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Abstract—An inefficient utilisation of network resources in a
time-varying traffic environment often leads to load imbalances,
high call-blocking events and degraded Quality of Service
(QoS). This paper optimises the QoS of a Cloud Radio Access
Network (C-RAN) by investigating load balancing solutions.
The dynamic re-mapping ability of C-RAN is exploited to
configure the Remote Radio Heads (RRHs) to proper Base
Band Unit (BBU) sectors in a time-varying traffic environment.
RRH-sector configuration redistributes the network capacity
over a given geographical area. A Self-Optimised Cloud
Radio Access Network (SOCRAN) is considered to enhance
the network QoS by traffic load balancing with minimum
possible handovers in the network. QoS is formulated as an
optimisation problem by defining it as a weighted combination
of new key performance indicators (KPIs) for the number
of blocked users and handovers in the network subject to
RRH sectorisation constraint. A Genetic Algorithm (GA) and
Discrete Particle Swarm Optimisation (DPSO) are proposed
as evolutionary algorithms to solve the optimisation problem.
Computational results based on three benchmark problems
demonstrate that GA and DPSO deliver optimum performance
for small networks, whereas close-optimum is delivered for large
networks. The results of both GA and DPSO are compared to
Exhaustive Search (ES) and K-mean clustering algorithms. The
percentage of blocked users in a medium sized network scenario
is reduced from 10.523% to 0.421% and 0.409% by GA and
DPSO, respectively. Also in a vast network scenario, the blocked
users are reduced from 5.394% to 0.611% and 0.56% by GA
and DPSO, respectively. The DPSO outperforms GA regarding
execution, convergence, complexity, and achieving higher levels
of QoS with fewer iterations to minimise both handovers and
blocked users. Furthermore, a trade-off between two critical
parameters for the SOCRAN algorithm is presented, to achieve
performance benefits based on the type of hardware utilised for
C-RAN.

Index Terms - Base Band Unit (BBU), Cloud Radio Ac-
cess Network (C-RAN), Discrete Particle Swarm Optimisation
(DPSO), Genetic Algorithm (GA), Remote Radio Head (RRH),
Self-Optimising Network (SON)

I. INTRODUCTION

THE up-surging volume of data services and applications
along with the accelerated growth in wireless access

demands has posed significant challenges for the Next Gener-
ation of Mobile Networks (5G). According to [1], the amount
of IP data driven by wireless networks is predicted to surpass
500 exabytes by 2020. Mobile Network Operators (MNOs) are
facing significant challenges to maintain the performance and
availability of their network with high levels of QoS which
signals the dawn of a 5G era. Densifying the access networks
using small cells is realised as a promising solution to increase

capacity and coverage, especially at traffic hot-spots. However,
this leads to even bigger challenges for the MNOs such as
the significant increase in Capital (CAPEX) and Operational
(OPEX) expenditures, inefficient utilisation of network re-
sources due to traffic imbalances and increased signalling
overhead caused by frequent handovers among small cells.
Therefore, MNOs are required to devise innovative solutions
beyond the bounds of conventional performance upgrades to
achieve optimum returns on investment and maintaining high
levels of QoS.

Network performance is highly degraded due to inefficient
utilisation of resources and fail to produce maximum returns
on expenditure if they are underutilised or remain idle. Net-
work resources are often under-utilised during unbalanced
traffic loads situations, particularly when some network cells
may suffer from heavy loads causing a high number of
blocked users, while others remain lightly loaded with their re-
sources underutilised. Therefore, it is crucial to achieving self-
optimisation in the network on varying traffic environment, es-
pecially when the load distribution among cells is not uniform.
Inter-cell optimisation is a critical optimisation problem in Self
Organising Networks (SON) for the Third Generation Partner-
ship Project (3GPP) [2], [3]. Furthermore, SON contributes to
managing complexity and enhancing network performance by
minimising network-cost via simplified operational tasks and
autonomous configuration or management functionalities such
as self-healing, self-configuration, and self-optimisation [4].

Numerous studies and methods on self-optimisation have
suggested addressing the problem of load balancing in cellular
networks via SON. The aim is to autonomously adjust opera-
tion parameters when a traffic imbalance is detected among
cells. As a result, users connected to BSs with high load
cells are handed over to ones with under-loaded cells thereby
achieving high capacity, enhanced throughput, and a balanced
network load. This is accomplished by adjusting the operation
parameters such as antenna angle (Antenna tilt) [5] and/or
handover parameters [6] to reduce the coverage area so as
to achieve Mobility Load Balancing (MLB) [7]. In MLB, the
handover thresholds are adjusted following traffic conditions
which result in expansion or contraction of virtual transfer
areas among adjacent cells and thereby reducing or increasing
users in the cells. However, incorrect adjustment of handover
parameter settings can cause unnecessary transfers in the
network which often leads to handover ping-pongs/delays and
radio link failures. Mobility Robustness Optimisation (MRO)
[8] is a SON function which aims to eliminate link failures and
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reduce unnecessary handovers caused by incorrect handover
parameters. Power adaptation for load balancing is another
technique to effectively change the cell coverage area which in
return changes the association of all users in the coverage area.
In LTE, Cell Range Expansion (CRE) [9] is a technique which
allows Low Power Nodes (LPN) to expand their coverage area
and take in users from the Macro Cell. Usually, users associate
to the cell which provides the strongest signal. However, in
CRE users connect to the LPNs despite receiving the strongest
signal from the Macro cell. [10] provides a comprehensive
survey on self-organisation in future cellular networks, which
includes a detailed description of the schemes mentioned
above along with hybrid approaches and other existing SON
load balancing methods in the literature.

Moreover, SON architectures can be divided into three
types - a) centralised, b) decentralised and, c) hybrid. In
the decentralised and hybrid SON architectures, the SON
algorithm partially runs on the network management level
and partially in the network elements. Coordination of dif-
ferent SON functions, possibly having conflicting goals and
operating on various time scales, is more challenging than in
the centralised architecture [11]. In the centralised structure,
a central Network Management System (NMS) or a SON
server decides the network optimisation algorithms and the
eNodeB parameter configuration [12]. The centralised SON
architecture is more manageable regarding the implementation
of SON Algorithms compared to distributed and Hybrid SON
architectures. It enables the SON algorithms to jointly optimise
multiple network parameters, therefore, allowing a globally
tuned system. However, the centralised SON server in this
approach requires strict latency and delay requirements regard-
ing system KPIs and UE measurements for SON parameter
updates, which restricts the applicability of a purely centralised
SON architecture. Increase response time limits the network
to adapt to changes and may cause instabilities.

However, Cloud Radio Access Network (C-RAN) is a novel
paradigm which has the potential to resolve many challenges
that the MNOs are experiencing today. According to [13], both
operators and equipment vendors have proposed a C-RAN that
possess a power efficient centralised processing infrastructure
with real-time cloud computing and collaborative radio fea-
tures. C-RAN aggregates the BBUs of typical base stations
(BSs) to a centralised location called base band unit pool
(BBU pool). The RRHs with simpler functions are left off
on the cell sites and can be deployed densely with minimum
cost. The RRHs collects radio signals from geographically
distributed antennas and transmits them to the centralised BBU
pool via an optical transmission network (OTN). A single
BBU can serve multiple RRHs, and the distance between
BBU and RRH is limited to 40 km due to propagation and
processing delays [14]. C-RAN relieves the base stations (BSs)
from maintaining 24/7 services by aggregating the BBUs in a
remote data centre/BBU pool. Significant resource utilisation
and power savings can be achieved by dynamically remapping
the BBU-RRH configuration. C-RAN requires fewer BBUs to
serve a geographical area compared to traditional RAN and
saves operational and management cost to a great extent.

The main contribution of this paper is to present an efficient

model for proper BBU-RRH mapping in C-RAN as one SON
approach to achieve a self-optimising network structure and
solving a load balancing problem. The self-optimising feature
of SON combined with the capacity routing ability of C-RAN
is explored to achieve a balanced system load with high levels
of QoS. Network capacity is dynamically redistributed over
a geographical area with respect to time-varying traffic. The
BBU-RRH logical connections are adjusted by proper RRH
assignment to BBU sectors via an intelligent algorithm. RRH-
sector allocation is formulated as a linear integer-based optimi-
sation problem with constraints. Two evolutionary algorithms,
i.e., GA and DPSO, are considered to solve the optimisation
problem. This paper presents not only load balancing in C-
RAN but also the realisation of virtual small cells (supported
by low-power RRHs), rather than Micro and Pico cells de-
ployment at each antenna position. The cell split deployment
scenario discussed in [15] is considered for virtual small cells.
Note that, a BBU sector may change size (on time-varying
traffic) based on the number of RRHs clustered together to
support that sector.

