild 7.86 210 460 

Asbestos  2.56 160 3100 

Carbon fibres (High Modulus) 1.86 380 2700 

E-glass fibres 2.54 70 2200 

Aramid fibres (Kevlar 49) 1.45 130 2900 

 

Figure 1 shows the increasing use of composites in civil aircraft from the 80s 

to the present, where now more than 50% of the weight of both the A350 and 

787 aircraft comes from composite material.  

 

Figure 1 Commercial aerospace – composite penetration (courtesy of 
HEXCEL) [4]. 

 

Composite materials are formed by combining two or more materials in order 

to achieve properties that cannot be obtained using the original materials 

alone. These materials can be selected to achieve unique combinations of 
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stiffness, strength, weight, temperature resistance, corrosion resistance, 

hardness conductivity, etc. [5]. 

Although there are many types of composite materials, the following features 

can be distinguished within all of them: 

 Reinforcement agent: a phase of discrete nature where its orientation is 

crucial to defining the mechanical properties of the material. 

 Matrix: a continuous component which is responsible for the physical and 

chemical properties of the composite. It transmits load to the reinforcement 

agent. It also protects it and gives cohesion to the material.   

Polymers can be divided into two categories: thermosets and thermoplastics. 

Thermoset polymers start as a liquid at low temperature but cure irreversibly 

with catalysis or heat by polymer cross-linking. This cross-linking transforms 

the material into a tightly bound three-dimensional network with high molecular 

weight. As these materials undergo an irreversible chemical change, they 

cannot be reformed or melted with the reintroduction of heat. Unlike thermoset 

polymers, thermoplastics can be re-melted and reformed with the 

reintroduction of heat, as there is no chemical bonding taking place during the 

curing process [6]. 

Joining of FRPs is an important step in the manufacturing of many composite 

structures, as simple parts can be joined together to produce complex 

components. In general, joining techniques can be categorized into 

mechanical fastening, adhesive bonding, and fusion bonding or welding. 

Selecting the most suitable joining technique for a specific application requires 

careful consideration of different parameters, together with the knowledge of 

the service that the joint is expected to provide.  

Adhesive bonding has been extensively used alongside mechanical fastening 

in the aerospace (in particular aircraft repair) and automotive industry, but not 

on its own in primary structures. The qualification of the adhesive bonding 

process (in terms of durability and bond strength) is still a concern that must 
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be investigated and solved before the aerospace authorities can allow the 

implementation of adhesive bonding in primary structures [7]. 

In secondary structures, adhesive bonding is common practice [8]. It offers the 

advantage of avoidance of stress concentrations and fibre cuts due to the 

introduction of fasteners. Adhesive bonding offers a continuous bond between 

the substrates, minimizes stress, and reduces the weight of the structure itself. 

Therefore, adhesive bonding is an excellent alternative to avoid the drawbacks 

coming from mechanical fastening and welding. Welding or fusion bonding is 

the process of joining materials (usually metals or thermoplastics) by melting 

the parts. Pressure and heat are necessary to produce the weld. Different 

energy sources can be employed to melt the parts either mechanically, 

electromagnetically or through external heat (hot gas, hot plate, extrusion, 

etc.). It is not possible to weld thermoset systems due to their interlocked 

chemical structure. 

Mechanical fastening is a relatively fast and well established method. 

However, it can impose penalties in terms of mechanical integrity and weight, 

therefore the importance of adhesive bonding is significantly higher in the 

manufacturing of advanced composite structures. 

The drawbacks of adhesive bonding when compared to welding and 

mechanical fastening are mainly the surface preparation of the components to 

be joined and also the cure time of the adhesive. In adhesive bonding, the 

parts to be joined are called adherents, and the joint is produced using an 

adhesive. Weak interfacial adhesion can lead to bond-line failure prior to the 

loads required to achieve cohesive failure within the adhesive. 

Effective structural adhesive bonding relies on the creation of surfaces which 

are easily wetted by the adhesive and provide an appropriate topography and 

chemistry that promotes and maximises adhesion. These can be achieved 

through different surface pre-treatments prior to bonding the substrates.  
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 Research need 

The current methods for preparation of material surfaces prior to bonding are 

becoming progressively more constrained, due to environmental and health 

and safety (EHS) legislation. In addition, these pre-treatments use a 

considerable amount of time and energy. Therefore, there is a necessity for 

the industry to solve EHS issues and reduce overall process time.  

The possibility of using dry, gas-phase processes (such as plasma) as a 

replacement for such pre-treatments could revolutionise many industries. 

Plasma pre-treatment offers significant cost and time savings, less energy 

consumption, application accuracy, no debris/dust generated during the 

process, and can be easily automated.  

Many industry sectors (especially manufacturing and repair) have shown an 

interest in this technology, including aerospace, automotive and Formula 1, 

marine, and defence. Several companies are actively exploring plasma as an 

alternative to wet pre-treatments for titanium when bonding to carbon fibre 

reinforced polymers. 

Plasma pre-treatment can offer the potential for the technology to be 

developed into a universal pre-treatment process.  

 

 Objectives 

The main objective of this project is to analyse and evaluate the effect of 

plasma pre-treatment of the different surfaces of composite materials prior to 

adhesive bonding. These surfaces are the peel ply side of the composite and 

the side with no peel ply, called the bag side by industry.  

This will be achieved by: 

 Undertaking a detailed literature review to determine current state of 

the art.  
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 Carrying out a methodical study of the effects of different plasma 

parameters using both mechanical testing and analytical methods. 

 Developing an understanding of the plasma technology for surface 

adhesion enhancement.   

 

 Contribution to knowledge 

Benefits gained from this work are expected to be: 

 A better understanding of plasma technology as there are different 

variable parameters involved during the process. 

 Additional value to different market sectors interested in plasma pre-

treatment such as aerospace, motorsports, medical, defence and 

electronics due to a lack of industrial awareness of this technology.  

 The development of possible “recipes” to use the same technology for 

different substrates.  These “recipes” could be used by the end users. 

 

 Scope of the thesis 

The work of this thesis is presented in following order: 

Chapter 1 Introduction  

A description of the topic under investigation is presented with the main 

objectives of this study. Research need is also discussed followed by the 

contribution to knowledge of this work. 

Chapter 2 Literature Review 

This chapter discusses the current surface pre-treatments used by the 

aerospace industry. It focuses on the importance of replacing current methods 

with alternative ones that can reduce the dependence on current pre-

treatments. Plasma pre-treatment is evaluated as an alternative to current 
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methods. A review of the current use of plasma pre-treatment for processing 

materials is also undertaken. 

Chapter 3 Analysis of the Pre-treatments Discussed  

This chapter analyses the different pre-treatments discussed in Chapter 2 to 

understand customer/industry needs or requirements, in order to choose the 

most appropriate pre-treatment.  

Chapter 4 Methodology 

This chapter describes the experimental methodology followed during this 

research, and materials and equipment used are listed. A detailed description 

of the different surface pre-treatments investigated is also provided.   

Chapter 5 Results and Discussions  

This chapter presents the data obtained for each pre-treated joint by the 

different methods investigated. It also discusses the most relevant data 

achieved during the investigation. An analysis of the results, in relation to the 

research questions, is given.  

Chapter 6 Conclusions  

This chapter summarises the findings of this investigation, highlighting the 

limitations of the material/technology under study.  

At the end of the dissertation, different appendices are included showing the 

measurements of the samples and all experimental results from each joint 

tested. 



8 

 Literature Review  
 

There are several parameters which need to be considered for the assembly 

of components by adhesive bonding to ensure the reliability and the durability 

of the joint. Among these parameters, it will be necessary to select the most 

appropriate surface pre-treatment and adhesive, considering also the joint 

design. The performance of the joint will also be influenced by the chemical 

and physical properties of the substrate material.  

For any adhesive to be successful during the bonding process, it has to wet 

the surface of the substrate. The capability of an adhesive to wet a solid 

surface can be quantified by the surface free energy of the substrate material. 

This concept will be discussed further in this thesis.  

There are five main mechanisms for the adhesion between an adhesive and 

an adherent: mechanical interlocking, diffusion, electrostatic attraction, 

adsorption and chemisorption chemical bonding, and molecular forces and 

dipole interactions. These mechanisms can happen either alone or in 

combination to produce the adhesive bond [9]. 

Among the parameters under consideration, surface pre-treatment is the key 

factor to achieve strong and durable joints [10]. The work carried out by 

Matthews et al. [11] shows the importance of using the correct surface pre-

treatment on the substrates before adhesive bonding or painting.  

Therefore, surface pre-treatment during the joint assembly should be carefully 

carried out following the recommendations from the suppliers and industry. 

Best practice is covered in different standards (e.g. BS ISO 4588 or ASTM 

D2651 for surface preparation of metals and ISO 13895 or ASTM D2093 for 

plastics”) [12]. These standards describe the usual procedures of surface 

preparation for metals/plastics adherents before adhesive bonding.  

There is no specific standard available yet for the surface preparation of FRPs. 

However, some of the steps followed for surface pre-treatment of metals and 

polymers can be applied to FRPs. Subchapter 2.1 “Surface pre-treatments” 
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presents an overall overview of the different pre-treatments types used by the 

industry for FRPs.  

 

 Surface pre-treatments  

Surface pre-treatments activate the surface of the adherents and this can lead 

to higher bond strengths. Through surface pre-treatments, surface free 

energy, surface roughness, and the chemical composition of the surfaces can 

be modified. Surface pre-treatments also prevent or remove contamination 

from the adherents. These concepts will be explained in more detail later on 

in this thesis.  

Surface pre-treatments can be classified into five categories: cleaning, 

mechanical, chemical, energetic and use of priming or coupling agents. 

Selection of the most appropriate surface pre-treatment should be based on 

considerations such as cost, production, performance, compatibility, durability 

and EHS aspects.  

Prior to any pre-treatment, cleaning is required, as it will remove the majority 

of contaminants (dust, oils, demoulding agents, etc.) from the surfaces of the 

substrates. This treatment is usually carried out using solvents, or through 

detergent wash and bonding cannot take place immediately as time is required 

for the volatiles to evaporate and/or the substrate to dry. The use of some 

chemicals for cleaning can give rise to environmental problems resulting in 

ongoing work to find effective replacements. 

Methyl ethyl ketone, otherwise known as butanone or MEK, was commonly 

used as a solvent however, this solvent is toxic by all routes of exposure and 

many governmental regulations have now banned it, and less hazardous 

solvents have had to be considered [13]. Acetone and isopropyl alcohol (IPA) 

are now generally used for cleaning the substrates, offering fewer 

environmental issues than MEK. 
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The application of primers or coupling agents is usually the last step of the pre-

treatment process. This final process will improve the pre-treated substrate by 

either creating a stable protective coating over the surface which is optimised 

for adhesive bonding (priming) or by enabling the pre-treated surface to be 

capable of directly reacting with the adhesive to form strong covalent bonds 

(coupling).  

 

 Mechanical pre-treatments  

Current surface pre-treatments in the aerospace industry involve solvent 

cleaning, mechanical roughening, and peel ply removal (in the case of 

composites), either separately or in combination [14, 15].  

Mechanical roughening techniques use abrasion to increase the roughness of 

the surfaces and remove contaminants from them.  

Mechanical roughening includes manual abrasion and grit blasting. Manual 

abrasion is carried out using abrasive papers through rotary pads, followed by 

the cleaning of the composite structures using vacuum cleaning followed with 

a solvent wipe and then allowed to dry. Grit blasting is another form of 

mechanical abrasion, where a stream of abrasive material is expelled against 

a surface using compressed air to roughen the surface and remove 

contaminants.  

Previous investigations on thermoset composites have shown that increasing 

the roughness of the surface by abrasion methods leads to mechanical 

interlocking, increasing the intrinsic adhesion, and therefore the strength of the 

assembly [16, 17]. However, the work carried out by Pocius and Wenz [18] 

determines that the critical factor for successful bonding is having 

contamination-free surfaces.  

Abrasion methods are time-consuming, and generate debris and dust during 

the process (leading to health and safety issues). Another concern is 

inconsistency during surface preparation, as it depends on operator expertise, 
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giving variability during the process. Abrasion may also produce damage to 

the fibre matrix if not executed properly.  

Peel ply is the other method broadly used for bonding the primary structures 

of the Boeing 787 and other commercial aircrafts [14]. Peel ply is a synthetic 

cloth (made from nylon or polyester), usually used during the manufacturing 

process of composite structures to prevent foreign materials from becoming 

integrated into the finished part [19]. Peel ply also textures the surface of 

composite laminates, reducing or eliminating the need for surface preparation, 

as shown in research carried out by Hollaway et al. [20] and Flinn et al. [21]. 

However, previous research has shown that stronger joints can be achieved 

using peel ply in combination with manual abrasion and cleaning of the 

surfaces prior to bonding [22]. 

When the composite part is cured, the peel ply can be peeled off just prior to 

bonding, achieving a consistent clean surface. After removing the peel ply, a 

solvent wipe is usually used to remove any possible contamination on the 

composite surface. However, it has been shown that fibres from the peel ply 

can be left behind during removal, and therefore can contaminate the bond 

area [23, 24]. 

One of the disadvantages of peel ply is that it can lead to damage of the 

underlying composite if the removal is not done properly. In addition, resin rich 

ridges can be found after the removal of the peel ply. These areas must be 

removed from the composite as they don’t have any reinforcing fibres in them, 

making these regions weaker and the resulting bond will not be so strong. 

The fracture possibilities upon peel ply removal are shown in Figure 2.  



12 

Fracture possibilities upon peel ply removal  
 

 1. Green arrow: Peel ply fibre 
fracture (contamination of the 

composite surface)  
 

2.Pink arrow: Interfacial fracture 
between the peel ply fabric and the 

epoxy matrix 
 

3.Dark blue arrow: Fracture of the 
epoxy between the peel ply and 

carbon fibres 
 

4.Turquoise arrow: Interlaminar 
failure (within the composite itself)  

 

Figure 2 Fracture possibilities upon peel ply removal [21, 25]. 

 

The “dark blue arrow condition” shown in Figure 2 represents the fracture of 

the epoxy between the peel ply and carbon fibres. This will create a fresh and 

chemically active fractured resin surface, which will enhance the adhesion 

between the adhesive and the substrates [21, 26]. 

The main reason to use peel ply by the industry is to provide a clean 

roughened surface which is chemically (as it is a fresh resin surface) and 

physically (due to roughness) consistent, enhancing the adhesion between the 

adhesive and the substrates. 

 

 Chemical pre-treatments  

Chemical treatments are quite versatile, as they can produce different surface 

finishes. They have been extensively used in industry, especially for painting 

and bonding of metals. Generally, these methods use strong acids or bases, 

which require specialist waste disposal and extensive rinsing with distilled 

water. Due to the hazardous nature of these substances, these treatments are 

becoming more tightly controlled, due to EHS legislation. 

4 

1 

2 

3 
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Chemical treatments are not used for surface pre-treatment of FRPs and 

therefore they will not be covered in this thesis.  

 

 Energetic pre-treatments  

The other category of surface pre-treatments involves methods such as 

plasma, flame, laser, etc. These physical pre-treatments cause a change in 

the surface chemistry of the adherents, brought about by the interaction of 

highly energetic species with the adherent surface.  

These energetic processes have the advantages of not requiring contact with 

the surface and by being dry.  

Plasma is an excited gas containing molecules, free radicals, electrons, and 

ions. It is also called the fourth state of matter [27]. The four common states 

or phases of matter in the Universe (solid, liquid, gas and plasma) are 

illustrated in Figure 3.  

 

Figure 3 States of matter. 

 

Plasma can be generated by heating a gas, or exposing it to a strong 

electromagnetic field. The latter can be achieved with a laser or microwave 

generator.  
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By applying an electromagnetic field electric field to a gas, the electrons 

transform the energy of the field into kinetic energy. If an electron has enough 

energy, it will not just bounce off an atom; it can disturb the electrons orbiting 

the atom and inelastic collisions can occur.  This will produce the ionisation of 

neutral species and the generation of free electrons that will have the ability to 

conduct electricity. In the ionisation process, atoms or molecules obtain a 

positive or negative charge (by gaining or losing electrons) to form ions [28, 

29]. 

Plasmas can be classified as either thermal (hot plasmas) or non-thermal (cold 

plasmas). Thermal plasmas are nearly fully ionised and they are characterized 

by an equilibrium (or near equality) among the temperature of the electrons 

(Te), ions (Ti) and neutral species (Tn) (i.e., Te ≈  Ti ≈Tn) [28].  Temperatures of 

several thousand degrees are not unusual in hot plasmas. These plasmas are 

not suitable for most materials processing applications due their destructive 

nature. They are usually used in waste treatment and sintering. High 

temperature flames are an example of hot plasma [30].   

