
Self-Adaptive Quality Requirement Elicitation Process for
Legacy Systems: A Case Study in HealthCare

Nour Ali

School of Computing, Engineering and Mathematics
University of Brighton

Lewes Road, Brighton-UK

n.ali2@brighton.ac.uk

 Alfonso Martínez-Martínez, Lorena
Ayuso-Pérez, Angelina Espinoza
Universidad Autonoma Metropolitana

Iztapalapa-Mexico City

{Almm,cbi210343101,aespinoza}@xanum.uam.mx

ABSTRACT

Legacy systems need to be continuously maintained and re-

engineered to improve their provision of services and improve

quality attributes. An approach that promises to improve quality

attributes and reduce human maintenance tasks is the self-adaptive

approach, where software systems modify their own behaviour.

However, there is little guidance in the literature on how to

migrate to a self-adaptive system and evaluate which features

should be designed/implemented with self-adaptive behaviour. In

this paper, we describe a process called Self-Adaptive Quality

Requirement Elicitation Process (SAQEP), a process that allows

eliciting quality attribute requirements from legacy system

stakeholders and specify which of these requirements can be taken

account to be implemented in a self-adaptation system. The

SAQEP has been applied to elicit the self-adaptive quality

requirements of a legacy system in a Mexican hospital. We also

discuss our experience applying this approach.

CCS Concepts

• Software and its engineering → Software organization and

properties → Extra-functional properties.

Keywords

Self-adaptive requirements; self-adaptive scenario; quality

attribute; quality attribute scenario; self-property.

1. INTRODUCTION
Legacy software systems commonly require continuous

maintenance tasks. The improvements can be in terms of: 1)

providing new functionality and 2) improving the quality

attributes provided by a system. If these improvements are driven

by runtime faults and administrators/developers/operators have to

manually perform these fixes continuously and repetitively, then

providing self-adaptive capabilities to a system could be a

plausible solution. A self-adaptive system is defined as [1]:

“software which modifies its own behavior in response to changes

in its operating environment. By operating environment, we mean

anything observable by the software system, such as end-user

input, external hardware devices and sensors, or program

instrumentation”. The common goal of self-adaptive system

approaches is to tackle the system evolution in an autonomic

fashion, i.e., with minimum human intervention. Therefore,

reducing administrators’ efforts in technical tasks to maintain the

system operation and improve system quality attributes.

There have been several approaches that provide guidelines

on how to design and implement self-adaptive solutions and

architectures such as [1] [5]. However, there has not been enough

approaches to provide guidelines on how to elicit the requirements

to be taken into account developing self-adaptive systems. For

example, the authors in [12] present the re-implementation of a

self-adaptive legacy system but do not describe how they have

elicited the quality attributes and decided on the self-adaptive

properties to include in the re-engineering process. Therefore,

there is no synthesized and systematic process that provides

guidelines on how to come up with self-adaptive requirements of

a legacy system that need to be included in the re-design and re-

implementation. This systematic process is needed as software

engineers need guidelines to elicit requirements to re-engineering

software for self-adaption. Self-adaptation solutions can require

new costs such as investing in new software platforms,

middleware, developers and hardware equipment. However,

software engineers need to consider that not all challenges need to

have a self-adaptation solution.

In this paper, we introduce Self-Adaptive Quality

Requirement Elicitation Process (SAQEP), a process to elicit the

new legacy quality attribute requirements and to analyse which of

them can be self-adaptive scenarios. Our process initially

identifies a set of Quality Attribute Scenarios [3] that could

potentially be self-adaptive ones, and finally produces a set of

self-adaptive scenarios that will be taken into account in re-

engineering the system to include a self-adaptive behaviour. To

illustrate SAQEP and perform an initial evaluation, we have used

a health-care case study, in the context of a legacy system

currently in operation in a Mexican hospital.

The paper is organized as follows: Section 2 presents de

background to follow the rest of the paper, Section 3 presents the

process to elicit the self-adaptive scenarios. Section 4 details a

case study in the health-care domain to evaluate our approach.

Section 5 presents related work. Finally, section 6 explains the

general conclusions and the on-going and future work.

