
Updating stochastic networks to integrate
cross-sectional and longitudinal studies

Allan Tucker and Yuanxi Li
allan.tucker@brunel.ac.uk

Department of Computer Science, Brunel University, UK

Abstract. Clinical trials are typically conducted over a population within
a defined time period in order to illuminate certain characteristics of a
health issue or disease process. These cross-sectional studies provide a
snapshot of these disease processes over a large number of people but
do not allow us to model the temporal nature of disease, which is essen-
tial for modelling detailed prognostic predictions. Longitudinal studies
on the other hand, are used to explore how these processes develop over
time in a number of people but can be expensive and time-consuming,
and many studies only cover a relatively small window within the disease
process. This paper explores the application of intelligent data analysis
techniques for building reliable models of disease progression from both
cross-sectional and longitudinal studies. The aim is to learn disease ‘tra-
jectories’ from cross-sectional data by building realistic trajectories from
healthy patients to those with advanced disease. We focus on exploring
whether we can ‘calibrate’ models learnt from these trajectories with real
longitudinal data using Baum-Welch re-estimation.
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1 Introduction

Degenerative diseases such as cancer, Parkinson’s disease, and glaucoma are
characterised by a continuing deterioration to organs or tissues over time. This
monotonic increase in severity of symptoms is not always straightforward how-
ever. The rate can vary in a single patient during the course of their disease so
that sometimes rapid deterioration is observed and other times the symptoms
of the sufferer may stabilise (or even improve - for example when medication is
used). Interventions such as medication or surgery can make a huge difference to
quality of life and slow the process of disease progression but they rarely change
the long term prognosis. The characteristics of many degenerative diseases is
therefore a general transition from healthy to early onset to advanced stages.
Longitudinal studies [1] measure clinical variables from a number of people over
time. Often, the results of multiple tests are recorded, generating Multivariate
Time-Series (MTS) data. This is common for patients who have high risk in-
dicators of disease where they are monitored regularly prior to diagnosis. For



example, patients with high intra-ocular pressure are brought in to clinic for vi-
sual field tests every six months as they are at high risk of developing glaucoma.
The advantages of longitudinal data is that the temporal details of the disease
progression can be determined. However, the data is often limited in terms of
the cohort size, due to the expensive nature of the studies. Cross-sectional stud-
ies record attributes (such as clinical test results and demographics) across a
sample of the population, thus providing a snapshot of a particular process but
without any measurement of progression of the process over time [2]. An advan-
tage of cross sectional studies is that they capture the diversity of a sample of
the population and therefore the degree of variation in the symptoms. The main
disadvantage of such studies is that the progression of disease are inherently
temporal in nature and the time dimension is not captured. For longitudinal
analysis, the patients are usually already identified as being at risk and there-
fore, controls are usually not available and the early stages of the disease may
have been missed as is explored in [3]. Previously, a resampling approach known
as the Temporal BootStrap (TBS) [6] has been developed that aims to build mul-
tiple trajectories through cross sectional data in order to approximate genuine
longitudinal data. These ‘Pseudo Time-Series’ (PTS) can then be used to build
approximate temporal models for prediction. This approach has been extended
in order to cluster important stages in disease progression using Hidden Markov
Models (HMMs) [7]. However, the use of cross-sectional data alone will mean
that no genuine timestamps have been used to infer the models and so they only
capture an ordering without real temporal information.

In this paper, we explore how to minimise the expensive process of longitudi-
nal data collection by taking models that are learnt from cross-sectional studies
using pseudo temporal methods and updating with limited longitudinal data. We
do this by using the Baum-Welch algorithm to update stochastic models learnt
from pseudo time-series. Essentially, we are integrating cross-sectional and lon-
gitudinal data to increase the temporal information and the diversity of data
from a large population. Many data integration techniques address representa-
tion heterogeneity where similar data is stored in different forms, as is common
in bioinformatics data [8].