The rest of the paper is organised as follows: Section II
presents a survey of related work. Section III presents the self-
organising C-RAN framework and the proposed system model.
Section IV illustrates the formulation for dynamic RRH-sector
allocation problem. Section V represent RRH clustering as a
constraint for the optimisation problem. Section VI defines the
SOCRAN algorithm. Computational results and complexity
comparison of different algorithms are discussed in Section
VII. Finally, the paper is concluded in Section VIII.

II. RELATED WORK

The MNOs together with academia have jointly initiated
many experimental projects to explore the potential benefits
of C-RAN. Next Generation Mobile Networks (NGMN) al-
liances project P-CRAN [16], European Commission’s MCN
[17], FP7-based projects such as HARP [18], iJOIN [19],
and CROWD [20] are some of the major design and im-
plementation initiatives for C-RAN. [21] summarises the
ongoing work in C-RAN and examples of first field trials
and prototypes along with innovative end-to-end solutions for
practically implementable C-RANs. Moreover, [14], [22], [23]
provides a comprehensive survey on C-RAN and highlights the
challenges, advantages, and implementation issues regarding
different deployment scenarios. Also, an in-depth review of
the principles, technologies and applications of C-RAN de-
scribing innovative concepts regarding physical layer, resource
allocation, and network challenges together with their potential
solutions are highlighted in [24], [25].

Most of the existing research on C-RAN focuses on map-
ping between User Equipment (UE) and the RRH, whereas
limited work on BBU-RRH mapping is addressed. Some
recent studies on the connection between UE and RRH are
described in [26]–[28]. In [26], the authors attempt to solve
a joint RRH and precoding optimisation problem which aims
to minimise network power consumption in a MIMO based
user-centric C-RAN. In line with this work, the authors of [27]
propose a weighted minimum mean square error (WMMSE)
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approach to solving the network-wide beamforming vector
optimisation problem for RRH-UE clusters formation. The
BBU scheduling is then formulated as a bin packing problem
for energy efficient BBU utilisation in a heterogeneous C-
RAN environment. The authors of [28] propose a cross-layer
framework that jointly optimises physical and network layer
resources to improve throughput performance. Also, RRHs
beamforming vectors, user RRH association, and network
coding based routing are optimised in an overall design.

Studies regarding BBU pooling in C-RAN are discussed
in [29]–[33]. BBU utilisation significantly affects network
throughput and transmission efficiency in C-RAN. Therefore,
BBU behaviour is necessary to consider in a resource manage-
ment design. In [29], a dynamic BBU-RRH mapping scheme is
proposed using a borrow-and-lend approach in C-RAN. Over-
loaded BBUs switch their supported RRHs to underutilised
BBUs for a balanced network load and enhanced throughput.
The authors in [30] initially proposed semi-static and adaptive
switching schemes to adjust BBU-RRH configuration based
on peak hour traffic loads for all RRHs within a given time
interval. Minimum possible BBUs are allocated to RRHs based
on traffic load. The work of [31] then proposed a lightweight,
scalable framework that utilises optimal transmission strategies
via BBU-RRH reconfiguration to cater dynamic user traffic
profiles. The work of [32] studies traffic adaptation and energy
saving potential of TDD-based heterogeneous C-RAN by ad-
justing the logical connections between BBUs and RRHs. The
authors of [33] recently investigated an RRH clustering design
and proposed a spectrum allocation genetic algorithm (SAGA)
to improve network QoS via efficient resource utilisation.

Regarding other related work, research initiatives are taken
to develop Network Function Virtualisation (NFV) and Soft-
ware Defined Network (SDN) solutions for C-RAN [34]–[36].
NFV is an architectural framework that provides a virtualised
network infrastructure, functions and NFV orchestrator for
control and management [37]. However, SDN is a concept
related to NFV. SDN decouples data and control plane to
enable directly programmable control plane while abstracting
underlying physical infrastructure from applications and ser-
vices [38]. Although SDN and NFV are not the prime focus of
this paper, they are presented in this section for completeness
of the C-RAN introduction and are important concepts that
can help to implement virtualisation of baseband resources.

To sum up, the existing resource allocation mechanisms
in C-RAN does not take full advantage of the concept of
centralised BBU pool. In this paper the scope of C-RAN is
further extended by developing a dynamic BBURRH mapping
scheme in C-RAN considering ’blocking probability triggered
load balancing’ which has never been considered for C-RAN
or LTE before. The primary objective is to enhance network
QoS and to decrease the blocked users, especially when the
user distribution is not uniform. Note that, load balancing
schemes can be divided into two categories, i.e., ’blocking
probability triggered load balancing’ [39] and ’utility aware
load balancing’ [40]. Blocking probability based schemes
decrease the blocking probability in the network regardless
of proportional fairness among users, whereas utility based
schemes serve users in a fair manner while keeping the system

throughput balanced. However, the main complication with
utility based schemes is the tendency to achieve a global net-
work proportional fairness. This requires access to information
of every individual user in the network which makes these
schemes complicated and impractical for large networks. Load
in utility based schemes is defined as a function of network
resources (PRBs), whereas blocking probability based schemes
defines load as a function of the number of connected users.

III. SELF-OPTIMISING CLOUD RADIO ACCESS NETWORK
FRAMEWORK

This paper proposes a self-organising framework that is
applicable for short and long term dynamics of C-RAN.
The framework maximises the overall QoS of the system
while considering a network load balance. The framework is
based on self-optimisation to exploit the benefits of capacity
routing in C-RAN. It maximises QoS levels regarding desired
KPIs. Note that, several performance indicators (KPIs) can be
considered to measure the network QoS, so the framework
is modelled as a general multi-objective optimisation problem
including several criteria. Many other criteria may be included
to tailor several other optimisation objectives subject to spe-
cific operator policy requirements. However, the scope of this
paper focuses on QoS evaluation based on KPIs relevant for
blocking probability triggered load balancing.
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Fig. 1. Genetric concept of a Self organisation in C-RAN

Fig. 1 shows a generic concept of a self-organisation in
C-RAN. The RRHs are connected to the aggregated BBU
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pool via optical transport network (often termed as front-haul)
which may consist of a switch fabric (including a network of
switches, optical splitters, multiplexers) [31] and low latency,
high bandwidth fibre optic links. Note that, there are various
possibilities of front-haul deployment in C-RAN architecture
[41]. The RRHs are equipped with omnidirectional antennas
and rests at the centre of small virtual-cells (micro-cells). The
self-organisation concept is explained in phases as shown in
Fig. 1, where the observation and analysis phases are utilised to
detect the performance of current network deployment (BBU-
RRH configuration), and then an optimal implementation
is identified for performance comparison. KPIs are used to
monitor network status for current and optimal deployment
settings. Based on the chosen KPIs, an algorithm decides the
best system configuration, and finally, the new topology (BBU-
RRH setting) is enforced in the execution phase (if necessary).

A. Proposed system model

This paper introduces a SON server/controller inside the
BBU pool to realise the self-organising concept as shown
in Fig. 2. The SON server/controller hosts an intelligent al-
gorithm to identify proper network setting dynamically. The
primary objective of SON server/controller in the C-RAN
architecture is as follows: (i) to compile required metric by
discovering the status of each KPI and (ii) to produce a
decision and enforce it. Fig. 3 provides a logical block diagram
for a multiple objective decision making performed by the
SON server/controller. The BBUs feed the system KPIs to
the main multi-objective decision-making algorithm hosted by
SON server/controller. The weights or priority levels are then
applied to each KPI for decision making. The corresponding
weight of a KPI defines its preference value and is set
according to network operator’s preferences.

In traditional cellular systems, a Macro-cell may divide
into multiple sectors, and each sector may have its set of
frequency channels. In this paper, the small micro virtual-
cells are sectored dynamically such that each sector satisfies
its hard-capacity (i.e., the maximum number of connected
users). Furthermore, a group of RRHs (one cell per RRH)
adjacent to each other forms a sector. A sector is a cluster or
group of compact RRHs served by the same BBU, as shown
in Fig. 2. Note that, the virtual-cells presented in this paper
can support on-demand capacity by routing BBU resources to
remote RRHs which enables BBU resources virtualisation at
individual independent RRHs. Since each RRHs can access
entire BBU cloud resources, the need for higher capacity
by adding new base stations and bandwidth in traffic hot-
spots may become unnecessary. Note that, each RRH can
be allocated to only one sector at a particular time period.
A different colour represents each sector in Fig. 2. Each
BBU serves multiple sectors with multiple RRHs within these
sectors, independently. The sectors served by each BBU can
be identified by the colour assigned to each BBU, as shown
in Fig. 2. The SON server/controller is responsible for proper
RRH-sector allocation, and the switching fabric is in charge
of realising these configurations via server commands in real
time. Note that, the switching technology itself is challenging
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Fig. 2. Structure of a Cloud Radio Access Network represented as SON

in C-RAN. Optical switches are advantageous over electronic
switches regarding cost, power, and data rate. However, they
may incur significantly longer reconfiguration times. Discus-
sion on the main challenges and potential solutions for front-
haul deployments in C-RAN is explained in [41]. Note that,
the hexagonal cell layouts shown in Fig. 1, Fig. 2, and Fig. 4
are considered only because of their well-defined shape and
the fact that it uniformly covers the entire coverage area. They
are merely used in Fig. 1, Fig. 2 and Fig. 4 to understand and
evaluate the proposed concept.

