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a b s t r a c t 

Speed optimization of liner vessels has significant economic and environmental impact for reducing fuel 

cost and Green House Gas (GHG) emission as the shipping over maritime logistics takes more than 70% of 

world transportation. While slow steaming is widely used as best practices for liner shipping companies, 

they are also under the pressure to maintain service level agreement (SLA) with their cargo clients. Thus, 

deciding optimal speed that minimizes fuel consumption while maintaining SLA is managerial decision 

problem. Studies in the literature use theoretical fuel consumption functions in their speed optimiza- 

tion models but these functions have limitations due to weather conditions in voyages. This paper uses 

weather archive data to estimate the real fuel consumption function for speed optimization problems. In 

particular, Copernicus data set is used as the source of big data and data mining technique is applied to 

identify the impact of weather conditions based on a given voyage route. Particle swarm optimization, a 

metaheuristic optimization method, is applied to find Pareto optimal solutions that minimize fuel con- 

sumption and maximize SLA. The usefulness of the proposed approach is verified through the real data 

obtained from a liner company and real world implications are discussed. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Speed optimization in liner shipping has significant economic

and environmental impact for reducing fuel cost and Green House

Gas (GHG) emission as the shipping over maritime logistics takes

more than 70% of world transportation ( UNCTAD, 2010; Psaraftis

and Kontovas, 2013 ). While slow steaming is widely used as best

practices for liner shipping companies, they are also under the

pressure to maintain service level agreement (SLA) with their cargo

clients ( Lee et al., 2015; Parthibaraj et al., 2016 ). Thus, deciding op-

timal sailing speed which minimizes fuel consumption while main-

taining SLA is an important managerial decision problem for liner

companies. 

Sailing speed decision mainly depends on the vessel schedule

and it is a challenging problem due to the uncertainties imposed in

maritime logistics such as stochastic port times and weather condi-

tions. Port time uncertainty significantly affects the time that ves-

sels spend at ports in anchorage, berthing, unberthing or drifting

status. Increased port congestion and delays can negatively affect
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ervice level of shipping lines to their customers and put pressure

n schedule reliability and might incur logistics costs to the cus-

omer ( Notteboom, 2006 ). On the other hand, weather conditions

ncluding current and wind affect journey times and the routing

ecisions ( Kontovas, 2014 ). 

The majority the literature work on the speed optimization

roblem based on a theoretical fuel consumption function. For ex-

mple, Fagerholt et al., (2010) and Yao et al., (2012) propose a fuel

onsumption function which is based on the empirical data from a

hipping company. However, these functions do not reflect the ac-

ual fuel consumption of vessels that are affected by weather con-

itions. In reality, certain routes may encounter harsher weather

onditions than others and speed optimization needs to consider

uch different voyage environments. 

In Fig. 1 , we compare the theoretical fuel consumption based

n the empirical model proposed by Yao et al., (2012) with the his-

orical fuel consumption data obtained from a liner shipping com-

any. The data belongs to a Turkish liner service with 10 ports-of-

all operated in the Mediterranean region. 15 voyages performed

y the same vessel of this service in 2013 are analyzed. Fig. 1 il-

ustrates the change in total fuel consumption with respect to time

n sea in terms of day. Although fuel consumption mainly depends
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The actual and theoretical fuel consumption levels with respect to time in sea. 
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n the vessel sailing speed, there are other affecting factors such

s the weather conditions (winds, currents, etc.). The differences

etween the estimated consumption and the actual one illustrate

he effect of these factors. In particular, fuel consumption differ-

nce becomes larger when the time in sea is longer. In this study,

e focus on the speed optimization problem by considering the

ffect of weather conditions on fuel consumption. 

Different vessel routes have different weather conditions hence,

t is difficult to have unified weather adjustment functions to cor-

ect the differences between actual and theoretical fuel consump-

ion. The impact of current and winds on fuel consumption varies

epending on the routes due to the geographical characteristics.

hus, it is more realistic to identify different impacts of weather

onditions in different routes based on historical voyage data and

eather data. The analysis of weather archive big data which is

ublicly available on the Internet in comparison with actual fuel

onsumption data from liner companies provides an opportunity

o measure different impacts of weather conditions on fuel con-

umption of vessels. 

Despite the opportunity, using weather archive big data in ves-

el speed optimization requires overcoming following challenges.

irstly, weather archive data provides an opportunity to apply big

ata analytics to estimate the degree of the impacts of weather

onditions on fuel consumption of vessels in different routes based

n its huge volume of historical data. However, most of such

rchive data is not easy to use due to the format, volume, and

elocity of data. Secondly, the relationship between weather con-

itions and fuel consumption is different for different routes and

ifficult to model as a single mathematical formula. In this study,

e apply a data mining technique to explore such non-linear rela-

ionships based on historical weather and voyage big-data from a

iner company. 

This paper proposes a decision support system (DSS) that uses

eather archive big data in vessel speed optimization overcom-

ng above challenges. To the best of our knowledge, the impact

f weather conditions on fuel consumption in liner shipping has

ot been explicitly considered in the literature. This paper aims to

ll this research gap. In particular, we focus on speed optimiza-

ion problem in liner shipping by considering the weather impact.

he speed decision affects the transit time between ports, and in

urn, affects the service level. Hence, we also study the trade-off

etween minimizing fuel cost and maximizing service level. A par-

icle swarm optimization (PSO) technique based solver is proposed

o solve this multi-objective problem. Based on a real shipping

ata, we analyze the impact of weather conditions on the fuel con-

umption. 
The remainder of the paper is organized as follows.

ection 2 reviews related studies with regard to speed opti-

ization in maritime logistics. Section 3 then formulates the

arget problem as a multi-objective optimization problem. The

etails of the decision support system are given in Section 4 . In

ection 5 , experiment results based on data obtained from a real

iner shipping company are provided to verify the usefulness of

he proposed decision support system. Finally, Section 6 concludes

he paper. 

. Literature review 

Optimization techniques have been widely applied to mar-

time operations including ship routing and scheduling, fleet man-

gement, disruption handling, and bunkering. Christiansen et al.,

2013) provide a survey of studies on ship routing and scheduling.

he literature on bunker optimization methods in maritime ship-

ing has been summarized by Wang et al., (2013) . Tran and Haa-

is (2015) review the literature on container liner shipping with re-

pect to container routing, fleet management and network design.

ecently, Mansouri et al., (2015) have reviewed existing studies in

aritime operations from sustainability and decision support per-

pective. 