2 Methods

2.1 Generating pseudo time-series

Let a dataset D be defined as a real valued matrix where m (rows) is the num-
ber of samples - here patients - and n (columns) is the number of variables
- clinical test data. We define D(i) as the ith row of matrix D. The vector
C = [c1, c2, . . . , cm] represents defined classes, where each ci ∈ {0, 1} corre-
sponds to the sample i, ci = 0 represents that sample i is a healthy case, and
ci = 1 represents that sample i is a diseased case. These classifications are based
upon the diagnoses made by experts. We define a time-series as a real valued
T (row) by n (column) matrix where each row corresponds to an observation
measured over T time points. We say that if T (i) was observed before T (j) then



i < j. We define a set of pseudo time-series indices as P = {p1, p2, ...pk} where
each pi is a T length vector where T > 0. We define pij as the jth element of
pi and each pij ∈ {1, ...,m}. We define the function F (pi) = [pi1, . . . , piT ] as
creating a T by n matrix where each row of F (pi) = D(pij). A pseudo time-
series can be constructed from each pi using this operator. For example, if a
pseudo time-series index vector p1 = [3, 7, 2] then F (p1) is a matrix where the
first row is D(3), the second row is D(7) and the third row is D(2). The corre-
sponding class vector of each pseudo time-series generated by F (pi) is given by
G(pi) = [C(pi1), . . . , C(PiT )].

To summarise we have defined a set of k pseudo time-series with their as-
sociated class labels, sampled from the cross sectional data D indexed by the
elements of pi. Building pseudo time-series involves plotting trajectories through
cross-sectional data based upon distances between each point using prior knowl-
edge of healthy and disease states. These trajectories can then be used to build
temporal models such as Dynamic Bayesian Networks (DBNs) [10] and Hidden
Markov Models (HMMs) to make forecasts [11]. The temporal bootstrap involves
resampling data from a cross-sectional study and repeatedly building trajecto-
ries through the samples in order to build more robust time-series models. Each
trajectory begins at a randomly selected datum from a healthy individual and
ends at a random datum classified as diseased. The trajectory is determined by
the shortest path of Euclidean distances between these two points. The data is
first standardised to a mean µ of zero and a standard deviation σ of one as we
found that this led to better HMM models. We use the Floyd-Warshall algorithm
[12], a well established algorithm used to find the shortest path in a weighted
graph. A full description of the algorithm to generate pseudo time-series appears
in [6] and an example of pseudo time-series that have been generated from cross-
sectional data are shown in Figure 2. Again, this was plotted on the first two
components generated using multidimensional scaling.

2.2 The Experiments

We explore two set of experiments that both try to identify whether adding a
small number of longitudinal data samples to models learnt from cross-sectional
data (via the PTS approach) improves them: i) One on simulated data whereby
discovered models are compared to some original time-series model from where
the data has been sampled. ii) Another on real data from visual field tests where
patients who are at high-risk of developing glaucoma undertake a psychophysical
test to identify damage to sectors of their vision. Apart from the clinical test
data itself and the clinical diagnosis (glaucomatous or not), no demographic data
is included. Here no true original time-series model is known but a comparison
can be made to models learnt on the time-series and on sampled cross-sections
of the time-series. Firstly, we explore the effect of updating models of cross-
sectional data, built using PTS, with relatively small numbers of real time series
to see if the resulting models are improved. This involves the use of the Baum-
Welch re-estimation algorithm applied to a prior HMM. Essentially we want to
see if the limitations of pseudo time-series can be overcome (due to there being



