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Abstract—A human being’s cognitive system can be simulated
by artificial intelligent systems. Machines and robots equipped
with cognitive capability can automatically recognize a humans
mental state through their gestures and facial expressions. In
this paper, an artificial intelligent system is proposed to monitor
depression. It can predict the scales of Beck Depression Inventory
(BDI-II) from vocal and visual expressions. Firstly, different
visual features are extracted from facial expression images. Deep
Learning method is utilized to extract key visual features from the
facial expression frames. Secondly, Spectral Low-level Descrip-
tors (LLDs) and Mel-frequency cepstral coefficients (MFCCs)
features are extracted from short audio segments to capture the
vocal expressions. Thirdly, Feature Dynamic History Histogram
(FDHH) is proposed to capture the temporal movement on the
feature space. Finally these FDHH and Audio features are fused
using regression techniques for the prediction of the BDI-II scales.
The proposed method has been tested on the public AVEC2014
dataset as it is tuned to be more focused on the study of
depression. The results outperform all the other existing methods
on the same dataset.

Index Terms—Artificial System, Depression, Beck Depression
Inventory, Facial Expression, Vocal Expression, Regression, Deep
Learning

I. INTRODUCTION

MENTAL health issues such as depression have been
linked to deficits of cognitive control. It affects one

in four citizens of working age, which can cause significant
losses and burdens to the economic, social, educational, as
well as justice systems [1], [2]. Depression is defined as “a
common mental disorder that presents with depressed mood,
loss of interest or pleasure, decreased energy, feelings of
guilt or low self-worth, disturbed sleep or appetite, and poor
concentration.” [3]

Among all psychiatric disorders, major depressive disorder
(MDD) commonly occurs and heavily threatens the mental
health of human beings. 7.5% of all people with disabilities
suffer from depression, making it the largest contributor [4],
exceeding 300M people. Recent study [5] indicates that having
a low income shows an increased chance of having major
depressive disorders. It can also affect the major stages in life
such as educational attainment and the timing of marriage.
According to [6], majority of the people that obtain treatment
for depression do not recover from it. The illness still remains
with the person. This may be in the form of insomnia, exces-
sive sleeping, fatigue, loss of energy or digestive problems.

Artificial intelligence and mathematical modeling tech-
niques are being progressively introduced in mental health

research to try and solve this matter. The mental health area
can benefit from these techniques, as they understand the im-
portance of obtaining detailed information to characterize the
different psychiatric disorders [7]. Emotion analysis has shown
to been an effective research approach for modeling depressive
states. Recent artificial modeling and methods of automatic
emotion analysis for depression related issues are extensive
[8], [9], [10], [11]. They demonstrate that depression analysis
is a task that can be tackled in the computer vision field, with
machine based automatic early detection and recognition of
depression is expected to advance clinical care quality and
fundamentally reduce its potential harm in real life.

The face can effectively communicate emotions to other
people through the use of facial expressions. Psychologists
have modeled these expressions in detail creating a dictionary
called the Facial Action Coding System (FACS). It contains
the combination of facial muscles for each expression [12],
and can be used as a tool to detect the emotional state of
a person through their face. Another approach to classify
emotion through facial expressions is using local and holistic
feature descriptors, such as in [13]. Unlike FACS, these
techniques treat the whole face the same and look for patterns
throughout, and not just for certain muscles. However, the
depression disorder is not limited to be expressed by the face.
The perception of emotional body movements and gestures
has shown it can be observed through a series of controlled
experiments using patients with and without MDD [14]. Fur-
thermore, EEG signals and brain activity using MRI imaging,
are modalities recent to computer vision [15], [16]. Electro-
cardiogram (ECG) and electro-dermal activity (EDA) are also
considered for depression analysis alongside the audio-visual
modality [17].

All of this research is evidenced by the series of in-
ternational Audio/Visual Emotion Recognition Challenges
(AVEC2013 [1], AVEC2014 [18] and most recently
AVEC2016 [17]). Each challenge provides a dataset that
has rich video content containing subjects that suffer from
depression. Samples consist of visual and vocal data, where
the facial expressions and emotions through the voice have
been captured carefully from the cognitive perspective. The
objective is to communicate and interpret emotions through
expressions using multiple modalities. Various methods have
been proposed for depression analysis [11], [19], [20], includ-
ing most recent works from AVEC16 [21], [22], [23].

In order to create a practical and efficient artificial system
for depression recognition, visual and vocal data are key as
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they are easily obtainable for a system using a camera and
microphone. This is a convenient data collection approach
when compared to data collection approaches that requires
sensors to be physically attached to the subject, such as
EEG and ECG data. For machines and systems in a non-
controlled environment, obtaining EEG and ECG can therefore
be difficult to obtain. The depression data from the AVEC2013
and AVEC2014 datasets provide both visual and vocal raw
data. However, AVEC2016 provides the raw vocal data but
no raw visual data, for ethical reasons. Instead is provided a
set of different features obtained from the visual data by the
host. For this reason, the AVEC2014 dataset has been chosen
in order to run experiments using raw visual and vocal data.

Deep learning is also a research topic that has been adopted
towards visual modality, especially in the form of a Convo-
lutional Neural Network (CNN). It has significantly taken off
from its first big discovery for hand digit recognition [24].
Recently, the effectiveness of deep networks have been por-
trayed in different tasks such as face identification [25], image
detection; segmentation and classification [26], [27] and many
other tasks. The majority of these applications have only
become achievable due to the processing movement from
CPU to GPU. The GPU is able to provide a significantly
higher amount of computational resources versus a CPU, to
handle multiple complex tasks in a shorter amount of time.
Deep networks can become very large and contain millions of
parameters, which was a major setback in the past. Now there
are a variety of deep networks available such as AlexNet [28]
and the VGG networks [29]. These networks have been trained
with millions of images based on their applications, and are
widely used today as pre-trained networks.