The other possibility is that only a small fraction of the gas molecules a 

re ionised (only 1-10%, the rest of the gas remains as neutral atoms or 

molecules). In this case, the plasma is classified as non-thermal plasma or 

cold plasma. Ions and neutral species are at much lower temperature than the 

electrons (Te>>Ti ≈Tn). Due the large temperature values, it is more convenient 

to express the temperature in electron-volts (eV).  Electrons can reach 

temperatures of 1-10 eV (1 eV = 11,600K). The temperature of the ions and 

the neutral species vary between 323 and 573K, much lower compared to the 

temperature of the electrons. This difference in temperature makes possible 

the creation of chemical reactions at relatively low temperatures. An example 

of cold plasma is the Aurora Borealis [28]. The low temperatures typical of 

non-thermal plasmas make them suitable for material processing applications.  

In fact, cold plasma technology has been used since the late 1960s by the 

electronics industry for the deposition of thin film materials and for plasma 

etching of semiconductors, metals, and polymers [31]. 
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The use of plasma treatment for processing of materials is quite broad. Apart 

from deposition of thin films, it is also used for sterilisation, where pathogens 

are chemically destroyed, and also for decontamination of chemical and 

biological weapons.  

Different physical processes can be observed on the substrates pre-treated 

through plasma prior to bonding. These processes involve surface cleaning 

(removal of contaminants from the substrates) and ablation/etching of material 

from the surface (removal of weak boundary layers). These weak boundary 

layers could be formed during component manufacturing and must be 

removed to improve the adhesion. The difference between ablation and 

etching lies in the amount of material that is removed during the treatment. 

Ablation implies cleaning by removing of low molecular weight organic 

contaminants; and etching affects the surface morphology of the substrate 

[14]. 

The other two physical processes that are possible during plasma pre-

treatment are the chemical modification of the surfaces (surface activation), 

and crosslinking. Regarding surface activation, plasma creates reactive polar 

functional groups at the surface which can intensely increase the surface free 

energy of the substrate, improving the wettability of the substrate by the 

adhesive and thus enhancing the adhesion. Surface free energy is a 

parameter used to quantify the wettability of a solid surface. Through surface 

pre-treatments the surface energy of the materials can be modified; and 

therefore the strength of the joint can be enhanced. Surface free energy can 

be measured using a contact angle analyser, which measures surface 

energies by measuring the contact angles of different liquids. Figure 4 shows 

the three possible scenarios.   

If the contact angle formed by a liquid when placed in contact with a solid 

surface is higher than 90°, the surfaces are called hydrophobic, and they 

present a low surface free energy. These surfaces will be characterised by 

poor wetting and therefore poor adhesiveness (Figure 4a). If the contact angle 

is below 90° the surfaces are hydrophilic. They possess higher surface energy, 

providing better wetting and therefore better adhesiveness [32, 33] (Figure 
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4b). Figure 4c shows the ideal situation where the adhesive completely wets 

the surface (spreading). 

 

 

Figure 4 a. hydrophobic surface; b. hydrophilic surface; c. adhesive 

completely wets the surface. 

 

As mentioned before, the ability of the adherents to be bonded depends on 

their chemical and physical properties. For example, adhesive joining of some 

thermoplastics (e.g. polyolefins, fluorohydrocarbons) is more challenging than 

for thermosets, due to their low surface energy [32, 34].  

Through plasma, possible oxidation and nitrogenation of the substrates will 

occur. These two processes will produce chemical changes on the surface of 

the substrate potentially creating polar moieties such as ether, carboxyl, 

hydroxyl, carbonyl, imine, amine, etc. Such groups are capable of interacting 

with the applied adhesive enhancing adhesion. 

Depending on the substrate material and the application, other gases can be 

used during the plasma process. For example plasma can be used for surface 

fluorination to create hydrophobic surfaces (eg waterproof textiles) [31]. 

The other detectable physical process during plasma pre-treatment is 

crosslinking. Exposing surfaces to noble gas plasma (such as He or Ar) 

produces the creation of new free radicals. These free radicals (uncharged 

molecules) are very unstable and hence highly reactive. Therefore, the free 

radicals can react with other free radicals or with other chains in chain-transfer 

reactions to gain stability. As a result, through crosslinking the surface of the 

adherents may become cross-linked, preventing the creation of weak 

boundary layers [31]. 

0° 

>90° <90° 
a. b. c. 
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Current plasma technology available   

Plasma pre-treatment of different materials can be executed at low pressure 

and at atmospheric pressure. One of the drawbacks of low pressure plasma 

systems is that the substrates to be treated must be placed inside a vacuum 

chamber, which limits the size of the components, and they cannot be treated 

in a continuous process, as pre-treatment of batches is then only option. 

Another disadvantage is that the power consumption required is quite high, 

and this makes the process relatively expensive.  

In low pressure plasma technology, the plasma is generated using a high 

frequency generator. This technology is highly controllable in terms of 

gas/plasma composition, power, duration of the treatment, etc. When the 

process is complete and the chamber is back to atmospheric pressure, the 

door can be opened and the samples removed from the chamber.  

Unlike low pressure plasma systems, atmospheric pressure plasmas (AP) can 

treat substrates in a continuous way at high speed, achieving processing cost 

savings [35]. AP has the potential to be automated with relatively low power 

consumption.  

In AP technology, the plasma is generated with a high tension generator. The 

gas used to generate the plasma can come from different sources. It is a less 

controllable system than low pressure plasma technology. Figure 5 shows the 

main components of the AP system used in this research.  
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Figure 5 Components of an atmospheric pressure plasma system.  

 

AP systems are quite versatile, as it is possible to integrate into them several 

non-rotating plasma jets. Rotating nozzles can also be incorporated into AP 

jet systems.  Rotating nozzles can treat a large area of material in a single 

pass with less treatment intensity than static nozzles [36]. 

AP pre-treatment prior to structural bonding has shown promising results. This 

technology is already installed in some automated industrial process [37]. 

However, more research needs to be carried out in order for it to be 

implemented into production in the aerospace industry [15]. 

AP has been investigated in different materials under controlled process 

conditions, demonstrating an improvement of the adhesive bonding strength 

on polymers [38-41], and composites [42-46]. 

The work carried out by Zaldivar et al. [45] compared different pre-treatments 

on a cyanate ester composite. Lap shear strength values indicated an increase 

of 30% for the bond strength, compared with solvent wiping, peel ply and 
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plasma (Helium plus O2) vs manual abrasion. The relative bond strength 

improvement of these pre-treatments is shown in Figure 6.  

 

Figure 6 Relative bond strength improvement of a cyanate ester composite 
bonded with a room temperature cured adhesive [45].  

 

Compared to polymers and composites, less work has been done for metals 

(Al, Ti, steel, etc.). Williams [29] studied the surface modification by AP of 

different materials (stainless steel 410, aluminium alloy 2024, and carbon fibre 

epoxy) achieving an improvement in the lap shear strength of the bonds. 

Figure 7 shows lap shear strength values of bonded 410 stainless steel using 

different surface pre-treatments. 
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Figure 7 Lap shear strength values of bonded 410 stainless steel of different 
surface pre-treatments [29]. 

 

Figure 7 confirms that plasma treatment increases the bond strength to its 

maximum value. A value of 24±1MPa was achieved by cleaning the samples 

with IPA (using primer), compared with the 35±1MPa obtained treating the 

samples through manual abrasion and plasma activation (also using primer).  

 

Different parameters will influence the plasma process. Among these 

parameters, it is important to highlight duration (speed of process and number 

of passes), power, flow rate of gas (combination of gases), and distance 

treatment. For each application and each substrate, these parameters need to 

be defined as the interaction between the plasma, and the surface depends 

intensely on the material properties [36]. 

The research carried out by Baghery et al. [47] of unsized carbon fibres using 

low pressure plasma shows the effects of different plasma process parameters 

(power, duration, and flow rate of oxygen gas) on the interfacial adhesion 

behaviour between the fibres and the resin. It could be, though, that longer 

treatment will improve the adhesion between the fibres and the matrix. 

However, it is shown in the investigation by Baghery that long exposure 
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treatment times decrease the bulk properties of carbon fibres, and therefore 

the interlaminar shear strength (ILSS) of treated fibre composites. The same 

effect was observed using high values of power.  

The same effect can be observed in the investigation by Palleiro et al. [36]. 

High values of power showed degradation of the polymer surface leading to 

lower strenght of the joint. This indicated an overtreatment of the material.  

Therefore, it is important to find out the processing window for each type of 

material treated. Processing window means the combination of the 

parameters involved in the plasma process, which improve the adhesion 

behaviour instead of damaging the materials and therefore reducing their 

properties.   

There are different atmospheric plasma sources which can be classified 

depending on the excitation mode. Different groups can be listed [48, 49]: 

 Direct current and low frequency discharges (1kHz-100kHz). Some 

examples within this group are corona discharge and dielectric barrier 

discharge.  

 Radio frequency discharges: these operate in the frequency range of 

1-100MHz.  

 Microwave discharges: in this case, typical frequency is 2.45GHz.  

 

Another energetic pre-treatment that oxidises the substrates is flame.  This 

process consists of passing a flame over the surface. This will create polar 

groups at the surface, which will enhance the wettability of the adhesive, and 

therefore the strength of the bond. Flame temperature, and the distance 

between the adherent and the flame, should be carefully chosen [50]. 

Other types of surface pre-treatments are ultraviolet, laser, ion beams, and X-

ray. These treatments are defined as closed systems, as the material under 

treatment has to be placed inside a chamber [34, 51]. 
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 Adhesive selection 

The selection of the most appropriate adhesive for a specific application is 

another important parameter to consider in the bonding process. This task can 

be challenging due to the very wide range of commercial products available. 

However, the choice can be simplified by considering simple rules such as 

knowing which family of adhesives meet the requirements of the assembly.  

Figure 8 lists some of the parameters which need to be considered during the 

selection process of the most suitable adhesive.  

 

 

Figure 8 Adhesive selection: considerations.  

 

Depending on the overall functionality of the assembly the selection of the 

adhesive will be completely different. For structural purposes, the selection will 

be made between thermosetting adhesives (e.g. acrylates, epoxies, and 

polyurethanes).   

Epoxy adhesives are widely used in aerospace and other industries due to 

their excellent mechanical performance [52]. These materials have high 

strength, chemical resistance, and low shrinkage. Therefore, they form strong 

and durable bonds with most materials in well-designed joints. The form in 

which epoxy adhesives are available varies widely, from low viscosity liquids 

to solid pastes and films. Film adhesives are preferred for high precision 

engineering applications. These films can be cut into desired shapes.  

Within the same chemical family there are often a number of different 

formulations and forms available from each supplier which can make the 

Adhesive Selection:  
Considerations   

 Joint type and function  
 In-service conditions  
 Mechanical performance 
 Cost 
 Bond line thickness  
 Cure time 
 Temperature limits 
 Health and safety issues 
 Adhesive form 
 Adherents 
 Manufacturing conditions 



23 

selection process even more difficult. However, using the rules cited above in 

addition to different sources of assistance (suppliers, consultants, and 

software selection systems) can help to reduce the effort of choosing the most 

suitable adhesive.  

One important parameter that will affect the strength of the final joint is the 

adhesive bond line thickness (BLT). A very thin BLT will create weak bonds 

and lead to premature failure, as there is not sufficient adhesive in the bond 

line to perform properly in demanding situations. Thin BLT will create poor 

wetted areas. Ideally the surface of the adherents should be fully wetted by 

the adhesive to achieve maximum strength of the joint.   

The opposite scenario is to have very thick BLT. Thick BLT will cause offset 

loads and high stress concentration at the edges of the joints reducing the 

strength of the bond. This thick BLT will create an “extra” layer of material 

within the joint which is not desirable.  

Depending on the type of adhesive, the BLT can vary significantly. For 

example, the BLT for epoxies varies between 50-300μm, for acrylics between 

100-500μm, and for polyurethanes between 500-5000μm [53]. Adhesive 

suppliers can guide the end user in this area.  

Adhesives should be applied in the proper controlled thickness. There are 

different ways to control the BLT of the adhesive. Glass beads, carrier films, 

wires, fillers, etc. can be added to the adhesive for this purpose. Other 

possibilities include tooling modification, adding external shims, considering 

joint design, etc. For example, some of the film adhesives have a carrier 

material incorporated in them, which offers a highly controlled bond-line 

thickness [53]. 

Another important parameter to consider is the type of defects in the adhesive 

layer. Voids can appear due to volatiles in the adhesive or air entrapment. 

Incorrect curing can be caused due incorrect mixing of the adhesive or 

contaminants. In some cases it is possible to observe cracks in the adhesive 
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layer due thermal shrinkage or curing. These defects could have an impact in 

the final strength of the joint. 

In order to detect these defects at the bond line, different non-destructive 

methods can be used, such as ultrasound or computerised tomography (CT) 

scans.   

 

 Joint design  

As cited before, one of the advantages of adhesive bonding is the better 

distribution of the stresses through the joint.  The loading modes experienced 

by adhesive joints can be compression, shear, peel, cleavage, and tension. 

Adhesive bonded joints can experience several of these loading modes at the 

same time.  

Adhesives should preferably be loaded in compression or shear as bonded 

joints are strongest under these loading modes. Peel, tension and cleavage 

forces must be avoided or minimised as these stresses are too severe for 

FRPs [54]. This can be achieved by applying the principles of well-designed 

joints [53]. 

Among the loads cited above to which the assembly is submitted, shear 

loading is the desirable mode. Therefore, the joint will be designed to be mostly 

restricted in the shear direction [52]. Single lap shear joints will be considered 

in this research as they are the simplest joint geometry where the shear 

stresses are achieved by traction on the two substrates, as shown in Figure 9. 

In this type of joint geometry, peel stresses will still appear.  

 

Figure 9 Single lap shear joint design. 
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In single lap joints, initial loading is carried in shear along the line of the bonded 

adherents. As load increases, peel forces start appearing at the ends of the 

overlap of the joint. In addition to this, tensile loads become important across 

the joint and failure can occur due to [55]:  

 Failure of the adhesive - cohesive failure.  

 Failure at the interface between the adhesive and the adherent - 

adhesive failure. 

 Failure of one of the adherents - parent material failure.  

 

The failure modes and the relation to bond strength are shown in Figure 10. 

 

 

Figure 10 Failure modes for adhesive bonding.  

 

Adhesive failure is the failure of the adhesive at the surface of one of the joined 

adherents (red line in Figure 10). It is considered to be the result of a weak 

bond and must be avoided (it is unacceptable by the aerospace industry). This 

type of failure can occur due to an inadequate or poor surface preparation or 

material mismatch [56]. 

Cohesive failure can occur either in the adhesive or in the adherents. Cohesive 

failure in the adhesive (top green line in Figure 10) happens when the load 
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exceeds the adhesive strength, providing a bond as strong as the adhesive 

itself. This type of failure can occur due to an inappropriate design or void 

content. Cohesive failure in the adherent (also called parent material failure or 

interlaminar failure in the case of composites, bottom green line in Figure 10) 

provides a bond as strong as the laminate itself.  

Cohesive failure (either in the adhesive or in the adherent) is the acceptable 

type of failure for adhesive bonds [57]. 

In some cases, cohesive and adhesive failure can happen in the same bond.  

As mentioned previously, failure along the adhesive and composite interface 

must be avoided, achieving cohesive failures of the joint. For example, 

Williams et al. [58] pre-treated steel samples through plasma and it was 

observed that cohesive failure of the treated samples increased to be 97% of 

the failure surface compared to 30% achieved for untreated samples. 

The quality of the joints can be evaluated through mechanical testing 

(destructive methods) and non-destructive testing (NDT). Likewise, study of 

the fracture surface of the specimens through fractography (also visually) will 

provide a better understanding of the different failure modes. Standard BS ISO 

10365 [59] describes the main type of failure patterns of bonded assemblies 

(regardless of the nature of the adherents and adhesive of the assembly).  