Speed optimization is one of the important problems for sus-

ainable maritime operations as the CO 2 emission is directly af-

ected by the fuel consumption which is determined by vessel

peeds. Early studies on the speed optimization problem assume

eterministic port times and strict time windows ( Fagerholt et al.,

010; Hvattum et al., 2013; Norstad et al., 2011; Andersson et al.,

015 ). The proposed models restrict vessels to arrive at the con-

racted time windows to meet 100% service level agreement. How-

ver, in reality such assumption is too strong and it is reported that

nly 55% to 89% vessels arrive on time at ports ( Drewry, 2016 ). Port

nd travel times can be highly variable due to congestion, handling

nd weather conditions ( Notteboom, 2006 ). Thus, recent studies in

his field extend the speed optimization problem by considering

ncertainties at ports and voyage routes ( Qi and Song, 2012; Ay-

in et al., 2017 ). Qi and Song (2012) propose a vessel scheduling

odel to minimize the total fuel cost by considering uncertain port

imes and frequency requirements. In their formulation, they relax

he port time window constraint and allow vessels to arrive at any

ime. On the other hand, Aydin et al., (2017) extend the problem

y considering the time windows and bunkering decisions. 

The speed optimization models generally assume that fuel con-

umption solely depends on the vessel speed ( Psaraftis and Kon-

ovas, 2013 ). Yao et al., (2012) propose optimal bunker manage-
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ment strategy by solving an integrated mathematical model that

includes decision variables with regard to bunkering port selec-

tion, bunkering amount decision, and vessel speeds between ports.

They discuss that different fuel consumption functions need to

be considered for different vessel size based on empirical data

obtained from Asia-Europe and Asia-Pacific services. Wang and

Meng (2012) work on deterministic speed optimization problem

for container routing problem. By using historical data, they ana-

lyze the relation between sailing speed and fuel consumption. The

authors discuss that the fuel consumption depends on voyage legs

as weather conditions can be different at different legs. In this

study, we focus on the speed optimization problem by considering

the effect of weather conditions. 

While above studies are aiming at developing optimization

models, the application of decision support systems in maritime

logistics are rare compared to other industries in the literature

and this is attributed to unique culture of maritime industry

( Mansouri et al., 2015 ). In practice, commercial software solutions

(for example, SPOS 1 and NETPAS 2 ) are being adopted by liner ser-

vices. The supporting functionalities of these systems are limited

to provide weather and voyage data management rather than au-

tomatically finding the optimal sailing speeds by considering the

environmental variables including weather and port conditions. A

DSS proposed by Besikci et al., (2016) is one of few effort s to sup-

port vessel speed optimization problem using various factors in-

cluding weather condition, trim, cargo quantity, and vessel speeds.

Artificial Neural Network (ANN) is applied to learn the impacts

of those factors on fuel consumption based on historical data ob-

tained via Noon Data reports which are recorded by the crews

of vessels. However, the rules identified by the DSS is applicable

to only one vessel and they cannot be applied to other vessels

that have different specifications and providing services in differ-

ent routes. As highlighted by Mansouri et al., (2015) , the majority

of the previous studies in sustainable ship scheduling problem pay

attention to only mathematical modelling and algorithms to solve

the problem. Existing literature on DSS for vessel scheduling is rel-

atively scarce and therefore this paper seeks to fill this gap in the

literature. 

Kim and Lee (1997) propose one of the pioneer studies for

the use of optimization-based DSS for scheduling vessels. The pro-

posed DSS assigns bulk cargoes to a schedule in tramp shipping.

LINDO optimizer is used as a tool in scheduling process in order to

maximize the profit obtained from the transportation of cargoes.

Another similar bulk cargo scheduling problem in tramp shipping

is proposed by Bausch et al., (1998) . The authors aim to assign

cargoes into the vessel schedules so that all loads are transported

at a minimum cost and satisfy all constraints such as time win-

dows and compatibility between ports and vessels. The output of

this optimization process is presented as a schedule on a spread-

sheet for the users. Since the study by Bausch et al., (1998) , there

has been a lack of literature related to the use of DSS in vessel

scheduling problem. Later, Fagerholt (2004) argues that one of the

main reasons why managers in marine shipping are not willing to

use DSS is because of its limitations to consider all of the con-

straints in the scheduling process. To address this problem in the

industry, a DSS called TurboRouter was introduced for vessel fleet

scheduling. Fagerholt and Lindstad (2007) extend TurboRouter to

meet all the requirements for vessel scheduling problem in indus-

trial and tramp shipping. Time windows, vessel capacities, compat-

ibility between port and vessel, bunker consumption rate, bunker-

ing port calls are taken into account for planning the vessels to

arrive at port within specific time period and with the maximum
1 Ship performance optimization system, http://www.meteogroup.com/ 
2 http://www.netpas.net/ 

T

r  

d  

m

rofit. As a result, the decision maker can easily see the sched-

le through user interface. TurboRouter also receives satellite posi-

ions from ships in real time and computes the estimated arrival

imes to given ports. Apart from industrial and tramp shipping,

am (2010) focused on designing DSS for scheduling liner shipping

roblem. The proposed integrated approach first selects the ports

f call and then schedules vessels with respect to given time win-

ows and finally analyzes the financial factors. In scheduling pro-

ess, a planner can edit the service route manually and then the

ystem updates the optimal schedule automatically. 

Due to the recent environmental concerns in maritime ship-

ing, later studies on DSS for vessel scheduling have focused on

inimizing CO 2 emissions. Ballou et al., (2008) presented a DSS

alled Voyage and Vessel Optimization Solutions (VVOS) in order

o schedule vessels to reach ports of call with minimum CO 2 emis-

ions within a given time window. The system makes ship schedul-

ng decisions based on the wind, wave and current data. VVOS

s considered to be user friendly as it is flexible for the user to

hoose whether they would like to use optimization module. Sim-

larly, Windeck and Stadtler (2011) also focused on developing DSS

or network design problem to minimize cost and CO 2 emission by

onsidering weather factors. 

While studies on big data are common in computer science and

nformation systems ( Agarwal and Dhar, 2014 for example), the

pplication of big data analytics are gaining popularity in opera-

ions research field recently. Choi et al., (2017) proposes a novel

ethod to integrate a qualitative decision model with open big

ata available on the Internet to support public procurement pro-

esses. Fang et al., (2016) applies random forecast regression to big

ata obtained from insurance companies to forecast the profitabil-

ty of insurance customers. Song and Wang (2016) find that enter-

rises that are participating to global value chain tend to have the

igher green technology level via regression analysis on difference-

n-difference panel data on Chinese enterprises. Psaraftis et al.,

2016) review the literature on dynamic vehicle routing problem.

hey discuss the importance of using big data in vehicle routing

roblems to enhance decision making. They also point out that

he literature should focus on how to make use of big data. While

hese studies are processing large amount of data, the nature and

ize of the data used in this paper is more complex and huge.

eather archive big data in this paper contains vast amount of ob-

ervation data on weather in different points of Sea. In addition,

he format of the archive data is usually not directly accessible

y general purpose programming tools therefore pre-processing is

equired. This paper shows a systematic method to process the

rchive data to build weather information for chosen vessel routes

rom the vast amount of archive. 