Pre-trained CNNs can be exploited for artificial depression
analysis, mainly using the visual modality. However, the pre-
trained CNN models such as VGG-Face provide good features
at the frame level of videos, as they are designed for still
images. In order to adapt this across temporal data, a novel
technique called Feature Dynamic History Histogram (FDHH)
is proposed to capture the dynamic temporal movement on
the deep feature space. Then Partial Least Square (PLS) and
Linear regression (LR) algorithms are used to model the
mapping between dynamic features and the depression scales.
Finally, predictions from both video and audio modalities
are combined at the prediction level. Experimental results
achieved on the AVEC2014 dataset illustrates the effectiveness
of the proposed method.

The aim of this paper is to build an artificial intelligent
system that can automatically predict the depression level from
a user’s visual and vocal expression. The system is understood
to apply some basic concepts of how parts of the human brain
works. This can be applied in robots or machines to provide
human cognitive like capabilities, making intelligent human-
machine applications.

The main contribution of the proposed framework are the
following: 1) A framework architecture is proposed for auto-
matic depression scale prediction that includes frame/segment
level feature extraction, dynamic feature generation, feature
dimension reduction and regression; 2) Various features, in-
cluding deep features, are extracted on the frame-level that

captured the better facial expression information; 3) A new
feature (FDHH) is generated by observing dynamic variation
patterns across the frame-level features; 4) Advanced regres-
sive techniques are used for regression.

The rest of the paper is organized as follows. Section 2
briefly reviews related work in this area. Section 3 provides
a detailed description of the proposed method, and Section
4 displays and discusses the experimental results on the
AVEC2014 dataset [18]. Section 5 concludes the paper.

II. RELATED WORKS

Recent years have witnessed an increase of research for clin-
ical and mental health analysis from facial and vocal expres-
sions [30], [31], [32], [33]. There is a significant progress on
emotion recognition from facial expressions. Wang et al. [30]
proposed a computational approach to create probabilistic
facial expression profiles for video data. To help automatically
quantify emotional expression differences between patients
with psychiatric disorders, (e.g. Schizophrenia) and healthy
controls.

In depression analysis, Cohn et al. [34], who is a pioneer in
the affective computing area, performed an experiment where
he fused both the visual and audio modality together in an
attempt to incorporate behavioral observations, from which
are strongly related to psychological disorders. Their findings
suggest that building an automatic depression recognition sys-
tem is possible, which will benefit clinical theory and practice.
Yang et al. [31] explored variations in the vocal prosody
of participants, and found moderate predictability of the de-
pression scores based on a combination of F0 and switching
pauses. Girard et al. [33] analyzed both manual and automatic
facial expressions during semi-structured clinical interviews of
clinically depressed patients. They concluded that participants
with high symptom severity tend to express more emotions
associated with contempt, and smile less. Yammine et al.
[35] examined the effects caused by depression to younger
patients of both genders. The samples (n=153) completed the
Beck Depression Inventory II questionnaire which indicated
that the mean BDI II score of 20.7 (borderline clinically
depressed), from the patients that were feeling depressed in the
prior year. Scherer et al. [32] studied the correlation between
the properties of gaze, head pose, and smile of three mental
disorders (i.e. depression, post-traumatic stress disorder and
anxiety). They discovered that there is a distinct difference
between the highest and lowest distressed participants, in terms
of automatically detected behaviors.

The depression recognition sub-challenge of AVEC2013
[1] and AVEC2014 [18]; had proposed some good methods
which achieved good results [19], [36], [37], [38], [39], [40],
[41], [42], [43], [44], [11], [10]. From this, Williamson et
al. [19], [20] was the winner of the depression sub-challenge
for the AVEC2013 and AVEC2014 competitions. In 2013, they
exploited the effects that reflected changes in coordination of
vocal tract motion associated with Major Depressive Disor-
der. Specifically, they investigated changes in correlation that
occur at different time scales across dormant frequencies and
also across channels of the delta-mel-cepstrum [19]. In 2014
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Fig. 1. Overview of the proposed automatic depression scale recognition system from facial expressions. The Video Data is broken down into visual frames.
If deep learning is utilized, then deep features are extracted from the frames, otherwise a set of hand-crafted features are extracted. This is followed by FDHH
to produce a dynamic descriptor. The dimensionality is reduced and a fusion of PLS and LR is used to predict the Depression Scale.

they looked at the change in motor control that can effect
the mechanisms for controlling speech production and facial
expression. They derived a multi-scale correlation structure
and timing feature from vocal data. Based on these two feature
sets, they designed a novel Gaussian mixture model (GMM)
based multivariate regression scheme. They referred this as
a Gaussian Staircase Regression, that provided very good
prediction on the standard Beck depression rating scale.

Meng et al. [11] modeled the visual and vocal cues for
depression analysis. Motion History Histogram (MHH) is used
to capture dynamics across the visual data, which is then fused
with audio features. PLS regression utilizes these features
to predict the scales of depression. Gupta et al. [42] had
adopted multiple modalities to predict affect and depression
recognition. They fused together various features such as
Local Binary Pattern (LBP) and head motion from the visual
modality, spectral shape and MFCCs from the audio modality
and generating lexicon from the linguistics modality. They also
included the baseline features Local Gabor Binary Patterns -
Three Orthogonal Planes (LGBP-TOP) [18] provided by the
hosts. They then apply a selective feature extraction approach
and train a Support Vector Regression (SVR) machine to
predict the depression scales.

Kaya et al. [41] used LGBP-TOP on separate facial re-
gions with Local Phase Quantization (LPQ) on the inner-face.
Correlated Component Analysis (CCA) and Moore-Penrose
Generalized Inverse (MPGI) were utilized for regression in a
multimodal framework. Jain et al. [44] proposed using Fisher
Vector (FV) to encode the LBP-TOP and Dense Trajectories
visual features, and LLD audio features. Perez et al. [39]
claimed; after observing the video samples; that subjects with
higher BDI-II showed slower movements. They used a multi-
modal approach to seek motion and velocity information that
occurs on the facial region, as well as 12 attributes obtained
from the audio data such as ‘Number of silence intervals
greater than 10 seconds and less than 20 seconds’ and
‘Percentage of total voice time classified as happiness’.

The above methods have achieved good performance. How-
ever, for the visual feature extraction, they used methods
that only consider the texture, surface and edge information.