B. System model constraints

This paper presents a system model designed as a
centralised-SON architecture for C-RAN, which allows for
more efficient resource utilisation through centralised control
across aggregated BBU resources. However, the model is
constrained in the following ways:
• Since the SON server/controller is in charge of

monitoring the BBU-cloud, the whole network may
collapse in case of server/controller failure.

• Coarse time-scales may limit the optimisation pro-
cess due to interface-latency between SON controller
and the BBUs, along with the front-haul latency.

• Depending on the front-haul technology used, the
front-haul must support enough bandwidth for de-
livering delay sensitive signals, and the switching
elements used to effect the BBU-RRH configurations
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Fig. 3. Block diagram of multi-objective decision making logic for SON
server

must not affect the sub-frames time scale (i.e., the
1ms duration of each subframe in LTE)

Potential solutions to the challenges/limitations mentioned
above are discussed in [42] and [43].

IV. DYNAMIC RRH-SECTOR RE-ALLOCATION AND
FORMULATION

Traffic variations occur at RRH coverage area in different
periods of time. It is unavoidable to map the RRHs to BBU
sectors in such a way that the RRH-sector allocation satisfies
network limitations. Hard-capacity is one important limitation
which is defined as the number of simultaneously connected
users to an eNodeB or the maximum number of channel
elements assigned to an eNodeB. Every user requires a Radio
Resource Control (RRC) to access network services. However,
a user registered on an LTE network can have 2 RRC states,
i.e., RRC-idle and RRC-connected. In the RRC-idle state, the
user equipment (UE) monitors control channels to determine
whether any data is scheduled for communication while no
data transfer takes place from the UE. However, in the RRC-
connected state, transfer of data to/from the UE takes place.
The number of connected users, i.e., RRC-Connected users
per cell or sector is limited to hardware and software licensing
limitations. This paper defines the hard-capacity of a sector as
the number of RRC-connected users.

Network Performance indicates its QoS, which is deter-
mined by various Key Performance Indicators (KPIs). Based
on these KPIs, the network must react pro-actively to avoid
performance- threatening events that can cause unavailabil-
ity of network services and infrastructure. Vendors evaluate
their network performance using a different set of objectives
mapped to a pre-defined QoS metrics. However, a weighted
normalised function is required when multiple objectives are
considered. This paper presents a QoS function by defin-
ing new KPIs for C-RAN, based on which the SON con-
troller/server can identify optimum RRH-sector configuration
and perform load balancing in the network.

When the RRH-sector configuration at time t is known, then
finding the optimum RRH-sector configuration at time t+1 is
the main objective to balance the load. Consider N number of
BBUs in a BBU pool serving M number of RRHs distributed

over a geographical area divided into S sectors. Each BBU
serves multiple sectors. Let SOSn be a set of sectors served
by BBUn, i.e., |SoSn| = 3, if BBUn serves 3 sectors.
Similarly, SORs represents the set of RRHs occupied by
Sectors. Let the RRH-sector allocation at time t is represented
by a vector Rt

s =
{

Rt
1s,R

t
2s,R

t
3s, ...,R

t
Ms

}
, where s = 1, ...S,

then finding the new RRH-sector allocation vector at time
t + 1

(
Rt+1

s =
{

Rt+1
1s ,Rt+1

2s ,Rt+1
3s , ...,Rt+1

Ms

}
, s = 1, ...,S

)
is

the main objective. The binary variables Rt
is and Rt+1

is

(i = 1, ...,M and s = 1, ...,S) indicates the RRH assignment
to a sector at a particular time period. For example Rt

is =
Rt+1
is = 1, when RRHi is assigned to Sectors at both time

period t and t + 1. It is assumed that each RRH coverage
area has Ui (i = 1, ...,M) number of connected users at time
period t and t + 1. Notice that, a user UA is associated with
RRHB only if the Uplink power received from UA at RRHB

is higher than in all other existing RRHs. If the probability of
users transition from RRHi to RRHj is ρij , then the handovers
from RRHi to RRHj is represented as Hij = ρijUi. The
estimation for real-time ρij is not considered in this paper
as it is not the main objective. However, many models on
terminal mobility to observe ρij exist in literature [44] [45]
and can be utilised to determine ρij . This paper model ρij to
be inversely proportional to the distance between RRHi and
RRHj i.e.,

(
ρij = 1

Dij

)
because a uniform user distribution

is considered within each RRH coverage area. Notice that,
to produce a non-uniform user distribution within the entire
network coverage area, a different number of users per RRH
is considered.

Following are the important KPIs considered for RRH-
sector allocation problem. Fig. 4 shows an example of RRH-
sector allocation at both time period t and t + 1. The ex-
ample consists of two BBUs and ten RRHs. Notice that,
BBU1 handles Sector1 and Sector2 whereas BBU2 handles
Sector3 and Sector4. The KPIs are calculated for both time
period t and t+ 1.

A. Key Performance Indicator for blocked Users (KPIBU )

The number of users deprived of network services due to
hard-capacity is considered as blocked users. This happens
when the number of connected users in a Sectors exceeds its
hard-capacity (HCs). The blocked users (BU) in the network
at time t+ 1 can be calculated as follows:

BU =
∑
s

max

[((∑
i

UiRt+1
is

)
− HCs

)
, 0

]
(1)

where i = 1, 2, ...,M and s = 1, 2, ...,S. Then the KPI for
blocked users (KPIBU) can be presented as

KPIBU =

{
1 if BU = 0
1

BU otherwise
(2)

where the binary variable Rt+1
is = 1, if RRHi belongs

to Sectors at time t + 1. Ui represents the number of
connected users served by RRHi whereas HCs represents
the hard-capacity of Sectors. Note that, if the number of
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Fig. 4. An example of RRH allocation to different sectors at time t and t+ 1

connected users in a sector is lower than the its hard-
capacity, then to avoid negative counting the function∑

s max
[((∑

i UiRt+1
is

)
− HCs

)
, 0
]
, ∀i, s is considered to

skip counting the negative value. In Fig. 4, a hard-capacity
of 25 is assumed for each sector. At time t, 10 blocked users
are observed (i.e, KPIBU = [ 1

10 ] = 0.1), however, at time t+1,
the network is well balanced with no blocked calls. Note that,
KPIBU = 1, if there are no blocked users in the network.

B. Key Performance Indicators for Handovers

Different KPIs are considered for following types of han-
dovers:

1) Inter-BBU handovers: Handovers are necessary func-
tions provided by the network to maintain the QoS of ongoing
user sessions and to associate users with the best possible eN-
odeBs. In LTE/LTE-A, inter-eNodeB handovers are performed
based on X2 interface between the eNodeBs, where users
move from one eNodeB to another eNodeB, both connected
to the same MME. However, if serving and target eNodeBs
are not attached to the same MME, then S1 based inter-
eNodeB handovers are performed. Detailed information on

X2 and S1 based inter-eNodeB handovers are presented in
a particular section in [46]. The same concept holds true
for inter-BBU handovers in this paper. Due to the structural
difference between C-RAN and LTE/LTE-A, the inter-eNodeB
handovers and intra-eNodeB handovers are referred to as
inter-BBU handovers and intra-BBU handovers for C-RAN,
respectively.