 

 

 

 

Summary of literature review 

This chapter has reviewed the different parameters involved during the 

adhesive bonding process, highlighting the importance of surface pre-

treatments prior to bonding to achieve successful and durable joints.  
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Different aspects must be considered before creating adhesive bonds. The 

following diagram illustrates some of these important aspects:  

 

 

 

An assessment of the different surface pre-treatments used by the industry for 

FRPs has been conducted and a comparison of these methods has been 

carried out emphasizing the advantages and disadvantages of each one. The 

capability of the adherents to be bonded depends on their chemical and 

physical properties. Plasma pre-treatment has been shown to have the 

potential to replace conventional methods used in the aerospace industry as 

this method can create new chemical functionalities which are capable of 

interacting with the adhesives added to the substrates, thus enhancing the 

adhesion. 

Design 
Activities    

 Select materials 
 Design joint 
 Select adhesive  

Manufacturing  
Activities    

 Surface pre-treatments  
 Assembly 
 Cure 
 Final inspection   
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 Considerations upon the technology 
requirements using QFD analysis 

 

In this chapter, a Quality Function Deployment (QFD) analysis of the pre-

treatments discussed in Chapter 2 was carried out. QFD is a useful tool that 

defines customer/industry needs or requirements which can then be translated 

into specific plans to produce products or develop technologies.  

Through this tool a common understanding of the customer/industry needs is 

promoted and therefore a more reliable decision can be taken. The use of QFD 

tool can produce improvement in respect to cost, quality and development 

time. 

Technologies and customer needs are rapidly changing. The QFD charts are 

ideal to reflect new facts and market conditions [60]. 

As previously discussed, the aim of this project is to investigate the possibility 

of replacing current methods for preparation of material surfaces prior to 

bonding. Therefore, an industrial analysis of the current pre-treatments was 

carried out in Chapter 2 to evaluate the existing methods and consider 

alternatives.    

The aerospace industry uses peel ply, in combination with either manual 

abrasion or grit blasting, for the pre-treatment of composite surfaces prior to 

bonding. These two methods are both time and energy consuming and 

therefore, there is a necessity for industry to find pre-treatments that can be 

easily automated to reduce overall process time and increase efficiency. In 

addition, it is important to highlight that manual abrasion and grit blasting 

cause debris and dust to be generated, resulting in EHS issues. These 

processes may also damage the fibres if they are not executed properly, and 

they are highly dependent on the expertise of the operator.  

Energetic pre-treatments, such as flame and plasma, were also evaluated. 

The flame method was dismissed, due to the high temperatures involved in 

the process, which would lead to the degradation of the material under study 
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(matrix of the composite).  Plasma pre-treatment appears as a promising 

technique, as it offers cost and time savings, and no debris or dust is 

generated during operation. Plasma provides consistency, as it does not 

depend on the expertise of the operator and it has the potential to replace the 

chemical pre-treatments used for metals. This will be extremely interesting for 

joining hybrid materials (e.g. titanium to carbon fibre reinforced polymers).  

Ultraviolet, laser, and x-ray pre-treatments were also considered however, the 

power consumption of these treatments is relatively high, making the 

processes quite expensive.  

 

QFD analysis  

QFD analysis was carried out by taking into account different criteria that a 

surface pre-treatment may be required to meet.  From an industrial point of 

view, the preferred pre-treatment will be the one which reduces processing 

time and energy consumption. As the geometry of industrial components is 

becoming more complex, the favoured pre-treatment should possess the 

potential for industrialisation, making the operation relatively straightforward 

and consistent. Consistency during industrial operations is essential for 

reliable performance of the final component. The performance will also be 

affected by the selected process parameters. Choosing the incorrect 

parameters could lead to damage to the substrates, and therefore affect the 

strength of the final assembly. As already mentioned, current methods are 

becoming more constrained, due to EHS issues, and the selected process 

should be environmentally and operationally friendly.    

The different criteria analysed during the QFD analysis are collated in Table 2 

(processing time, cost, potential for industrialisation, process variability, EHS 

issues, and damage material). 
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Table 2 represents the interrelationship analysis that compares criteria against 

each other, in order to rank them in terms of importance in the industrialisation 

of a surface pre-treatment. 

The rating system selected to compare criteria was 1:3:9, where 1 is 

“important”, 3 is “more important” and 9 is “much more important” [61]. The 

ranking for each of the criteria is calculated by dividing the raw total (rating 

scores added for each raw) by the grand total. 

According to the ranking obtained in Table 2, “damage material” is the highest 

ranked criterion. The selected surface pre-treatment must be completely 

reliable, without damaging the material under treatment, as this will affect the 

final performance of the joint. Process variability is ranked second. For the 

implementation of an industrial process, it is important to achieve consistency 

in results to guarantee the success of the final product.  

The third ranked criterion, EHS issues, is related to the importance of 

implementing pre-treatments that are friendly to the environment, and not 

harmful for the operators. Manufacturers are trying to be eco-friendly, which is 

the reason why this criterion ranked as more important than cost. Customers 

interested in this type of friendly pre-treatment are not afraid to invest in these 

technologies, which is why cost was understandably the lowest ranked.  

From Table 2, it can be observed that the preferred pre-treatment that met 

most of the variables included in this analysis was plasma (cost and time 

savings, no debris or dust generated, potential for industrialisation, 

consistency). Different parameters will influence the plasma process. Among 

them, it is important to highlight the speed of the process, the number of times 

that the surface is pre-treated (number of passes), power, flow rate of gas, the 

types of gas, and distance treatment.  
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Table 2 Interrelationships analysis: criterion vs criterion  

 Cost 
Damage 
material 

Process 
variability 

Potential for 
industrialisation 

EHS 
issues 

Process 
time 

Raw 
total 

Relative Ranking 

Cost 
 

 1/9 1/3 1/3 1/3 1 2.11 0.041 6 

Damage material 
 

9  1 3 1 3 17.0 0.332 1 

Process variability 3 1  1 3 3 11.0 0.215 2 

Potential for 
industrialisation 

3 1 1  1/3 3 8.33 0.163 4 

EHS 
issues 

3 1 1/3 3  3 10.33 0.202 3 

Process time 
 

1 1/3 1/3 1/3 1/3  2.33 0.045 5 

 
Grand 
total 

51.1 
 

 

1/9 much less important  
1/3 less important 
1 important  
3 more important  
9 much more important  
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Table 3 Decision matrix (ranking parameters) 

 

 Weight 

Type of gas Gas flow 
Number 
passes 

Distance Speed Power 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

Damage material 0.332 1 0.332 3 0.996 3 0.996 1 0.332 1 0.332 3 0.996 

Process variability 0.215 1 0.215 3 0.645 1 0.215 3 0.645 3 0.645 3 0.645 

EHS 
issues 

0.202 3 0.606 1 0.202 1 0.202 1 0.202 1 0.202 1 0.202 

Potential for 
industrialisation 

0.163 1 0.163 1 0.163 1 0.163 1 0.163 1 0.163 1 0.163 

Process time 0.045 1 0.045 3 0.135 9 0.405 1 0.045 9 0.405 1 0.045 

Cost 0.041 9 0.369 3 0.123 3 0.123 1 0.041 3 0.123 3 0.123 

Total 1  1.730  2.264  2.104  1.428  1.87  2.174 

R= Ranked, W= Weighted  

Pre-treatment parameters   

Industry 

requirements  
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Table 3 shows the decision matrix which maps the criteria assessed in Table 

2 against the different parameters involved in the plasma pre-treatment. This 

matrix is a diagram which helps in determining how a product or technology 

meets the customer or industry needs. It is an important step in the pre-design 

phase, as this will reveal which aspects should be worked on more than others 

through numerical representation. 

Figure 11 shows the rankings of each engineering characteristic with their 

respective weighting (taken from Table 3). Glass flow, power, and number of 

passes are the top three among the engineering characteristics described in 

Table 3.  

 

 

Figure 11 Rankings of each engineering characteristic with their respective 
weightings. 

 

The description of the plasma equipment used during this research is 

explained in Chapter 4 (Section 4.3.4). The gas flow and the power used will 

be fixed at the maximum capacity of the equipment. The number of passes 

and the speed of the process will be modified during the research in order to 

evaluate the influence of these two process parameters, while the distance will 

be fixed at a constant value.  

Different type of gasses can be used during the pre-treatment (argon, helium, 

fluorine, etc). The control unit available can use either argon or helium. Argon 

will be used as the primary gas instead of helium (argon is cheaper than 

helium). 
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 Methodology 
 

 Materials 

 

 Adherents  

  
The material used in this research was an epoxy resin, reinforced with carbon 

fibres.  This material was supplied by HEXCEL Composites, Duxford 

(Cambridge, UK), in the form of prepreg.  

Prepregs consist of a combination of a matrix (resin) and fibre reinforcement. 

They are ready to use in the component manufacturing process. Prepregs 

need to be stored at -18°C to hinder the curing of the resin [62]. The resin 

cures at high temperature, undergoing a chemical reaction that transforms the 

prepreg into a solid structural material that is exceptionally stiff, lightweight, 

temperature resistant, and highly durable.  

Prepregs are available in two forms: unidirectional (UD) or woven fabric. In UD 

form, the fibres run in only one direction. Unlike UD fabrics, woven fabrics 

consist of at least two threads which are woven together (the warp and the 

weft direction). Performance and cost are the two main factors that influence 

the selection of the prepreg.  

A UD prepreg was selected for this research, as it presents a stronger 

mechanical performance in the direction of the fibres compared with that of 

woven fabrics. Unlike woven fabrics, fibres in UD preform do not have a crimp 

(i.e. they are straight).   

The specific material chosen was HexPly8552, a certified high performance, 

tough epoxy matrix used in primary aerospace structures. Table 4 provides 

the information for this prepreg.   
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Table 4 HexPly 8552 prepreg [63] 

 Product 
Description 

Reinforcement Matrix Form Volume 
Fibre (%) 

HexPly8552 Carbon Fibres Epoxy UD 
Prepreg 

58 
 

Characteristics 
HexPly 8552 

-Excellent mechanical properties 
-Elevated temperature performance, service 

temperature (121°C) 

 

 

 Adhesives  

The family of adhesive chosen was epoxy, as they are widely used in the 

aerospace industry due their excellent mechanical properties. They also 

present excellent wetting properties [58]. 

From the different epoxy adhesives available on the market, Redux 312 was 

selected. Redux 312 is a high strength 120°C curing film adhesive, suitable for 

metal to metal bonding, sandwich constructions and composite to composite 

bonding. Some versions (such as Redux 312/5) are supported with a woven 

nylon carrier for bond line thickness control purposes. Redux 312 was supplied 

by HEXCEL.  

Table 5 Film adhesive Redux 312 [64] 

Product 
Description 

Form Cure 
cycle  

Characteristics 

Redux 312 Film adhesive 
without carrier  

30 
minutes at 

120°C  

- Good mechanical 
performance up to 100°C 

- Low volatile content 
 

 

 

  Glass beads  

A pinch of ballotini beads (glass beads) were added on top of the adhesive 

film Redux 312 (version without carrier) for bond line thickness control. The 

material was purchased from Sigma Life Sciences with a diameter range of 

212-300μm [65]. 
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 Manufacturing composite laminates 

Five prepreg laminates were manufactured at HEXCEL using an autoclave 

(four laminates of nominal size 600 x 600mm and a smaller laminate of 620 x 

300mm). Each laminate had 16 layers of carbon fibre/epoxy with a final 

thickness of approximately 3mm.   

The first step of the manufacturing process was to remove the prepreg from 

the freezer while it was still in the sealed bag. Once the prepreg reached room 

temperature, it was ready to be used.  

Afterwards, 80 layers of HexPly8552 were cut. In order to manufacture one 

laminate, 16 plies were stacked. However, this was carried out first by stacking 

four plies, and then debulking them for five minutes under vacuum (pressure 

conditions: 0.95-1bar). 

Debulking is an important step during the manufacturing process of composite 

parts. The objective is to compact or squeeze the air out from among plies, 

ensuring the seating of the plies on the tool and preventing wrinkles.  

Another four plies were placed on top of the previous four plies, debulked 

again. The same procedure was applied until 16 plies were stacked. It was 

extremely important that each additional ply had full contact with the previous 

ply, avoiding gaps among plies. Finally, the whole laminate (16 plies) was 

debulked for five minutes. 

After the plies of the five laminates were stacked together, the next step was 

the vacuum bagging of the laminates before their cure in the autoclave.  

Vacuum bagging plays a significant role in the manufacturing of composite 

components. This process allows the application of compaction pressure to 

consolidate plies, as well as the extraction of moisture and volatiles from curing 

composites.  

In order to achieve high quality composite components, great care must be 

taken when using different sequencing materials during the vacuum bagging 
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stage. The prepregs and vacuum bagging materials were placed on top of a 

flat aluminium tool and the first layer added was a polytetrafluoroethylene 

(PTFE) film. It was used as a release film to prevent the prepregs from 

adhering onto the mould surface during the curing phase. The next layer 

added was a peel ply of polyester. This peel ply was used to texture the surface 

of the composite laminates. The next step was to place the uncured laminates 

on top of the peel ply. Glass tape was added along the edges of the prepregs 

in order to create a continuous air path, followed by the addition of another 

layer of release film. Several glass fibre filaments were used to create a path 

for the air to be expelled. In addition, two layers of glass fibre cloth were added 

to release the air, as well as two layers of breather. These last two layers were 

used to keep a “breather” path through the bag to the vacuum source. This 

allowed the air and volatiles to escape, so that continuous pressure could be 

applied to the laminates.  

Finally, the bag film was sealed at the edges of the aluminium tool. Three 

vacuum valves were located above the tool’s surface. A piece of breather was 

added between the valves and the tool in order to provide breather continuity. 

A leak test was carried out using a vacuum gauge to detect if there were any 

leaks.  

The peel ply used to texture the surface of the composite laminates was a 

specific product from HEXCEL. The fibre type was polyester with a maximum 

use temperature of 204°C and a thickness of 0.101mm (dry peel ply).  

Figure 12 shows the materials sequence during the vacuum bagging. 

 

Figure 12  Schematic of the vacuum bagging.   
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At this point, the prepregs were ready to be cured in the autoclave. During the 

curing, two thermocouples were used to check the temperature.   

Table 6 summarises the steps followed during the manufacturing of the 

composite laminates. 

Table 6 Manufacturing composite laminates  

# Step Description 
 

1 Removing 
material from the 

freezer 
 

Material could be used when room temperature 
was reached 

2 Cutting material 
 

80 plies were needed to manufacture 5 laminates 

3 Piling plies up - Debulking for 5 minutes after every 4 plies 
- Once 16 plies were piled up, debulking the 

whole laminate for another 5 minutes 

4 Vacuum bagging 
and leak test 

 Sequence vacuum bagging: 
- PTFE film 
- Peel ply 
- Prepregs 
- Glass tape 
- Release film and glass fibre filaments 
- Glass fibre cloth 
- Breather 
- Bagging film and sealant tape 

 Leak test 

5 Prepregs ready for 
autoclave 

Check Table 7 for processing conditions 

 

The temperature, pressure and vacuum profiles in the autoclave are shown in 

Table 7.  
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Table 7 Temperature, pressure and vacuum profiles autoclave 

Temperature Profile Pressure Profile Vacuum Profile 

SP Type Ramp 

Rate 

(°C/min) 

Target 

Press 

(°C) 

Time SP Type Ramp 

Rate  

(bar/min) 

Target 

Press  

(bar) 

Time SP Type Ramp 

Rate 

(bar/min)  

Target Vac. 

(bar) 

Time 

Dwell N/C 25 1′  Dwell N/C 0 1′  Step N/C -0.80 N/C 

Ramp 0.9 80 N/C Ramp 0.10 6 N/C Dwell N/C -0.80 1′  

Ramp 0.9 180 N/C Dwell N/C 6 N/C Step N/C -0.30 N/C 

Dwell N/C 180 2h Dwell N/C 6 10′  Dwell N/C -0.30 10′  

Ramp 2.5 60 N/C Dwell N/C 6 10′ Dwell N/C -0.30 10′  

Ramp 2.5 40 N/C Ramp 0.50 0 N/C Dwell N/C -0.30 5′  

N/C: Not Controlled. Ramp Rate Temperature: °C/min, Ramp Rate Pressure: bar/min,  
Ramp Rate Vacuum: bar/min 
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Figure 13 shows the cure cycle of the laminates.  

 

Figure 13 Curing cycle composite panels. 