Recently, deep learning techniques have made significant
progress on visual object recognition, using deep neural net-
works that simulate the humans vision-processing procedure
that occurs in the mind. These neural networks can provide
global visual features that describe the content of the facial
expression. Recently Chao et al. [43] proposed using multi-
task learning based on audio and visual data. They used Long-
Short Term Memory (LSTM) modules with features extracted
from a pre-trained CNN, where the CNN was trained on
a small facial expression dataset FER2013 by Kaggle. This
dataset contained a total of 35,886 48x48 grayscale images.
The performance they achieved is better than most other
competitors from the AVEC2014 competition, however it is
still far away from the state-of-the-art. A few drawbacks of
their approach are the image size they adopted is very small,
which would result in downsizing the AVEC images and
reducing a significant amount of spatial information. This can
have a negative impact as the expressions they wish to seek
are very subtle, small and slow. They also reduce the color
channels to grayscale, further removing useful information.

In this paper, we are targeting an artificial intelligent system
that can achieve the best performance on depression level
prediction, in comparison with all the existing methods on
the AVEC2014 dataset. We will improve previous work from
feature extraction using deep learning, regression as well as
fusion and build a complete system for automatic depression
level prediction from both vocal and visual expressions.

III. FRAMEWORK

Human facial expressions and voices in depression are
theoretically different from those under normal mental states.
An attempt to find a solution for depression scale predic-
tion is achieved by combining dynamic descriptions within
naturalistic facial and vocal expressions. A novel method is
developed that comprehensively models the variations in visual
and vocal cues, to automatically predict the BDI-II scale of
depression. The proposed framework is an extension of the
previous method [10] by replacing the hand-crafted techniques
with deep face representations as a base feature to the system.
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Fig. 2. Overview of the proposed automatic depression scale recognition system from vocal expressions. The Speech Audio is extracted from the Video Data,
where short segments are produced. Then a bunch of audio features are extracted from each segment and averaged. These are reduced in dimensionality and
a fusion of PLS and Linear regression is used to predict the Depression Scale.

A. System Overview

Figure 1 illustrates the process of how the features are
extracted from the visual data using either deep learning or a
group of hand-crafted techniques. Dynamic pattern variations
are captured across the feature vector, which is reduced
in dimensionality and used with regression techniques for
depression analysis. Figure 2 follows a similar architecture
as Figure 1, but is based on Audio data. The audio is split
into segments and two sets of features are extracted from these
segments. Then one of these sets are reduced in dimensionality
and used with regression techniques to predict the Depression
Scale.

For the deep feature process, the temporal data for each
sample is broken down into static image frames which are pre-
processed by scaling and subtracting the given mean image.
These are propagated forward into the deep network for high
level feature extraction. Once the deep features are extracted
for a video sample, it is rank normalized between 0 and 1
before the FDHH algorithm is applied across each set of
features per video. The output is transformed into a single
row vector, which will represent the temporal feature of one
video.

Both frameworks are Unimodal approaches. The efforts
are combined at feature level by concatenating the features
produced by each framework just before PCA is applied. This
gives a Bimodal feature vector, which is reduced in dimension-
ality using PCA and is rank normalized again between 0 and
1. It is applied with a weighted sum rule fusion of regression
techniques at prediction level, to give the BDI-II prediction.

B. Visual Feature Extraction

This section looks at the different techniques and algorithms
used to extract visual features from the data.

1) Hand-Crafted Image Feature Extraction: Previously
[10], the approach was based on investing in hand-crafted
techniques to represent the base features. These were applied
on each frame, similar to the Deep Face Representation,
with three different texture features Local Binary Patterns
(LBP); Edge Orientation Histogram (EOH) and Local Phase
Quantization (LPQ).

LBP looks for patterns of every pixel compared to its
surrounding 8 pixels [45]. This has been a robust and effective
method used in many applications including face recogni-
tion [46]. EOH is a technique similar to Histogram of Oriented
Gradients (HOG) [47], using edge detection to capture the
shape information of an image. Applications include hand
gesture recognition [48], object tracking [49] and facial ex-
pression recognition [50]. LPQ investigates the frequency
domain, where an image is divided into blocks where Discrete
Fourier Transform is applied on top to extract local phase
information. This technique has been applied for face and
texture classification [51].

2) Architectures for Deep Face Representation: In this
section, different pre-trained CNN models are introduced,
detailing the architectures and its designated application. Two
models are then selected to be testing within the system for
the experiments.

3) VGG-Face: Visual Geometry Group have created a few
pre-trained deep models, including their Very Deep Networks.
These networks are VGG-S, VGG-F, VGG-M [52] networks
which represent slow, fast and medium respectively. VGG-D
and VGG-E are their very deep networks, VGG-D containing
16 convolutional layers and VGG-E containing 19 [29]. These
networks are pre-trained based on the ImageNet dataset for
the Object Classification task [53]. VGG-Face is a network
which they train on 2.6M facial images for the application
of Face Recognition [25]. This network is more suited for
the Depression analysis task as it is trained mainly on facial
images, as opposed to objects from the ImageNet dataset.

The VGG-Face [25] pre-trained CNN contains a total of
36 layers, where 16 are convolution layers and 3 are fully
connected layers. The filters have a fixed kernel size of 3x3
and as the layers increase, so does the filter depth which
varies from 64 to 512. The fully connected layers are of
1x1 kernel and have a depth of 4096 dimensions, with the
last layer having 2622. The remaining 20 are a mixture of
Rectified Linear activation layers and Max Pooling layers, with
a softmax layer at the end for probabilistic prediction. The full
architecture is shown in Figure 3, along with how the high and
low level features look like throughout the network. It can be
seen how certain filter responses are activated to produce edges
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Fig. 3. The VGG-Face architecture visualizing low to high level features captured as a facial expression is propagated through-out the network, stating the
dimensions produced by each layer.

and blobs that over the network they combine to remake the
image.

This network is designed to recognize a given face between
2622 learned faces, hence the 2622 filter responses in the
softmax layer. However, the task is more to observe the facial
features that are learned by the convolutional layers. The early
to later convolution layers (Conv1 to Conv5) contain spatial
features from edges and blobs, to textures and facial parts
respectively. Their filter responses can be too big to be used
directly as a feature vector to represent faces. Therefore, the
fully connected layers are looked upon to obtain a plausible
feature vector to describe the whole input facial image. In
these experiments, the feature at the 3 fully connected layers
FC1, FC2 and FC3 were acquired and used.