2. Background
Two of the concepts that we have used in our process are:

- Quality Attribute Scenario (QAS) [4]. It is a quality-attribute-

specific requirement described in a template which consists

of six parts: 1) Source of Stimulus - This is some entity (a

human, a computer system, or any other actuator) that

generated the stimulus, 2) Stimulus - It is a condition that

needs to be considered when it arrives at a system, 3)

Environment – The system condition when the stimulus

occurred, 4) Artifact – The stimulated system artifact, 5)

Response - It is the activity undertaken after the arrival of

the stimulus, and 6) Response Measure - When the response

occurs, it should be measurable in some fashion so that the

requirement can be tested.

- Self-Properties (also called as self-* properties): They are

the characteristics that allow self-adaptive software to

respond to changes at runtime [5] [6]. Several self-properties

proposed in [5], but not limited to, are:

o Self-configuration: Automated configuration of

components and systems that follow high-level

policies.

o Self-optimization: Components and systems

continually seek opportunities to improve their own

performance and efficiency.

o Self-healing: A system automatically detects, performs

diagnoses, and repairs localized software and hardware

problems.

o Self-protection: A system automatically defends itself

against malicious attacks or cascading failures.

 Several authors argue that self-properties are related to

quality attributes. Salehei et al. [6] states that there is a

relationship between self-properties and software quality factors

[10], and the existent knowledge on quality factors, metrics and

requirements support self-adaptive software development. For

example, also Salehei et al. in [6] relate self-configuring to

maintainability, functionality, portability, usability and reliability

(depending on the reconfiguring definition); self-healing to

availability, survivability, maintainability, and reliability; self-

optimization to efficiency and functionality; self-protecting to

reliability and functionality. Also, Ganek and Corbi [13] state that

availability, maintainability and reliability are maximized by self-

healing. This relationship between quality factors/requirements

and self-properties is important for identifying the legacy system’s

requirements that can be implemented with an adaptive approach;

and this is the backbone for the process that we propose.

3. A Process for Eliciting Self-Adaptive

Quality Requirements of Legacy Systems
In this section, we define a Self-Adaptive Quality

Requirement Elicitation Process (SAQEP), which is based on

Quality Attribute Scenarios proposed by the SEI [4]. This process

allows the requirements of a legacy system to be analysed to be

reengineered for self-adaptation.

STAGE 1: Specify Quality Attribute Scenarios (QAS) from

the Legacy System

TASK 1.1: Eliciting Challenging Situations

This step considers answering the question of why do we need to

reengineer the system, what are the problems that the current

system has? Usually, as this is a legacy system, stakeholders will

describe problems/challenging situations that they are

encountering in the current system instead of only needs. To be

able to answer these questions, the following can be performed:

- Interview Stakeholders

• Users. This activity involves interviewing the users

to describe the problems they currently are

experiencing from the system.

• System Administrators, Operators or Developers.

This activity implies to prepare, and carry out the

meetings with the legacy system administrators and

operators in order to collect the current system

challenging situations.

- Analyse System Logs. Many software systems generate

logs to monitor their execution. These system logs need

to be analysed in order to identify the challenging

situations (issues) that a legacy system is currently

undergoing.

- Describe the Challenging Situation. From the interviews

and system log analysis, a list of problems or

challenging situations is identified. The challenging

situations can be described by indicating the elements of

the system involved and the possible reasons or/and the

implications e.g., “The server fails every 2 days due to

high requests”. The first work product generated in this

process is the list containing the identified system

challenging situations. This activity implies to prepare

such list, and to validate it with the stakeholders

involved.

Outcome: List containing the challenging situations..

TASK 1.2: Formalize the Challenging Situations into QAS

1) For each challenging situation, identify which QA describes

it. To identify the QA, the SEI Quality attribute (e.g.

testability) list can be used to classify them. If not found in

the SEI, you can use the SQuaRE model in ISO 25010 [2].

2) Define the QAS: Once you know the QA, you start

complementing the challenging situation with additional

information to define a complete QAS. This can be

performed by either directly translating the challenging

situations into a QAS based on the guidelines provided in

[3] and/or by following Generic QAS templates associated

to quality attributes, if applicable, as presented in [4]. In this

step, several of the information of the QAS sections could

be incomplete as they have not been collected in the list of

challenging situations and therefore, it is recommendable to

iteratively work with stakeholders to complement this

information.

a. Define the Stimulus section, for this purpose, we

recommend dividing this section into three parts:

i. Challenging Situation: A description of the event

that is causing the problem.

ii. Current Actions: List the current actions that are

being performed in order to solve the current

problem and indicate who is performing them.