 

Table 8 summarises the information of the prepreg laminates manufactured: 

Table 8 Summary manufactured prepregs 

Product 
Description 

Number of 
Laminates 

Size Lay 
up 

Characteristic 

HexPly8552 
(Carbon 

fibre/epoxy) 

4 600 x 600mm  
[0]16 

Peel ply 
incorporated during 
the manufacturing 
process to texture 

the composite 
surface 

1 620 x 300mm 

 

 

 

 

 

 



41 

 Specimen cutting  

Waterjet cutting was the method used to cut the composites laminates into 

small coupons. A waterjet uses a high pressure stream of water or a mixture 

of water and abrasive substance to erode a narrow line in the material to be 

cut. Waterjet cutting offers fast cutting. Due its precision and ability to cut 

almost any material, this technique is extremely versatile. It is the preferred 

method when the material being cut is sensitive to the high temperatures 

generated by the other cutting methods.  

A mixture of water and abrasive garnet was used for cutting the composite 

laminates. An Australian garnet 80mesh was used (industry standard) and the 

cutting pressure applied was 60,000psi [66].  

Through waterjet cutting, the composites laminates were cut into small 

coupons of 100mm length and 25mm width. These dimensions were chosen 

based on standard BS ISO 4587 [67] (more information about the joint 

assessment can be found in Chapter 4.5). 

An individual specimen-naming system was devised to guarantee traceability 

to the original panels, treatment type, and joining conditions. Each specimen 

was named using the following code “Sxxx”; where “xxx” is the reference 

number from which panel the coupons were cut and also their position in the 

panel. Figure 14 shows a sketch of the specimens obtained per panel. 

Each panel of 600 x 600mm was cut into 95 specimens. From the smallest 

laminate (620 x 300mm), 38 composite coupons were obtained. In total, 418 

specimens were cut from the five composite panels manufactured. 

Measurements of the samples can be found in Appendix A. 
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Figure 14 Panels and specimens obtained per panel. 

 

 Surface preparation  

Different surface pre-treatments have been investigated in this research. The 

combinations of the pre-treatments carried out in the adherents are presented 

in Table 9.  

After the peel ply was removed from the adherents, the surfaces were cleaned 

with acetone and pre-treated by manual abrasion, grit blasting and plasma. 

Each pre-treatment is discussed in more detail in the following subchapters.  

Table 9  Surface pre-treatment combination  

Surface pre-treatments combination  

Peel ply   Manual abrasion  Grit blasting  Plasma 

    

    

    

    
 

 

 

 

 

Reference Line  

Base Line Industry   
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 Pre-treatment peel ply plus manual abrasion  

As cited in Chapter 1, peel ply is broadly used for bonding primary aerospace 

structures. It is added during the manufacturing process to prevent 

contamination and texture the surface of the composites, reducing or 

eliminating the need for abrasion.   

As the aerospace industry conventionally uses abrasion and grit blasting for 

surface preparation, these methods will be used as the base line industry for 

comparison purposes. After the peel ply was removed from the samples, they 

were lightly manually abraded with medium-grit emery paper (p150 grit sand 

paper was used) [68-70]. The surfaces of the samples were abraded until the 

reflective surfaces turned dull grey (firstly in the direction of the fibres for ten 

seconds, afterwards in the opposite direction of the fibres for another ten 

seconds more and finally circular movements along the surface for 5 seconds). 

Abrasion pre-treatment should be carried out in such a way that damage to 

the reinforcing fibres is avoided or minimised. It should always be followed by 

solvent cleaning to ensure the removal of loose particles. Therefore, all the 

samples were cleaned with acetone and left to dry (15 minutes) before the 

adhesive film was added. In an industrial environment, before cleaning the 

samples with the solvent, it may be necessary to use a vacuum system to 

remove much of the dust generated. 

 

 Pre-treatment peel ply plus grit blasting  

Grit blasting was also investigated in order to compare the results obtained 

against manual abrasion.    

A Guyson 400 syphon blasting system was used to grit blast the surfaces of 

the substrates. This system uses compressed air to propel blast media directly 

at the component through an exclusively designed blast nozzle.  

Different run pressure values were investigated (35, 40 and 45psi) before 

blasting the real batches of samples. Images of grit blasted samples were 
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taken using scanning electron microscope (SEM) to look for evidence of resin 

on the surface and also fibre fracture. Experience has shown that resin/fibre 

exposure have an influence on adhesive bonding [72].  

A scanning electron microscope produces images of a sample by scanning 

the surface with a focussed beam of electrons. A Zeiss 1455EP environmental 

scanning electron microscope with an EDAX Genesis 2000 EDX system was 

used. 

Through grit blasting the original shiny texture of the surface must be 

eliminated to ensure the sample is correctly blasted (rather than underblasted). 

The samples treated at 40 and 45psi were shown to be over blasted with signs 

of carbon fibres being removed or damaged. This was not observed with the 

sample treated at 35psi.  
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Figure 15 SEM images grit blasted samples: top left (35psi), top right (40psi) 

and bottom (45psi). 

Table 10 presents information about the grit blasting machine used and the 

run pressure used during the process.  

Table 10 Type and conditions grit blasting experiments  

Description 

Equipment Guyson 400 syphon blasting system 

Grit Saftigrit 100 mesh alumina 

Nozzle Airjet 2.8mm bore 

Run pressure 35psi 

Time  20 seconds 

 
 
 
 
 
 

 Pre-treatment peel ply  

Peel ply (PP) was removed from another batch of samples. This method was 

used as a reference line to compare the strength of the joints against manual 

abrasion, grit blasting and plasma.  

Initiation of the peel ply removal was done using a razor blade; the rest could 

be removed by hand.  

 

 Pre-treatment peel ply plus plasma 

The following batches of samples were treated using a cold atmospheric 

pressure plasma (CAP) system. A PlasmaTact Atmospheric Device was used 

for the pre-treatment of the substrates, purchased from Adtec Europe Limited. 

The model of the equipment was a PM01-15AR0, intended for surface 

treatment for bonding or adhesion and cleaning for different materials.  

This device generates plasma which uses microwave low-temperature 

atmospheric pressure plasma. The main part of the equipment consists of a 
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power supply and gas control. Argon or Helium plasma is generated by means 

of a plasma generator called a “mini-plasma torch”.  

The device is connected to XYZ stage and parameters such as speed, 

distance between the plasma and the substrate, gas composition and flow rate 

can be changed and controlled. 

The plasma equipment used in this research is shown in Figure 16. Table 11 

summarizes the specifications of the system.  

Table 11 Specifications plasma equipment  

Specifications  

Model  PM01-15AR0 

Plasma generation 
method 

Microwave atmospheric pressure streamer 
plasma generation  

Plasma generator  Mini-plasma torch 

Plasma gas -Primary gas: Argon or Helium purity ≥ 
99.9% 

-Possible secondary gases:N2, O2, functional 
gases (CH4,CF4) 

Flow rate gas  Primary gas: 10l/min* 
Secondary gas: 5l/min* 

Microwave Amplifier Maximum Output: 15W solid-state system 
Frequency: 2.45GHz fixed 

Control Manual Operation 

*maximum values  

 

 

 Figure 16 Plasma equipment.   
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This control unit can use argon or helium gases as the carrier, and oxygen and 

nitrogen as the active gases.  

As explained in Chapter 2, different parameters can be considered while pre-

treating substrates through plasma.  

The type of gas used during this research was argon as primary gas, combined 

with 20% of air as secondary gas. Plasma conditions were fixed at 15W of 

radio frequency (2.45GHz) power. The plasma exposure was defined by the 

number of passes of the plasma jet over the substrate. Table 12 presents the 

values of different parameters considered during the surface pre-treatment of 

the samples [71]. 

Table 12 Parameters and values used plasma treatment  

Parameter  Step Value 

Type of gas Fixed Argon: primary gas 
Air: secondary gas 

Gas Flow Fixed Primary gas: 8l/min 
Secondary gas: 0.2l/min 

Power Fixed 15W 

Distance (between the 
nozzle and the substrate)  

Fixed 4mm 

Speed Variable 100, 300 and 500mm/min 

Number of passes Variable 1, 3 and 5 

The variable parameters (speed and number of passes) defined the test matrix 

(Figure 17) used for the experiments.  

 

 

 

 

 

 

 

Figure 17 Test matrix for plasma pre-treatment.  

Number of passes 

Speed 

(mm/min) 



48 

Once the peel ply was removed from the samples, the substrates were 

cleaned with acetone and dried for 10 minutes. The substrates were then 

ready to be pre-treated by plasma using the values listed in Table 12.  

Mach3 G-code software was used to programme the number of passes of the 

plasma nozzle, the speed, the distance of the plasma to the substrates and 

the path that the plasma should follow to treat the substrates. The area treated 

in the composite coupons through plasma was fixed to 12.5mm which 

corresponds with the overlap length value required according to BS ISO 4587 

standard.  

 

Figure 18 Path of the plasma nozzle during the treatment.  

 

A fibre optic temperature sensor from Optocon was used to check the 

temperature of the CAP system. Figure 19 represents the evolution of the 

plasma temperature at the nozzle exit, varying the distance of the nozzle from 

the support tool (Figure 5, temperature sensor was placed on the support tool).   
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Figure 19 Plasma temperature evolution varying the distance of the nozzle 
from the support tool.   

 

 No pre-treatment: samples as received  

For comparison purposes, the side of the substrates with no peel ply, called 

bag side (Figure 20), was also studied to investigate variances between 

bonding these two different sides of the substrates. The bag side was also pre-

treated through manual abrasion, girt blasting and plasma using the 

parameters defined in Table 12.    

 

 

 

 

 

 

 

 

 

 

Figure 20 Bag side on the left and peel ply side on the right. 
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Figure 21 Peel ply removal. 

 

 Summary of pre-treatment types  

Table 13 summarises the different pre-treatments types explored during this 

research. 

Table 13 Pre-treatment types: peel ply side and bag side  

Pre-treatment type 

Peel Ply   Manual Abrasion  Plasma  Grit blasting Bag side 

     

     

     

     

     

     

     

No Pre-treatment: samples as received  

     
 

 

 

 

 

Peel ply 
removal 
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 Joint assembly 

Once the substrates had been pre-treated through the different methods (peel 

ply, manual abrasion, grit blasting and plasma), the adherents were ready to 

be bonded.   

In order to achieve reproducible and high quality joints, the bonding process 

was aided using further assembly equipment. For this purpose, the jig shown 

in Figure 22 was designed and manufactured, providing two additional benefits 

during the bonding process. Firstly, the correct position of the substrates will 

be guaranteed since the components will not be able to move. Secondly, a 

consistent overlap length of 12.5mm will be ensured for all the joints during the 

bonding process.   

 

Figure 22 Jig manufactured for assembly of the joints. 

 

One of the substrates was placed in the jig and the adhesive film added on top 

of it (Figure 23a.) A pinch of ballotini beads were added on top of the adhesive 

film for thickness control. The next step was to place the other substrate in the 

jig to complete the joint assembly. Pressure was required during the bonding 

process to make sure that the bond will occur. For this product, cure pressures 

of 100-350kPa are recommended during cure [64]. For this purpose, foldback 

clips were used (Figure 23b). 
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Figure 23 Joint assembly: a. positioning first adherent and adhesive film,                   
b. positioning second adherent and foldback clips. 

 

At this stage, the joint was ready to be placed in the oven for curing the 

adhesive at 120°C for 30 minutes. In order to cure the adhesive, a Binder 

M240 high performance temperature chamber was used. This chamber can 

operate in a temperature range from 5°C ambient temperature up to 300°C.   

After the curing of the adhesive, the joints were cooled to below 70°C before 

releasing the pressure (recommendation from the resin supplier). 

Tables 14 to 21 summarise the steps followed for all the surface pre-

treatments applied during this researched for both sides of the substrates, peel 

ply and bag side.  

a. 

b. 
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Table 14 Pre-treatment: peel ply plus manual abrasion  

Pre-treatment type Steps pre-treatment  

 
 
 
 

Peel ply plus 
abrasion 

(Base line industry) 
 

- Removing peel ply  
- Abrasion of the substrates  
- Wiping substrates acetone and dry 
- Place adhesive film onto one of the substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 

 
 

Table 15  Pre-treatment: peel ply plus grit blasting  

Pre-treatment type Steps pre-treatment  

 
 
 

Peel ply plus grit 
blasting 

(Base line industry) 
 

- Removing peel ply  
- Wiping substrates acetone and dry 
- Grit blasting pre-treatment  
- Wiping again substrates acetone and dry 
- Place adhesive film onto one of the substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 

 

Table 16  Pre-treatment: peel ply   

Pre-treatment type Steps pre-treatment  

 
 

Peel ply  
(Reference line)  

 

- Removing peel ply  
- Wiping substrates acetone and dry 
- Place adhesive film onto one of the 

substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 
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Table 17  Pre-treatment: peel ply plus plasma 

Pre-treatment type Steps pre-treatment  

 
 
 
 

Peel ply plus plasma 
 

- Removing peel ply  
- Wiping substrates acetone and dry 
- Plasma pre-treatment of the substrates, 

changing the speed and number of passes  
- Place adhesive film onto one of the substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 

 

Table 18  Pre-treatment: plasma on bag side of the substrates   

Pre-treatment type Steps pre-treatment  

 
 
 
 

Plasma on bag side  
 

- Wiping substrates acetone and dry 
- Plasma pre-treatment of the substrates, 

changing the speed and number of passes  
- Place adhesive film onto one of the substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 

 

Table 19 Pre-treatment: manual abrasion on bag side of the substrates   

Pre-treatment type Steps pre-treatment  

 
 
 

Manual abrasion on 
bag side  

 

- Wiping substrates acetone and dry 
- Abrasion of the substrates  
- Wiping substrates acetone and dry 
- Place adhesive film onto one of the substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 
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Table 20 Pre-treatment: grit blasting on bag side of the substrates   

Pre-treatment 
type 

Steps pre-treatment  

 
 
 

Grit blasting on 
bag side  

 

- Wiping substrates acetone and dry 
- Grit blasting pre-treatment  
- Wiping substrates acetone and dry 
- Place adhesive film onto one of the substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 

 

Table 21  No pre-treatment, bag side: samples as received  

Pre-treatment type Steps pre-treatment  

 
No pre-treatment  

 
Bag side,  

samples as 
received  

 

- Wiping substrates acetone and dry 
- Place adhesive film onto one of the 

substrates  
- Add ballotini beads  
- Completion the joint assembly  
- Measurement bond line thickness before 

curing 
- Curing at  120°C for 30 minutes 
- Cooling down below 70°C before removing 

clamps 
- Measurement bond line thickness after curing 

 

 Joint assessment  

Once the joint was assembled, the quality of the joints was assessed through 

mechanical testing. The mechanical test was based on BS ISO 4587 

“Adhesive – Determination of tensile lap-shear strength of rigid-to-rigid bonded 

assemblies” (Figure 24) [72]. The machine used to carry out the static test was 

a Zwick 100kN tensile machine. 
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Figure 24 Specimen under tensile lap shear test.  

 

According to standard BS ISO 4587, the length of each coupon should be 

100mm and the width 25mm. The length of the overlap shall be 12.5mm. The 

tests were carried out at a constant speed so that the average joint will break 

in a period of 65s ± 20s (0.5mm/min). Five specimens per pre-treatment were 

tested [72]. The dimensions of the joints and their tolerances are shown in 

Figure 25. 

 

Figure 25 Dimensions and tolerances of joint (mm). 
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Aluminium tabs were added to the specimens to avoid slipping during the 

mechanical testing. The tabs were added to the specimens at the location of 

the grips (see Figure 25). Therefore, the dimensions of each tab were 25mm 

width and 50mm length.  

Tabs were bonded using an adhesive that cures at or below the panel cure 

temperature, and also below the curing temperature of the adhesive film used 

to make the lap shear joint. This is to avoid adding undesirable postcure to the 

panel and any effects in the film adhesive. 

The adhesive used to bond the tabs onto the substrates was DP490, supplied 

by 3M. DP490 is a two component epoxy adhesive that provides high quality 

bonding performance.  This adhesive cures at 80°C for one hour. Before 

adding the tabs, each one was wiped with acetone to remove loosely attached 

surface films as oils, dusts, mill-scale and all other surface contaminants.  
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 Results and Discussion  
 

The bonded joints were assessed using tensile lap shear tests, according to 

the BS ISO 4587 standard [72] (detailed in subchapter 4.5). An assessment of 

the different pre-treatments was carried out using lap shear strength (LSS) 

values alongside a surface characterisation of the substrates (surface 

roughness, surface tension measurements and analysis of potential chemical 

changes).  

The full data from LSS experiments are provided in Appendix B. These values 

are shown in tables with the corresponding representation of load values 

versus displacement.  