Let Yt+1
ijn be a binary variable such that Yt+1

ijn = 1 when both
RRHi and RRHj are served by BBUn at time period t + 1
i.e., Yt+1

in = Yt+1
jn = 1, also Yt+1

in =
∑

s∈SOSn
Rt+1
is . Inter-

BBU handover cost variable is measured by using a binary
variable Yt+1

ij such that Yt+1
ij = 1 −

∑
n Yt+1

ijn . Yt+1
ij = 1,

when RRHi and RRHj are served by different BBUs at time
period t+ 1. The inter-BBU handovers at time t+ 1 can now
be calculated as:

Inter-BBUHO =
∑
i

∑
j 6=i

HijYt+1
ij (3)

where Hij = ρijUi represents handovers from RRHi to
RRHj and ρij is modelled as the inverse of the distance
between RRHi and RRHj ( i.e., ρij = 1

Dij
). Note that,
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Yt+1
ij =f1(Yt+1

ijn ), Yt+1
ijn = f2(Yt+1

in . Yt+1
jn ), Yt+1

in =f3(Rt+1
is ),

and Yt+1
jn =f4(Rt+1

js ). Therefore, the variable Yt+1
ij is a func-

tion of the main binary variable Rt+1
is , i = 1, ...,M i.e.,(

Yt+1
ij =f1(f2(f3(Rt+1

is ), f4(Rt+1
is )))

)
. The detailed form of

Inter-BBUHO can be given as follows:

Inter-BBUHO =
∑
i

∑
j 6=i

HijYt+1
ij

Inter-BBUHO =
∑
i

∑
j 6=i

ρijUi

(
1−

∑
n

Yt+1
ijn

)

Inter-BBUHO =
∑
i

∑
j 6=i

ρijUi

(
1−

∑
n

(
Yt+1

in .Yt+1
jn

))

Inter-BBUHO =
∑

i

∑
j 6=i

Ui

Dij

(
1−

(∑
n

∑
s∈SOSn

(
Rt+1
is . Rt+1

js

)))
(4)

where the dot(.) operators used in (4) show the logical AND
operation. The KPI for inter-BBU handovers (KPIinter) can
now be given as:

KPIinter =

{
1 if Inter-BUHO = 0

[Inter-BBUHO]
−1 otherwise

(5)

2) Intra-BBU handovers : Intra-eNodeB handovers are
performed when users transition from one sector to another
becomes necessary. Provided that the sectors involved in
users transition are handled entirely within the eNodeB. Intra-
eNodeB sector changes are not normally notified to the MME
[46]. To compute users transition from one sector to another
under the same BBU, a binary variable Zt+1

ijs is introduced such
that Zt+1

ijs = 1, if both RRHi and RRHj belong to Sectors at
time period t + 1

(
i.e., Rt+1

is = Rt+1
js = 1

)
. The cost variable

for intra-BBU handovers can be determined by utilising two
variables Zt+1

ij and Yt+1
ij . The variable Zt+1

ij = 1 if RRHi and
RRHj belong to different sectors at time period t+ 1 and can
be presented as Zt+1

ij = 1−
∑

s Zt+1
ijs . To solve if the RRHs are

served by the same BBU, the binary variable Yt+1
ij calculated

previously, is used i.e., Yt+1
ij = 0 if RRHi and RRHj are

served by the same BBU. Therefore, the intra-BBU handovers
(Intra-BBUHO) at time t+ 1 can be computed as:

Intra-BBUHO =
∑
i

∑
j 6=i

Hij

(
Zt+1
ij − Yt+1

ij

)
(6)

Note that, the variables Zt+1
ij = f5(Zt+1

ijs ) and Zt+1
ijs =

f6(Rt+1
is ,Rt+1

js ). Therefore, the binary variable Zt+1
ij is a

function of the main binary variable Rt+1
is , i = 1, 2, ...,M.

i.e.,
(

Zt+1
ij = f5(f6(Rt+1

is ,Rt+1
js ))

)
. The detailed form of

Intra-BBUHO can be given as follows:

Intra-BBUHO =
∑
i

∑
j 6=i

Hij

(
Zt+1
ij − Yt+1

ij

)
Intra-BBUHO =

∑
i

∑
j 6=i ρijUi

[(
1−

∑
s Zt+1

ijs

)
−
(
1−

∑
n Yt+1

ijn

)]

Intra-BBUHO =
∑
i

∑
j 6=i

Ui

Dij

[(
1−

∑
s

(Rt+1
is . Rt+1

js )
)

−
(

1−
∑
n

∑
s∈SOS

(
Rt+1
is . Rt+1

js

) )]

Intra-BBUHO =
∑
i

∑
j 6=i

Ui

Dij

[∑
n

∑
s∈SOS

(Rt+1
is . Rt+1

js )

−
∑
s

(
Rt+1
is . Rt+1

js

) ] (7)

where the dot(.) operators used in (7) show the logical AND
operation. An important constraint here is that each RRH is
served by a single BBU at time t + 1 i.e.,

∑N
n=1 Rt+1

in = 1.
This indicates that RRHs in the same sector cannot be served
by multiple BBUs at any given time t. The KPI for intra-BBU
handovers (KPIintra) can now be given as:

KPIintra =

{
1 if Intra-BUHO = 0

[Intra-BBUHO]
−1 otherwise

(8)

3) Forced handovers : The primary objective of this paper
is to find a new RRH configuration (RRH-sector allocation
vector) that provides a higher QoS and a balanced network
load at the cost of minimum possible handovers compared to
existing RRH-sector configuration (or current RRH association
to sectors). It means that an RRH might change its sector
in time. Change in RRH’s sector means all connected users
in RRH coverage area are required to make a new sector
transition. It is assumed that no call or session drops are
experienced during user transitions due to a mechanism called
soft handover. Since the BBUs are co-located in a common
place and can communicate by exchanging data and control
signals, it is possible to connect a user to multiple BBUs
regardless of the modulation/access scheme. Soft handovers
can be used not only for CDMA systems but non-CDMA
systems as well [47]. In this procedure, the radio links assigned
to users are attached and detached in such a manner that at
least one radio link to the mobile network is kept active. It
enables users to connect to multiple cell sectors during an
active call session. To compute if the RRHs have changed their
sectors, a new binary variable Cis is introduced. Where Cis= 1,
if RRHi changes its current sector at time period t to Sectork
at time period t+ 1 (i.e., Cis = 1, if Rt

is = 0 and Rt+1
is = 1).

The forced handovers fHO can then be presented as:

fHO =
∑
s

∑
i

CisUi (9)

Note that, the binary varibale Cis is a function of the main
binary variables Rt

is and Rt+1
is , ∀i = 1, 2, ...,M i.e.,(

Cis = f7

(
Rt
is,R

t+1
is

) )
. The detailed form of fHO is given

as:
fHO =

∑
s

∑
i

(
Rt
is + Rt+1

is

)
Ui (10)
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where the operator (+) used in (10) shows the logical OR
operation. The KPI for forced handovers (KPIf ) can now be
represented as

KPIf =

{
1 if fHO = 0

[fHO]
−1 otherwise

(11)

V. RRH PROXIMITY CONSTRAINT

RRH re-allocation to different BBU sectors in C-RAN pro-
vides enhanced flexibility in network management. However,
an important limitation to consider is the reliable operation of
C-RAN regarding RRH allocation to sectors for high network
performances. Therefore, proper sectoring of RRHs (or micro-
cells) is important to avoid cases like unbalanced traffic and
increased user call blockings. Proper RRH sectoring means the
RRH allocation to a sector should be connected. Notice that,
all RRHs in a sector broadcasts radio signals simultaneously.
RRH-sector configurations which produce disassociated RRH
arrangement induce unnecessary handovers among the sectors.
It is important for a sector to be consistent throughout its
allocated RRHs. This compactness or consistency in sectors
not only minimises unnecessary handovers among sectors but
also minimises the interferences among them. The RRHs of
a consistent sector have less common boundaries with the
neighbouring sectors than the RRHs of an inconsistent sector.
In Fig. 4, the detached RRH9 of Sector1 at time t is surrounded
by RRHs allocated to other neighbouring sectors. Therefore,
RRH9 experienced high interferences due to common edges
(boundaries) with other sectors. Furthermore, proximity and
consistently connected RRH allocations in a sector not only
decreases the number of handovers required for new RRH-
sector allocation transition but also reduces the length of
boundaries (cell edges) between sectors served by different
BBUs. Therefore, the RRHs proximity is defined by intro-
ducing a binary variable Aij , where Aij= 1, if RRHi and
RRHj are adjacent else Aij= 0. Notice that, the proximity
constraint requires every RRH to be allocated to a sector
at time t + 1 (i.e., ΣsRt+1

is = 1, i = 1, 2, 3, ...,M). If a
sector has multiple RRHs, then the RRHs in that sector must
be adjacent and connected. To formulate the connectedness
and proximity of the RRHs, it is assumed that a Sectors is
connected. Let S1s be any proper subset of the set of RRHs
occupied by Sectors (SORs), such that S1s ⊂ SORs, S1s 6= ∅,
and S1s 6= SORs. Let S2s be another subset of SORs such
that, S2s = SORs−S1s, i.e., S2s is the complementary set of
S1s. To confirm that the RRHs in Sectors are connected, the
following property must be satisfied∑

i∈S1s

∑
j∈S2s

Aij ≥ 1 (12)

To maximise the network QoS, a weighted sum of all KPIs
is taken to define the QoS function. Optimising the QoS
function is the main objective