There are several cases where

administrators/developers/operators are

manually (or semi-automatically) fixing the

problems.

iii. Current Measure: List the costs in efforts (e.g.,

person per task and time per person), money,

current quality attribute measures (e.g., response

time,), etc. from currently having the problem

and using the existing solution to the problem.

b. Define the Response Measure. While defining the

response measure, evaluate whether the proposed

response will improve the Current Measure section of

the Stimulus. If not, keep on defining responses until

the Response Measure improves the Current Measure.

3) Refine the QAS: In this step, the initial QAS is

validated with Stakeholders.

Outcome: QAS List

STAGE 2: Identify Self-Adaptive Quality Attribute Scenarios

(SAQAS)

In this stage, the QAS produced are analysed to determine

whether self-adaptation is the appropriate solution or not. Several

QAS will be already describing self-adaptive solutions, while

others could be considered to become self-adaptive. We define

QAS that describe self-adaptive solutions as Self-Adaptive Quality

Attribute Scenarios (SAQAS). The following steps can be

performed:

TASK 2.1: Identify Potential Self-Adaptive Quality Attribute

Scenario (SAQAS)

In this task, we will only select a subset of the QAS list which

could potentially be SAQAS. For each QAS, review their sections

to identify potential SAQAS. All Potential SAQAS are ones that

have:

1) The Environment section describes a runtime

condition. For example, it is indicated that the stimulus

occurs at runtime or a runtime situation e.g., when the

system is overloaded.

In addition, a Potential SAQAS can have one of the following:

1) The Response indicates actions to be performed by the

system.

2) The Response states that a set of actions are to be

conducted repeatedly by stakeholders.

Outcome: List of Potential SAQAS.

TASK 2.2: Determine SAQAS

For each potential SAQAS obtained in Task 2.1, an analysis is

made in order to determine whether they can be performed

through self-adaptation or not. In this Task, the Response and

Response Measure are analysed. The Response section of a

SAQAS should define the two characteristics that define a self-

adaptive situation, according to [1]. These characteristics are that

the system at runtime needs to 1) observe parts of its behaviour

and 2) modify its own behaviour. Therefore, we propose the

following to select SAQAS:

CHOICE 2.2.1 Check if the Response already contains these two

characteristics. The first characteristic of system observation could

have been written by having verbs that are synonymous for

observation such as “detects”, “checks”, “identifies”, “discovers”,

etc. The second characteristic is related to the system performing

actions such as “configuring”, “removing”, “adding”, etc. If this is

already satisfied, then this is a SAQAS.

CHOICE 2.2.2 If the current Response does not indicate these

two, then the Response section is analysed to determine if it can

be redefined in this form or not. For example, a Response

indicating that stakeholders detect an issue and/or perform the

solution manually, can be determined to be redefined by replacing

these actions with ones performed by the system. If this is not

possible then this is not a SAQAS. If this is possible, then:

a. Write the Potential Response and Potential Response

Measure. To define the Potential Response, stakeholders

are involved to help in determining the potential response

measurements.

b. If the new Potential Response Measure is an

improvement to the Response Measure in QAS, then this

is a SAQAS that replaces the QAS. The SAQAS will

have the Potential Response and Potential Response

Measure replacing the QAS Response and Response

Measure, iteratively.

Outcome: Selected SAQAS

Table 1. Self-Adaptive General Scenario

Source Administrator, Developer, Operator, System, User

Stimulus Challenging Situation

Current Actions

Current Measure

Artifact Locate which architectural element(s) of the legacy

system are affected by the stimulus. These elements

can be components (servers, software, etc.),

connectors, services, subsystems, hardware.

Environment Runtime

Response Actions Indicate the actions that the

system will perform in: 1)

observing its own behaviour and

2) self-adapting its behaviour.

Self-Adaptive

Response

List the self-adaptive properties

Response

Measure

Effort, QAS measurements, Expenditure, etc.

STAGE 3: Rewrite the Selected SAQAS

In this step, the Potential SAQAS are rewritten to follow Table 1.