. Problem formulation 

The objective of the problem is to minimize fuel consump-

ion for a vessel that travels through a predefined route while

aximizing the total service level. Since these two objectives are

onflicting, we have a multi-objective optimization problem. De-

ision makers are interested in learning the trade-off relationship

etween vessel operation cost and service level for a given liner

oute. 

We use the problem structure defined by Aydin et al., (2017) .

hey use a single objective function to minimize the total opera-

ion cost by synthesizing the fuel cost with penalty cost incurred

rom missing required service level. However, in reality normaliz-

ng the scale of penalty cost with the fuel cost is very difficult.

herefore, finding Pareto optimal solutions that show the trade-off

elationships between two components can make more sense for

ecision makers. Thus, we define a bi-criteria model to solve the

ulti-objective optimization problem. 

http://www.meteogroup.com/
http://www.netpas.net/
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We consider a vessel providing a liner shipping service over a

oute that is a predefined sequence of ports of call denoted by set

= {0, 1, 2, …, n }. Port 0 denote the starting node of the route.

eg i represents a trip from port ( i −1) to port i . We assume that

he vessel has a contracted time window for each port and port

ervice can start within the specified time window. If the vessel

rrives earlier than the contracted time, then it needs to wait until

he starting point of the time window. We assume that the ves-

el consumes a fixed amount of fuel per hour during waiting and

ervice time at each port. In particular, vessels usually use more

xpensive fuel when they are waiting at ports, therefore we dis-

inguish the waiting cost from sailing cost. We also assume that

 vessel has a minimum and maximum speed limit and operates

ithin the capacity. We will use the following notation in the pa-

er to explain the structure of the optimization model. 

N : set of ports 

μi : average service time in hour at port i 

t a 
i 

: arrival time of vessel at port i 

t d 
i 

: departure time of vessel at port i 

[ αi , β i ]: contracted time window at port i 

d i : length of leg i in nautical mile 

φ: fuel cost per hour during waiting and service time at a port 

r s : price of fuel per ton consumed during sailing 

r p : price of fuel per ton consumed at ports 

v i : average speed at leg i (nautical mile per hour), which is lim-

ted by [ v min , v max ] 

The vessel operational cost consists of two major components:

ailing cost and port cost. Sailing cost corresponds to the fuel

ost incurred during sailing. Yao et al., (2012) present an em-

irical model to reflect the relation between fuel consumption

ate and the sailing speed by considering the size of the vessels.

he estimated fuel consumption rate is given by k 1 v 3 i 
+ k 2 , where

 1 and k 1 are constants and their values depend on the size of

he vessel. Multiplication of fuel consumption rate by the tran-

it time between ports yields the total fuel consumption. We ex-

end Yao et al., (2012) ’s fuel consumption model by considering the

eather factor at each leg. The fuel consumption function for leg i

s represented by f i ( g ( v i ), w i ) where g( v i ) = ( d i / 24 v i ) k 1 v 3 i 
+ k 2 and

 i denote the weather factor at leg i . The fuel consumption func-

ion is convex and increasing with v i and adjusted by the weather

actor ( w i ) at let i . 

Port cost also corresponds to a fuel cost which is incurred while

 vessel waits for berthing or receives a service from a port. We

ssume that port cost is proportional to the entire time spent at

he port including waiting time and service time. If we let κ be

he average amount of fuel (tons) consumed per hour, then the

uel cost per hour ( φ) at a port is given by φ= r p κ . Finally, the total

essel fuel cost is defined as in Eq. (1) . 

 f = 

n ∑ 

i =1 

(
r s f i ( g ( v i ) , w i ) + ϕ 

(
t d i − t a i 

))
+ ϕμ0 (1) 

Given the vessel speed v i and average service time τ i at port

 , the arrival and departure times at each port are defined by the

ollowing system dynamics equations: 

 

a 
i 

= t d 
i −1 

+ d i / v i 
 

d 
i 

= max 
{

t a 
i 
, αi 

}
+ μi , i = 1 , . . . , n. 

(2) 

Since port 0 denote the starting node of the route, we assume

hat t a 
0 

= 0 and t d 
0 

= μ0 . 

Our second objective is to maximize service level. When a ves-

el arrives at the port before or within the time window, such port

s satisfied 100%. However, the service level starts to decrease if

he vessel arrives later than the contracted time window. On time

elivery of the containers is very important for liner shipping com-

anies since delayed cargo may result in high cost by customers.

s

tepwise function is suitable for representing the increasing mar-

in of delay effect, where ports may tolerate a small delay but a

arge delay will result in deviation from the planned schedule and

ill have a large negative impact on the service level. The service

evel at port i is computed as follows; 

 i 

(
t a i 

)
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if t a 
i 

≤ x i 1 
h i ( x i 2 ) if x i 1 < t a 

i 
≤ x i 2 

. . . 

h i 

(
x i m i 

)
if x i m i −1 < t a 

i 
≤ x i m i 

(3) 

here x i 1 =β i and x i 1 < x i 2 < · · · < x i m i 
. Function h i ( x i ·) returns a

ervice level value according to the time points x i 1 , x i 2 , · · · , x i m i 
.

he first time point corresponds to the latest start time of the ser-

ice, β i . Therefore, if the vessel arrives before the first time point,

he port is satisfied 100%. Through conversation with a major liner

ompany, it was realized that missing contracted time windows at

usy ports results in higher delay than the idle ports due to the

ifficulty of finding alternative service time slots. Therefore, we as-

ume that the function h i ( x i ·) can take different form for different

orts. For example, a function for a busy port may return lower

ervice level compared to idle ports for the same amount of de-

ay. The multi-objective speed optimization problem is formulated

s: 

ini mize 

n ∑ 

i =1 

(
r s f i ( g ( v i ) , w i ) + ϕ 

(
t d i − t a i 

))
+ ϕμ0 (4) 

aximize 

n ∑ 

i =0 

1 

n + 1 

s i 
(
t a i 

)
(5) 

ub ject to t a i = t d i −1 + d i / v i , i = 1 , . . . , n, (6)

 

d 
i = max 

{
t a i , αi 

}
+ μi , i = 1 , . . . , n, (7) 

 min ≤ v i ≤ v max , i = 1 , . . . , n, (8)

here t a 
0 

= 0 and t d 
0 

= μ0 . Constraints (6) and (7) correspond to

he system dynamics equations for arrival and departure time.

onstraints (8) ensure that the vessel sailing speed is within

he lower and upper limits in all legs. While objective function

4) minimizes the total fuel cost incurred during sailing and ser-

ice at ports, objective function (5) maximizes the average service

evel at all ports. These objectives conflict with each other, i.e., in-

reasing one objective deteriorates the other. 