This chapter presents a summary of the data obtained for joints which were 

pre-treated using different methods followed by a discussion of the findings for 

this investigation.  

 

 Joint assessment  
 

Table 22 shows the different pre-treatments investigated in this research for 

both sides of the composite coupons (peel ply side and bag side).  

Table 22 Summary of Table 13: pre-treatment types  

Pre-treatment type 

Peel Ply + Manual Abrasion (Base line industry) 

Peel Ply (Reference line) 

Peel Ply +  Plasma (Argon + Air) 

Peel Ply + Grit Blasting (Base line industry) 

Bag side + Plasma (Argon + Air) 

Bag side + Manual Abrasion 

Bag side + Grit Blasting 

No pre-treatment 

Bag side 
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 Joint assessment, peel ply side  

LSS values for peel ply, peel ply plus manual abrasion, peel ply plus plasma 

and peel ply plus grit blasting pre-treatments are shown in Table 23. LSS 

values are the result of the average of testing five specimens per 

treatment/combination as established in the BS ISO 4587 standard. Values for 

standard deviation (SD), which quantifies the amount of variation of a set of 

data, and coefficient of variation (COV), the ratio of the SD to the mean, are 

also presented. 

For peel ply plus plasma pre-treatment, different joints were first bonded using 

the extreme corners of the test matrix (Figure 26). The LSS values did not vary 

significantly using these four different conditions (1pass-100mm/min, 

5passes-100mm/min, 1pass-500mm/min and 5passes-500mm/min, shaded in 

light green in Figure 26a). Therefore, the number of passes was increased to 

10 passes, and the speed of the process to 1000mm/min, resulting in a new 

test matrix (Figure 26b).  

 

 

 

Figure 26 a. Test matrix plasma pre-treatment, b. New test matrix plasma pre-
treatment. 
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Table 23 LSS values peel ply side using different pre-treatments  

Peel Ply Side  

Pre-treatment type LSS 
(MPa) 

SD 
(MPa) 

COV(%) Failure mode  

Peel ply + manual abrasion 38.4 1.1 3.0 Cohesive  
Adhesive  

Peel ply 33.3 0.9 2.7 Cohesive 

Peel ply + grit blasting  39.9 1.4 3.5 Cohesive  

Peel ply + plasma. Conditions: 
1pass, 100mm/min 
1pass, 500mm/min 
1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10 passes, 100mm/min 

 
34.1 
35.1 
32.7 
36.7 
33.6 
35.3 

 
1.3 
0.7 
0.7 
0.8 
0.8 
0.5 

 
3.8 
1.9 
2.1 
2.1 
2.3 
1.4 

 
 
 

Cohesive 
 

 

Figure 27 represents the LSS values achieved treating the peel ply side of 

the composite through the different pre-treatments. 

 

Figure 27 LSS values versus pre-treatment type, peel ply side. 

 

Before the discussion of results, Figures 28 to 31 illustrate some examples of 

the failure mode of the different pre-treatments.   
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Figure 28 Failure of bonded sample S203-S204: peel ply side as received. 
Cohesive failure. 

 

 

Figure 29 Failure of bonded sample S186-S187: peel ply side pre-treated 
through manual abrasion. Cohesive plus adhesive failure (slight delamination).  

 

Delamination 
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Figure 30 Failure of bonded sample S210-S209: peel ply side pre-treated 
through grit blasting. Cohesive failure plus delamination.  

 

 

Figure 31 Failure of bonded sample S153-S154: peel ply side pre-treated 
through plasma (conditions: 10 passes, 100mm/min). Cohesive failure. 

 

Figure 27 shows that treating the peel ply surface of the samples using manual 

abrasion (38.4MPa) and grit blasting (39.9MPa) produces an improvement of 

15% and 20% respectively in the strength of the joints, compared to those just 

with peel ply (33.3MPa).  

During the removal of the peel ply, some synthetic peel ply cloth can remain 

on the substrates. Through manual abrasion and grit blasting, these residues 

Delamination 
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can be eliminated. In addition, through these processes, more resin in the 

substrates is removed, and therefore the underlying composite fibres will be 

highly exposed, leading to an improvement of the strength of the final joint. 

The fibre exposure can be observed in Figure 29 (manual abrasion), and, more 

noticeably, in Figure 30 (grit blasting).  

Through grit blasting, the strength value was higher than for manual abrasion. 

This is due to the nature of the process. During grit blasting, a gun is used to 

propel blast media directly at the component, ensuring that the whole area will 

be treated. Through manual abrasion, an even treatment over the whole area 

is more difficult, due to the inconsistent manual nature of the process. It is also 

important to highlight that through manual abrasion, the possible 

contamination left after removing the peel ply may transfer to the abrasive 

paper, and therefore it could be transferred to other areas on the surface, 

rather than being removed.   

The highest strength achieved using plasma pre-treatment was with 5 passes 

at 100mm/min (36.7 ± 0.8 MPa), and the lowest value was reached at 1 pass 

at 1000mm/min (32.7 ± 0.7 MPa). In all cases, it was noticed that the adhesive 

always failed cohesively.  

It is known that plasma pre-treatment is an excellent method for removing 

contaminants from substrates prior to bonding. Comparing the strength values 

achieved through pre-treating the samples with plasma against no pre-

treatment (ie just peel ply), there is no significant change in the LSS values. 

This shows that the addition of peel ply during the manufacturing of the 

composite part is very effective for preventing contaminants from being 

integrated into the finished part. 

Comparing manual abrasion against plasma, there is a slight improvement of 

LSS when pre-treating the samples using manual abrasion. Due the nature of 

the process, it is high likely that manual abrasion introduced a slight 

modification at the end of the joint where the edges become rounded (Figure 

32a). However, through plasma, the shape of the edges of the joints remained 

the same as the original ones after the pre-treatment (Figure 32b).  
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An example to support this theory would be the modification of window profiles 

in aircraft. In the past, the shape of aircraft windows was rectangular. However, 

the shape was changed to oval, as it was proved that this shape had less 

stress concentration around the edges of the windows and, therefore, offered 

greater structural integrity [73]. 

This rounded or oval effect at the edges of the joints that were pre-treated 

through manual abrasion (visible to the naked eye) could reduce the local load 

stresses around the edges, resulting in a slight increase in the strength, as 

observed in Table 23. However, this is just a possibility, and further analysis 

should be carried out, as the SD of the samples that were pre-treated through 

manual abrasion was slightly higher than those pre-treated through plasma.  

 

 

Figure 32 a. Shape of the end of the joint through manual abrasion pre-
treatment (slightly rounded); b. Shape of the end of the joint through plasma 
pre-treatment. 

 

As discussed in Chapter 2, the adhesive bond line thickness (BLT) will have 

an influence on joint strength. Therefore, the BLT was calculated by measuring 

the thickness of the lap shear joints before and after curing the adhesive, using 

a digital (Mitutoyo) micrometre (accuracy of ±2μm).  

The general effect of increasing the BLT of an adhesive in single lap joints is 

shown in Figure 33. It is noticeable that shear strength decreases if the layer 

of the adhesive is thick. If the BLT is too thin, there will be a risk of incomplete 

b. Plasma 

a. Manual Abrasion  
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filling of the joint due to contact between high points on the joint substrates. 

The shape of the curve will be affected by the type of adhesive. This curve is 

characterised by an optimum BLT area. For each adhesive, the values within 

this area will vary. In the case of epoxies, the optimum BLT area often varies 

between 50-250μm [53]. 

 

 

Figure 33 Shear strength versus bond line thickness [53]. 

 

Table 24 shows the BLT of the specimens when pre-treating the peel ply side 

with the different pre-treatments. BLT values are given by taking the average 

measurements of five specimens. Figure 34 illustrates the influence of the 

thickness of the film adhesive (ballotini beads added) on the joint strength.  
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Table 24 BLT lap shear joints peel ply side  

Peel Ply Side  

Pre-treatment type BLT 

(mm) 
SD BLT* 

(mm) 
LSS (MPa) 

Peel Ply + Manual Abrasion 0.105 0.045 38.4 

Peel Ply 0.195 0.025 33.3 

Peel Ply + Grit Blasting  0.142 0.055 39.9 

Peel Ply + Plasma. Conditions: 
1pass, 100mm/min 

1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
0.245 
0.181 
0.247 
0.267 
0.211 

 
0.024 
0.025 
0.029 
0.025 
0.009 

 
34.1 
35.3 
32.7 
33.6 
36.7 

*The SD deviation is illustrated in Figure 34. However, some SD values are so small that cannot be 
noticeable due the markers on the graphic. 
 

 

Figure 34 Influence of film adhesive thickness on LSS – peel ply side.  

 

Figure 34 shows that the drop in strength occurs somewhere between 0.142 

and 0.181mm. In thicknesses greater than 0.19mm, shear strength is roughly 

constant.  
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 Joint assessment, bag side  

As mentioned in Subchapter 4.3.5, the bag side of the substrates was also 

pre-treated and investigated. LSS values are given in Table 25.  

Table 25 LSS values bag side using different pre-treatments  

Bag Side  

Pre-treatment type LSS 
(MPa) 

SD (MPa) COV(%) Failure 
mode 

Bag side + Plasma. 
Conditions: 

1pass, 100mm/min 
1pass, 500mm/min 
1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
39.4 
34.4 
38.0 
42.8 
36.8 
41.1 

 
1.0 
1.9 
1.3 
1.9 
1.8 
1.9 

 
2.5 
5.5 
3.5 
4.4 
4.8 
4.6 

 
 

Cohesive  
Adhesive 

Bag side + Manual Abrasion 34.7 1.7 4.8 Cohesive  
Adhesive 

Bag side + Grit Blasting  40.8 0.5 0.5 Cohesive  
Adhesive 

No pre-treatment 

Bag side  17.4 1.4 8.1 Adhesive  

 

Figure 35 represents the LSS values achieved when pre-treating the bag side 

of the composite with the different pre-treatments. 

 

Figure 35 LSS values versus pre-treatment type, bag side. 
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Figure 36 shows that the failure mode observed for the bag side with no pre-

treatment was adhesive in type. This means that the failure happened at the 

interface between the adhesive and the adherent. This type of failure must be 

avoided, as it is considered the result of a weak bond. This is the reason why 

the value of LSS achieved was very low, reaching only 17MPa. Also, it is 

possible to observe a significant number of voids at the failure interface, 

making the joint relatively weak. The cause of these voids is unknown, but it 

could be due to air entrapment during the bonding process. 

 

 

Figure 36 Failure of bonded sample S225-S226: bag side, no pre-treatment. 
Adhesive failure.  

 

As mentioned in Section 2.3, in some cases cohesive and adhesive failures 

can happen in the same bond. This mixed-mode failure was experienced by 

the samples that were pre-treated using grit blasting and manual abrasion. 

Examples of this type of failure are shown in Figures 37 and 38.  

Example area with voids 
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Figure 37 Failure of bonded sample S282-S283: bag side pre-treated through 
manual abrasion. Cohesive failure plus delamination (also adhesive failure but 
in much less proportion that the other failure modes). 

 

 

Figure 38 Failure of bonded sample S216-S217: bag side treated through grit 
blasting. Cohesive failure and delamination.   

 

The LSS value achieved for grit blasting was higher (40.8MPa) than for manual 

abrasion (34.7MPa). As explained before, this could be due to the nature of 

the process. Grit blasting provides more consistency than manual abrasion. 

This fact can also be explained by comparing the SD of both processes, which 

was 0.5MPa for grit blasting, and 1.7MPa for manual abrasion.     

Delamination 

Delamination 
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Delamination appears when pre-treating the bag side of the coupons using 

manual abrasion and grit blasting (delamination is boxed in orange on Figures 

37 and 38). Comparing this against bag side without any pre-treatment (Figure 

36), two different colours are noticeable in Figures 37 and 38 at the failure 

interface. Light grey could represent the cohesive failure through the adhesive, 

while yellow could indicate adhesive plus the epoxy of the composite 

(adhesive pulls some of the resin off).  The amount of resin on the bag side of 

the laminates is higher than on the peel ply side. This could be the reason why 

the yellow colour is only noticeable at the failure interface on the bag side of 

the samples (pre-treating them through manual abrasion, grit blasting, and 

plasma).    

Samples treated with plasma showed a very real improvement, achieving the 

highest strength of 42.8MPa when treating the samples with plasma at 

100mm/min and 5 passes (same conditions that the highest value was 

obtained when treating the peel ply side of the material). Samples treated with 

plasma also presented a mixed-mode failure. An example is shown in Figure 

39.  

 

Figure 39 Failure of bonded sample S264-S263: bag side treated through 
plasma (conditions: 10passes, 100mm/min). Cohesive failure plus slight 
delamination. 

 

Delamination 
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This improvement by treating the bag side of the samples (17.4MPa) with 

plasma (highest achieved value 42.8MPa) shows the effectiveness of the 

plasma pre-treatment as a preparation method. During the manufacturing of 

composite laminates, the bag side was covered by a layer of release film, as 

shown in Figure 12 (Chapter 4). This means that the bag side of the laminate 

was not protected from contamination during the manufacturing process. 

Therefore, the possibility of the laminate being contaminated appears during 

the manufacturing process, and increases during the storage period of the 

laminate prior to bonding. The thicker, “less stiff” layer of resin and adhesive 

on the bag side of the samples could also be another explanation for this 

improvement, as this layer has greater capacity to take up more strain.  

Table 26 shows the BLT of the specimens when treating the bag side using 

the different pre-treatments. Figure 40 represents the influence of the 

thickness of the film adhesive (ballotini beads added) on the joint strength. As 

observed in this figure, all the BLT measurements are between 0.05-0.12mm 

and therefore, it is difficult to observe a clear trend. BLT measurements for the 

peel ply side (Figure 34) shows a clearer trend as the measurements area is 

wider (~0.3mm).  

Table 26 BLT lap shear joints bag side 

Bag Side  

Pre-treatment type BTL 

(mm) 
SD BLT* 

(mm) 
LSS  

(MPa) 

Bag side + Plasma. 
Conditions: 

1pass, 100mm/min 
1pass, 500mm/min 

1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
0.101 
0.066 
0.081 
0.051 
0.074 
0.097 

 
0.025 
0.018 
0.021 
0.019 
0.021 
0.041 

 
39.4 
42.8 
41.1 
34.4 
36.8 
38.0 

Bag side + Manual Abrasion 0.113 0.027 34.7 

Bag side  + Grit Blasting 0.128 0.010 40.8 

 

Bag side  0.070 0.015 17.4 
*The SD deviation is illustrated in Figure 40. However, some SD values are so small that cannot be 
noticeable due the markers on the graphic. 
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Figure 40 Influence of film adhesive thickness on LSS – bag side. 

 

 

 Surface characterization  
 

The pre-treatment effects in the joints were assessed in terms of mechanical 

performance (LSS values) and also by using three different surface 

characterization methods. The methods employed were roughness 

assessment, X-ray photoelectron spectroscopy analysis and wettability study.  

These techniques are discussed in more detail in the following subchapters.  

 

 Roughness assessment 

Surface texture of the samples was measured using a calibrated Taylor 

Hobson Form Talysurf Intra 50 Surface Profilometer. The profilometer is 

housed on a granite slab to dampen vibrations. A Gaussian filter was applied 

to separate waviness and roughness profiles.  

One of the most common parameters used to measure surface roughness is 

the arithmetic average roughness (Ra). Ra represents the average value of 

individual heights and peaks in a surface topology, from the mean line, 

recorded within the sampling length. Figure 41 illustrates an example of the 

roughness profile taken from one of the samples studied in this research.  
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Figure 41 Surface roughness profile of sample without peel ply and no pre-
treatment. 

 

Evaluation lengths were selected based on the surface Ra values according to 

BS ISO 4288-1996 [74] .The sampling length (lr) was 2.5mm and the number 

of sampling lengths was five, making this a total of 12.5mm roughness 

evaluation length (ln). Three different roughness measurements were taken 

per sample. 

Table 27 gives, and Figure 42 represents, the average Ra values obtained 

after the roughness assessment of the different pre-treatments for the peel ply 

side of the adherents.  