Max QoS = w1KPIBU + w2KPIinter + w3KPIintra + w4KPIf

RT
s

subject to:
S∑

s=1

Rt+1
is = 1,∀i

N∑
n=1

Rt+1
in = 1,∀i

∑
i∈S1s

∑
j∈S2s

Aij ≥ 1,∀i, j

(13)
where w1,w2,w3, and w4 are the priority levels of the de-

fined KPIs. Furthermore, the binary variables Yt+1
ij , Zt+1

ij , and
Cis are all functions of the main binary variables Rt+1

is , where
i, j ∈ {1, 2, ...,M}, s ∈ {1, 2, ...,S}, and n ∈ {1, 2, ...N}.
Since the RRH allocation to a sector at time t is represented
by Rt

s =
{

Rt
1s,R

t
2s,R

t
3s, ...,R

t
Ms

}
, where the binary variables

Rt
is inside the vector shows the existence (Rt

is = 1) and non-
existence (Rt

is = 0) of RRH in Sectors. The search space
size thus becomes 2MS. To decrease the search space size,
we eliminate the first constraint from 13 (i.e., the constraint∑

Rt+1
is = 1,∀i ) by introducing a sector variable xt

i, where
xti ∈ {1, 2, ...,S} and i = 1, 2, ...,M. This decreases the
search space from 2MS to SM. The RRH-sector allocation
vector at time t + 1

(
Rt+1

s =
{

Rt+1
1s ,Rt+1

2s ,Rt+1
3s , ...,Rt+1

Ms

})
is now translated into a new RRH-sector allocation vector
Xt+1 =

{
xt+1

1 , xt+1
2 , ..., xt+1

M

}
, where the sector variable xt+1

i

can be assigned only one sector at time t and t+ 1. xt+1
i = s

indicates that RRHi is assigned to Sectors.
To find the optimal RRH-sector configuration, an exhaustive

search for all possible RRH-sector combinations is required.
This makes the size of search space 2MS, where M and S
represents the number of RRHs and sectors in the network,
respectively. The search space size increases with the number
of RRHs (M) and sectors (S). Based on the constraint pre-
sented in Section IV, each RRH has to be assigned to a single
sector at time t+ 1 (

∑
s Rt+1

is = 1, i = 1, 2, ...,M). Therefore,
the size of search space is reduced to SM by introducing a
sector variable xt

i, where xt
i ∈ {1, 2, ...,S} and i = 1, 2, ...,M.

The sector variable Xt = {1, 1, 2, 3, 2, 4, 3, 2, 1, 4} in Fig. 4
example shows that RRH1, RRH2, RRH3, RRH4, RRH5,
RRH6, RRH7, RRH8, RRH9, and RRH10 are allocated to
Sector1, Sector1, Sector2, Sector3, Sector2, Sector4, Sector3,
Sector2, Sector1, and Sector4, respectively. The QoS objective
function in (13) can now be represented as:
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Max QoS = w1KPIBU + w2KPIinter + w3KPIintra + w4KPIf

XT

subject to:
N∑

n=1

Rt+1
in = 1,∀i

∑
i∈S1s

∑
j∈S2s

Aij ≥ 1,∀i, j

(14)
The optimum RRH-sector allocation is identified by ex-

haustively searching the entire search space for all possible
RRH-sector allocations. Since the number of possible RRH-
sector allocations increases exponentially with the number of
RRHs and sectors, the algorithm execution time also increases
exponentially. Therefore, evolutionary algorithms are proposed
in Section VI to solve the RRH-sector allocation as an optimi-
sation problem. A detailed form of (14) is presented in (15),
subject to the constraints provided in (2), (5), (8), (11), and
(14).

VI. SELF-OPTIMISED CLOUD RADIO ACCESS NETWORK
(SOCRAN) ALGORITHM

A SOCRAN algorithm is suggested in this section that
depends on the above intuitive analysis and is based on a
centralised algorithm running on the SON server/controller.
The SOCRAN algorithm utilises aggregate network gain in-
formation, which consists of network KPIs, to execute appro-
priate RRH allocation to BBU sectors. Fig. 5 describes the
SOCRAN algorithm block diagram. Network information is
utilised for KPI analysis and QoS measurement for current
RRH-sector configuration in the first step. In the optimisation
step, the same information is employed for KPI and QoS
analysis of other nominated RRH-sector allocations. This
information involves Users served per RRH, RRH to RRH
separations/distances, and initial RRH-sector configuration.
The SOCRAN algorithm adjusts the RRH-sector configuration
at the end of optimisation procedure by comparing the QoS
values of both initial and optimised RRH-sector configuration.
The KPIs are maximised by SOCRAN so as to improve the
QoS of the network by utilising evolutionary algorithms.

This paper examines Genetic Algorithm (GA) and Discrete
Particle Swarm Optimisation (DPSO) as evolutionary algo-
rithms to solve the RRH-sector allocation optimisation prob-
lem. Both GA [48] and PSO [49] are population-based search

algorithms, where population means a collection of candidate
solutions. Chromosomes in GA and particles in PSO produces
solution strings which collectively forms a population. The
fitness value of each candidate solution indicates the measure
of solution quality in problem-solving. In a GA, a group
of random candidate solutions (or chromosomes) are created
and represented individually in a population. The individual
solutions are then evaluated based on how well they perform at
a given problem function. The individuals with higher fitness
levels are then selected for a technique inspired by natural
evolution to produce new candidate solutions/chromosomes,
such as mutation and crossover. The process continues until an
optimal/near-optimal solution is achieved or a certain stopping
criterion is satisfied, i.e., a predefined number of generations
have passed. Unlike GA, PSO utilises a Swarm (or population)
of particles where each particle represents a candidate solution.
These particles probe the solution space (or search space)
randomly with different velocities. To direct the particles to
their best fitness values, the velocity of an individual particle
is changed stochastically at each iteration (i.e., generating new
particles). The velocity update of each particle depends on the
historical best position experience (pbest) of the particle itself
and the best position experience of neighbouring particles,
i.e., the global best position (gbest). Since the solution vector
(i.e., the RRH-sector allocation vector XT ) is real-valued,
the standard PSO algorithm can not be applied to solve
this discrete optimisation problem. In this paper, a Discrete
Particle Swarm Optimisation (DPSO) is used to solve the
QoS maximisation problem defined in (14). In general, the
parameters and notations used to determine both GA and
DPSO are given in Table I

The GA and DPSO are explained in the following steps,
and Fig. 5 represents the SOCRAN algorithm

Step 1: Generate the initial population R0 with |∆|, M-bit
chromosomes/particles (RRH-sector allocations). M is taken
according to the number of RRHs in the network. For DPSO,
initialise the best position for each particle pbest0j = r0j , 1 ≤
j ≤ |∆| and assign random velocity vIj to each particle.

Step2: Calculate the fitness value of each chromo-
some/particle (RRH-sector allocation) in current population
using the fitness function F (i.e., QoS in 14). For DPSO,
initialise global best position as, gbest0 = argmax

1≤j≤|∆|
F(pbestIj ).

Step 3: For GA, if the convergence criterion is qualified by
the best candidate RRH-sector solution (chromosome) or the
maximum number of generations have passed, then end, else
proceed to step 4. For DPSO, Update particle j position by
updating its velocity. The velocity update equation is given as

Max QoS = w1

[∑
s

max

[((∑
i

UiRt+1
is

)
− HCs

)
, 0

]]−1

+ w2

[∑
i

∑
j 6=i

Ui

Dij

(
1−

(∑
n

∑
s∈SOSn

(
Rt+1
is . Rt+1

js

)))]−1

+w3

[∑
i

∑
j 6=i

Ui

Dij

(∑
n

∑
s∈SOS

(Rt+1
is . Rt+1

js )−
∑
s

(
Rt+1
is . Rt+1

js

))]−1

+ w4

[∑
s

∑
i

(
Rt
is + Rt+1

is

)
Ui

]−1

(15)
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𝐒𝐎𝐑𝐓 

𝐘𝐞𝐬 

𝐍𝐨

  Yes 

𝐍𝐨 

  Yes 

𝐍𝐨 

𝐍𝐨 

No

  Yes 

𝐘𝐞𝐬 

𝐘𝐞𝐬 

𝐘𝐞𝐬 Yes 

𝐅𝐨𝐫 𝐃𝐏𝐒𝐎 𝐅𝐨𝐫 𝐆𝐀 

𝐒𝐭𝐚𝐫𝐭 

𝐐𝐨𝐬 &  𝐊𝐏𝐈 𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬  

𝐨𝐟 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐑𝐑𝐇 − 𝐒𝐞𝐜𝐭𝐨𝐫 

 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 𝐢𝐧 𝐂𝐑𝐀𝐍 

𝐎𝐩𝐭𝐢𝐦𝐢𝐬𝐞 𝐐𝐨𝐒 𝐭𝐨 𝐟𝐢𝐧𝐝 𝐨𝐩𝐭𝐢𝐦𝐮𝐦 

𝐨𝐫 𝐧𝐞𝐚𝐫 𝐨𝐩𝐭𝐢𝐦𝐮𝐦 𝐑𝐑𝐇 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

𝐃𝐨𝐞𝐬 𝐭𝐡𝐞 𝐧𝐞𝐰 𝐑𝐑𝐇  

𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 𝐝𝐞𝐥𝐢𝐯𝐞𝐫 𝐛𝐞𝐭𝐭𝐞𝐫 

QoS than Current 

allocation? 