4) AlexNet: AlexNet [28], created by Alex Krishevsky, is
another popular network, which was one of the first successful
deep networks used in the ImageNet challenge [53]. This pre-
trained CNN contains 21 layers in total. The architecture of
AlexNet varies from the VGG-Face network in terms of the
depth of the network and the convolution filter sizes. The
targeted layers for this experiment are 16 and 18, which are
represented as FC1 and FC2 respectively. This network is
designed for recognizing up-to 1000 various objects, which
may result in unsuitable features when applied with facial
images. However, it will be interesting to see how it performs
against VGG-Face, a network designed specifically for faces.

C. Audio Feature Extraction

For audio features, the descriptors are derived from the
set provided by the host of the AVEC2014 challenge. They
include spectral low-level descriptors (LLDs) and MFCCs 11-
16. There are a total of 2268 features, with more details
in [18]. These features are further investigated to select the
most dominant set by comparing the performance with the
provided audio baseline result. The process includes testing
each individual feature vector with the development dataset,
where the top 8 performing descriptors are kept. Then, each
descriptor is paired with every other in a thorough test to
find the best combination. This showed Flatness; Band1000;

PSY Sharpness; POV; Shimmer and ZCR to be the best
combination, with MFCC being the best individual descriptor.
Figure 2 shows the full architecture using the selected audio
features, where two paths are available, either selecting the
MFCC feature or the combined features.

D. Feature Dynamic History Histogram

MHH is a descriptive temporal template of motion for visual
motion recognition. It was originally proposed and applied for
human action recognition [54]. The detailed information can
be found in [55] and [56]. It records the grey scale value
changes for each pixel in the video. In comparison with other
well-known motion features, such as Motion History Image
(MHI) [57], it contains more dynamic information of the pixels
and provides better performance in human action recognition
[55]. MHH not only provides rich motion information, but also
remains computationally inexpensive [56].

MHH normally consists of capturing motion data of each
pixel from a string of 2D images. Here, a technique is proposed
to capture dynamic variation that occurs within mathematical
representations of a visual sequence. Hand-Crafted descriptors
such as EOH, LBP and LPQ model the mathematical repre-
sentations from the still images, which can be interpreted as
a better representation of the image. Furthermore, fusion of
these technical features can provide a combination of several
mathematical representations, improving the feature as demon-
strated in [13]. Several techniques have been proposed to move
these descriptors into the temporal domain in [58], [59], [60],
[61]. They simply apply the hand-crafted descriptors in three
spatial directions, as they are specifically designed for spatial
tasks. This ideally extends the techniques spatially in different
directions rather than dynamically taking the time domain into
account.

A solution was proposed to obtain the benefits of using
hand-crafted techniques on the spatial images, along with
applying the principals of temporal based motion techniques.
This was achieved by capturing the motion patterns in terms
of dynamic variations across the feature space. This involves
extracting the changes on each component in a feature vector
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Fig. 4. Visual process of computing FDHH on the sequence of feature vectors. The first step is to obtain a new binary vector representation based on the
absolute difference between each time sample. From this, Binary patterns Pm are observed throughout each components of the binary vector and a histogram
is produced for each pattern.

sequence (instead of one pixel from an image sequence),
so the dynamic of facial/object movements are replaced by
the feature movements. Pattern occurrences are observed in
these variations, from which histograms are created. Figure 4
shows the process of computing FDHH on the sequence of
feature vector, the algorithm for FDHH can be implemented
as follows:

We let {V (c, n), c = 1, · · · , C, n = 1, · · · , N} be a feature
vector with C components and N frames, and a binary
sequence {D(c, n), c = 1, · · · , C, n = 1, · · · , N − 1} of
feature component c is generated by comprising and thresh-
olding the absolute difference between consecutive frames as
shown in Equation 1. T is the threshold value determining
if dynamic variation occurs within the feature vector. Given
the parameter M = 5, we can define the pattern sequences
PM as Pm (1 ≤ m ≤M), where m represents how many
consecutive ’1’s are needed to create the pattern, as shown
in Figure 4. The final dynamic feature can be represented as
{FDHH(c,m), c = 1, · · · , C,m = 1, · · · ,M}.

D(c, n) =

{
1, if {|V (c, n+ 1)− V (c, n)| ≥ T}
0, otherwise

(1)

Equation 1 shows the calculation for the binary sequence
D(c, n). The absolute difference is taken between the sample
n + 1 and n, which is then compared with a threshold to
determine if the sequence should be a ’1’ or ’0’. We then
initialize a counter CT to 0, which is used to search for
patterns of 1’s in a sequence D(1 : C, 1 : N − 2).

CT =

{
CT ++, if {D(c, n+ 1) = 1}
0, a pattern P1:M found, reset CT

(2)

FDHH(c,m) =

{
FDHH(c,m) + 1, if {Pm is found}
FDHH(c,m), otherwise

(3)
When observing a component from a sequence D(c, 1 : N),

a pattern of Pm (1 ≤ m ≤M) is detected by counting the

Fig. 5. The FDHH algorithm.

number of consecutive 1’s, where CT is updated as shown in
Equation 2. This continues to increment for every consecutive
’1’ until a ’0’ occurs within the sequence, and for this case the
histogram FDHH is updated as shown in Equation 3, followed
by the counter CT being reset to 0.

Equation 3 shows the FDHH of pattern m is increased
when a pattern Pm is found. This is repeated throughout the
sequence for each component until all the FDHH histograms
are created for the desired patterns 1 : M . There are two
special cases that have been dealt with. These are: the case
where CT = 0 (consecutive 0’s), none of the histograms
are updated; and where CT > M , the histogram for PM is
incremented. The full algorithm can be seen in Figure 5.
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E. Feature Combination and Fusion

Once the deep features are extracted, FDHH is applied on
top to create M feature variation patterns for each deep feature
sequence. The resulting histograms provide a feature vector
that contains the information of the dynamic variations that
occur throughout the features. The audio features are then
fused with the dynamic deep features by concatenating them
together, producing one joint representational vector per sam-
ple, which is Normalized between [0,1]. For testing purposes,
the normalization is based on the training set. Equation 4
shows how the features are ranked within the range of the
training data.