Table 27  Ra values, peel ply side, different pre-treatments 

Peel Ply Side  

Pre-treatment type Ra (µm) SD (µm) COV (%) 

Peel Ply 7.465 0.262 3.51 

Peel Ply + Manual Abrasion 4.253 1.153 27.11 

Peel Ply + Grit Blasting  7.653 0.263 3.43 

Peel Ply + Plasma. Conditions: 
1pass, 100mm/min 
1pass, 500mm/min 

1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
7.918 
7.804 
8.175 
7.753 
7.203 
7.871 

 
0.286 
0.303 
0.891 
0.975 
0.492 
0.122 

 
3.61 
3.88 
10.89 
12.57 
6.83 
1.55 
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Figure 42 Average roughness Ra of different pre-treatments on peel ply side. 

 

Figure 43 compares the Ra values obtained for each pre-treatment type 

against the results of the shear strength for the peel ply side. Figure 43 shows 

that the lowest shear strength value (32.7MPa for treatment using plasma 1 

pass and 1000mm/min) was achieved with the highest roughness value, Ra 

=8.1µm. The higher shear strength (39.9MPa for treatment using peel ply plus 

grit blasting) was obtained with a roughness of Ra = 7.653µm. The second 

highest shear strength value (38.4MPa for manual abrasion) was obtained 

with the lowest roughness value Ra = 4.2µm.  

The work carried out by Matienzo et al. [16] and Wingfield et al. [17] showed 

that increasing the roughness of the surface led to stronger joints. However, 

the investigations done by Boutar et al. [75] showed that by increasing the 

roughness of the adherents, a decrease in the lap shear strength occurs. 

Boutar et al. found that specimens abraded with P1000 abrasive paper, which 

gave a roughness of 0.6µm, were much stronger than the ones abraded with 

P500, which gave a roughness of 3µm (material used in this investigation was 

an aluminium-copper alloy). 
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Figure 43 Average roughness Ra of different pre-treatments on peel ply side 
compared to LSS values (standard deviation for LSS is shown).  

 

For the pre-treatments and combination conditions for the peel ply side of the 

substrates under study in this research, the effect of roughness measured did 

not have a major impact on the strength. Looking at the LSS values, the 

adhesive used in this research was very good at wetting the surfaces, 

regardless of roughness.  

The same roughness assessment was carried out for the bag side of the 

adherents. Table 28 and Figure 44 represent the average Ra values obtained 

after the roughness assessment of the different treatments. 

Table 28 Ra values bag side different pre-treatments 

Bag Side  

Pre-treatment type Ra 

(µm) 
SD (µm) COV (%) 

Bag side + Manual Abrasion 4.192 0.481 11.47 

Bag side + Grit Blasting 8.556 0.364 4.25 

Bag side + Plasma. Conditions: 
1pass, 100mm/min 
1pass, 500mm/min 
1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
7.605 
7.252 
7.861 
7.427 
7.583 
7.979 

 
0.336 
0.589 
0.543 
0.541 
0.396 
0.206 

 
4.41 
8.12 
6.91 
7.28 
5.22 
2.58 

 

Bag side  7.842 0.563 7.17 
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Figure 44 Average roughness Ra of different pre-treatments on bag side. 

 

Figure 45 compares the Ra values obtained for each treatment type against 

the results of the shear strength for the bag side of the substrates.  

 

Figure 45 Average roughness Ra of different pre-treatments on peel ply side 

compared to LSS values (standard deviation for LSS is shown). 

Figure 45 shows that the lowest shear strength value (17.4MPa for bag side 

without any treatment) was achieved with a roughness value of Ra = 7.842µm. 

In contrast, the higher shear strength value (42.8MPa for treatment using 
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plasma 5passes and 100mm/min) was obtained with a roughness of Ra = 

7.427µm.  

The same outcome found on the peel ply side was observed for the bag side 

of the substrates, where the effect of roughness measured did not have a 

major impact on LSS strength.  

When comparing both sides of the composite, it is possible to highlight that 

manually abrading the surfaces produces a decrease in the original roughness 

of both sides. Ra for the peel ply side has an average of 7.465μm, and after 

manual abrasion the Ra decreases to 4.253μm. The same effect was observed 

for the bag side of the composite, where Ra is 7.842μm, and this value dropped 

to 4.192μm after manual abrasion. The drop in the Ra values is due to the 

manual operation, which reduces the height of the original peaks.   

Comparing the Ra values for all the pre-treatments for both sides, it is 

noticeable that the values for each pre-treatment/composite side are quite 

similar. However, checking the surface roughness profile for both sides, the 

pattern is different for each side. An example is illustrated in Figure 46. 

 

 

Figure 46 Ra values (left) and surface roughness profile for bag side (no pre-
treatment involved) and peel ply side (right). 
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The Ra value for the peel ply side of the composite is 7.465μm with a LSS 

value of 33.3MPa. The bag side, without any pre-treatment, has a Ra value of 

7.842μm; however, its LSS value is quite low (17.MPa) compared to the 

33.3MPa achieved for the peel ply side.  

Ra values only give information about the roughness deviation from the centre 

line. However, they do not give any information on how that deviation is 

distributed. The mean spacing at the mean line roughness parameter (RSm) 

expresses the mean of the width of the profile curve elements in a sampling 

length. Looking at Figure 46, the surface roughness profile of the bag side has 

a few large peaks, so the RSm value is higher (1768.42μm) than the value 

obtained for the peel ply side (486.91μm), which has small peaks. Rsm 

essentially means peak spacing, so the higher the value the few the number 

of peaks (and vice versa). This parameter explains why the surface roughness 

profile of these two sides is different.     

 

 

 X-ray photoelectron spectroscopy (XPS) analysis  

XPS is a technique that measures the elemental composition of the elements 

that exist at the surface in a material. It is an excellent way to analyse the 

changes in surface chemistry after exposing substrates to a treatment.  

XPS spectra are generated by bombarding the surface of a material with a 

beam of X-rays. As the X-rays hit the surface, it emits electrons and kinetic 

energy, which can be measured to create the spectrum. Emission of electrons 

occurs over a range of different electron kinetic energies which can be 

recorded to produce a photoelectron spectrum. Each peak represents 

electrons off a particular characteristic energy emitted from the atoms. Each 

element has specific binding energy (BE), is the energy required to remove an 

electron from the atom or molecule. The energies and intensity of the 

photoelectron peaks enable identification and quantification of all surface 

elements (except hydrogen) [50, 76]. 
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Chemical changes of the substrates were analysed using a VG Scientific 

ESCALAB MkII fitted with a Thermo Scientific Alpha 110 analyser and a 

Thermo Scientific XR3 digital X-ray source.  Spot analysis on the samples was 

performed using an X-ray spot size of 3mm. The methodology employed in 

this analysis consisted of a low resolution survey scan with a pass energy of 

300eV and 5 scans followed by a series of high resolution scans spanning 

each element detected in the survey with pass energies of between 20 and 

80eV depending on element intensity.  

The chemical composition of the pre-treated samples for both surfaces, peel 

ply and bag side, is presented in Table 29 and 30.  

In these tables the calculation of hydrogen does not appear as XPS does not 

detect hydrogen as it does not possess core electrons [77].  

Figure 47 and Figure 48 illustrates the X-ray photoelectron spectroscopy 

spectra of the surfaces treated (LSS values are also included in the table for 

comparison purposes). Appendix C collects the individual spectrum of each 

treatment, with their corresponding binding every value and the atomic 

concentrations.    

Table 29 LSS values and XPS atomic concentrations of surface pre-treated 
peel ply side  

Peel ply side 

Pre-treatment 
type 

LSS 
(MPa) 

Atomic concentration (%) 

C O N S Si Zn 

PP 33.3 75.66 13.14 - 2.34 1.39 1.15 

PP+Grit blast 39.9 61.81 22.41 8.91 2.76 0.72 0.17 

PP+Plasma 
5passes,100mm/min 

36.7 37.90 36.71 12.84 6.30 1.03 - 

PP+Plasma 
1pass,1000mm/min 

32.7 51.50 30.21 4.61 0.91 0.44 0.22 
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Figure 47 XPS spectra of surface pre-treated peel ply side: (a) peel 
ply+plasma, 1pass-1000mm/min; (b) peel ply+plasma, 5pass-100mm/min; 
(c) peel ply + grist blasting; (d) peel ply as received.  

 

Carbon, oxygen, nitrogen and sulphur are elements expected to be present in 

epoxy composite resin. Small traces of silicon and zinc were also found in the 

peel ply surface.  The concentration of these elements (Si and Zn) dropped 

after pre-treating the samples through grit blasting and plasma.  

Through plasma pre-treatment is possible to see the oxidation effect as the 

surface oxygen concentration increased from 13% to 37%.  
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Table 30 XPS atomic concentrations of surface pre-treated bag side 

Bag side 

Pre-treatment 
type 

LSS 
(MPa) 

Atomic concentration (%) 

C O N F S Si 

As received 17.4 55.43 14.57 6.77 20.03 1.59 1.61 

BS+Grit blast 40.8 66.77 21.96 7.49 - 2.74 1.04 

BS+Plasma 
5passes,100mm/min  

42.8 35.45 32.79 13.11 9.77 7.03 1.85 

BS+Plasma 
1pass,1000mm/min 

38 39.77 18.43 8.98 29.32 1.75 1.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48 XPS spectra of surface pre-treated bag side: (e) bag side+plasma, 
1pass-1000mm/min; (f) bag side+plasma, 5pass-100mm/min; (g) bag 
side+grist blasting; (h) bag side untreated. 

For the bag side of the samples (before any pre-treatment) a measurable 

concentration of fluorine (F) was identified on the surfaces (20%). This fluorine 

is attributed to fluoropolymer from the release film used during the 

manufacturing of the composite laminates. This finding has been reported by 

other researchers in the field [78].  
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Checking Table 29 it was not possible to observe fluorine on the surfaces pre-

treated through peel ply as the use of peel ply (as discussed several time along 

this thesis) prevents the occurrence of initial contamination.  

Grit blasting pre-treatment was also successful in removing the fluorine. For 

the pre-treating of the surfaces using plasma, two conditions were analysed: 

the fastest pre-treatment (1pass, 1000mm/min) and the slowest one (5passes, 

100mm/min). For the fastest period, the plasma did not have any effect for the 

removal of fluorine. In fact, the value of fluorine was higher (29.3%) than the 

one obtained for the bag side of the samples without any pre-treatment (20%).  

In contrast, pre-treating the samples at lower speed (100mm/min) and 

increasing the number of passes from one to five produced a decrease in the 

fluorine concentration from 20% (no pre-treatment) to 10%. This fact shows 

again the efficiency of plasma as a surface cleaning method.  

 

 

 

 Wettability study  

As explained in subchapter 2.1.3, the wettability is the capability of a liquid to 

wet and spread on a solid surface. This characteristic can be quantified 

measuring the contact angle formed by a liquid when is placed in a solid 

surface.  

Young’s equation [Formula 1] shows that there is a relationship between the 

contact angle (Ɵ), the surface free energy of the liquid (γl) and of the solid (γs) 

and the interfacial tension between the liquid and the solid (γsl)  [32]. 

 γ𝑠 = γ𝑠𝑙 + γ𝑙 × 𝑐𝑜𝑠𝜃   [Formula 1] 

Contact angles were measured using a Drop Shape Analyser DSA100 from 

Kruss. Two solvents were employed to calculate the contact angles; water and 

di-iodomethane. As shown in Figure 4, when a liquid is applied and does not 

spread, a drop with a specific contact angle on the surface will be created.  
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Calculation of the contact angles was made measuring three different points 

on the samples with each solvent. Through the contact angles, the surface 

free energies were calculated using the Fowkes method in which surface free 

energy can be expressed by two components, the dispersive energy and the 

polar energy. The dispersive energy can be related to the surface roughness 

or topography; while the polar energy can be associated to the chemistry of 

the surface. 

Table 31 and Figure 49 collect and represent respectively the values of the 

dispersive and polar components and the total surface free energy for the peel 

ply side (Table 31 also shows the LSS values for comparison purposes).   

Table 31 Dispersive and polar components, and surface free energy values 
peel ply side with LSS values   

 

Peel Ply Side  

Pre-treatment type Surface energy (mN/m) LSS  
(MPa) γd * γp * γ * 

Peel Ply + Manual Abrasion 45.62 0.78 46.40 38.4 

Peel Ply 16.39 3.63 20.02 33.3 

Peel Ply + Plasma. 
Conditions: 

1pass, 100mm/min 
1pass, 500mm/min 

1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
37.63 
38.26 
24.19 
33.45 
33.62 
33.12 

 
23.53 
21.67 
27.17 
15.81 
19.26 
23.29 

 
61.16 
59.93 
51.36 
49.26 
52.88 
56.41 

 
34.1 
35.1 
32.7 
36.7 
33.6 
35.3 

Peel Ply + Grit Blasting  43.25 4.13 47.38 39.9 

*γd: dispersive component; γp: polar component; γ: surface free energy 

The SD deviation is not illustrated in Figure 49 as only one measurement per pre-treatment was taken.   
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Figure 49 Comparison of surface free energy of the different pre-treatments 
on the peel ply side.  

 

 

Looking at Figure 49, little polar contribution was found for grit blasted and 

manual abraded samples. These pre-treatments presented significantly higher 

surface free energy when compared with the peel ply samples (this is due to 

the improvement of the dispersive component in both pre-treatments).   

In the samples that were pre-treated through plasma, a significant 

improvement in the surface free energy was observed. This is mostly through 

an increase in the polar component of the surface. This could imply two 

possible mechanisms; either the dispersive component (nonpolar) is being 

removed by plasma, or it is being functionalised by active species in the 

plasma. 

Compared to the other pre-treatments, peel ply presented the lowest surface 

free energy (~20mN/m). However, the LSS value for the peel ply samples was 

similar to the LSS values obtained when pre-treating the samples through 

plasma (where the highest surface free energies were obtained). The surface 

free energy values did not have a direct impact in the strength of the joints. 

This indicates that once the surface possesses good wetting capability for the 

adhesive, there is no real relationship between bond strength and surface free 

energy.   
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The bag side of the adherents was also studied. Table 32 and Figure 50 

display the values of the dispersive and polar components, and the total 

surface free energy for the bag side; Table 32 shows also the LSS values for 

comparison purposes.   

 

Table 32 Dispersive and polar components, and surface free energy values 
bag side with LSS values   

Bag Side  

Pre-treatment type Surface energy (mN/m) LSS  
(MPa) γd * γp * γ * 

Bag side + Plasma. Conditions: 
1pass, 100mm/min 
1pass, 500mm/min 

1pass, 1000mm/min 
5passes, 100mm/min 
5passes, 500mm/min 

10passes, 100mm/min 

 
20.89 
13.46 
25.89 
33.31 
20.07 
31.18 

 
33.83 
17.28 
4.09 
7.85 

27.35 
22.24 

 
54.71 
30.74 
29.98 
41.16 
47.42 
53.42 

 
39.4 
34.4 
38.0 
42.8 
36.8 
41.1 

Bag side + Manual Abrasion 30.97 3.37 34.34 34.7 

Bag side  + Grit Blasting 47.68 3.18 50.87 40.8 

 

Bag side  19.97 0.52 20.50 17.4 

*γd: dispersive component; γp: polar component; γ: surface free energy 

The SD deviation is not illustrated in Figure 50 as only one measurement per pre-treatment was taken.   

 
 

Figure 50 Comparison of surface free energy of the different pre-treatments 
on the bag side. 
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Figure 50 shows that both manually abraded and grit blasted samples exhibit 

higher total surface free energy compared to the samples without any pre-

treatment. Comparing these pre-treatments (manual abrasion and grit 

blasting) against samples pre-treated through plasma, it is possible to observe 

an increase of the polar component and a decrease of the dispersive 

component. It is noticeable with the samples that were pre-treated with one 

plasma pass, that when decreasing the speed of the process, the polar 

component increases.  

The lowest surface free energy value corresponded to the samples without 

any pre-treatment. These set of samples had the lowest LSS value due to 

contamination by fluorine found through XPS analysis, and the voids at the 

failure interface. 

 

 

 

 Adhesive void calculation 
 
The void content at the joining interface may significantly affect the final 

strength of the joint. Computerised tomography (CT) was employed as non-

destructive testing (NDT) technique to detect the voids at the bond line. This 

non-destructive test was carried out before the destructive testing (lap shear 

test).  

CT imaging is a NDT technique which uses X-rays to create 2D and 3D 

sectional images of an object. These CT images can provide various 

characteristics about the internal structure of an object including defects, 

dimensions, shapes and density. This is achieved by passing an array of X-

rays through an object and placing a series of detectors on the opposite side 

of the object which pick up the change in density or attenuation of these X-

rays while they pass through the object.  

