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Abstract We develop a formal passive testing framework for software systems
where parties communicate asynchronously. Monitors, placed in between the en-
tities, check that a certain property holds over the observations of the interaction
between users and the System Under Test (SUT). Due to the asynchronous nature
of communications, the trace observed by the monitor might differ from the one
produced by the SUT: the monitor observes inputs before they are received by the
SUT and outputs are observed after they are sent by the SUT. It is necessary to
take this into account in passive testing; otherwise we might obtain false positives
or false negatives. In order to better assess the real causality between actions,
we consider the case where each action is labelled with a timestamp giving the
time when it was observed at the monitor. We also assume that we know bounds
on network latency and so the timestamps allow us to determine additional cau-
salities between actions. Our monitors are implemented as automata that take
into account communications being asynchronous. Our solution checks properties
against traces in polynomial time and has low storage requirements. Therefore,
our proposal is suitable for real-time passive testing.
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Departamento de Sistemas Informáticos y Computación,
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1 Introduction

Current software systems are very complex and consist of many heterogeneous
components. Therefore, ensuring that the developed systems are correct, that is,
they respect the requirements defined by the designer of the system, is an extre-
mely arduous task. Thus, it is important to provide sound engineering techniques
to increase the confidence regarding the correctness of these systems. Software
testing is one of the most widespread validation techniques [44]. The main pro-
blem with testing is that it is mainly a manual activity, increasing the cost of the
system. In fact, it is recognised that the cost of testing can be more than 50% of
the total budget [44]. Therefore, the development of automated testing techniques
is a must and one way of achieving this is to have a formal description of the
system that we are testing and of the properties that we would like to test. While
the testing of software has traditionally had a weak formal basis, testing of har-
dware systems originally included formalisms and formal notations [38,15]. Only
relatively recently, has it been recognised that formalising the different aspects of
testing software is very beneficial [12]. Currently, a formal discipline of software
testing, combining formal methods and testing, is well understood, tools to auto-
mate testing activities are widely available [37], and there are several surveys of
the field [20,19,8]. In addition, industry is becoming aware of the importance of
using formal approaches to testing in different application areas [31,13].

The most common understanding of testing is that it is a process in which
a tester applies inputs to the SUT, observes the resultant outputs, and makes a
verdict on whether the outputs were correct. However, often there is a need to
assess the correctness of a system without having direct access to this system.
This could happen due to security issues or because the system is running 24/7
and an interaction with it might produce undesirable changes in the associated
data. In these situations, testing can still play a role if we consider it to be a
monitoring activity where interaction is replaced by observation. This approach to
testing is also known as passive testing and it is already a well established line of
research [34,7,4,39] where extensions of the original frameworks have gone beyond
the classical application to validate protocols [32,33,45,43,30,9] to deal with issues
such as security [48,42,36,1]. Essentially, in passive testing we have a property and
we check that the trace (sequence of inputs and outputs) being observed satisfies
the property. Ideally, the process of checking whether the property is satisfied
should be quick and take very little storage since this can allow passive testing to
occur in real-time. In fact, the application of passive testing in real-time has an
important benefit: the operators of the system can be notified of a detected error
almost immediately and they can then take appropriate measures. If the trace has
to be saved and processed off-line, then the time between the detection of the error
and the corresponding notification will significantly increase.

Previous work on passive testing has assumed that the monitor observes the
actual trace produced by the SUT. However, the monitor might not directly ob-
serve the interface of the SUT and instead there may be an asynchronous chan-
nel/network between the monitor and the SUT. The analysis of systems in an
asynchronous setting requires us to consider not only the traces that can be per-
formed by the system but also how these traces can be observed. Due to the
existence of an asynchronous channel/network between the monitor and the SUT,
the trace observed by the monitor might not be the one actually produced by the
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Fig. 1 Actions swapped in the monitor w.r.t. the system

SUT. The main problem is that input is observed before it is received by the SUT
and output is observed after it is sent by the SUT.