 

𝐑𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐞 𝐂 − 𝐑𝐀𝐍 

𝐄𝐧𝐝 

𝐒𝐭𝐚𝐫𝐭 

−𝐔𝐬𝐞𝐫𝐬 𝐬𝐞𝐫𝐯𝐞𝐝 𝐩𝐞𝐫 𝐑𝐑𝐇 (𝐔𝒊) 

−𝐑𝐑𝐇𝐬 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐞𝐝 𝐭𝐨 𝐞𝐚𝐜𝐡 𝐬𝐞𝐜𝐭𝐨𝐫 

 −𝐑𝐑𝐇 𝐭𝐨 𝐑𝐑𝐇 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝐬(𝐃𝒊𝒋) 

 

𝐊𝐏𝐈 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 

-𝐊𝐏𝐈𝐢𝐧𝐭𝐞𝐫  -𝐊𝐏𝐈𝐢𝐧𝐭𝐫𝐚 

-𝐊𝐏𝐈𝐟            -𝐊𝐏𝐈𝐁𝐂 

 

𝐐𝐨𝐒 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 
𝐐𝐨𝐒 = 𝒘𝟏𝐊𝐏𝐈𝐁𝐂 + 𝒘𝟐𝐊𝐏𝐈𝐢𝐧𝐭𝐞𝐫 + 𝒘𝟑𝐊𝐏𝐈𝐢𝐧𝐭𝐫𝐚 + 𝒘𝟒𝐊𝐏𝐈𝒇  

𝐄𝐧𝐝 

 𝐒𝐭𝐚𝐫𝐭 𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐞 𝐢𝐧𝐢𝐭𝐢𝐚𝐥 

𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧, 𝑰 = 𝟎 

 

𝐐𝐨𝐬 &  𝐊𝐏𝐈 𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬  

𝐨𝐟 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐚𝐥𝐥 |∆|𝐑𝐑𝐇 

 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧𝐬 𝐢𝐧 𝐂𝐑𝐀𝐍 

 

 1        𝐫1        𝐐𝐨𝐒1 

 2         𝐫2       𝐐𝐨𝐒2 

 3         𝐫3        𝐐𝐨𝐒3 

 .            .              . 

 .            .              . 

|∆|     𝐫|∆|    𝐐𝐨𝐒|∆| 

𝐂𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞  

𝐜𝐫𝐢𝐭𝐞𝐫𝐢𝐚 𝐬𝐚𝐭𝐢𝐬𝐟𝐢𝐞𝐝? 
 

𝐄𝐧𝐝 

 

𝐔𝐩𝐝𝐚𝐭𝐞 𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 

 𝐜𝐨𝐮𝐧𝐭𝐞𝐫 

𝑰 = 𝑰 + 𝟏 

 

 

𝐂𝐫𝐨𝐬𝐬𝐨𝐯𝐞𝐫  

& 𝐌𝐮𝐭𝐚𝐭𝐢𝐨𝐧 

 

𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐞 𝐧𝐞𝐰  

𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 

|∆| − |ɳ| 

 

 

 

𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐞 𝐢𝐧𝐢𝐭𝐢𝐚𝐥  

𝐬𝐰𝐚𝐫𝐦, 

(𝒓𝟏,
𝑰 𝒓𝟐,

𝑰 … , 𝒓|∆|
𝑰 ), 𝑰 = 𝟎 

 𝒑𝒃𝒆𝒔𝒕𝒋
𝑰 = 𝒓𝒋

𝑰 

1≤ 𝒋 ≤ |∆| 

 

 

 

 

𝐐𝐨𝐬 &  𝐊𝐏𝐈 𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬 

𝐟𝐨𝐫 𝐚𝐥𝐥 |∆| 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬 
(𝐑𝐑𝐇 − 𝐬𝐞𝐜𝐭𝐨𝐫 𝐜𝐨𝐧𝐟: ) 

 

𝒈𝒃𝒆𝒔𝒕𝑰 = 𝐚𝐫𝐠𝐦𝐚𝐱
1≤𝒋≤|∆|

𝑭(𝒑𝒃𝒆𝒔𝒕𝒋
𝑰) 

𝒗𝒋
𝑰 = 𝒊𝒘𝒗𝒋

𝑰−𝟏 + 𝒄𝟏𝜺𝟏(𝒑𝒃𝒆𝒔𝒕𝒋
𝑰 − 𝒙𝒋

𝑰) + 𝒄𝟐𝜺𝟐(𝒈𝒃𝒆𝒔𝒕𝑰 − 𝒙𝒋
𝑰) 

𝒙𝒋
𝑰+𝟏 = 𝒙𝒋

𝑰 + 𝒗𝒋
𝑰 

For 𝟏 ≤ 𝒋 ≤ |∆| 

 

 

𝐔𝐩𝐝𝐚𝐭𝐞 𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐜𝐨𝐮𝐧𝐭𝐞𝐫 
𝑰 = 𝑰 + 𝟏 

𝐐𝐨𝐒 & 𝐊𝐏𝐈𝐬 𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬 𝐟𝐨𝐫 𝐚𝐥𝐥 |∆|  

𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬 (𝐑𝐑𝐇 − 𝐬𝐞𝐜𝐭𝐨𝐫 𝐜𝐨𝐧𝐟: ) 

 

 
𝐂𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞 

 𝐜𝐫𝐢𝐭𝐞𝐫𝐢𝐨𝐧 𝐬𝐚𝐭𝐢𝐬𝐟𝐢𝐞𝐝? 

 

𝑭(𝒓𝒋
𝑰) ≥ 𝑭(𝒑𝒃𝒆𝒔𝒕𝒋

𝑰−1) ?  

𝒑𝒃𝒆𝒔𝒕𝒋
𝑰 = 𝒓𝒋

𝑰 𝒑𝒃𝒆𝒔𝒕𝒋
𝑰 = 𝒑𝒃𝒆𝒔𝒕𝒋

𝑰−𝟏  

1 ≤ 𝒋 ≤ |∆|  

 𝐦𝐚𝐱𝟏≤𝒋≤|∆| 𝑭(𝒑𝒃𝒆𝒔𝒕𝒋
𝑰) ≥ 𝑭(𝒈𝒃𝒆𝒔𝒕𝑰−𝟏) ? 

𝒈𝒃𝒆𝒔𝒕𝑰 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝟏≤𝒋≤|∆|

𝑭(𝒑𝒃𝒆𝒔𝒕𝒋
𝑰) 𝒈𝒃𝒆𝒔𝒕𝒋

𝑰 = 𝒈𝒃𝒆𝒔𝒕𝒋
𝑰−𝟏 

𝐄𝐧𝐝 

 

𝐒𝐭𝐚𝐫𝐭 

 

 

 1        𝐫1        𝐐𝐨𝐒1 

 2         𝐫2       𝐐𝐨𝐒2 

 3         𝐫3        𝐐𝐨𝐒3 

 .            .              . 