Fig. 1. Example PTS generated from TBS on Simulated Data

no time-element) by calibrating them with real time-series. We generate time-
series of length 30 from an AutoRegressive HMM (ARHMM) to mimic typical
biomedical longitudinal data (MTS in Figure 3). We then randomly sample a
single point from these series (CS DATA) to mimic the cross-sectional sampling
of a population but reserve 50 for the calibration (Reserved MTS). We start
with 500 cross-sectional samples as this was found to be a suitably large size to
generate good pseudo time-series and models in [6] and increment by 100 up to
1500 (the size of some increasingly large biomedical cross-sectional studies). We
use the Kulbaeck-Leibler distance [13] to explore how close a model learnt from
the cross-sectional data using the temporal bootstrap (TBS) is to the original
generating model. Experiments involve bootstrapping the data [14] We then add
a number of the reserved original time-series generated by the same ARHMM to
the pseudo time-series and explore how close new calibrated models are to the
original. Increments of 10 time-series were used as these seem to differentiate
between the KL distances significantly. We also include how good the model is
when learnt solely from the time-series used to calibrate the models. We then
apply a similar set of experiments with real VF longitudinal with 91 patient
time-series (91 MTS VF DATA in Figure 4). We sample one VF test from each
patient’s time-series to generate a cross-sectional sample and generate PTS data
for learning models from (PTS). We then compare this model as well as ones
learnt from a combination of PTS and real time-series (Random 10/20 MTS) to
see how quickly we can learn models that are close to the original. This is achieved
by comparing these KL distances to the mean KL distance between 200 different
ARHMMs learnt from the same original time-series (MEAN VARIANCE). In
other words, if we can learn models from the sampled CS data that have similar
KL distances to the general variation in learning a model from the full time-



Fig. 2. Simulated Data Experimental Framework

series, then we assume that the models are as close to one learnt from a full
time-series.

3 Results

3.1 Simulated Data Results

Figure 5 shows the results for all experiments, learning PTS from cross-sectional
samples of varying sizes and either not calibrating, calibrating with 10 time-
series, or calibrating with 20 time-series. The first obvious characteristic of these
graphs is that calibrating does indeed improve the quality of the models with
KL distances that are closer to the original generating ARHMM. This is not
surprising seeing that there is no genuine ”time” in the PTS generated from the
cross-sectional data. What is surprising, is that only a relatively small number
of time-series are needed to improve these models, especially when there are lots
of samples used from the cross-sectional data. This supports the results from
previous studies that the PTS does find good-but-not-perfect models (limited
by the lack of real time-series) and that a small number of genuine time-series
can calibrate these models. This offers hope that expensive longitudinal studies
can be relatively small in size if combined with larger cross-sectional studies that
capture the general trajectories and the variability of disease progression within
a population. With calibration from 10 time-series, there is a steady decrease in
KL distance as cross-sectional sample size increases where more and more reliable
PTS are constructed. When the sample size is 1500 we see a KL distance mean of
1.70 ± 0.16. Note that when 10 time-series alone are used to learn the model we



Fig. 3. VF Data Experimental Framework

Fig. 4. KL distance for varying cross-sectional study sample sizes with increasing num-
ber of longitudinal data for calibration.

get a mean KL distance of 2.08 ± 0.26. This shows that the PTS generated from
the cross-sectional data improves on models learnt from the time-series only by



incorporating the variability within a larger population captured in the cross-
sectional data. With calibration from 20 time-series we see a similar story, where
increasing the cross-sectional sample size, build better PTS and results in models
that are closer to the original. For 1500 in the cross-sectional sample we see a KL
distance of 1.48 ± 0.12. Note that when 20 time-series alone are used to learn
the model we get a mean KL distance of 1.78 ± 0.15. Again, it can be seen that
the PTS improves on time-series alone but that the integration of both seems
to generate the models that best reflect the underlying model. We now explore

Fig. 5. Wilcoxon rank comparison between KL distances to original MTS model (sig-
nificant p values marked with an asterisk P<0.01)

the statistical significance of the differences between these KL distances using
the Wilcoxon Rank comparison [15]. Table I shows the Wilcoxon Rank statistic
comparing the KL distance between different models learnt using the different
approaches. An asterisk is used denote significant p values. First of all notice
that there are many significant values - indicating that the difference between
models learnt using the different approaches are significant. The most important
statistics are those that show the models learnt with no calibration and only 500
cross-sectional data points is significantly different to most other models (row
1), but when 1500 cross-sectional data points are used the resulting model is
much closer, being most different (though not quite significantly) to the model
learnt from 50 full time-series (row 4). By calibrating these models we see a little
improvement for 500 CS data points. However, for 1500 datapoints calibrated
with 20 time-series, there is no significant difference between the models learnt
from the full time-series with much higher p-values.