X̂i =
Xi − αmin

αmax − αmin
(4)

Where Xi is the training feature component, αmin and αmax

are the training minimum and maximum feature vector values
and X̂i is the normalized training feature component. Principal
Component Analysis (PCA) is performed on the fused feature
vector to reduce the dimensionality and decorrelate the fea-
tures. Doing this reduces the computational time and memory
for some regression techniques such as Linear Regression. The
variance within the data is kept high to about 94% by retaining
dimensions L = 49. After PCA is applied, the feature is once
again normalized between [0,1] using the training data.

F. Alternate Feature Extraction Approach

For comparison purposes, another approach (APP2) is
undergone to apply the original MHH [54] on the visual
sequences, that was used similarly in the previous AVEC2013
competition by Meng et al. [11]. Their approach has been
extended here by using deep features. MHH is directly ap-
plied on the visual sequences to obtain M motion patterns
MHH(u, v,m) and {u = 1, · · · , U, v = 1, · · · , V,m =
1, · · · ,M}, where {u, v} are the frames for 1 : M motion
patterns. The frames are treated as individual image inputs for
the deep CNNs and are forward propagated until the softmax
layer. This approach closely resembles the main approach to
allow for fair testing when evaluating and comparing them
together.

4096 dimensional features are extracted from similar layers
to the main approach, resulting in a deep feature vector
of M × 4096 per video sample. These features are then
transformed to a single vector row from which it is fused
with the same audio features used in the main approach. They
are then rank normalized between [0,1] using the training
data range before the dimensionality is reduced using PCA
to L = 49, and finally the reduced feature vector is rank
normalized again between [0,1] using the training data range.

G. Regression

There are two techniques adopted for regression. Partial
Least Squares (PLS) regression [62] is a statistical algorithm
which constructs predictive models that generalize and manip-
ulates features into a low dimensional space. This is based on
the analysis of relationship between observations and response
variables. In its simplest form, a linear model specifies the

linear relationship between a dependent (response) variable,
and a set of predictor variables.

This method reduces the predictors to a smaller set of
uncorrelated components and performs least squares regression
on these components, instead of on the original data. PLS
regression is especially useful when the predictors are highly
collinear, or when there are more predictors than observations
and ordinary least-squares regression either produces coef-
ficients with high standard errors or fails completely. PLS
regression fits multiple response variables in a single model.
PLS regression models the response variables in a multivariate
way. This can produce results that can differ significantly
from those calculated for the response variables individually.
The best practice is to model multiple responses in a single
PLS regression model only when they are correlated. The
correlation between feature vector and depression labels is
computed in the training set, with the model of PLS as:

S = KGK + E
W = UHK + F

(5)

where S is an a × b matrix of predictors and W is an a × g
matrix of responses. K and U are two n × l matrices that
are, projections of S (scores, components or the factor matrix)
and projections of W (scores); G, H are, respectively, b × l
and g× l orthogonal loading matrices; and matrices E and F
are the error terms, assumed to be independent and identical
normal distribution. Decompositions of S and W are made so
as to maximize the covariance of K and U .

Linear Regression (LR) is another approach for modeling
the relationship between a scalar dependent variable and one
or more explanatory variables in statistics. It was also used
in the system along with PLS regression for decision fusion.
The prediction level fusion stage aims to combine multiple
decisions into a single and consensus one [63]. The predictions
from PLS and LR are combined using prediction level fusion
based on the weighted sum rule.

IV. EXPERIMENTAL RESULTS

A. AVEC2014 Dataset

The proposed approaches are evaluated on the Audio/Visual
Emotion Challenge (AVEC) 2014 dataset [18], a subset of the
audio-visual depressive language corpus (AViD-Corpus). This
dataset was chosen over the AVEC2013 dataset as it is a more
focused study of affect on depression, using only 2 of the 14
related tasks from AVEC2013. The dataset contains 300 video
clips with each person performing the 2 Human-Computer
Interaction tasks separately whilst being recorded by a web-
cam and microphone in a number of quiet settings. Some
subjects feature in more than one clip. All the participants
are recorded between one and four times, with a period of
two weeks between each recording. 18 subjects appear in
three recordings, 31 in 2, and 34 in only one recording. The
length of these clips are between 6 seconds to 4 minutes and
8 seconds. The mean age of subjects is 31.5 years, with a
standard deviation of 12.3 years and a range of 18 to 63 years.
The range of the BDI-II depression scale is [0,63], where 0-10
is considered normal, as ups and downs; 11-16 is mild mood
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disturbance; 17-20 is borderline clinical depression; 21-30 is
moderate depression; 31-40 is severe depression and over 40
is extreme depression. The highest recorded score within the
AVEC14 dataset is 45, which indicates there are subjects with
extreme depression included.

B. Experimental Setting

The Experimental setup has been followed by the Au-
dio/Visual Emotion Challenge 2014 guidelines which can be
found in [18]. The instructions are followed as mentioned
in the Depression Sub-Challenge (DSC), which is to predict
the level of self-reported depression; as indicated by the
BDI-II that ranges of from 0 to 63. This concludes to one
continuous value for each video file. The results for each test
are evaluated by its the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) against the ground-truth labels.
There are three partitions to the dataset, these are Training,
Development and Testing. Each partition contains 100 video
clips, these are split 50 for ’Northwind’ and 50 for ’Freeform’.
However, for the experiments the ’Northwind’ and ’Freeform’
videos count as a single sample, as each subject produces both
videos with what should be the same depression level.

The MatConvNet [64] toolbox has been used to extract the
deep features. This tool has been opted for the experiments
as it allows full control over deep networks with access to
data across any layer along with easy visualization. They also
provide both AlexNet and VGG-FACE pre-trained networks.

1) Data Pre-processing: In order to obtain the optimal
features from the pre-trained networks, a set of data pre-
processing steps were followed, as applied by both Krizhevsky
and Parkhi on their data. For each video, each frame was
processed individually to extract its deep features. Using the
meta information, the frames were resized to 227x227x3 repre-
senting the image height, width and color channels. AlexNet
has the same requirement of 227x227x3 image as an input
to the network. The images were also converted into single
precision as required by the MatConvNet toolbox, followed
by subtracting the mean image provided by each network. The
next stage was to propagate each pre-processed frame through
the networks and obtain the features produced by the filter
responses at the desired layers.