. Decision support system for big data based speed 

ptimization 

The overall architecture of the decision support system is

hown in Fig. 2 . 

The DSS consists of four major components: user interface,

eather archive data parser, weather impact miner, and PSO solver.

ser interface is a web-based system for effective and platform in-

ependent interaction with end users. Weather archive data parser

as interface with weather archive data source and it converts

riginal archive data into data format that can be interpreted by

ther components of the DSS. Weather impact minor aims at find-

ng rules with respect to weather impact, w i , on fuel consumption

unction f i ( g ( v i ), w i ) for each leg. PSO solver use the weather im-

act data to generate Pareto optimal solutions that show trade-off

elationships between fuel consumption and service level for speed

olutions. 
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Table 1 

Data types in the NetCDF file. 

sowavenu Wave number (number of waves that exist for a specified distance) 

somestdy Meridional-stokes drift velocity at surface (m/s) (in the north – south direction) 

vomecrty Meridional velocity (current in the north – south direction) 

sozastdx Zonal-stokes drift velocity at surface (m/s) (in the west – east direction) 

vozocrtx Zonal velocity (current in the west – east direction) 

wind_speed Wind speed (m/s) 

wind_to_dir Wind direction (degree) 

Fig. 2. The architecture of the decision support system for multi-objective speed 

optimization. 
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4.1. Weather archive data parser 

In this section, our aim is to estimate the effect of the sea

state on the vessel creating either drag or forward push depend-

ing on the direction. We use real time marine condition data

provided by Copernicus Maritime Environment Monitoring Service

( Copernicus, 2016 ). We analyze the marine data for 3 years (ob-

tained from 2012 to 2014) for the Mediterranean Sea. We follow

several steps before applying data analytics techniques. Next, we

explain our data processing steps. 

The data is stored as a segmented (i.e. quarterly data pack-

ages) NetCDF (network common data form) file. NetCDF file is a

set of software libraries that support a machine-independent for-

mat to represent scientific data ( Rew and Davis, 1990 ). We access

the data by using Matlab 2016a programming language. This file

includes several data types including temperature, salinity, drift ve-

locity, current and wind speed. Fig. 3 illustrates the content of a

quarterly data package and Table 1 presents the explanation of the

terms in this file. 

Each data point for a given latitude and longitude presents 24-h

mean value of the corresponding data type. Meridional and zonal

directions correspond to the north-south and west-east orienta-

tions, respectively. In this section, we define how to extract current

data along the vessel route. Other data types (e.g. wind speed and

wind direction) in NetCDF file can also be extracted in the same

way. Fig. 4 presents the average current for a given day. The colour

differentiates the direction and magnitude of the current in the

north-south and west-east directions. 

To compute the net effect of the current on the vessel, both the

vector (direction and magnitude) of travel and the vector of the

current should be considered. By making use of the NetCDF file,

the vector of the current can be computed along the vessel route.

The coordinates of the vessel route are provided by the liner ship-

ping company. The traversed grids on each day can be identified

by the route coordinates, vessel sailing speed and the port service

time. The distance between two geographical coordinates is com-

puted by using Haversine formula ( Sinnott, 1984 ). 
The coordinates of the vessel route can include either the

oute diversion points or ports. At the diversion points the ves-

el changes the direction intravenously whereas at ports it waits

or berthing and service. Considering this information, the trav-

lled route for each day is computed as illustrated in Fig. 5 . Interim

oints marking the end of the day on the route are also captured

nd computed. The traversed grids along the path are then deter-

ined by using the Bresenham’s line algorithm ( Bresenham, 1965 ).

n this analysis, the sailing time of the vessel is computed by only

onsidering the vessel speed. For more realistic approximation, the

ffect of the current can be recalculated iteratively. As it is seen

rom the marked green grids travelled on the first segment by the

essel ( Fig. 5 ), each grid is traversed in different durations. In or-

er the calculate the average net effect of current, the weighted

verage of the resultant current vector is computed as follows; 

N 
 

j=1 

y j 

D i 

(
c j ̂  u + c j ̂  v 

)
(9)

here D i is the distance travelled at segment i (between two co-

rdinates), y j is the distance travelled in grid j, N is the number of

rids travelled in segment i and ( c j ̂  u , c j ̂  v ) denote the vector com-

onents of the current in zonal and meridional directions, respec-

ively. 

Fig. 6 illustrates the variation in the magnitude of current along

he vessel route for different days. The colour map in each graph

orresponds the resultant magnitude of the current velocity in m/s.

raveled route for different days is presented by coloured lines on

he map. As it is seen in Fig. 6 , significant changes in current are

bserved at each different day. 

.2. Weather impact miner 

The role of weather impact miner is to identify important fac-

ors that can affect the fuel consumption of vessels. We use the

ata passed from Weather Archive Data Parser, which provides the

eather data for given routes including current vectors and wind

peed/direction information. By combining weather data extracted

rom Copernicus dataset and service history of the liner shipping

ompany, we can identify the important weather factor. We ana-

yze the fuel consumption of the same route for specific dates by

sing the extracted weather data. The service data or voyage ab-

tract covers the information including arrival and departure ports,

unning distance between two ports, average speed, arrival and de-

arture time, fuel consumption at sea, route coordinates, etc. Based

n this data, weather impact miner considers the average fuel con-

umption (total fuel consumption between ports divided by the

istance) as a dependent variable to find important factors that

ay affect to fuel consumption. 

Weather impact miner mainly investigates the impact of the

ind and current data. The direction and magnitude of wind can

ffect the fuel efficiency with respect to the date and time. To

dentify the impact of wind on the fuel consumption, weather im-

act miner extracts the rule prioritizing the direction and magni-

ude combination. Since the wind magnitude may not show a lin-

ar impact on the fuel consumption due to its direction, weather
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(a) Current data

(b) Wind data

Fig. 3. Data types captured from the NetCDF data in Matlab. 