In Figure 1 output o is observed by the monitor after it is produced (t1o < t2o)
and the input i is observed before it is received by the SUT (t2i < t3i ). In addition, it
happens that the output o is produced before the input i is received (t1o < t3i ), but
the observation is different (t2i < t2o). Therefore, the sequence of actions observed
at the monitor might contain swaps with respect to the one that was produced at
the SUT.

Thus, if we have properties that the SUT should satisfy and we directly apply
them in such a context then we may obtain false positives or false negatives. We
therefore require new approaches to passive testing in such circumstances and in
this paper we focus on the case where the asynchronous channels are first in first
out (FIFO).

In our previous work [22] we presented a passive testing framework where
the monitor observes sequences of actions. We have also developed a tool that
implements the proposed framework. This tool has been used to evaluate different
properties of communication protocols [6]. In this paper we consider the case where
observed actions are stamped with the time when they were observed by the
monitor. We analyse how this information can be used to reason about the precise
order in which events were produced. For example, let us consider a property
that states that if a system produces the sequence of actions ?i!o for input ?i and
output !o, then the next output must be from a set O′. If the monitor observes
?i followed by !o then it is not possible to claim that this was the order in which
the actions were produced: they might have been produced in the reverse order
with the observation being due to a delay. However, if we are also provided with
timestamps then we might be able to more accurately establish the actual order
in which the events were produced by the SUT. For example, let us suppose that
we want to detect sequences of actions in which the output !o is produced before
the input ?i is received. If we observe (!o, 100), (?i, 101) then we know that !o was
performed before ?i. However, if the monitor observes (?i, 100), (!o, 101) then we
cannot claim that !o was produced after the reception of ?i since all we know is
that the output was produced before 101 and the input was received after 100.
In an asynchronous setting we must take into account message latency when we
reason about the order in which actions occurred. In the previous case, if we have
a lower bound on message latency of 0.6, then we know that ?i was received by
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the SUT not before 100.6 while !o was performed not later than 100.4. Therefore,
we can conclude that ?i was received by the SUT after !o was emitted.

In this paper we present a complete formal framework to perform passive tes-
ting of software systems with asynchronous communications where actions are
timestamped with the time when they were observed at the monitor. Essenti-
ally, a monitor is implemented as an automaton that checks, with a low storage
overhead and with operations taking place in low-order polynomial time, whether
the sequence of observed actions might fulfill a property such as “if we observe
a sequence of actions then the next observed output belongs to a certain set”.
Actually, we will prove that the time complexity of these operations is in O(n4),
where n is the length of the property. Since the usual properties that we foresee
are very short, it is indeed feasible to use our approach in real-time.

We build on top of previous work [22]. Even though we are using the same
type of properties, the inclusion of time complicates the definitions of most of the
concepts and a new, more complex, algorithm is needed to generate automata from
properties.

We are not aware of other work on passive testing where there is an asynchro-
nous communications channel between the system and the monitor. In contrast,
there has been some work on active testing for models with asynchronous com-
munications where there is a distinction between inputs and outputs [16,27,49,
17,18,47]. Concerning the consideration of time, there is plenty of work on formal
approaches to both active [50,41,21,29,40,23,46] and passive [42,3] testing of ti-
med systems. However, as far as we know, these approaches assume a synchronous
communications mechanism. In addition, we use time, as simple timestamps, to
gather more information about the causality between actions while in these ap-
proaches time is used to represent requirements and properties of the analysed
systems. There exists an approach using timestamps to generate tests in asyn-
chronous systems [28]. Timestamps are added by the SUT and the SUT has to
log the events with timestamps. Thus, the SUT must be modified, and this is a
drawback, but the main advantage is that one can reconstruct the trace that the
SUT performed. Our approach does not require the SUT to be changed and does
not timestamp the events at the SUT; it instead requires that the monitor adds
timestamps. Passive testing is a monitoring technique and as such it is related to
runtime verification [35] since they share the same goal, checking the correctness
of a system without interacting with it, but use different formalisms and met-
hodologies. In runtime verification it is not usual to distinguish between inputs
and outputs, since their observation makes them events of the same nature, and
therefore it is difficult to compare the work from that area with ours. While some
work has investigated asynchronous runtime monitoring, the problems considered
in this context are different: this line of work does not distinguish between input
and output and does not explore potential reorderings of traces. Instead, it looks
at the situation in which the monitor and the system do not synchronise on acti-
ons: actions engaged in by the system might instead be recorded and analysed
later, with a compensation phase being used to undo any later actions if an error
is found [10].