To do this, the Source, Stimulus, Artifact and Environment

sections will not change from the QAS. For all SAQAS add in the

Response, a section that lists the Self-Properties applicable in this

scenario. These self-properties list can come from the traditional

self-* derived from IBM [5]. In several cases, the stakeholders can

come up with self-properties from their experience and contribute

towards their definition and context. In this step, some guidance

can be used to identify self-properties. As mentioned in the

background section, there has been research that relates Quality

Attributes to corresponding Self-Properties [6].

For only those SAQAS that have been chosen from CHOICE

2.2.2, include the new Response and Response Measure.

Outcome: List of SAQAS.

STAGE 4: Prioritization Stakeholders will prioritize by voting

the SAQAS and the regular QAS based on Difficulty and

Importance. The self-properties and response measures can

influence on the stakeholders’ decisions. The final outcome is a

final set of prioritized SAQAS which will drive the architectural

decisions.

4. Case Study
This section presents a case study which we have used to

evaluate our approach. The description of the case study is

presented as well as the application of the process described in

Section 3. Also, a discussion section is included to analyse the

case study results.

4.1 Description
Our case study was performed in the context of a Mexican

public hospital: Instituto Nacional de Rehabilitación (INR),

located in Mexico City. It is an institution dedicated to

rehabilitation medicine attending physical disabilities. Currently,

INR has several information systems. One of the most important

systems is the Picture and Archiving and Communication System

(PACS) [7], which is responsible for transferring, storing, and

displaying medical images (X-ray, tomography or ultrasound).

INR have a deployed and running PACS implementation called

the PACS-INR [8]. This presents a 3-tier architecture: Client,

Business Logic, and Data Management.

PACS-INR currently has several functionalities that are

impacting negatively on 1) the delivery of services to end-users

such as doctors and patients, and 2) the effort invested by system

administrators in technical and maintenance tasks. Therefore, the

PACS-INR administration area, including the system

administrators are very interested in an approach that could

automatize several of these tasks, with no human intervention if

possible and improve the experience of end-users.

The PACS-INR subsystem can be re-engineered to include

self-adaptive scenarios. Therefore, we have analysed its

functionalities and technical tasks by applying our process

described in section 3 and we have been able to specify several

SAQAS.

Table 2. Challenging situations and their Quality Attribute

ID Challenging Situation Quality

Attribute

1 A failure is detected in the application, file

system or database servers. This failure

prevents the normal PACS-INR operation.

Reliability

Sub-attribute:

Availability

2 A new version of the visualization

component is released which must be

installed manually in each client PC of the

doctors.

Portability

Sub-attribute:

Installability

Replaceability

Adaptability

3 Each time a new equipment for visualizing

medical images is installed to be part of the

PACS-INR system, the DICOM (Digital

Imaging and Communications in Medicine)

compatibility is assured in the new server

since the PACS-INR system protocol to

transfer images is specified in DICOM.

Compatibility

Sub-attribute:

Co-existence

Interoperability

4.2 Applying the Process
In the following, we explain how we have applied the

different stages of the process presented in section 3 to the PACS-

INR subsystem.

4.2.1 STAGE 1: Specify Quality Attribute Scenarios

(QAS) from the Legacy System
TASK 1.1: Eliciting Challenging Situations

For conducting this task, we interviewed Users and System

Administrators and Operators. We also analysed log files with the

stakeholders. We interviewed 1 doctor, the responsible

Administrator and 2 Operators. For this purpose, a workshop was

carried out with all the stakeholders of PACS-INR to identify

functionality to improve the PACS behaviour. As a result, a list

containing the challenging situations was obtained. Table 2

presents three out of the 13 challenging situations that we

captured during this task.

TASK 1.2 Formalize the Challenging Situations into QAS

The first step is to identify the corresponding quality attributes for

each challenging situation. For this purpose, we have used the

SQuaRE model in ISO 25010 to allocate each challenging

situation according to the software quality model in the standard.

Table 2 shows this identification.

Step 2 involves defining the QAS for each challenging situation.

For this purpose, we used the general templates provided in [4],

here we mapped the ISO 2500’s SQuaRE model attributes with

the quality attributes considered by the SEI.

For example, to define the QAS for the challenging situation 1 in

Table 2, the Availability SQuaRE sub-attribute corresponds to the

Availability one in SEI [4]. The availability attribute has a general

template to specify the specific availability scenarios [4].