Four samples were scanned to check the void content at the joining line. The 

equipment used was a HMXCT 225kV system from NIKON. This system 

possesses X-ray equipment that is capable of producing very small focal spots 

which are in the micro-focus range. This small focal spot size enables the 
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system to have high magnification levels which produce very high resolution 

CT scans.  

Table 33 shows the samples scanned through CT and their void content. The 

void content was calculated through the software “Volume Graphics Software” 

(VGStudioMax 2.1) using the defect detection tool module to obtain the 

relevant information about voiding.  

Table 33 Void content joint samples  

Sample 
designation  

Treatment Type Void content (%) 

S122-S123 Peel Ply side 
 

7.09 

S124-S125 8.04 

S126-S127 Peel Ply side + plasma  
(5passes, 500mm/min) 

8.01 

S128-S129 9.55 
 

Figure 51 shows an example of a CT scan of one of the joints assessed (S128-

S129). In this figure, the white dots at the bonding area represent the ballotini 

beads added before the assembly of the joint. The black dots are the voids 

present at the bonding interface. It can be seen that the areas and size of the 

voids are not homogenous along the bonding interface.  

 

Figure 51 CT scan of the bonded area of sample S128-S129. 
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There is no specific standard that defines the allowed void content in 

components. The permitted porosity will depend on the component, its loading 

and the distribution of the porosity within the component. The aerospace 

industry is more restricted than the other industries in terms of void content; 

where more than 4% should be avoided (ideal situation would be 0%).  

In this case, the samples assessed through CT had a void content in the range 

between 7-9.5%. In order to reduce the void concentration, a press to apply 

heat and pressure for the bonding can be used.   

Figure 52 illustrates one of the images taken using VGStudioMax software.   

 

Figure 52 S128-S129 Void calculation using VGStudioMax 2.1. 

 

 

 

 



89 

 Conclusions  

The use of cold atmospheric plasma pre-treatment can be extended to new 

industrial areas of investigation, where different companies have already 

shown their interest, such as HEXCEL, Bombardier, and Rolls-Royce.  

 It is known that the addition of the peel ply during the manufacturing 

process of composites protects the components from contamination. This 

has been proved by comparing the LSS values achieved for both sides of 

the composites. The bag side of the composites does not have the peel ply 

protection during the manufacturing process, and therefore this side is 

prone to contamination. This fact can be observed through the XPS 

analysis, where fluorine (coming from the release film used during the 

manufacturing process) is transferred to the composite side.  Fluorine was 

not found in the peel ply side of the composite. The contamination of the 

bag side of the laminates (ie no peel ply) increases during the storage 

period of the composite components prior to bonding. Protecting the 

composite laminates with peel ply doubles the performance of the joint, 

making them 52% stronger.  

  

 In the aerospace industry, the peel ply technique is widely used, either 

separately or in combination with mechanical roughening techniques 

(manual abrasion or grit blasting). This investigation has demonstrated that 

the strength of the joints is higher when combining peel ply with manual 

abrasion and grit blasting, rather than when using peel ply alone. Through 

these mechanical roughening techniques, the remains of the peel ply, 

coming from the removal of this ply, can be eliminated. Also, these 

techniques remove more resin from the substrates, and therefore, the 

underlying composite fibres will be highly exposed, leading to an 

improvement of the strength of the joint. When comparing grit blasting and 

manual abrasion, the strength value is higher for grit blasted samples than 

the abraded ones. This is due to the nature of the process. Through manual 

abrasion, an even treatment over the whole area is more difficult, due to 
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the inconsistent manual nature of the process. It is also important to 

highlight that through manual abrasion, the possible contamination left 

after removing the peel ply may transfer to the abrasive paper, and 

therefore could be transferred to other areas on the surface, rather than 

being removed.   

 

 The strength of the bag side of the composites without any pre-treatment 

is increased by pre-treating the samples through manual abrasion, grit 

blasting, and plasma. It was observed that grit blasting and plasma pre-

treatments (lowest speed process and 5 passes) were effective as cleaning 

methods, as there was no evidence of fluorine on the grit blasted samples, 

and the concentration of fluorine dropped considerably for the plasma pre-

treated samples.  

 

 The surface resulting from the tool can be characterised for the particular 

process used. However, this varies widely, and transfer levels change such 

that testing done on a tool surface is highly specific to the particular 

conditions used.  

 

 Plasma pre-treatment of the peel ply side of the composite did not show a 

significant change in the LSS values compared with the samples just pre-

treated with peel ply. Different plasma parameters have been varied in this 

research (number of passes and speed of the process). It was found that 

the highest LSS values for both sides of the composite material were 

achieved using the same conditions: five passes and 100mm/min (the 

lowest speed process selected for this research). For the peel ply side of 

the composite, the strength of the joints was improved by 10% compared 

with the samples with only peel ply. For the bag side of the composite, the 

strength of the joints without pre-treatment increased from 17.4MPa to 

42.8MPa while pre-treating the bag side with plasma. This improvement is 
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essentially due to the effectiveness of the plasma as a cleaning method; 

as mentioned before, the bag side of the composite is prone to be 

contaminated as it is not protected prior to bonding. The key differentiator 

between both sides is their cleanliness.  

 

 The effect of roughness measured did not have a major impact on the 

strength. The adhesive used in this research was very good at wetting the 

surfaces, regardless of roughness. For both sides, manual abrasion 

creates a surface that appears to be less rough than the substrate without 

pre-treatment. This is due to the nature of the process, as manual abrasion 

reduces the height of the original peaks. 

 

 The surface free energy values did not have a direct impact on the strength 

of the joints. This indicates that once the surface possesses good wetting 

capability for the adhesive, there is no real relationship between bond 

strength and surface free energy.   

 

 All the pre-treatments studied in this research have shown their 

effectiveness in removing contaminants. However, it is important to 

highlight that the failure mode in all the cases (except for the bag side of the 

samples without any pre-treatment) was cohesive, meaning that the 

adhesive failed. Therefore, it is difficult to understand the joint performance, 

as the adhesive is the limiting factor. More work will be carried out in the 

near future using a stronger adhesive which leads to failure at the interface 

between the adhesive and the adherent (adhesive failure). 
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Table A1 Width and thickness of composite samples  

Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

S001 25.04 3.22  S058 24.99 3.25  S115 24.98 3.19 

S002 25.10 3.15  S059 25.04 3.17  S116 25.01 3.16 

S003 25.11 3.16  S060 24.99 3.18  S117 24.94 3.16 

S004 25.07 3.14  S061 25.04 3.14  S118 25.03 3.15 

S005 25.06 3.14  S062 24.97 3.14  S119 24.95 3.15 

S006 25.06 3.15  S063 24.98 3.14  S120 24.99 3.15 

S007 25.06 3.14  S064 24.95 3.14  S121 25.04 3.14 

S008 25.10 3.14  S065 25.01 3.12  S122 25.00 3.13 

S009 25.14 3.13  S066 25.02 3.15  S123 25.07 3.12 

S010 25.06 3.13  S067 25.01 3.13  S124 25.00 3.13 

S011 25.11 3.12  S068 25.00 3.13  S125 25.09 3.15 

S012 25.16 3.12  S069 25.14 3.15  S126 25.11 3.14 

S013 25.16 3.14  S070 25.02 3.14  S127 25.09 3.14 

S014 25.12 3.14  S071 25.04 3.15  S128 25.06 3.15 

S015 25.04 3.11  S072 25.01 3.13  S129 25.09 3.13 

S016 25.13 3.14  S073 25.06 3.15  S130 25.07 3.15 

S017 25.12 3.15  S074 25.14 3.16  S131 25.07 3.17 

S018 25.18 3.15  S075 25.14 3.15  S132 25.13 3.19 

S019  25.08 3.19  S076 25.04 3.16  S133 24.99 3.22 

S020 25.05 3.20  S077 25.02 3.12  S134 24.81 3.19 

S021 25.10 3.16  S078 25.04 3.04  S135 24.93 3.15 

S022 25.01 3.18  S079 25.04 3.09  S136 24.86 3.16 

S023 25.10 3.15  S080 25.05 3.00  S137 24.91 3.14 

S024 24.99 3.15  S081 25.01 3.00  S138 24.83 3.14 

S025 25.05 3.15  S082 25.08 3.05  S139 24.84 3.14 

S026 25.10 3.15  S083 25.08 3.08  S140 24.80 3.14 

S027 25.06 3.16  S084 25.16 3.11  S141 24.84 3.15 

S028 25.17 3.14  S085 25.13 3.06  S142 24.86 3.12 

S029 25.06 3.15  S086 25.16 3.05  S143 24.86 3.12 
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Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

S030 25.14 3.18  S087 25.12 3.08  S144 24.94 3.13 

S031 25.16 3.14  S088 25.10 3.07  S145 24.95 3.13 

S032 25.18 3.15  S089 25.19 3.05  S146 24.94 3.15 

S033 25.13 3.15  S090 25.13 3.04  S147 24.91 3.16 

S034 25.07 3.15  S091 25.06 3.11  S148 24.94 3.15 

S035 25.13 3.17  S092 25.18 3.04  S149 24.95 3.15 

S036 25.11 3.17  S093 25.13 3.01  S150 24.92 3.15 

S037 25.21 3.16  S094 25.21 3.02  S151 24.91 3.17 

S038 25.10 3.21  S095 25.22 3.02  S152 24.92 3.21 

S039 24.91 3.22  S096 24.95 3.22  S153 24.87 3.18 

S040 25.04 3.19  S097 25.08 3.14  S154 24.96 3.16 

S041 24.94 3.19  S098 25.04 3.16  S155 24.93 3.16 

S042 24.99 3.14  S099 25.00 3.14  S156 24.97 3.14 

S043 24.92 3.15  S100 24.99 3.14  S157 24.91 3.14 

S044 24.91 3.16  S101 24.98 3.14  S158 24.91 3.12 

S045 24.89 3.16  S102 24.98 3.13  S159 24.87 3.12 

S046 24.95 3.15  S103 25.04 3.14  S160 24.93 3.13 

S047 24.95 3.16  S104 25.07 3.14  S161 24.91 3.13 

S048 24.97 3.15  S105 25.00 3.13  S162 24.92 3.14 

S049 25.01 3.14  S106 25.04 3.13  S163 24.90 3.15 

S050 25.02 3.13  S107 25.09 3.13  S164 24.99 3.14 

S051 25.01 3.15  S108 25.09 3.14  S165 24.94 3.15 

S052 24.99 3.13  S109 25.07 3.14  S166 24.97 3.15 

S053 25.02 3.13  S110 24.98 3.15  S167 24.92 3.14 

S054 25.05 3.15  S111 25.07 3.17  S168 24.97 3.16 

S055 25.00 3.15  S112 25.03 3.17  S169 25.03 3.05 

S056 25.01 3.17  S113 25.08 3.18  S170 25.04 3.07 

S057 25.02 3.22  S114 25.01 3.25  S171 24.97 3.08 

S172 24.96 2.96  S229 25.03 3.13  S286 25.21 3.13 

S173 25.00 3.03  S230 25.04 3.12  S287 25.12 3.15 

S174 25.01 3.03  S231 25.05 3.13  S288 25.10 3.15 
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Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

S175 25.03 3.00  S232 25.07 3.12  S289 25.21 3.13 

S176 25.01 3.02  S233 25.09 3.14  S290 25.17 3.13 

S177 25.04 3.03  S234 25.07 3.14  S291 25.17 3.13 

S178 25.03 3.05  S235 25.10 3.15  S292 25.11 3.13 

S179 25.06 3.06  S236 25.05 3.13  S293 25.08 3.13 

S180 25.04 3.05  S237 25.05 3.11  S294 25.11 3.13 

S181 25.06 2.99  S238 25.08 3.12  S295 25.16 3.12 

S182 25.03 3.00  S239 24.89 3.13  S296 25.06 3.13 

S183 25.03 3.08  S240 24.91 3.13  S297 24.92 3.14 

S184 25.09 3.03  S241 25.01 3.13  S298 25.05 3.15 

S185 25.03 3.03  S242 25.02 3.14  S299 25.11 3.14 

S186 24.99 3.05  S243 24.97 3.14  S300 25.06 3.15 

S187 25.09 3.06  S244 24.97 3.13  S301 25.03 3.14 

S188 25.04 3.05  S245 24.90 3.15  S302 24.95 3.15 

S189 25.11 3.03  S246 24.89 3.15  S303 25.10 3.14 

S190 25.13 3.08  S247 24.95 3.15  S304 25.07 3.13 

S191 25.12 3.14  S248 25.01 3.12  S305 25.13 3.06 

S192 25.03 3.15  S249 25.06 3.15  S306 25.21 3.10 

S193 25.00 3.13  S250 25.05 3.14  S307 25.21 3.10 

S194 25.08 3.13  S251 25.10 3.12  S308 25.29 3.09 

S195 25.01 3.14  S252 25.06 3.13  S309 25.22 3.10 

S196 25.07 3.13  S253 25.06 3.13  S310 25.24 3.09 

S197 25.03 3.13  S254 25.04 3.11  S311 25.17 3.10 

S198 24.94 3.13  S255 25.04 3.11  S312 25.24 3.10 

S199 25.01 3.13  S256 25.04 3.10  S313 25.16 3.09 

S200 25.05 3.12  S257 25.04 3.09  S314 25.17 3.10 

S201 24.96 3.15  S258 25.00 3.12  S315 25.15 3.10 

S202 24.84 3.15  S259 24.95 3.12  S316 25.07 3.10 

S203 24.96 3.12  S260 24.98 3.13  S317 25.12 3.11 

S204 25.02 3.13  S261 25.04 3.13  S318 25.20 3.11 

S205 24.94 3.13  S262 25.03 3.12  S319 25.06 3.12 
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Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

S206 24.91 3.16  S263 24.97 3.14  S320 25.08 3.13 

S207 24.85 3.15  S264 24.83 3.15  S321 25.05 3.12 

S208 24.99 3.15  S265 24.87 3.14  S322 25.07 3.11 

S209 24.99 3.15  S266 24.92 3.15  S323 25.09 3.07 

S210 25.04 3.13  S267 25.10 3.01  S324 25.11 3.10 

S211 25.10 3.12  S268 25.16 3.08  S325 25.10 3.11 

S212 25.09 3.13  S269 25.10 3.03  S326 25.11 3.14 

S213 25.13 3.12  S270 25.14 3.05  S327 25.16 3.12 

S214 25.15 3.14  S271 25.12 3.06  S328 25.18 3.12 

S215 25.13 3.15  S272 25.13 3.07  S329 25.17 3.11 

S216 25.05 3.14  S273 25.07 3.05  S330 25.20 3.13 

S217 25.14 3.13  S274 25.06 3.03  S331 25.14 3.11 

S218 25.06 3.13  S275 25.10 3.05  S332 25.15 3.13 

S219 25.08 3.12  S276 25.05 3.06  S333 25.19 3.14 

S220 25.03 3.11  S277 25.01 3.03  S334 25.01 3.12 

S221 24.98 3.11  S278 24.95 3.01  S335 25.00 3.12 

S222 25.06 3.14  S279 25.02 3.03  S336 25.09 3.13 

S223 25.11 3.14  S280 25.03 3.05  S337 25.11 3.12 

S224 25.00 3.13  S281 24.98 3.03  S338 25.05 3.12 

S225 25.02 3.15  S282 24.92 3.02  S339 25.06 3.12 

S226 25.00 3.16  S283 24.98 3.06  S340 25.01 3.12 

S227 25.04 3.15  S284 25.02 3.06  S341 24.95 3.11 

S228 25.05 3.15  S285 24.85 3.00  S342 25.00 3.13 

S343 25.10 3.13  S369 25.17 2.97  S395 25.06 3.14 

S344 25.19 3.14  S370 25.19 2.98  S396 25.07 3.13 

S345 25.14 3.14  S371 25.18 2.94  S397 25.14 3.15 

S346 25.20 3.12  S372 25.12 2.94  S398 25.21 3.15 

S347 25.17 3.12  S373 25.07 3.05  S399 25.13 3.12 

S348 25.16 3.12  S374 25.12 3.05  S400 25.02 3.06 

S349 25.16 3.13  S375 25.14 3.06  S401 24.97 3.09 

S350 25.15 3.13  S376 25.08 3.04  S402 24.90 3.10 

S351 25.18 3.14  S377 25.01 3.09  S403 24.95 3.11 
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Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

 Sample 

designation 

Width 

(mm) 

Thickness 

(mm) 