The rest of the paper is structured as follows. In Section 2 we introduce no-
tation to define systems and traces that will be used throughout the paper. We
also discuss different alternatives to perform passive testing in systems with asyn-
chronous communications and advance our solution. Section 3 introduces the main
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notions of the paper, in particular, how traces are annotated with time. Section 4 is
the bulk of the paper and presents how properties can be translated into automata
and provides our theory to check traces against properties. Finally, in Section 5
we present our conclusions and provide some lines for future work.

2 Preliminaries

In this section we introduce the basic notation used in this paper to define systems
as well as concepts associated with the traces that a system can perform and with
the traces that a monitor can actually observe in an asynchronous setting. We also
review alternative options to implement our approach, present an impossibility
result and outline our solution. The material presented in this section is taken
from our previous work [22].

Definition 1 An input-output transition system (IOTS) M = (Q, I,O, T, qin) is a
tuple in which Q is a countable set of states, qin ∈ Q is the initial state, I is a
countable set of inputs, O is a countable set of outputs, and T ⊆ Q× (I ∪ O)×Q

is the transition relation. A transition (q, a, q′) ∈ T means that from state q it is
possible to move to state q′ with action a ∈ I ∪ O.

We use the following notation concerning the performance of (sequences of)
actions.

– Act = I ∪O is the set of actions.
– If (q, a, q′) ∈ T , for a ∈ Act, then we write q a−−→ q′ and q a−−→ .

– We write q
σ

==⇒ q′ for σ = a1 . . . am ∈ Act∗, withm ≥ 0, if there exist q0, . . . , qm,

q = q0, q
′ = qm such that for all 0 ≤ i < m we have that qi

ai+1

−−−−→ qi+1. Note

that q
ǫ

==⇒ q, where ǫ is the empty sequence.

– If there exists q′ such that qin
σ

==⇒ q′ then we say that σ is a trace of M and

we write M
σ

==⇒ . We let L(M) denote the set of traces of M .

During the rest of the paper when we refer to a system we will assume that
there is an IOTS representing the behaviour of that system and, in such a context,
we will use both terms as interchangeable. In addition, we will fix the sets of
inputs, outputs and the total set of actions to be I, O and Act, respectively. In
order to distinguish between input and output we usually precede the name of an
input by ? and precede the name of an output by !.

We have an asynchronous setting and, therefore, we do not only have to con-
sider the traces that can be performed by a system but also how these traces can
be observed. Intuitively, if a system performs a certain trace then we can observe
a variation of this trace where the outputs appear later than they were actually
performed. For example, if the monitor observes the trace ?i?i!o, in which ?i is an
input and !o is an output, then it is possible that the SUT actually produced either
?i!o?i or !o?i?i and that the observation of ?i?i!o was due to the delaying of out-
put. Next we formally define this idea and given a system M and a trace σ we let
L(σ) denote the set of traces that might be observed by a monitor if M produces
trace σ and communications between the monitor and the SUT are asynchronous
and FIFO.
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Definition 2 Let σ, σ′ ∈ Act∗ be sequences of actions. We say that σ′ is an ob-
servation of σ, denoted by σ  σ′, if there exist sequences σ1, σ2 ∈ Act∗, !o ∈ O

and ?i ∈ I such that σ = σ1!o?iσ2 and σ′ = σ1?i!oσ2. We let L(σ) denote the set
of traces that can be formed from σ through sequences of zero or more transfor-
mations of the form  , that is, L(σ) = {σ′|σ  ∗ σ′}, where  ∗ represents the
repeated application of  zero or more times. We overload this to say that given
an IOTS M , L(M) = ∪σ∈L(M)L(σ) is the set of traces that might be observed
when interacting with M through asynchronous FIFO channels.