Fig. 4. Illustration of current in Mediterranean for a given day. 
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mpact miner collects all data for given routes and then compares

ultiple voyage histories by controlling the wind directions. Then,

he prioritized wind direction can be obtained and weather im-

act miner calculates the relative weight of each wind direction

nd magnitude combinations and returns the rule accordingly us-

ng statistical rule mining. Regarding the wind data, we have wind

irection and wind force variables, which are both categorical. The

irection and magnitude have 5 and 7 levels, respectively. The

ind force is coded as ordinal scale (1 to 7) where the highest

cale corresponds to the strongest wind force. Wind direction code

ndicates relative direction of wind with respect to the sailing di-

ection as shown in Fig. 7 . 

In case we do not have enough voyage data for a given route,

ootstrapping method can be applied to derive meaningful statisti-

al rule mining results. To develop the preference rule for reducing

uel consumption, based on the fuel consumption record, we de-

ne the average fuel consumption rate function (N 

2 → R) between

orts A and B with respect to wind force i and wind direction j 

F R A −B ( i, j ) , 1 ≤ i ≤ 7 , 1 ≤ j ≤ 5 . 
This function returns the mean value of fuel consumption be-

ween ports A and B for given period. Using this function, weather

mpact miner conducts pairwise comparison to derive the prefer-

nce rule, which can be defined as 

( i, j ) → ( k, l ) if AF R A −B ( i, j ) < AF R A −B ( k, l ) 

here ( i , j ) → ( k, l ) means ( i, j ) is preferred over ( k, l ). This pair-

ise comparison returns all preferences between 35 possible wind

irection and force combination. Using this result and the overall

ean of fuel consumption between two ports ( AFR A −B ), the rela-

ive weights can be calculated and assigned to all combination. If

he AFR A −B ( i, j ) do not show the statistically significant difference

omparing to overall mean of fuel consumption, the ( i, j ) combi-

ation between ports A and B will have no weight. Otherwise, we

ill use Ratio of Mean values (RoM) for the weight of ( i, j ) combi-

ation, by dividing AFR A −B ( i, j ) with AFR A −B . 

The impact of current can vary from the geographical locations

f the routes. To estimate the accurate impact of current data,

eather impact miner requests the current vector data for all the
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Fig. 5. Illustration of vessel route and daily traversed grids. 

Fig. 6. Change in the current along the vessel route. 
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past voyage data to weather big data parser. Using the date and

route information such as trajectory coordinates and route sched-

ule (i.e., time and date on each coordinates), weather impact miner

can match the current information of each route in voyages and

then, create historical records regarding to current. By controlling

wind effect, weather impact miner estimates the net impact of cur-

rent on the fuel consumption using regression analysis and identi-

fies which voyages are easily affected by the current magnitude in

terms of fuel consumption. The standardized coefficient with sta-

tistical significance will be the current weight for given route on

b  
he sailing period and 1 will be assigned to the route which was

ot affected by current. 

.3. Particle swarm optimization solver 

Particle swarm optimization (PSO) is one of the successful

etaheuristic algorithms which has been applied to many real-

orld applications ( Ai and Kachitvichyanukul, 2009a; Ai and Ka-

hitvichyanukul, 2009b ). It is a population-based search method

eveloped by Kennedy and Eberhart (1995) . It mimics the social

ehaviour of a group of birds or a school of fish in foraging their
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Fig. 7. Wind direction coding scheme. 

Fig. 8. MOPSO framework. 
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ood. The searching algorithm is motivated by the movements of

he individuals or particles in the swarm. There are L particles in

 swarm and each particle is characterized by its current position,

elocity, personal best position and fitness value. While the current

osition represents the current location of each particle, the veloc-

ty specifies the direction that the particle moves. At each PSO it-

ration, every particle move to new position according to its veloc-

ty. The position of each particle represents a solution of the prob-

em. The personal best position can be considered as a metaphor

f cognitive learning of each particle. It keeps the best location of

 particle which gives the best objective function value compared

o its previous positions. In addition, each particle can also learn

rom other particles in the swarm. Thus, the best location in the

warm can be found as well. This location is called as the global

est location. 

The PSO proposed by Kennedy and Eberhart (1995) consid-

rs only single objective and hence, it cannot be directly applied

o the multi-objective problems. In this study, we utilize multi-

bjective PSO (MOPSO) framework presented in Nguyen and Ka-

hitvichyanukul (2010) . We adapt one of the proposed movement

trategy and conduct experiment to fine-tune the PSO parameters

or suitability to our model. The MOPSO framework is illustrated

n Fig. 8 ( Nguyen and Kachitvichyanukul, 2010 ). 
It should be noted that we apply the direct encoding scheme to

epresent the decision variables (average vessel speed v i at leg i )

n the position of the particle in the swarm. The position of par-

icle l is represented by a H-dimensional vector θ lh ( τ ) where l = 1,

…, L, h is the dimension of the vector and τ denote the iteration

umber. The corresponding velocity is given by ω lh ( τ ) and the per-

onal best position of particle l is represented by ψ lh ( τ ). The steps

f MOPSO framework are given as follows. 

Step 1: Initialize the particles in the swarm and specify the

aximum number of iterations T for the stopping criterion. Po-

itions of two particles in the swarm are set by the minimum

nd the maximum sailing speeds in all legs in order to guarantee

he lower and upper bound solutions in the initial Pareto frontier.

hese two positions are denoted by θmin and θmax , respectively. For

he remaining particles, the position θ lh (1) at iteration 1 is ran-

omly generated by setting the average speed v i at leg i between

he range of minimum and maximum sailing speed [ v min ,v max ]. Ve-

ocity ω lh (1) is set to 0 for every particle in the swarm. 

Step 2: Calculate the fuel consumption and the service level by

sing the Eqs. (4) –(5) presented in Section 3 for each particle in

he swarm. 

Step 3: Evaluate both objective functions computed in step 2 for

he non-dominated front (Pareto front). The non-dominated front

s stored in the external archive called elite group. To choose parti-

le l for the elite group, it should satisfy one of the following three

riteria; 

1) Both objective function values of particle l should be better

than the objective function values of the compared particles in

the swarm. 

2) While one objective function value of particle l is better than

the one of the other particles, its other objective function value

is equal to the objective function value of any particle. 

3) While one objective function of particle l is better than the one

of the other particles, its other objective function value is worse

than the objective function of any particle. 

Step 4: Check whether the stopping criterion is met or not. If it

s not satisfied ( τ < T ), go to step 5; otherwise, the process stops

nd the final non-dominated front is obtained. 