2) Feature Extraction: For each video clip, the spatial
domain is used as the workspace for both approaches. With
AlexNet, the 4096 dimensional feature vector is retained from
the 16th and 18th fully connected layers. The decision to take
the features at the 16th layer is in order to observe if the first
4096 dimension fully connected layer produces better features
than the second (layer 18). For the VGG-Face network, the
4096 dimensional feature vectors are extracted at the 35th,
34th and 32nd layers. The 34th layer is the output directly
from the fully connected layer, the 35th is the output from the
following Rectified Linear Unit (ReLU) activation function
layer and the 32nd layer is the output from the first fully
connected layer.

The initial convolution layers are bypassed as the parameter
and memory count would have been drastically higher if they
were to be used as individual features. After observing the

dimensions for AlexNet, there were around 70K vs. 4096 when
comparing the initial convolution layer vs. the fully connected
layers, and a staggering 802K vs. 4096 for VGG-Face. The
connectivity between filter responses are responsible for the
dramatic decrease in dimensions at the fully connected layers.
We observe the fully connected layer using equation 6, where
yj is the output feature by taking the function f(x) of the given
input xi from the previous layer. The function calculates the
sum over all inputs xi multiplied by each individual weight
(j = 1 : 4096) of the fully connected layer plus the bias bj .

yj = f

(
m∑
i=1

xi · wi,j +bj

)
(6)

The role of a ReLU layer can be described with equation 7,
where xi is the input filter response and y(xi) is the output.

yj = max(0, xi) (7)

For testing purposes, the decision to investigate the effects
of a feature vector before and after a ReLU activation layer
(layers 34 and 35) had been taken into account. As the
activation function kills filter responses that are below 0, it was
assumed that the resulting feature vector will become sparse
with loss of information.

When extracting the dynamic variations across the deep
features, the parameter M is set to M = 5, capturing 5
binary patterns across the feature space. Based on a sample
feature visualization of the binary pattern histograms, M = 5
was chosen as beyond this results to histograms with a low
count. Given that the deep feature data ranges from [0,1],
the optimized threshold value for FDHH has been set to
1/255 = 0.00392, after optimization on the training and
development partitions. This will produce 5 resulting features
with 4096 components each, making a total of feature di-
mension count of 5 × 4096 = 20480 per video sample. As
there are two recordings per ground truth label, (‘Northwind’
and ‘Freeform’), the 20480 features are extracted from both
recordings and concatenated together to make a final visual
feature vector of 40960 dimensions.

The features that are extracted using AlexNet and FDHH
are denoted as A16 FD and A18 FD, representing the deep
features extracted from the 16th and 18th layer respectively.
For VGG-Face, the feature vectors are denoted as V32 FD,
V34 FD and V35 FD, representing the deep features ex-
tracted from the 32nd, 34th and 35th layer respectively.

Due to the nature of feature extractors used, it is difficult
to pinpoint which parts of the face contributes the most. The
movement of these facial parts play a big role in the system,
and the FDHH algorithm is designed to pick up these facial
movements that occur within the mathematical representations.

This approach has been denoted as APP1. The whole
system was tested on a Windows machine using Matlab 2017a
with an i7-6700K processor @ 4.3GHz, and a Titan X (Pascal)
GPU. For 6 second video clip, it will take less than 3.3 seconds
to process.

3) Alternate Approaches for Feature Extraction: An Alter-
nate approach, denoted as APP2, started by extracting MHH of
each visual sequence, for both Northwind and Freeform. The
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parameter M is set to M = 6 to capture low to high movement
across the face, this results in 6 motion pattern frames. Each of
these frames are then propagated through AlexNet and VGG-
Face, however, as there are no color channel for the pattern
frames, each frame is duplicated twice making 3 channels in
total to imitate the color channels. The output of the CNNs
will produce 6 × 4096 features, which is transformed into a
single row to make 24576 features, and 49152 features when
both Northwind and Freeform are concatenated. These features
will be denoted as MH A16, MH A18, MH V32, MH V34
and finally MH V35.

Previous research [10] worked in the spatial domain to
produce local features using EOH, LBP and LPQ. These
features are extracted frame by frame to produce 384, 944
and 256 dimensional histograms respectively for each frame.
FDHH was used to capture the dynamic variations across the
features to produce M = 3 vectors of temporal patterns.
The features are denoted as EOH FD, LBP FD and LPQ FD
and are reshaped producing 1152, 2835 and 768 components
respectively, which are concatenated to produce a vector of
4755 components. These components are produced for both
Northwind and Freeform videos and are also concatenated
together producing a total of 9510 components per video
sample, which is denoted as (MIX FD). We experimented on
the concatenated features MIX FD, as well as their individual
feature performance. The vectors EOH FD, LBP FD and
LPQ FD have been tested with the development set before
they are concatenated, to provide a comparison from its
individual and combined benefits.

Furthermore, we explored modeling the temporal features
of facial expressions in the dynamic feature space, similar to
[11]. First we operated MHH on the video to produce 5 (M =
5) frames, and then extract the local features (EOH, LBP and
LPQ) from each frame. Finally, we concatenated all of the
vectors and denoted it as (MH MIX).

The baseline audio features (2268) are provided by the
dataset. We used the short audio segments (short) which are
a set of features extracted every 3 seconds of audio samples.
We then take the Mean of the segments to provide a single
vector of 1× 2268 per sample and denote it as (Audio). The
combined audio features of Flatness, Band1000, POV, PSY
Sharpness, Shimmer and ZCR are used, containing 285 of
the 2268 features which was denoted as (Comb). We also
investigated using just the MFCC as a feature and denoted
it as (MFCC). For all the dynamic features from visual and
vocal modalities, the dimensionality was reduced with PCA to
L = 49 components, and the depression analyzed by the PLS
and Linear Regression.