 .            .              . 

|𝜷|     𝐫|𝛽|   𝐐𝐨𝐒|𝛽| 

Fig. 5. SOCRAN Algorithm block diagram

vI
j = iwvI−1

j + c1ε1

(
pbestIj − xI

j

)
+ c2ε2(gbestIj − xIj )

1 ≤ j ≤ |∆|
(16)

where xIj is the current position of particle j in iteration I
and ε1, ε2 are random numbers between 0 and 1. Both c1 and
c2 are acceleration constants that pulls the particle towards best
position. Values in the range 0-5 are chosen for c1 and c2. The
inertial weight iw represents the effect of preceding velocity
on the updated velocity. Larger and smaller value of iw are



11

TABLE I
NOTATIONS DEFINITION FOR GA AND DPSO

|∆| Population/Swarm size
Imax Maximum iterations/generations

RI
Population/Swarm at I th iteration/generation
RI =

[
rI1; rI2; ...; rI|∆|

]
rIj

Particle/chromosome positioned at index j representing
RRH-sector allocation at I th iteration/generation

rIj,m
RRHm in a Particle/Chromosome solution which is
indexed at position j in the I th iteration/generation

βI Set of best RRH-sector allocations chosen
from Population RI at I th generation

Pc Cross-over probability
Ps Selection probability
Pm Mutation probability

pbestIj
Best position of particle j up to I th iteration.
pbestIj ≡ argmax

1≤s≤I
F(rsj)

gbestI
Best position experienced by any particle up to Ith iteration.
gbestI ≡ argmax

1≤j≤|∆|,1≤s≤I
F(pbestsj)

F Objective/Fitness function defined in (10)

used for global exploration and local search expedition in
the search-space, respectively. However, choosing an optimum
value for iw can assist a balanced proportion between global
and local exploration of the search space. Usually values
between 0-1 are selected for iw. A value of 0.9 for iw is
selected in this paper. The new position of particle j for the
next iteration I + 1 will be:

xI+1
j = xIj + vIj (17)

Step 4: For GA, create a set of |β| best chromosomes (RRH-
sector allocations) from the currently sorted population RI .
The selection probability Ps is used to select the best RRH-
sector allocations to form set β (i.e., β = Ps|∆|). For DPSO,
update iteration counter (I=I+1).

Step 5: for GA, generate new chromosomes η (|η| = |RI |−
|β|) by performing crossover and mutation operations on set
β. The newly generated RRH-sector solutions η then replaces
the infeasible solutions (RI -β) of the current population RI

in order to generate a new population. For DPSO, end if
convergence criteria are satisfied, else go to step 6.

Step 6: For GA, go to step 2 and repeat all steps. For DPSO,
update particle j’s personal best position as:

pbestIj =

{
pbestI−1

j if F(rIj ) ≤ F(pbestI−1)

rI−1 if F(rIj ) > F(pbestI−1
j )

(18)

Step 7: Update global best position achieved

gbestI =

argmax
1≤j≤|∆|

F(pbestIj ) if F(pbestIj ) > F(gbestI−1)

gbestI−1 otherwise
(19)

Step 8: Repeat all steps starting from step 1 for DPSO.

VII. COMPUTATIONAL RESULTS AND COMPLEXITY

The priority levels or weights selected for (14) is based
on Rank Order Centroid (ROC) method [50]. The ROC is a

simple method of assigning weights to some functions, ranked
according to their priority or importance. The priority of each
function is taken as an input and converted into weight. The
following formula does the conversion:

wi =

(
1

F

) F∑
n=i

1

n
(20)

where F is the number of functions (KPIs) and wi is the
weight of the ith function. KPIBC ranked first is weighted
as
(
1 + 1

2 + 1
3 + 1

4

)
/4 = 0.52, KPIinter ranked second is

weighted as
(

1
2 + 1

3 + 1
4

)
/4 = 0.27, KPIintra ranked third

is weighted as
(

1
3 + 1

4

)
/4 = 0.15, KPIf ranked fourth is

weighted as
(

1
4

)
/4 = 0.06. Fig. 4 shows weights assigned

for each KPI during QoS calculations.
A higher weight is given to the inter-BBU handovers due to

the signalling overhead involved with this type of handovers.
The aim is to achieve a suitable RRH-sector configuration with
minimum inter-BBU handovers. Inter-BBU handovers require
signalling among the BBUs participating in the transfer as well
as the S-GW and MME. Network performance is degraded
with increased amount of inter-BBU handovers, making the
new RRH-sector transition. A lower priority level is selected
for intra-BBU handovers compared to inter-BBU handovers,
considering that the BBU itself manages the entire handover
process without involving the MME and S-GW. The KPI for
the number of blocked users has the highest priority and
therefore given the highest weight.

Both in GA and DPSO, the initial population/swarm is
randomly chosen with uniform distribution. Note that, If the
population/swarm size is selected to be smaller compared to
the search space size, an inappropriate or significantly small
number of appropriate solutions (RRH-sector allocations) are
achieved. The problem is tackled by considering a percentage
of initial population/swarm satisfying RRH proximity con-
straints. An initial population/swarm with 30% of random
particles or chromosomes, fulfilling the RRH proximity, are
selected for both GA and DPSO algorithms.

This paper presents three benchmark problems P1, P2, and
P3 to analyse and verify the performance of the SOCRAN
algorithm. The spatial distribution of RRHs in each benchmark
problem follows a homogeneous Poisson Point Process (PPP),
with coverage areas corresponding to a Voronoi tessellation as
shown in Figs 6, 7, 8, 9, 10 and 11. The RRHs are distributed
in the test area with a non-negative intensity λPi

|A|, where |A|
is the area of test region such that A=πR2 with Radius R=5
km and λPi

= 0.45 where i=1,2,3. Note that, each point in the
PPP is stochastically independent of all the other points in the
process. This allows RRHs to be located very close to each
other but with significant coverage area. However, the natural
inclusion of different cell sizes and shapes and the indefinite
network extension in all directions makes it a more realistic
approach. In P1, 19 RRHs are divided into six sectors and
served by two BBUs. In P2, 37 RRHs fall into nine sectors
and are served by three BBUs. Whereas in P3, 61 RRHs
are divided into twelve sectors and served by four BBUs as
given in Table II. Each BBU is fixed to manage three sectors.
The hard-capacity of each sector is considered to be 200,
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i.e., a maximum of 200 users can be served within a sector.
The convergence rate in this paper is defined as the number
of best RRH-sector allocations found in the total number of
generations or iterations performed. Fig. 4-6 demonstrates P1,
P2, and P3 at time t and t+ 1 where the number inside each
cell represents the number of connected users in that cell. To
test the performance of the SOCRAN algorithm, an exhaustive
search for optimal RRH-sector allocation is performed. The
Exhaustive Search algorithm (ES) is a useful and efficient
way to find all possible RRH-sector configurations. ES finds
SM solutions for P1, P2, and P3, where S is the number of
Sectors and M is the number of RRHs considered in each
problem (i.e., 619, 937, and 1261 solutions for P1, P2, and P3,
respectively).

The SOCRAN algorithm is tested 30 times over 30 different
initial RRH-sector configurations for each benchmark problem
(P1, P2, and P3) and the average of results obtained are
considered for Monte Carlo Analysis. Note that, all 30 initial
configurations are improper RRH-sector allocations and each
improper configuration generates 80, 177, and 128 blocked
users for P1, P2, and P3, respectively. The performances of
both GA and DPSO in the SOCRAN algorithm are compared
to ES and K-mean clustering algorithm. K-mean is a known
clustering approach considered for LTE and one of the most
used clustering algorithms in wireless sensor networks (WSN)
[51]. Since the main problem is to cluster RRHs into dif-
ferent sectors, the K-mean clustering algorithm is a suitable
technique for such problems. The QoS figures for P1, P2,
and P3 are represented separately for simplicity. Figs. 7-9
shows the average QoS (fitness function) for P1, P2, and P3,
respectively. Whereas, Fig. 10 and Fig. 11 shows the average
number of blocked users and the average number of actual
handovers over 200 generations for all benchmark problems.
ES algorithm finds the optimum values shown in figures
after searching for all possible RRH-sector allocations (SM).
Notice that, the ES algorithm is independent of the number of
generations or iterations. The optimum values obtained from
ES algorithm are used to demonstrate the improvement at each
generation/iteration of GA and DPSO. The final results from
GA and DPSO (in the SOCRAN Algorithm) are shown in
Table III and are compared with the result of ES and K-mean
clustering algorithm.