3.2 Visual Field Data Results

We now explore the effect of calibrating PTS using the real Visual Field time-
series data described earlier (Figure 6). As we have no knowledge of the true
underlying model, we firstly compare the KL distance between models that are
repeatedly learnt from the original 91 patient time-series in order to get an idea
of general variance between models and to use this as a base-line. Essentially, if
we can generate models using PTS approaches with a KL distance that is not sig-
nificantly greater than the general variance between different builds of the model



on the full data, then we can be confident that the PTS models are of a suitably
similar quality to those learnt from the full time-series. We then calculate the KL
distance between a model learnt from the sampled cross-section using the PTS
approach and models learnt from the original 91 time-series. We then incremen-
tally add a number of randomly selected real time-series to calibrate the PTS
model to see if this improves the KL distance. We do this in two ways: simply
concatenating the data (PTS calibrated), and also using the PTS as a prior which
is updated with real time-series - Baum Welch (BW) calibrated Bayes. Finally
we calculate the KL distance between learning models using only the calibrating
time-series to confirm that the PTS are indeed improving the resulting models.
The experiments are repeated 100 times to derive confidence intervals on the KL
distances. Figure 7 shows the results of these experiments. Notice firstly that

Fig. 6. KL results for VF data with confidence intervals.

Fig. 7. Wilcoxon rank for VF data (significant p values marked with an asterisk
P<0.01)



the KL distance between models that have been learnt on the full 91 time-series
are in the region of 80-90 with a small confidence interval denoting a relatively
small variance from one model learning to the next. The models that are learnt
from the sampled cross-section using the PTS approach are impressively close to
the time-series models but distinctly higher in KL distance (likely to be because
we are lacking real temporal information). When 10 and 20 real time-series are
used to calibrate the model, however, we see further improvement in the KL
distance resulting in models that are demonstrably closer to the models learnt
from all 91 time-series. The updated models that go beyond simply concatenat-
ing data appear to perform the best with the lowest KL scores. Finally, models
that are learnt from using the relatively small number of calibrating time-series
only are clearly worse with much higher distance and large confidence intervals.
Looking at the Wilcoxon Rank for significance as before, the important thing
to notice in Table II is that nearly all of the models are indeed significantly
worse than the variation between models learnt on the full longitudinal dataset
(significant differences are marked with an asterisk) except for the PTS model
calibrated using the updating approach or concatenating with 20 real time-series.
This shows that we can learn models that are as good as the natural variation
between model building on the full longitudinal dataset by building PTS and
calibrating with only 10 real longitudinal samples if we correctly balance the
weighting of the cross-sectional PTS and real time-series. We can also see that
many of the inferior models are similar in terms of their distances except for
the very worst models (learnt from only 10 time-series) which are different from
the superior models which are both PTS models that have been calibrated. To
summarise, whilst the PTS approach alone does indeed learn very good models,
by updating these models with a small number of real time-series we get models
that are considerably closer to the models learnt using all the time-series data
that is available. What is more, the Baum-Welch approach to updating improves
upon a simply concatenation of data. Note that almost all models are signifi-
cantly different from the general variance form learning the model from the full
91 time-series. The only models that are not significantly different at the 1%
level are the PTS models updated with data using the Baum-Welch approach
and the PTS model that is updated with 20 time-series by concatenation.

4 Conclusions

In this paper we have explored to what degree pseudo time-series, learnt from
building trajectories through a cross-sectional study, can be ‘calibrated’ by a rel-
atively small number of real time-series data form a clinical longitudinal study.
The aim is to gain the advantage of both types of study - the population di-
versity of symptoms at all stages of a disease process from cross-sectional data;
and the inherently temporal information of a disease process from longitudinal
data. We have demonstrated that a relatively small number of disease time-series
can dramatically improve the quality of disease model if the pseudo time-series
has been constructed from a large enough cross-sectional sample. This has been



shown to be the case for simulated data based upon a probabilistic model and
real-world clinical data where the resultant models are not significantly differ-
ent to models learnt from large longitudinal studies. Future work will involve
exploring the Baum-Welch updating approach to integrating the longitudinal
and cross-sectional data on more datasets. Pseudo time-series naturally model
multiple endpoint analysis which is an important topic in modelling disease pro-
gression [16]. Future work will explore the explicit understanding of these in
terms of identifying subcategories of disease which we have already started to
explore [7].
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