Step 5: Select some particles from the elite group to guide the

irection of movement for all particles by following the move-

ent strategy proposed by Nguyen and Kachitvichyanukul (2010) .

he aim of this strategy is to identify the gaps in the elite group

nd move particles to the space that has a high gap in the elite

roup. The advantage is that it helps to improve the distribution

f the elite group. For the details of particle selection criteria, we

efer to the second movement strategy proposed by Nguyen and

achitvichyanukul (2010) . Basically, this movement strategy checks

he gap between particles in the elite group. If the gap is higher

han the predefined percentage, then the corresponding particles

re added to the unexplored position set as a pair. Then, the

ovement is performed by randomly choosing a pair of particles

 P 1 h , P 2 h ) from the unexplored position set to be a global guide in

he search. 

Step 6: Update velocity and position for particles to move to the

ext position. Velocity of a particle at iteration τ +1 is updated by

onsidering three main components which are velocity at iteration

, its personal best position and the global best position. The ve-

ocity of particle l at iteration τ +1 is computed as follows: 

 lh ( τ + 1 ) = σ ( τ ) ω lh ( τ ) + a p U ( ψ lh ( τ ) − θlh ( τ ) ) 

+ a g [ U ( P 1 h − Q lh ( τ ) ) + U ( P 1 h − P 2 h ) ] (10) 

here σ ( τ ) is the inertia weight at iteration τ , a p and a g denote

he acceleration constants for its personal best and the global best

osition and U is a uniform random variable in the interval [0, 1].
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Fig. 9. Service route. 
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The inertia weight at iteration τ is computed as follows: 

σ ( τ ) = σ ( T ) + 

τ − T 

1 − T 
[ σ ( 1 ) − σ ( T ) ] . (11)

After updating the velocity, the position of a particle is com-

puted based on its new velocity and previous position as demon-

strated in Eq. (12) . 

θlh ( τ + 1 ) = θlh ( τ ) + ω lh ( τ + 1 ) (12)

However, the new position can correspond to an infeasible so-

lution where the vessel speed at each leg does not satisfy the sail-

ing speed constraints. Therefore, we introduce the following con-

ditions to force the position of a particle to be in minimum ( θmin )

and maximum ( θmax ) position value. 

(i) If θ lh ( τ +1) > θmax , then θ lh ( τ + 1) = θmax and ω lh ( τ + 1) = 0. 

(ii) If θ lh ( τ +1) < θmin , then θ lh ( τ + 1) = θmin and ω lh ( τ + 1) = 0. 

The iterative process repeats from Step 2 until it reaches the

termination criterion. 

5. Computational study 

In this section, we test the usability of the proposed DSS against

the data obtained from a liner shipping company that provides ser-

vices in Mediterranean and Black Sea regions. The operations team

of the company makes the decision on vessel speeds for their ser-

vices. This team is largely responsible for the scheduling of the

vessels and the planning cargo loading on the vessels. Through pri-

vate conversation with the case liner company, it was realized that

speed decision is influenced by several factors and the most sig-

nificant factor is port situation reports. These reports are usually

dispatched through daily emails. The port authority publishes the

port status data and forwards it to liner companies through the

subscribed agents. These reports are one of the major data sources

for the speed decision as they provide information on preferred ar-

rival time at each port. 

For the experiment, we choose one of the services operated by

the liner company in the Mediterranean region. This service starts

from port Salerno in Italy and visits ports La Spezia and Genoa in

Italy and ports Gemlik, Yilport, Marport and Izmir in Turkey. After

completing the route, the vessels return to the port Salerno for the

next voyage. This service covers 2790 nautical miles on average by

staying 7.9 days in the sea. The service route is depicted in Fig. 9 . 
We first show how accurately the fuel consumption function

djusted by weather impact miner. We collect the actual voyage

bstract data between 2012 and 2014 from the company. Table 2

resents a part of the sample abstract data for the selected service.

he abstract data shows the time stamp on each port arrival and

eparture with general operation statistics such as average sailing

peed, sea days, and fuel consumption for between ports. 

As we described in Section 4 , we combine the service abstract

ata with weather information parsed from Copernicus Maritime

nvironment Monitoring Service. The size of the extracted weather

ata for this experiment is 43 GB covering three years of nautical

ata for the Mediterranean and the Black Sea region. 

.1. Weather impact on fuel consumption 

We compare our fuel consumption estimation with the theo-

etical estimation obtained by the empirical model in Yao et al.,

2012) and the actual fuel consumption for the given service route.

e set the constants in the empirical model as k 1 =0.004595 and

 2 =16.42. The selected service for the experiment had been op-

rated 43 times between 2012 and 2014. The service is divided

nto 11 legs that correspond to the sea legs between ports and/or

traits. Table 3 presents the list of legs and the detail information

f each leg including distance and average sailing speed. The table

lso presents the estimation error in percentage in the right two

olumns. The estimation error indicates the root mean squared er-

or (RMSE) calculated based on past 43 voyages. In Table 3 , the

egs are sorted by distance. Fig. 10 illustrates the estimation error

or each leg. We refer our weather dependent fuel consumption

unction and the empirical model proposed by Yao et al., (2012) as

FC and EM, respectively. 

As depicted in Fig. 10 and discussed in Fig. 1 , estimation error

f the empirical model (EM) tends to increase dramatically for the

egs with longer distances while the fuel consumption estimations

or short legs are relatively accurate. The results show that our pro-

osed fuel consumption model with weather weights can decrease

he estimation error for the voyage legs with long distances. For

nstance, for the longest leg (leg no 11, between two straits), our

odel (WFC) gives 7.5% error whereas EM has an error of 9.3%. 

As depicted in Fig. 9 , legs 10 and 11 cross the Mediterranean

ea and hence, these legs are exposed to stronger current com-

ared to the other legs, which lie in the Tyrrhenian Sea and the

egean Sea. In addition, the impact of weather is more significant
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Table 2 

Sample voyage abstract data for the Mediterranean service. 

General information 

Voyage No. ….. 

Vessel name ….. 