TABLE II
SPECIFICATION OF THREE BENCHMARK PROBLEMS

Problem # of RRH/micro-cells # of BBUs # of Sectors
P1 19 2 6
P2 37 3 9
P3 61 4 12

For P1 (19 RRHs and 2 BBUs), both GA and DPSO
converges to the optimum RRH-sector configuration with an
average QoS evaluation value of 0.5231. However, the average
QoS value for initial improper RRH configuration is 0.00404
as shown in Table III. The QoS values for GA, DPSO, and
ES are same. 188 optimal RRH-sector allocations are achieved
by DPSO over 200 iterations with a convergence rate of
0.94 and 0.079 CPU seconds. However, the optimum RRH-
sector allocations by GA are 184 over 200 generations with
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TABLE III
COMPUTATIONAL RESULTS

P1 (19 RRH) P2 (37 RRH) P3 (61 RRH)

Quality of Service
Improper RRH-sector allocation 0.00404 0.002952 0.00407

Genetic Algorithm 0.5231 0.07211 0.02531
Discrete Particle Swarm Optimisation 0.5231 0.0782 0.05214

K-mean clustering 0.5231 0.0643 0.0041
Exhaustive Search 0.5231 0.07989 0.05257

Blocked Users (%)
Improper RRH-sector allocation 7.766% 10.523% 5.394%

Genetic Algorithm 0% 0.421% 0.611%
Discrete Particle Swarm Optimisation 0% 0.409% 0.56%

K-mean clustering 0% 0.765% 0.923%
Exhaustive Search 0% 0.297% 0.252%

Forced Hand-Overs
Improper RRH-sector allocation 0 0 0

Genetic Algorithm 152 173.5 115.2
Discrete Particle Swarm Optimisation 152 172.1 120.4

K-mean clustering 152 208.3 195.7
Exhaustive Search 152 153 102
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Fig. 9. Problem P2 with proper RRH-sector allocation at time t+ 1
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Fig. 10. Problem P3 with improper RRH-sector allocation at time t
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Fig. 11. Problem P3 with proper RRH-sector allocation at time t+ 1

a convergence rate of 0.92 and 0.095 CPU seconds. The
DPSO converges to the optimum RRH-sector allocation faster
compared to GA (Fig. 12 and Table IV).The optimum QoS
value is produced after 17 × 500 (17 × |∆|) and 11 × 500
(11× |∆|) fitness evaluations by GA and DPSO, respectively.
However, an exhaustive search of 619 possible solutions is
performed by ES to generate the optimal QoS value, which is
too large. Note that, bot GA and DPSO deliver the same QoS
value as the K-mean clustering algorithm for smaller networks
(such as P1 with 19 RRHs). Compared to GA, the DPSO
converges to the optimum RRH-sector allocation configuration
much faster as shown in Fig. 12 and Table III.

The QoS values evaluated for optimum and improper
RRH-sector configuration for P2 (37 RRHs) are 0.07989
and 0.002952, respectively, whereas 0.05257 and 0.00407,
respectively, for P3 (61 RRHs). The optimum QoS values
are achieved by ES method. Since the number of RRH-sector
allocations is too large in P1 and P2, both GA and DPSO
fails to deliver optimum solution due to a considerable number
of solutions with particularly limited generations/iterations.
However, close optimum solutions are offered by both GA
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TABLE IV
GA,DPSO AND K-MEAN CLUSTERING COMPARISON RESULTS

QoS % Convergence Rate
Number of Iterations

or
Generations

CPU time

GA DPSO K-mean GA DPSO GA DPSO GA DPSO K-mean
19 RRH 128.48 128.48 128.48 0.92 0.94 16 12 0.095 0.079 0.21
37 RRH 23.42 25.49 20.78 0.52 0.84 97 32 0.19 0.16 0.54
61RRH 5.21 11.81 0.0073 0.135 0.655 173 69 0.55 0.35 0.67

and DPSO for both problems as shown in Table III and
Fig. 13. The convergence rate of DPSO in P2 (37 RRHs) is
0.84 with 0.16 CPU seconds, where 168 best RRH-sector
allocations are found over the entire number of iterations.
However, the convergence rate of GA is 0.52 with 0.19 CPU
seconds, and 104 best RRH-sector allocations found over 200
generations as shown in Table IV. In P3 (61 RRHs), the
convergence rates of DPSO and GA are 0.655 and 0.135,
respectively, with a CPU time of 0.35 seconds for DPSO and
0.55 seconds for GA. The DPSO delivers 131 best RRH-sector
allocations over 200 iterations, but the GA provides 27 best
RRH allocation solutions over 200 generations (Fig. 14 and
Table IV). Even though both DPSO and GA can not find the
optimum solution in P1 and P2, however, both the algorithms
improves the network QoS by finding the best RRH-sector
allocation compared to the improper RRH-sector allocation.
Note that, the K-mean clustering algorithm takes longer times
than GA and DPSO to find a proper RRH-sector allocation in
all Benchmark problems as shown in Table IV.
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Fig. 12. Average Quality of Service (QoS) values for ES, GA, and DPSO in
benchmark problem P1

Fig. 15, Fig. 16, and Table III show the number of blocked
users and handovers for both GA and DPSO. Both GA and
DPSO minimise the number of blocked users in all benchmark
problems. In P2, although both algorithms do not achieve the
optimum value, however, ≈ 63% and 68% of the optimum
value is obtained by GA and DPSO, respectively. Similarly, in
P3, GA minimises the blocked users by ≈ 70% of the optimum
value, whereas, ≈ 89% by DPSO. Figs 12-13 proves that the
DPSO dominates GA regarding convergence rate. Moreover,
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Fig. 13. Average Quality of Service (QoS) values for ES, GA, and DPSO in
benchmark problem P2

the RRH-sector allocation produced by DPSO are much closer
to the optimum RRH-sector allocation provided by ES. The
reason why DPSO outperforms GA in problem-solving is that
in DPSO, the particles (RRH-sector allocations) acts as semi-
autonomous agents that are aware of each others position
status and decides to change their states (at each iteration) with
respect to the best-observed particle position in the population.
However, the chromosomes (RRH-sector allocations) in GA
are not agent-like and lacks the ability to sense the neigh-
bouring environment. GA relies on operations like crossover
and mutation instead, to generate new population for the next
generations. Crossover and mutation operations in GA disturbs
better solutions and may converge into local optimal instead
of an optimal global solution.

A QoS percentage (QoS%) is defined in this paper in order
to present the progress level of both GA and DPSO, such that
QoS% =

(
|QoSi−QoSb|

QoSi

)
. Where QoSi is the QoS evaluation

value for improper RRH-sector allocation, and QoSb is the
best QoS evaluation value at the last generation or iteration
for GA and DPSO. In P1, the QoS% for GA, DPSO and
K-mean is 12.8. In P2, the QoS%s for GA, DPSO and K-
mean are 23.42, 25.49, and 20.78, respectively. The QoS%s
for P3 are 5.21, 11.81, and 0.0073 for GA, DPSO, and K-mean
algorithm, respectively. QoS%s in all benchmark problems for
GA, DPSO, and K-mean algorithm are shown in Table IV.

Both GA and DPSO can deliver improved RRH-sector
allocations provided that the parameters selected for a given
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Fig. 14. Average Quality of Service (QoS) values for ES, GA, and DPSO in
benchmark problem P3
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Fig. 15. Number of Blocked Users in P1, P2, and P3 for GA and DPSO

problem are tuned correctly. In the case of a vast network
scenario like P3, both algorithms can deliver more appropriate
RRH-sector configurations by utilising a higher number of
generations/iterations. Another approach is to increase the
population size |∆| while keeping the number of gener-
ations/iterations fixed. Depending on the available system
resources, both algorithms can be adjusted accordingly, e.g.,
increasing the population size requires a system to have
a large memory size. Moreover, with increased number of
generations/iterations and limited system hardware resources,
the execution time also increases due to increased evaluations
at each generation/iteration. A trade-off between the number
of generations/iterations and the population/swarm size is
recommended to produce appropriated performance. Fig. 17
presents a trade-off between swarm size and a number of
iterations for Benchmark problem P3 (i.e., 61 RRHs) provided
that the distance between RRHs is fixed as given in Fig. 4. This
is resolved using DPSO based on [QoS]

−1. The DPSO and GA
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Fig. 16. Number of Handovers in P1, P2, and P3 for GA and DPSO
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Fig. 17. Number of particles (Swarm size) Vs Number of iterations trade-off
for DPSO Benchmark problem P3

algorithms can be configured to the hardware available based
on the trade-off. In Fig. 17, it is observed that a larger swarm
size tends to achieve the optimal solution faster than a smaller
swarm size, however, with limited hardware resources, larger
swarm sizes often leads to more evaluation time to achieve
the optimal solution.

VIII. CONCLUSION

To conclude all this, the dynamic RRH-sector allocations
in C-RAN are examined, with an aim to improve the QoS.
Proper RRH-sector mappings achieve a well-balanced traffic
in the network. A self-optimised C-RAN algorithm is proposed
which utilises the network resources efficiently. RRH-sector
mapping is formulated as an optimisation problem, which is
used for maximising the QoS of C-RAN, minimising the num-
ber of blocked users, and reducing the handovers required to
make a new RRH-sector mapping transition. Two evolutionary
algorithms, i.e., the GA and DPSO are utilised in the SOCRAN
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algorithm to solve the RRH-sector allocation problem. The
performances of both GA and DPSO are compared using
three benchmark problems. The DPSO delivered noticeable
faster and better convergence compared to GA. Both GA and
DPSO provided a near optimum solution for larger networks.
However, the DPSO outperforms GA in all network scenarios.
The SOCRAN architecture contributes to the development of
SON by providing high levels of QoS in a time-varying traffic
environment and enabling dynamic inter-cell optimisation,
which is one of the important issues in SON.
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