Example 1 Let us assume that the SUT has produced the trace σ =?i1!o1!o2?i2!o1.
Due to the asynchronous nature of communications, the monitor might observe
any of the traces in the set L(σ) = {?i1!o1!o2?i2!o1, ?i1!o1?i2!o2!o1, ?i1?i2!o1!o2!o1}.

In line with previous work in formal passive testing [4], we will consider pro-
perties of the form (σ,Oσ) for σ ∈ Act∗ and Oσ ⊆ O. Such a property says that if
the SUT produces the sequence σ then the next output must come from the set
Oσ. One possible approach to working with properties and traces is to represent
the property P as an automatonM(P ) such that a trace satisfies P if and only if it
is not a member of the language defined by M(P ): it does not reach a final (error)
state of M(P ), that is, M(P ) accepts the regular language Act∗{σ}(Act\Oσ)Act∗.
If M(P ) is deterministic then the process of checking whether a trace satisfies P

takes linear time and is an incremental process: every time we observe a new input
or output we simply update the state of M(P ). Even if M(P ) is non-deterministic,
the process of checking whether a trace satisfies P takes time that is quadratic in
the size of M(P ) and linear in the length of the trace and the process is still in-
cremental. This makes such an automaton based approach desirable if we can find
efficient ways of mapping properties to automata. It is well known that an auto-
maton that represents a regular expression can be produced in quadratic time [5].
This process can be further improved to achieve sub-quadratic complexity and
can be efficiently parallelised to work in O(log(|σ|)) time [14]. Such an automaton
M(P ) has O(|σ|) states and O(|σ| · log(|σ|)2) transitions [25]. In the next section we
adapt the above approach for the case where communications are asynchronous
and actions are stamped with the time when they were observed at the monitor.

There are several ways of applying passive testing when observations are through
FIFO channels. Before outlining our solution, we briefly comment on some alter-
natives. One approach creates a model of the property and adds queues to this.
However, the addition of queues can lead to the model requiring more storage
space. In particular, if the queues are not bounded then it leads to there being
an infinite number of states while if there is a bound on the queue length then
the number of states increases exponentially with this bound. An alternative is to
transform the trace ρ observed to form an automatonMρ that represents all traces
that might lead to ρ being observed where there is asynchronous communications.
However, under this approach we have to analyse the entire, potentially very long,
trace that has been observed and the monitor has to store this. This approach
thus mitigates against real-time uses since it can significantly increase the storage
and processing requirements. Previous work has described a delay operator that
takes a trace σ of an IOTS and returns the set of traces that might be observed if
the SUT produces σ and interacts asynchronously through FIFO channels with its
environment [26]. However, the delay operator cannot be applied directly since it
applies to a single trace rather than an automatonM(P ). While it has been shown
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Fig. 2 An IOTS M such that L(M) is not regular.

how a test purpose can be adapted to incorporate the delay into the verdict [49],
this approach assumes that the tester waits for output before sending the next
input and so does not apply input in a state where output can be produced. Since
the input is not supplied by the tester in passive testing, we cannot make such an
assumption. Finally, we might instead aim to define a general method that takes
an IOTS M (with finite sets of states and transitions) and produces IOTS M ′

(with finite sets of states and transitions) with L(M ′) = L(M). If we can achieve
this then M ′ can be used. However, the following shows that there is no such
general method.

Proposition 1 Given an IOTS M with finite sets of states and transitions, there may

be no IOTS M ′ with finite sets of states and transitions such that L(M ′) = L(M).

Proof An IOTS with finite sets of states and transitions defines a regular language
so it is sufficient to find some such M where L(M) is not a regular language. Let
M be the IOTS with three states shown in Figure 2 (the initial state is represented
by the leftmost vertex). We will use proof by contradiction, assuming that L(M) is
a regular language. Thus, since L(M) is regular and I∗O∗ is regular we have that
L(M) ∩ (I∗O∗) is regular. However, L(M) ∩ (I∗O∗) contains all sequences of the
form of n inputs followed by n or fewer outputs and this is not a regular language.
This provides a contradiction as required.