C. Performance Comparison

We started with the Hand-crafted features LBP, LPQ and
EOH. Table I shows the individual performance of the three
hand-crafted feature extraction methods that are combined
with FDHH. The depression scales were predicted using
the two regression techniques separately and fused. We can
see that using PLS for regression is better than LR in all
tests. However, when they were fused with a weighting more
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Fig. 6. Predicted and actual depression scales of the Test subset of the
AVEC2014 dataset based on audio and video features with regression fusion.

towards PLS, the results are improved further. LBP was shown
to be the weakest amongst the three and LPQ the strongest.

TABLE I
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING THE DYNAMIC

VISUAL FEATURE FDHH (FD) MEASURED BOTH IN MAE AND RMSE
AVERAGED OVER ALL SEQUENCES IN THE DEVELOPMENT SET.

Partition Methods MAE RMSE
Develop EOH FD PLS 8.87 11.09
Develop EOH FD LR 9.92 12.39
Develop EOH FD (PLS+LR) 9.14 11.39
Develop LBP FD PLS 9.34 11.16
Develop LBP FD LR 9.86 12.68
Develop LBP FD (PLS+LR) 9.18 11.15
Develop LPQ FD PLS 8.79 10.88
Develop LPQ FD LR 9.73 11.49
Develop LPQ FD (PLS+LR) 8.70 10.63

Table II contains results of both approaches, with APP1
combining the efforts of the individual hand-crafted features,
and demonstrates the effectiveness of the deep features using
the FDHH algorithm. APP2 applies MHH before the hand-
crafted and deep features. Three of the best results from each
part have been highlighted in bold. MIX FD has shown a
significant improvement over the individual performances in
Table I. However, it is clear from this that the deep features
perform consistently better than the individual and combined
hand-crafted features. The AlexNet deep features with FDHH
(A16 FD) have shown a good performance on the develop-
ment subset, closely followed by VGG-Face deep features
with FDHH (V32 FD). The overall performance of APP2 can
be viewed as inferior when compared to our main approach
APP1, with all performances projecting a worse result than
its respective main approach feature, e.g. MH V34 PLS VS.
V34 FD PLS. Secondly, we can see that the deep learning
approaches have performed better than hand-crafted features
using both approaches.

Our prediction was that if we investigated the features
before and after a ReLU layer, this would introduce sparsity
by removing negative magnitude features, which would result
in a bad feature. We tested this by observing the features at
the 34th and 35th layer of the VGG-Face network. From the
individual performance evaluation on both approaches, we can
see that there is a higher RMSE and MAE for V35 using either
regression techniques.
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TABLE II
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING FDHH (FD)

AFTER MIX (EOH, LBP, LPQ AND DEEP) VISUAL FEATURES ARE SHOWN
UNDER APP1 AND MHH (MH) BEFORE MIX (EOH, LBP, LPQ AND
DEEP) VISUAL FEATURES ARE SHOWN IN APP2, MEASURED BOTH IN

MAE AND RMSE AVERAGED OVER ALL SEQUENCES IN THE
DEVELOPMENT SET.

Methods Develop Methods Develop
APP1 MAE RMSE APP2 MAE RMSE
MIX FD PLS 7.72 9.68 MH MIX PLS 8.91 10.78
MIX FD LR 7.52 10.05 MH MIX LR 10.59 12.71
A16 FD PLS 6.66 9.02 MH A16 PLS 7.42 9.58
A16 FD LR 6.96 9.52 MH A16 LR 7.41 9.73
A18 FD PLS 7.19 9.36 MH A18 PLS 7.33 9.46
A18 FD LR 7.23 9.43 MH A18 LR 7.41 9.56
V32 FD PLS 7.25 9.52 MH V32 PLS 8.06 10.13
V32 FD LR 6.90 9.32 MH V32 LR 7.75 9.70
V34 FD PLS 7.08 9.52 MH V34 PLS 8.53 10.46
V34 FD LR 7.09 9.53 MH V34 LR 8.56 10.55
V35 FD PLS 7.44 9.43 MH V35 PLS 9.47 13.17
V35 FD LR 7.50 9.44 MH V35 LR 9.48 12.86

TABLE III
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING COMPLETE
AUDIO, COMB FEATURES AND MFCC. MEASURED BOTH IN MAE AND
RMSE AVERAGED OVER ALL SEQUENCES IN THE DEVELOPMENT AND

TEST SUBSETS.

Methods Develop Test
MAE RMSE MAE RMSE

Comb short PLS 9.31 11.52 8.52 10.49
Comb short LR 9.42 11.64 10.33 12.99
Audio short PLS 8.25 10.08 8.42 10.46
Audio short LR 8.39 10.21 8.45 10.73
MFCC short PLS 8.86 10.70 8.04 10.42
MFCC short LR 8.86 10.92 8.07 10.28

In Table III, the audio features for short segments were
tested. From the 2268 audio features (Audio), the Combined
features (Comb) and MFCC features have been taken out to
be tested separately. The individual tests show the Audio and
MFCC features performing well on the Development subset,
with MFCC showing great performance on the Test subset.
When compared to visual features, they fall behind against
most of them.

We have combined the features of the Audio and Visual
modalities as proposed in our approach, to produce Bi-modal
performances that can be found in Table IV. Here we can
see that the fusion of the two modalities boosts the overall
performance further, especially on the Test subset. VGG deep
features have once again dominated the Test subset, with
AlexNet performing better on the Development subset. A final
test has been on fusing the performances of the regression
techniques using the best features observed in Table IV. This
involved using a weighted fusion technique on the PLS and
LR predictions, the performance are detailed in Table V.

Our best performing Uni-modal feature based on the Test
subset has been V32 FD, producing 6.68 for MAE and
8.04 for RMSE. Both achieving the state-of-the-art when
compared against other Uni-modal techniques. The best
overall feature uses the fusion of the Audio and Visual
modalities, along with the weighted fusion of the regres-
sion techniques (V32 FD+MFCC) (PLS+LR). This feature

TABLE IV
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING FDHH ON
VARIOUS SPATIAL FEATURES. MEASURED BOTH IN MAE AND RMSE
AVERAGED OVER ALL SEQUENCES IN THE DEVELOPMENT AND TEST

SUBSETS.