S352 25.16 3.13  S378 25.10 3.04  S404 24.95 3.08 

S353 25.11 3.10  S379 25.10 3.08  S405 24.96 3.10 

S354 25.05 3.12  S380 24.97 3.01  S406 24.94 3.09 

S355 25.09 3.14  S381 24.94 3.13  S407 24.96 3.08 

S356 25.14 3.13  S382 24.96 3.15  S408 24.90 3.08 

S357 25.13 3.16  S383 24.97 3.15  S409 24.99 3.11 

S358 25.08 3.14  S384 25.04 3.15  S410 24.92 3.09 

S359 24.92 3.12  S385 25.00 3.14  S411 24.96 3.09 

S360 24.97 3.14  S386 24.97 3.16  S412 25.04 3.06 

S361 25.03 3.13  S387 24.90 3.14  S413 25.05 3.07 

S362 25.20 2.99  S388 24.99 3.13  S414 25.07 3.05 

S363 25.24 3.00  S389 24.99 3.12  S415 25.09 3.09 

S364 25.19 3.01  S390 25.04 3.13  S416 25.11 3.11 

S365 25.25 2.99  S391 24.91 3.11  S417 25.16 3.08 

S366 25.22 3.01  S392 24.95 3.12  S418 25.09 3.05 

S367 25.22 2.98  S393 25.06 3.13     

S368 25.18 2.99  S394 25.05 3.14     
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Appendix B: 

 

Experimental Results 

– LSS values
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Table B1 LSS values and failure type: peel ply side plus grit blasting pre-

treatment 

OUTPUT:  Mechanical Testing  
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S181-S182 12.9 41.2  
Cohesive 

(Delamination)   
2 S183-S184 12.5 39.9 

3 S185-S206 12.5 40.1 

4 S207-S208 12.9 41.4 

5 S209-S210 11.7 37.4 

Mean: 39.9MPa 
Standard deviation: 1.4MPa 
COV (%): 3.5 

 

 

 

Figure B1 Load values versus displacement: peel ply side plus grit blasting 

pre-treatment. 
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Table B2 LSS values and failure type: peel ply plus manual abrasion pre-
treatment  

 

OUTPUT:  Mechanical Testing  
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S186-S187 12.4 39.6  
Cohesive 
Adhesive 

2 S188-S189 11.6 37.0 

3 S190-S191 12.3 39.1 

4 S192-S193 12.3 39.3 

5 S194-S195 11.6 37.0 

Mean:38.4 MPa 
Standard deviation: 1.1 MPa 
COV (%): 3.0 

 

 

Figure B2 Load values versus displacement: peel ply plus manual abrasion 
pre-treatment.  
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Table B3 LSS values and failure type: peel ply pre-treatment  

OUTPUT:  Mechanical Testing  
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S196-S197 10.4 33.2  
 

Cohesive  
2 S198-S199 10.8 34.6 

3 S200-S202 10.5 33.7 

4 S201-S203 9.9 31.7 

5 S204-S205 10.5 33.6 

Mean: 33.3MPa 
Standard deviation: 0.9MPa 
COV (%):  2.7 

 

 

 

Figure B3 Load values versus displacement: peel ply pre-treatment. 
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Table B4 LSS value and failure type: peel ply side plus plasma pre-treatment 
(1pass, 500mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=500mm/min 

Number of passes =1 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S112-S113 11.1 35.6  
 

Cohesive  
 

2 S114-S115 11.3 36.1 

3 S116-S117 11.1 35.5 

4 S118-S119 10.6 33.9 

5 S120-S121 10.8 34.7 

  Mean: 35.1MPa 
Standard deviation: 0.7MPa 
COV (%):1.9 

 

 

Figure B4 Load values versus displacement: peel ply side plus plasma pre-
treatment (1pass, 500mm/min). 
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Table B5 LSS values and failure type: peel ply plus plasma pre-treatment (1 
pass, 100mm/min) 

Plasma Parameters 
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=100mm/min 

Number of passes =1 

OUTPUT:  Mechanical Testing  
# Sample designation  Max. Load 

(kN) 

LSS (MPa) Failure 

Type 

1 S130-S132 11.3 35.9  
 

Cohesive  
2 S133-S134 10.7 34.2 

3 S135-S137 10.6 34.1 

4 S136-S138 9.8 31.7 

5 S139-S140 10.8 34.7 

 Mean: 34.1MPa 
Standard deviation: 1.3MPa 
COV (%): 3.8 

 

 

Figure B5 Load values versus displacement: peel ply plus plasma pre-
treatment (1 pass, 100mm/min). 
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Table B6 LSS values and failure type: peel ply plus plasma pre-treatment (5 
passes, 500mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=500mm/min 

Number of passes =5 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S141-S142 10.3 33.3  
 

Cohesive  
2 S143-S144 10.5 33.7 

3 S145-S146 10.1 32.3 

4 S147-S148 10.6 34.1 

5 S149-S150 10.8 34.7 

 Mean: 33.6 MPa 
Standard deviation: 0.8MPa 
COV (%): 2.3 

 

 

 

Figure B6 Load values versus displacement: peel ply plus plasma pre-
treatment (5 passes, 500mm/min). 
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Table B7 LSS values and failure type: peel ply plus plasma pre-treatment (10 
passes, 100mm/min) 

Plasma Parameters 
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=100mm/min 

Number of passes =10 

OUTPUT:  Mechanical Testing  
# Sample designation  Max. Load (kN) LSS (MPa) Failure Type 

1 S151-S152 10.9 34.9  
Cohesive  2 S153-S154 10.8 34.8 

3 S155-S156 11.3 36.2 

4 S157-S158 10.9 35.01 

5 S159-S160 11.1 35.6 

 Mean:  35.3MPa 
Standard deviation: 0.5MPa 
COV (%): 1.4 

 

 

 

Figure B7 Load values versus displacement: peel ply plus plasma pre-
treatment (10 passes, 100mm/min). 
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Table B8 LSS value and failure type: peel ply plus plasma pre-treatment 
(1pass, 1000mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=1000mm/min 

Number of passes =1 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S161-S162 10.3 33.1  
Cohesive  2 S163-S164 9.9 31.8 

3 S165-S166 10.6 33.9 

4 S167-S168 10.2 32.8 

5 S169-S170 10.05 32.1 

  Mean:  32.7MPa 
Standard deviation: 0.7MPa 
COV (%): 2.1 

 

 

 

Figure B8 Load values versus displacement: peel ply plus plasma pre-
treatment (1pass, 1000mm/min). 
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Table B9 LSS values and failure type: peel ply plus plasma pre-treatment (5 
passes, 100mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=100mm/min 

Number of passes =5 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S171-S172 11.6 37.3  
Cohesive  2 S173-S174 11.1 35.3 

3 S175-S176 11.5 37.5 

4 S177-S178 11.6 37.2 

5 S179-S180 11.4 36.4 

  Mean:  36.7MPa 
Standard deviation: 0.8MPa 
COV (%): 2.1 

 

 

Table B9 Load values versus displacement: peel ply plus plasma pre-
treatment (5 passes, 100mm/min). 
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# Sample 
designation  

Max. Load (kN) LSS (MPa) Failure Type 

1 S221-S222 5.2 16.6  
 

Adhesive  
2 S223-S224 6.1 19.5 

3 S225-S226 5.7 18.2 

4 S227-S228 5.5 17.6 

5 S229-S230 4.8 15.3 

Mean: 17.4MPa 
Standard deviation: 1.4MPa 
COV (%): 8.1 

 

 

Figure B10 Load values versus displacement: bag side as received, no pre-

treatment. 
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Table B11 LSS values and failure type: bag side plus plasma pre-treatment 
(5passes, 100mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=100mm/min 

Number of passes =5 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S231-S235 13.9 44.3  
Cohesive  
Adhesive 

2 S233-S234 12.5 39.9 

3 S232-S236 14.1 45.0 

4 S237-S238 13.7 43.7 

5 S239-S240 12.8 41.1 

  Mean: 42.8MPa 
Standard deviation: 1.9MPa 
COV (%):4.4 

 

 

Figure B11 Load values versus displacement: bag side plus plasma pre-
treatment (5passes, 100mm/min). 
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Table B12 LSS values and failure type: bag side plus plasma pre-treatment 
(1pass, 1000 mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=1000mm/min 

Number of passes =1 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S243-S244 12.1 38.8  
Cohesive  
Adhesive 

2 S245-S246 11.1 35.7 

3 S247-S248 12.1 38.7 

4 S249-S250 12.2 38.9 

  Mean: 38.03 MPa 
Standard deviation: 1.3MPa 
COV (%): 3.5 

 

 

 

Figure B12 Load values versus displacement: bag side plus plasma pre-
treatment (1pass, 1000mm/min). 
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Table B13 LSS values and failure type: bag side plus plasma pre-treatment 
(1pass, 100mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=100mm/min 

Number of passes =1 

OUTPUT:  Mechanical Testing 
# Sample designation  Max. Load (kN) LSS (MPa) Failure Type 

1 S251-S252 12.7 40.5  
Cohesive  
Adhesive 

2 S253-S254 12.1 38.6 

3 S255-S256 12.2 38.9 

4 S257-S258 12.6 40.6 

5 S259-S260 11.9 38.1 

  Mean: 39.4MPa 
Standard deviation: 1MPa 
COV (%): 2.5 

 

 

Figure B13 Load values versus displacement: bag side plus plasma pre-
treatment (1pass, 100mm/min). 
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Table B14 LSS values and failure type: bag side plus plasma pre-treatment 
(10passes, 100mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=100mm/min 

Number of passes =10 

OUTPUT:  Mechanical Testing 
# Sample designation  Max. Load (kN) LSS (MPa) Failure Type 

1 S261-S262 12.4 39.6  
Cohesive  
Adhesive 

2 S263-S264 13.1 42.1 

3 S265-S266 11.9 38.2 

4 S267-S268 13.3 42.3 

5 S269-S270 13.6 43.3 

  Mean: 41.1MPa 
Standard deviation: 4.6MPa 
COV (%): 1.9 

 

 

 

Figure B14 Load values versus displacement: bag side plus plasma pre-
treatment (10passes, 100mm/min). 
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Table B15 LSS values and failure type: bag side plus grit blasting pre-
treatment  

OUTPUT:  Mechanical Testing  
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S216-S217 12.9 41.1  
Cohesive 
Adhesive 

(Delamination)   

2 S218-S219 12.6 40.2 

3 S220-S271 12.7 40.5 

4 S272-S273 13.1 40.7 

5 S274-S275 12.7 40.5 

Mean: 40.8MPa 
Standard deviation: 0.5MPa 
COV (%): 1.3 

 

 

Figure B15 Load values versus displacement: bag side plus grit blasting pre-
treatment. 
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Table B16 LSS values and failure type: bag side plus manual abrasion pre-
treatment  

OUTPUT:  Mechanical Testing  
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S276-S277 11.7 37.4  
Cohesive 
Adhesive 

 

2 S278-S279 10.9 34.9 

3 S280-S281 11.1 35.1 

4 S282-S283 10.2 32.7 

5 S287-S288 10.4 33.1 

Mean: 34.7MPa 
Standard deviation: 1.7MPa 
COV (%): 4.8 

 

 

Figure B16 Load values versus displacement: bag side plus manual abrasion 
pre-treatment. 
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Table B17 LSS values and failure type: bag side plus plasma pre-treatment 
(1pass, 500mm/min) 

Plasma Parameters  
Gas Flow: 8l/min  

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=500mm/min 

Number of passes =1 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S289-S290 10.2 32.4  
Cohesive  
Adhesive 

2 S291-S292 10.2 34.4 

3 S294-S295 11.7 37.2 

4 S296-S297 11.2 35.8 

5 S298-S301 10.7 34.2 

  Mean: 34.4MPa 
Standard deviation: 1.9MPa 
COV (%): 5.5 

 

 

Figure B17 Load values versus displacement: bag side plus plasma pre-
treatment (1pass, 500mm/min). 
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Table B18 LSS values and failure type: bag side plus plasma pre-treatment 
(5passes, 500mm/min) 

Plasma Parameters  
Gas Flow: 8l/min 

 

Gas type: Argon + Air 

Treatment distance, d=4mm  

Speed, v=500mm/min 

Number of passes =5 

OUTPUT:  Mechanical Testing 
# Sample 

designation  
Max. Load (kN) LSS (MPa) Failure Type 

1 S302-S303 11.5 39.7  
Cohesive  
Adhesive 

2 S304-S305 12.5 39.8 

3 S325-S326 11.1 35.4 

4 S311-S314 11.8 37.5 

5 S307-S301 10.9 34.6 

  Mean: 36.8MPa 
Standard deviation: 1.8MPa 
COV (%): 4.8 

 

 

Figure B18 Load values versus displacement: bag side plus plasma pre-
treatment (5passes, 500mm/min). 
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Appendix C: 

 

X-ray Photoelectron 
Spectroscopy 

Results
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Table C1 Elemental ID and quantification peel ply side as received 

Name  Peak BE Atomic % 

C1s 285.06 75.66 

C1s Scan A 286.80 5.43 

C1s Scan B 289.30 0.89 

O1s 532.58 13.14 

S2p 162.40 2.34 

Si2p 102.19 1.39 

Zn2p3/2 1021.80 1.15 

 

 

Figure C1 XPS spectra of surface pre-treatment peel ply side as received. 
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Table C2 Elemental ID and quantification peel ply side plus grit blasting  

Name  Peak BE Atomic % 

C1s 285.12 61.81 

C1s Scan A 287.00 2.85 

C1s Scan B 284.50 0.37 

N1s 399.30 8.91 

O1s 532.52 22.41 

S2p 167.93 2.76 

Si2p 102.45 0.72 

Zn2p3/2 1021.93 0.17 

 

 

Figure C2 XPS spectra of surface pre-treatment peel ply side plus grit 
blasting.  
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Table C3 Elemental ID and quantification peel ply side plus plasma 

(5passes, 100mm/min)  

Name  Peak BE Atomic % 

C1s 285.07 37.90 

C1s Scan A 286.80 2.21 

C1s Scan B 288.50 3.01 

N1s 400.76 12.84 

O1s 532.02 36.71 

S2p 168.42 6.30 

Si2p 103.07 1.03 
 

 

 
 

Figure C3 XPS spectra of surface pre-treatment peel ply side plus plasma 
(5passes, 100mm/min). 
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Table C4 Elemental ID and quantification peel ply side plus plasma (1pass, 
1000mm/min) 

Name  Peak BE Atomic % 

C1s 285.11 51.50 

C1s Scan A 289.00 7.31 

C1s Scan B 287.20 4.80 

N1s 399.40 4.61 

O1s 532.52 30.21 

S2p 168.04 0.91 

Si2p 102.91 0.44 

Zn2p3/2 1021.89 0.22 
 
 
 

 

Figure C4 XPS spectra of surface pre-treatment peel ply side plus plasma 
(1pass, 1000mm/min). 
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Table C5 Elemental ID and quantification bag side (no pre-treatment) 

Name  Peak BE Atomic % 

C1s 285.11 55.43 

F1s 688.12 20.03 

N1s 399.14 6.77 

O1s 532.43 14.57 

S2p 167.82 1.59 

Si2p 102.62 1.61 
 
 

 
 

Figure C5 XPS spectra of surface bag side (no pre-treatment). 
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Table C6 Elemental ID and quantification bag side plus grit blasting  

Name  Peak BE Atomic % 

C1s 285.03 66.77 

N1s 399.36 7.49 

O1s 532.56 21.96 

S2p 167.99 2.74 

Si2p 102.16 1.04 

 
 

 
 

Figure C6 XPS spectra of surface pre-treatment bag side plus grit blasting.  
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Table C7 Elemental ID and quantification bag side plus plasma (5passes, 
100mm/min)  

Name  Peak BE Atomic % 

C1s 285.09 35.45 

F1s 688.20 9.77 

N1s 400.97 13.11 

O1s 532.12 32.79 

S2p 168.52 7.03 

Si2p 103.13 1.85 
 
 
 

 
 

Figure C7 XPS spectra of surface pre-treatment bag side plus plasma 
(5passes, 100mm/min). 
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Table C8 Elemental ID and Quantification bag side plus plasma (1pass, 
1000mm/min) 

Name  Peak BE Atomic % 

C1s 285.18 39.77 

F1s 688.54 29.32 

N1s 399.22 8.98 

O1s 532.39 18.43 

S2p 168.09 1.75 

Si2p 103.18 1.75 
 

 

 

Figure C8 XPS spectra of surface pre-treatment bag side plus plasma (1pass, 
1000mm/min). 
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