While this result shows that there is no general method that takes a property
P defined by an IOTS M(P ) with finite sets of states and transitions and returns
a suitable property for use when communications are asynchronous, we will see
that we can take advantage of the structure of the properties we consider and the
timestamps associated to the observation of the trace. First we will show how,
for trace σ, we can produce an automaton that gives the set of traces that might
be observed if the SUT produces σ. This automaton will include conditions over
the timestamps that allow us to check whether the causality relation between
the actions from the observed trace might correspond to the production of the
expected trace. Since we are applying passive testing, a trace σ of interest might
not be the start of the overall trace observed and so we will then adapt the previous
automaton to produce the automaton that will be used.

3 Adding timestamps to observations

In this section we introduce the main notions of our framework to include the time
information compiled while observing actions at the monitors.
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Fig. 3 An input before an output (left) and an output before an input (right).

Definition 3 We assume that the time domain includes all non-negative real num-
bers, that is, Time = IR+. Given (a, t) ∈ Act×Time we have that act(a, t) = a and
time(a, t) = t. Let σ ∈ (Act×Time)∗ be a sequence of (action, time) pairs. For all
1 ≤ i ≤ |σ| we denote by σi the i-th element of the trace.

We let untime(σ) denote the trace produced from σ by removing the times-
tamps associated with actions. Formally,

untime(σ) =

{
ǫ if σ = ǫ

a untime(σ′) if σ = (a, t)σ′

A timed trace is a sequence σ ∈ (Act × Time)∗ such that for all i < j we have
time(σi) < time(σj).

Timed traces are sequences of inputs and outputs annotated with the time
at which actions were observed. The timestamps define the exact order in which
actions were observed. We assume that two actions cannot be timestamped with
the same value since it takes time to observe an action.

In order to reason about the causality between actions that have been observed
in an asynchronous setting, taking into account that these observations are times-
tamped, it is necessary to make assumptions regarding message latency, that is,
the amount of time needed for a message to be transmitted from the SUT/monitor
to the monitor/SUT through the network. We assume that there is a known lower
bound ∆LB on message latency and also a known upper bound ∆UB . We also
assume that we have the same bound in each direction; it is straightforward to
adapt the definitions and results to the case where bounds differ. We used simi-
lar assumptions and notation in our previous work on testing in the distributed
architecture [23].

Since communications are FIFO, we can always order two inputs and also two
outputs, once they have been observed. We must consider the situation in which
we have an input and an output. If the output is observed before the input then
clearly the output was produced by the SUT before the input was received. It
is therefore sufficient to consider the situation in which an input ?i is observed
at time ti before an output !o is observed at time to. Then, ?i must have been
received by the SUT before time ti + ∆UB and !o must have been sent by the
SUT after time to −∆UB . Thus, we know that !o was sent after ?i was received if
ti +∆UB < to −∆UB and this is the case if and only if to − ti > 2∆UB . Similarly,
we know that !o was sent before ?i was received if to −∆LB < ti +∆LB and this
is the case if and only if to − ti < 2∆LB. This generalises the situation in which



Passive Testing with Asynchronous Communications and Timestamps 9

an output is observed before an input, showing that we can potentially know that
an output was produced before an input was received if the output is observed
less than 2∆LB time units after the input was sent. These situations are shown in
Figure 3 in which time progresses as we move to the right, a solid arc represents
the message (an input or an output), and the dotted arcs represent the bounds on
when the message might have been received/sent.

We need to define the set of timestamped traces that might be observed by
the monitor if the SUT produces a trace in an asynchronous FIFO setting where
the bounds on message latency are known. Essentially, we refine our previous
relation ∗ to take into account time information. A sequence can present multiple
occurrences of a specific action. In order to distinguish the different occurrences of
the same action in the sequence we use events. An event is a pair that associates to
each action a number that indicates the occurrence of the action in the sequence.
For example, the event (a,1) corresponds to the first occurrence of an action a

in the sequence, the event (a,2) corresponds to the second occurrence of a in the
sequence and so on. We now formalise this approach.