Call sign TCLA 

Port rotation 

No Port name Distance Avg. speed Engine load Avg. fuel C. Sea (day) 

EOSP COSP 

1 Salerno 02/01/2013 15 :30 02/01/2013 21 :40 

2 Genoa 376 .0 14 .4 50 30 .3 1 .09 03/01/2013 23 :50 04/01/2013 15 :00 

3 La Spezia 49 .0 15 .5 55 4 .1 0 .13 04/01/2013 18 :10 11/01/2013 16 :50 

4 Genoa 42 .0 15 .8 55 3 .8 0 .11 11/01/2013 19 :30 13/01/2013 00 :15 

5 Strait of Messina 475 .0 14 .3 55 43 .0 1 .39 14/01/2013 09 :30 14/01/2013 10 :15 

6 Dardanelles Strait 648 .0 14 .3 55 58 .4 1 .89 16/01/2013 07 :30 16/01/2013 10 :30 

7 Gemlik 106 .0 15 .0 55 8 .8 0 .30 16/01/2013 17 :35 17/01/2013 10 :30 

8 Yilport 43 .0 15 .2 55 3 .5 0 .12 17/01/2013 13 :20 18/01/2013 00 :35 

9 Marport 31 .0 12 .8 55 3 .0 0 .10 18/01/2013 03 :00 19/01/2013 07 :50 

10 Dardanelles Strait 94 .0 14 .5 55 8 .1 0 .27 19/01/2013 14 :20 19/01/2013 17 :45 

11 Izmir 131 .0 14 .4 68 11 .4 0 .38 20/01/2013 02 :50 20/01/2013 23 :40 

12 Strait of Messina 666 .0 15 .3 82 64 .2 1 .82 22/01/2013 19 :20 22/01/2013 20 :10 

13 Salerno 133 .0 15 .5 82 15 .0 0 .36 23/01/2013 04 :45 

Total 2794 .0 7 .94 

Table 3 

Fuel consumption estimation summary. 

Leg no. Port/Strait Distance Avg. speed Estimation error % (RMSE) 

From To EM WFC 

1 Yilport Marport 32 .33 16 .02 0 .73 0 .73 

2 Gemlik Yilport 42 .18 15 .71 0 .78 0 .74 

3 La Spezia Genoa 46 .25 15 .93 0 .93 0 .94 

4 Marport Dardanelles Strait 90 .08 16 .32 1 .52 1 .46 

5 Dardanelles Strait Gemlik 106 .24 15 .92 1 .47 1 .27 

6 Dardanelles Strait Izmir 131 .24 16 .74 1 .50 1 .27 

7 Strait of Messina Salerno 149 .48 15 .68 1 .42 1 .36 

8 Salerno La Spezia 330 .01 15 .58 1 .92 1 .86 

9 Genoa Strait of Messina 473 .40 15 .77 5 .93 5 .61 

10 Izmir Strait of Messina 625 .64 16 .13 6 .31 5 .35 

11 Strait of Messina Dardanelles Strait 647 .26 15 .71 9 .32 7 .48 

Table 4 

MOPSO parameter setting. 

Inertia weight σ (0) = 0.4, σ ( T ) = 0.9 

Acceleration constants a p = 0.05, a g = 0.05 

Percent of unexplored gap 5% 

Swarm size 500 

Number of maximum iterations 10 0 0 

Number of elites 100 
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n the long voyage legs compared to the short legs. Since our fuel

onsumption function considers the impact of weather conditions

n the fuel efficiency, it performs better than the empirical model

EM) especially for long sea legs. Considering intercontinental long

oyages where weather will be more severe and highly variable

han the exemplified closed seas, the proposed fuel consumption

unction is anticipated to provide better estimates. 

.2. Numerical results on multi-objective speed optimization problem 

In this section, we test the performance of our multi-objective

peed optimization model given by Eqs. (4) –(8) . MOPSO is used to

nd the optimal sailing speed at each leg which minimizes the fuel

onsumption and maximizes the average service level. The param-

ters used in the PSO solver are shown in Table 4 . In our experi-

ents, we used a computer with 1.80 GHz Intel (R) Core (TM) and

.00 GB of RAM. The solution algorithm is implemented in Visual

# running under Windows 8.1 operating system. 
In this experiment, we investigate three voyages of the same

iner service operated by the sane vessel between 2013 and 2014

nd discuss the potential fuel savings by optimizing the vessel

ailing speed. In particular, we compare the fuel consumption ob-

ained by our multi-objective model with the actual fuel consump-

ion of the liner service. We also test the performance of our fuel

onsumption function against the empirical model proposed by

ao et al., (2012) . 

The analyzed voyages include seven ports and two strait pas-

ages in the sequence following SAL (Salerno), LAS (La Spezia),

EN (Genoa), ST1 (Strait of Messina), ST2 (Dardanelles Strait), GEM

Gemlik), YIL (Yilport), MAR (Marport), ST2 (Dardanelles Strait),

ZM (Izmir), ST1 (Strait of Messina), and back to Salerno. The dis-

ance between ports are given in Table 3 . The start and end dates

f these three voyages are 12.08.2013 and 26.08.2013 for the first

oyage (V1), 6.03.2014 and 23.03.2014 for the second voyage (V2),

nd 09.05.2014 and 24.05.2014 for the third voyage (V3). 

According to the data obtained from the liner company, the ves-

el has always arrived before the end of the contracted time win-

ow in these voyages. Therefore, we compare the results for the

arget service level of 100%. As we discussed in Section 3 , we as-

ume that the service level degradation for busy and idle ports are

ifferent and it is given in Eqs. (13) and (14) , respectively. 

 i 

(
t a i 

)
= 

{ 

1 if t a 
i 

≤ βi 

0 . 5 if βi < t a 
i 

≤ βi + 1 

0 if βi + 1 < t a 
(13) 
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Fig. 10. Percentage error in fuel consumption estimation (RMSE). 

Table 5 

Optimal sailing speeds and fuel consumption. 

SAL LAS GEN ST1 ST2 GEM YIL MAR ST2 IZM ST1 SAL Total 

w i – 1 .07 1 .00 0 .97 0 .97 1 .00 1 .20 1 .02 1 .00 1 .00 1 .10 1 .00 

WS – 17 .18 16 .23 17 .21 17 .09 17 .33 17 .40 15 .12 15 .36 16 .02 13 .22 14 .93 

v i BS – 17 .66 13 .03 17 .35 16 .74 18 .07 16 .38 13 .91 18 .42 15 .65 13 .20 13 .24 

V1 AD – 18 .05 18 .43 17 .48 16 .59 17 .42 16 .26 16 .80 14 .87 15 .17 13 .50 14 .69 

WS 3 .81 40 .65 9 .04 44 .46 61 .03 13 .49 7 .64 11 .91 8 .72 21 .53 60 .14 12 .57 295 .0 

F i BS 3 .81 39 .10 8 .72 46 .13 61 .99 13 .84 6 .65 11 .75 9 .81 20 .12 54 .69 12 .10 288 .7 

AD 3 .93 39 .40 9 .60 51 .90 76 .50 14 .70 9 .30 12 .80 11 .80 18 .20 55 .00 10 .90 313 .9 

w i – 1 .00 1 .04 1 .21 1 .00 1 .04 1 .00 0 .97 0 .97 0 .97 1 .00 0 .97 

WS – 13 .24 14 .55 16 .12 16 .03 15 .61 16 .56 14 .38 15 .44 14 .77 13 .54 13 .84 

v i BS – 13 .34 13 .67 15 .66 16 .25 15 .88 16 .77 16 .35 14 .68 14 .89 13 .51 13 .98 