Table 3. QAS for the challenging situation 1 from Table 2

Source Internal to the system

Stimulus Challenging

Situation

A crash is detected in the application,

file system or database servers. This

failure prevents the normal PACS-

INR operation.

Current

Actions

The administrator manually sets up a

mirror server by using the same

parameters as the failed server.

Once the mirror server is configured,

the administrator performs the

following reliability checks:

- To verify that all the application, file

system and database servers are in

normal operation.

- Several transactions are launched

from the application server to the

database server.

Once the above checks are performed,

the administrator publishes and

activates the servers to be online to

provide services to the end-users.

Current

Measure

The effort of one administrator takes

60 minutes

Artifact - Application server

- File system server

- Database server

Environment Runtime

Response The Administrator is notified that there is a failure in

any of the servers, and then he/she launches an

automatic process that consists of a) configuring a

mirror server and b) checking that the mirror server has

been properly configured to ensure that doctors will be

able to save, retrieve and visualize medical images, c)

Publishes the new mirror server.

Response

Measure

-The repair time in executing the automatic process

takes 5 minutes.

-The effort of developing this automatic process is 1

developer during two months.

For challenging situation 1, we also included the Source which is

the internal system as the indication of the fault comes internally.

We then separated the Stimulus into three sections. By following

Step 4 we have written in conjunction to the stakeholder the

Response measure section in order to specify an improvement

compared to the Current Measure from the Stimulus section. We

have validated this QAS with the stakeholder according to Step 5.

We finally obtained 13 QAS corresponding to the 13 challenging

situations. Table 3 shows the final QAS for the challenging

situation 1 stated in Table 2.

4.2.2 STAGE 2: Identify Self-Adaptive Quality

Attribute Scenarios (SAQAS)
TASK 2.1: Identify Potential Self-Adaptive Quality Attribute

Scenario (SAQAS)

In this section, we selected all the QASs which have Runtime in

the Environment section. As a result, one of the selected QAS is

the one shown in Table 3. We then reviewed the response section

of the QAS from Table 3. It can be noticed that the Response

includes both actions performed by the Administrator and the

system. Therefore, we conclude that this QAS is a Potential

SAQAS. Also, the QAS for challenging situation 2 and 3 were

selected to be potential SAQAS. In this task, we have identified 7

Potential SAQAS for this case study.

TASK 2.2: Determine SAQAS

In this task, we analysed our Potential SAQAS to determine if

they are SAQAS. For each Potential SAQAS, we reviewed the

two choices. For the QAS defined in Table 3 we analysed the

Response section. According to the choices, we apply Choice

2.2.2. This is because there is an observation action but the

administrator has to get the notification and then he manually/she

launches the automatic system instead of the system itself does

these actions itself. We analysed if this action can be performed

by the system. We identified that it can. The Response already

states that the system automatically performs actions. We then

wrote the new Potential Response. Then we worked with the

stakeholder to identify a new Potential Response.

Therefore, this QAS is determined as a SAQAS, and then it can be

implemented with a self-adaptation approach.

For the 7 Potential SAQAS, we have selected 4 SAQAS.

For the Challenging Situations 2 and 3 in Table 3 they were not

determined to be SAQAS. For Situation 2, the Potential Response

Measure was considered to not improve the Current Measure

since the installation time will be the same as if it is to be

launched by an administrator or automatically by the software

itself. Also, since the frequency of the needed installation is once

per year, the effort to re-engineer the system to a self-adaptive

scenario is big compared to the obtained benefits.

4.2.3 STAGE 3: Rewrite the Selected SAQAS
In this stage, we rewrote the selected SAQAS according to our

analysis in the previous stage. Also, all SAQAS should have the

self-properties section. For the QAS defined in Table 3, the

SAQAS response and response measure are rewritten as in Table

4. We also include the self-properties section. For this purpose,

we have analysed the quality attribute from Table 2 which is

Reliability with the sub-attribute Availability from ISO 25000,

then we have concluded that the self-properties are: self-

configuration, self-healing and self-awareness. We also explored

self-healing property. However, we did not consider it applying to

this scenario as the scenario is not repairing the failure. It is only

creating a temporal state to allow the availability of the system.