Methods Develop Test
MAE RMSE MAE RMSE

MIX FD+MFCC PLS 7.41 9.30 7.28 9.15
MIX FD+MFCC LR 7.69 9.57 7.11 8.98
A16 FD+MFCC PLS 7.40 9.21 6.58 8.19
A16 FD+MFCC LR 7.14 8.99 6.87 8.45
A18 FD+MFCC PLS 6.92 8.79 6.44 7.96
A18 FD+MFCC LR 6.66 8.67 7.10 8.57
V32 FD+MFCC PLS 7.35 9.54 6.17 7.44
V32 FD+MFCC LR 7.07 9.34 6.31 7.59
V34 FD+MFCC PLS 7.08 9.35 6.14 7.56
V34 FD+MFCC LR 7.16 9.44 6.51 7.80
V35 FD+MFCC PLS 7.20 9.24 8.34 10.43
V35 FD+MFCC LR 6.90 9.06 8.12 10.15

TABLE V
SYSTEM PERFORMANCE USING WEIGHTED FUSION OF REGRESSION

TECHNIQUES, PLS AND LR, ON SELECTED FEATURES FOR THE
DEVELOPMENT AND TEST SUBSETS.

Partition Methods MAE RMSE
Develop V32 FD+MFCC (PLS+LR) 7.06 9.35
Test V32 FD+MFCC (PLS+LR) 6.14 7.43
Develop A18 FD+MFCC (PLS+LR) 6.58 8.65
Test A18 FD+MFCC (PLS+LR) 6.52 8.08

produced 6.14 for MAE and 7.43 for RMSE, beating the
previous state-of-the-art produced by Williamson et al. who
achieved 6.31 and 8.12 respectively. The predicted values
of (V32 FD+MFCC) (PLS+LR) and actual depression scale
values on the Test subset are shown in Figure 6. Performance
comparisons against other techniques including the baseline
can be seen in Table VI.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, an artificial intelligent system was proposed
for automatic depression scale prediction. This is based on
facial and vocal expression in naturalistic video recordings.
Deep learning techniques are used for visual feature extraction
on facial expression faces. Based on the idea of MHH for
2-D video motion feature, we proposed FDHH that can be
applied to feature vector sequences to provide a dynamic
feature (e.g. EOH FD, LBP FD, LPQ FD, and deep feature
V32 FD etc.) for the video. This dynamic feature is better
than the alternate approach of MHH EOH that was used in
previous research [11], because it is based on mathematical
feature vectors instead of raw images. Finally, PLS regression
and LR are adopted to capture the correlation between the
feature space and depression scales.

The experimental results indicate that the proposed method
achieved good state-of-the-art results on the AVEC2014
dataset. Table IV demonstrates the proposed dynamic deep
feature is better than MH EOH that was used in previous
research [11]. When comparing the Hand-crafted VS Deep
features shown in Table II, Deep features taken from the
correct layer shows significant improvement over hand-crafted.
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TABLE VI
PERFORMANCE COMPARISON AGAINST OTHER APPROACHES ON THE TEST

PARTITION, MEASURED IN RMSE AND MAE. MODALITY FOR EACH IS
MENTIONED AND GROUPED FOR COMPARISON (A = AUDIO, V = VISUAL).

Method Modality MAE RMSE
Ours Unimodal (V) 6.68 8.01
Kaya [41] Unimodal (V) 7.96 9.97
Jain [44] Unimodal (V) 8.39 10.24
Mitra [40] Unimodal (A) 8.83 11.10
Baseline [18] Unimodal (V) 8.86 10.86
Perez [39] Unimodal (V) 9.35 11.91
Ours Bimodal (A+V) 6.14 7.43
Williamson [20] Bimodal (A+V) 6.31 8.12
Kaya [41] Bimodal (A+V) 7.69 9.61
Chao [43] Bimodal (A+V) 7.91 9.98
Senoussaoui [38] Bimodal (A+V) 8.33 10.43
Perez [39] Bimodal (A+V) 8.99 10.82
Kachele [37] Multimodal 7.28 9.70
Gupta [42] Multimodal - 10.33

With regards to selecting the correct layer, it seems that
features should be extracted directly from the convolution
filters responses. Generally the earliest fully connected layer
will perform be the best, although the performances are fairly
close to call. Audio fusion contributed in getting state-of-the-
art results using only the MFCC feature, demonstrating that a
Multi-modal approach can be beneficial.

There are three main contributions from this paper. First
is the general framework that can be used for automatically
predicting depression scales from facial and vocal expressions.
The second contribution is the FDHH dynamic feature, that
uses the idea of MHH on the deep learning image feature and
hand-crafted feature space. The third one is the feature fusion
of different descriptors from facial images. The overall results
on the testing partition are better than the baseline results,
and the previous state-of-the-art result set by Williamson et
al. FDHH has proven it can work as a method to represent
mathematical features, from deep features to common hand-
crafted features, across a temporal domain. The proposed
system has achieved remarkable performance on an application
that has very subtle and slow changing facial expressions by
focusing on the small changes of pattern within the deep/hand-
crafted descriptors. In the case that a sample contains other
parts of the body; has lengthier episodes; or reactions to
stimuli, face detection and video segmentation can adapt the
sample to be used in our system.

There are limitations within the experiment that can impact
the system. The BDI-II measurement is assessed on the
response of questions asked to the patients. The scale of
depression can be limited by the questions asked, as the
responses may not portray their true depression level. The
dataset contains patients only of German ethnicity; who are
all Caucasian race. Their identical ethnicity may affect the
robustness of a system when validated against other ethnicities.
Another limitation can be the highest BDI-II recording within
the dataset, which is 44 and 45 for the development and
testing partitions respectively. These are all things to consider
to further improve the system.

Further ideas can be investigated to improve the system
performance. The performance may improve if additional

facial expression images are added into the training process
of the VGG-Face deep network. The raw data itself can be
used to retrain a pre-trained network, which can be trained as
a regression model. For the vocal features, a combination of
descriptors have been tested. However, other vocal descriptors
should also be considered to be integrated in the system,
or even adapting a separate deep network that can learn
from the vocal data. Other fusion techniques can also be
considered at feature and prediction level that would improve
the performance further.
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