V2 AD – 13 .46 12 .84 16 .66 15 .96 16 .46 13 .12 12 .77 13 .61 18 .49 17 .62 18 .06 

WS 2 .18 36 .52 12 .98 53 .70 60 .73 13 .60 13 .02 9 .06 8 .80 19 .74 55 .30 11 .94 297 .6 

F i BS 2 .18 36 .57 12 .33 43 .67 61 .23 13 .30 13 .05 9 .34 8 .86 20 .13 55 .27 12 .40 288 .3 

AD 5 .10 37 .30 12 .32 55 .56 78 .63 15 .57 17 .25 10 .24 15 .73 20 .83 72 .84 15 .19 356 .6 

w i – 0 .97 0 .99 1 .00 0 .98 0 .97 0 .99 0 .97 0 .98 1 .02 1 .00 1 .00 

WS – 15 .78 16 .04 15 .87 16 .04 16 .28 16 .26 15 .92 15 .94 14 .02 13 .87 14 .01 

v i BS – 16 .73 15 .70 15 .68 16 .04 15 .31 16 .27 15 .52 14 .45 14 .48 12 .76 13 .64 

V3 AD – 17 .47 12 .92 16 .14 15 .96 16 .00 13 .30 14 .22 15 .48 16 .16 14 .78 13 .22 

WS 3 .93 36 .81 10 .72 43 .91 59 .06 13 .90 6 .22 7 .92 8 .67 17 .56 54 .90 12 .18 275 .8 

F i BS 3 .93 38 .95 10 .71 43 .60 60 .30 13 .90 6 .30 8 .00 8 .50 17 .50 54 .00 12 .10 277 .6 

AD 5 .91 43 .60 10 .60 52 .80 81 .40 17 .10 9 .20 9 .40 13 .80 21 .50 72 .40 13 .10 350 .8 
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1 if t a 
i 

≤ βi 

0 . 8 if βi < t a 
i 

≤ βi + 1 

0 . 6 i f βi + 1 < t a 
i 

≤ βi + 2 

0 . 4 if βi + 2 < t a 
i 

≤ βi + 3 

0 . 2 if βi + 3 < t a 
i 

≤ βi + 4 

0 if βi + 4 < t a 
i 

(14)

Lastly, we assume that the sailing speed ranges between 12.5

and 19.5 knots. 

Table 5 presents the optimal sailing speeds and the correspond-

ing fuel consumption at sea legs. We use the emprical fuel con-

sumption function proposed by Yao et al., (2012) in our multi-

objective speed optimization model for benchmarking. Both mod-

els are solved by MOPSO with the same parameter set. In the se-

quel, we refer to our weather dependent speed optimization model

and the benchmarking model as WS and BS, respectively. The ac-

tual liner data (sailing speed and fuel consumption data) is de-

noted as AD. The first column of Table 5 denotes the voyages.

The next columns present the sailing speeds ( v ) and correspond-
i 
ng fuel consumption ( F i ) at each leg. Since our speed optimization

odel considers weather impact, we also provide the correspond-

ng weather weights ( w i ) for each leg in Table 5 . These weather

eights are obtained through the weather impact miner. 

Comparing the sailing speeds, we observe that the empirical

uel consumption model provides slightly lower sailing speeds and

ence, the estimated fuel consumption is less than the one ob-

ained by WS. This difference can be attributed to the impact of

eather conditions on the sailing speed and fuel consumption. The

uel consumption function in BS does not consider the weather

ffect. As seen from Table 5 , the differences are more significant

hen the variability in the weather weights is high. We can de-

uce from this result that in long voyages where weather-sea con-

itions can be highly variable and severe, vessel speed should be

etermined by considering the impact on fuel consumption. On the

ther hand, the gap between the total fuel consumption obtained

y WS and the actual fuel data shows the maximum potential fuel

avings that can be achieved through optimizing sailing speeds by

onsidering service level. 
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Fig. 11. Pareto front lines for the three voyages. 
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Fig. 11 illustrates the Pareto front-lines of the three voyages

or the Pareto optimal solutions of WS and BS models. The Pareto

ront lines show the trade-off relationship between fuel consump-

ion and service level. As seen in the figure, achieving high ser-

ice level requires more fuel consumption. Comparing the Pareto

ront lines of WS and BS, we observe that the estimated fuel con-

umption for a given service level is generally higher when we use

eather dependent fuel consumption function. In voyage 3, vari-

bility in weather conditions is low and hence, Pareto front-lines of

S and BS are closer. This observation is in line with the results

n Table 3 . The slopes of the Pareto front-lines show how much

ore fuel is required to achieve higher service level. The managers

an use the front-lines to decide required service level and fuel

onsumption depending on different priorities coming from their

lients and operations teams. 

. Conclusion 

This paper contributes to vessel speed optimization literature

y proposing a way to explore weather archive big-data. In par-

icular, a novel method to parse weather archive data and ap-

ly data mining techniques to learn the impact of weather con-

ition on fuel consumption was proposed. Revised fuel consump-

ion function considers the impact of wind and current on fuel

onsumption of vessels. We focus on speed optimization problem

n liner shipping by considering the trade-off between minimiz-

ng fuel cost and maximizing service level. PSO technique based

olver is used to solve this multi-objective problem. We conduct

 computational study by using real-life cases from a liner ship-

ing company. The numerical experiments demonstrate that the

evised fuel consumption function provides better fuel consump-

ion estimates compared to the benchmark method which ignores

he weather impact. The improvement on fuel estimation is more

ignificant in long voyage legs. Therefore, considering interconti-

ental long voyages where weather-sea conditions are highly vari-

ble than the exemplified closed seas, the proposed DSS can bring

ignificant cost improvements. Moreover, the PSO solver of the DSS

enerates Pareto optimal solutions that show trade-off analysis be-

ween fuel consumption and port service level. Liner operators can

ecide sailing speeds of vessels for each leg considering the cus-

omer requirements. 
In spite of its merits, this study has limitations which provide

uture research directions. Firstly, the source of the weather archive

ata of the DSS is currently fixed to Copernicus Maritime Envi-

onment Monitoring Service and the weather archive data parser

an be applied only to this data source. As different archive data

ources have different data format and contents, the parser needs

o be extended to be able to parse other data sources. Secondly,

hough our method considers the variabilities in weather condi-

ions when computing fuel consumption, it does not address un-

ertainties generated from ports. In reality, port side uncertainties

re common and can affect the actual service times at ports. A

romising research direction would be to include port side uncer-

ainties in the mathematical model and in the PSO solver. 
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