4.2.4 STAGE 4: Prioritization
Finally, we prioritized all the scenarios with the stakeholders. We

will use these prioritized scenarios to develop the architecture in

an iterative process.

Table 4. SAQAS for the challenging situation 1 from Table 2

Response The PACS-INR system:

1) Detects that one of the server fails.

2) Automatically a) configures a mirror server and b)

checks that the mirror server has been properly

configured to ensure that doctors will be able to save,

retrieve and visualize medical images, c) Publishes the

new mirror server.

Self-Awareness

Self-Healing

Self-Configuration

Response

Measure

- The PACS-INR takes 6 minutes to detect and repair

the failure.

-The effort of developing this automatic process is 1

developer during two months.

4.3 Discussion
In this section, we discuss several of the lessons that we have

learnt when applying SAQEP in the different stages of the

process.

Close Interaction with Stakeholders to Define QAS

Stage 1: One of the issues we faced when we applied SAQEP in

the case study is that the stakeholders did not directly

communicate a challenging situation. Many would just describe a

situation but without identifying the core problem. The software

engineer who is applying SAQEP, needs to advice the stakeholder

to correctly be able to identify the problem. In addition, the

software engineer needs to work very closely with the stakeholder

to be able to write the QAS. Stakeholders do not provide the

information needed to specify the sections of the template.

Special Attention to Costs in Determining SAQAS

Stage 1: Special attention has to be made in deciding which

measurement costs e.g., efforts man, speediness of task

realization, response time, etc., to include in the response measure

and the current measure when defining the QAS. This is highly

important as it can have later implications to decide whether the

response measure improves from the current measure when

determining SAQAS. If several measurements are ignored or not

considered, wrong decisions could be made in choosing SAQAS.

Stage 2: Another aspect to consider related to taking the decision

to include a SAQAS or not is that there are cases when some of

the measurements in the response measure improve from the

current measure whereas others do not. In these cases, it is not

directly clear if the QAS is more suitable to be a SAQAS or not.

Therefore, stakeholders and analysts have to work out a trade-off

between these measurements and prioritise which are more

important for an organization or a task.

Self-Adaptive Expertise needed to apply SAQEP

Stage 2: Another issue, but not especially a drawback, is that the

SAQEP application requires the software engineer in charge to

have expertise in the self-adaption paradigm to properly identify

the self-adaptive quality attribute scenarios. This expertise is

needed specifically to identify which manual activities in the

Response section can be automatically performed by the system

and to identify the events to be observed. This is totally oriented

to model a self-adaptive behaviour.

Stage 3: When re-writing the SAQAS and defining the self-

adaptive properties, the software engineer who applies SAQEP

has to have a deep understanding of the different self-adaptive

properties available and know how to identify if there is a

mapping between the self-property and the quality attribute.

Guidance in identifying self-properties from mapping quality

attributes literature

Stage 3: A fundamental task is to properly re-write the QAS into

SAQAS and identify the self-adaptive properties. As part of our

SAQEP, we mentioned that literature exists that attempts to map

self-properties to quality attributes. After applying our case study,

we searched for formal approaches to make this mapping. For

example, for our SAQAS in Table 4 we identified 3 self-

properties for a reliability/availability quality attribute. The Self-

configuration property has been in line with Salehei et al. [6],

which states that self-configuring can be related to reliability. For

self-healing, Ganek and Corbi [13] state that reliability is

maximized by self-healing. For self-awareness, we did not found

a previous approach stating the relationship between this self-

property and any quality attributes. As a result, we believe that

more work can be made in relating quality attributes and different

self-properties.

5. Related Work
We have not directly found a systematic process for eliciting

requirements to re-engineer legacy systems with self-adaptation.

Similar research to SAQEP is the one presented in [14]. Even

though they do not present a systematic process to allow software

engineers to apply it, they describe how they have used QASs to

consider self-adaptive properties in the design of an architecture.

In SAQEP, we provide a set of steps to guide the software

engineer in identifying potential self-adaptive scenarios. For

example, SAQEP indicates to compare current measures against

response measures of a self-adaptive solution. SAQEP also

extends the QAS template to include self-adaptive features in

order to more explicitly drive the architectural design.

Another approach at the requirements stage is [11]. In this

paper, the author provides a brief process for modelling adaptation

requirements based on the goal approach. However, this process is

not quality attribute driven and does not provide guidance for

eliciting the self-adaptive requirements.

6. Conclusions and Further Work
We have introduced a process called SAQEP which elicits

new quality attribute requirements from stakeholders of a legacy

system to evaluate which to include as self-adaptive requirements.

These requirements will be used to re-engineer the system. We

believe it is one of the first systematic processes that provides

guidelines for conducting a quality attribute requirement

elicitation for re-engineering a legacy system to become self-

adaptive. We have applied our process to identify the self-

adaptive requirements to be considered for re-engineering the

PACS system at the INR. From 13 quality attribute challenging

situations elicited from INR stakeholders, our process selected 7

self-adaptive quality attribute scenarios. These scenarios specify

the quality requirements to be considered in re-engineering the

architecture in further stages. By applying our process at INR, we

have discussed several lessons learnt.

 Our further work includes evaluating the SAQEP after re-

engineering the software architecture of the healthcare legacy

system with the new self-adaptive properties. We also plan to

refine our process with the several lessons learnt such as including

more guidelines in defining costs, risks, and mapping quality

attributes to self-properties. In addition, we will apply our refined

process in several other systems to be re-engineered to become

self-adaptive.

7. ACKNOWLEDGMENTS
We would like to thank Instituto Nacional de Rehabilitacion

(INR) for providing access to their system and staff, specially to

Marco Antonio Nuñez Gaona. This work was partially funded by

The Royal Academy of Engineering (NRCP1516/1/39) and The

Royal Society (NI150203) through the Newton fund scheme.

8. REFERENCES
[1] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,

Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. S.,

and Wolf, A. L.; An architecture-based approach to self-

adaptive software; IEEE Intelligent Sys. Vol. 14-3, pp 54-62;

1999

[2] ISO/IEC 25010.4 Software engineering- Software product

Quality Requirements and Evaluation (SQuaRE) Quality

model, 2009

[3] Bass, L., Klein, M., Moreno, G., Applicability of General

Scenarios to the Architecture Tradeoff Analysis Methods,

CMU/SEI-2001-TR-014 ESC-TR-2001-014 Oct 2001.

[4] Bass, L., Clements, P., Kazman, R., Software Architecture in

Practice, 3rd Edition, Addison Wesley, 2012.

[5] Kephart, J.O., Chess, D.M.; The vision of autonomic

computing; Computer, vol. 36-1, pp. 41-50; 2003

[6] Salehie, M., and Tahvildari, L.; Self-Adaptive Software:

Landscape and Research Challenges; ACM Transactions on

Autonomous and Adaptive Systems; Vol 4-2, pp 2-39; 2009.

[7] Huang, HK: PACS and Imaging Informatics. Basic

Principles and Applications, New Jersey: Wiley Blackwell

2nd Edition, 2010

[8] Gutiérrez-Martínez J., Núñez-Gaona M.A., Aguirre-Meneses

H.; Business Model for the Security of a Large-Scale PACS,

Compliance with ISO/27002:2013 Standard; Journal of

Digital Imaging; Vol. 28-4, pp 481-491; 2015.

[9] Pianykh, O: Digital Imaging and Communications in

Medicine (DICOM) Cap 11. DICOM Media and Security,

Springer 2nd Edition, 2012.

[10] ISO/IEC 9126-1 2001. ISO/IEC 9126-1 Standard: Software

Eng. -Product quality - Part 1: Quality model, Int. Standard

Organization, 2001.

[11] Amoui, M.; “Evolving Software Systems Towards

Adaptability”; 16th Working Conference on Reverse

Engineering; 2009.

[12] Mulcahy, J.J. and Huang, S.; Autonomic Software Systems -

Developing for Self-Managing Legacy Systems; IEEE

International Conference on Software Maintenance and

Evolution; 2014.

[13] Ganek, A. G. and Corbi, T. A. The dawning of the autonomic

computing era. IBM Sys. Journal, Special Issues on

Autonomic Computing 42, 5-18; 2003.

[14] Zhu Y., Huang G. and Mei H.; Quality Attribute Scenario

Based Architectural Modeling for Self-Adaptation -

Supported by Architecture-based Reflective Middleware;

11th Asia-Pacific Software Engineering Conference, 2004.

mailto:gtzmtzjos@gmail.com