We transform traces into sets of events. Given a trace σ, we derive a set of events
that allows us to distinguish between repeated actions in the trace. The elements
are constructed from actions by labelling each action in σ with the occurrence of
the symbol in the trace. For example, in the trace ?i1!o1?i1 there are two instances
of the action ?i1: the event (pair) (?i1, 1) (denoting the first occurrence of ?i1 in
the trace) and the event (?i1, 2) (denoting the second occurrence of ?i1 in the
trace). We will also say that each such event has a position in the original trace.
For example, the position of (?i1, 1) in trace ?i1!o1?i1 is 1 since the event (?i1, 1)
(the first occurrence of ?i1) corresponds to the first action in ?i1!o1?i1. Similarly,
the position of (?i1, 2) in trace ?i1!o1?i1 is 3 since the event (?i1, 2) (the second
occurrence of ?i1) corresponds to the third action in ?i1!o1?i1.

Definition 4 Let σ = a1 . . . an ∈ Act∗ be a sequence of actions. We let E(σ) denote
the set of events of σ, where e = (ai, k) belongs to E(σ) if and only if there are
exactly k−1 occurrences of ai in a1 . . . ai−1. We define the function posσ : E(σ) −→
IN such that for all e = (a, k) ∈ E(σ) we have that posσ(e) = i if a = ai and there
are exactly k − 1 occurrences of a in a1 . . . ai−1. We define the annotated sequence

of σ, denoted by σ̃, as the sequence (a1, k1) . . . (an, kn). Respectively, the annotated

timed sequence of a timed trace σt = (a1, t1) . . . (an, tn) ∈ (Act×Time)∗ is defined
as the sequence ((a1, k1), t1) . . . ((an, kn), tn).

Usually, we will decorate an event with its position. For example, ei denotes
that posσ(e) = i.

A sequence can present multiple occurrences of a specific action. In order to
distinguish the different occurrences of the same action in the sequence we use
events. An event is a pair that associates to each action a number that indicates the
occurrence of the action in the sequence. For example, the event (a,1) corresponds
to the first occurrence of an action a in the sequence, the event (a,2) corresponds
to the second occurrence of a in the sequence and so on.

Example 2 Consider the trace σ =?i1!o1?i2!o1!o2. The corresponding set of events
is

E(σ) = {(?i1, 1), (?i2, 1), (!o1, 2), (!o1, 1), (!o2, 1)}
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where, for example, posσ((?i1, 1)) = 1 and posσ((!o1, 1)) = 2. We will refer to event
(?i2, 1) by e3.

We now define the set of possible timed traces, given Σ, if the SUT produces
untimed trace σ. For this we require two constraints. First, if σt is a timed trace
that resulted from the SUT producing trace σ then we require that the observa-
tion of the untimed trace untimed(σt) is consistent with FIFO communications
(σ  ∗ untime(σt)). Second, we note that ∆ sometimes allows us to determine,
for two timed events ((ai, ki), ti) and ((aj , kj), tj) in σt, the relative order of the
corresponding actions of the SUT; this must be consistent with σ.

Definition 5 Let σ ∈ Act∗ be a trace, σt ∈ (Act × Time)∗ be a timed trace, and
∆ = (∆LB,∆UB) ∈ Time× Time. We say that σt is a timed observation of σ for
∆, denoted by σ  ∆ σt, if σ  

∗ untime(σt) and for all !o ∈ O, ?i ∈ I, σ1, σ2 ∈ Act∗

we have that

– if σ̃ = σ̃1(!o, ko)(?i, ki)σ̃2 then there exist σ′
1, σ

′
2, σ

′
3 ∈ (Act× Time)∗ such that

either

– σ̃t = σ̃′
1((!o, ko), to)((?i, ki), ti)σ̃

′
2 or

– σ̃t = σ̃′
1((?i, ki), ti)σ̃

′
2((!o, ko), to)σ̃

′
3 ∧ to − ti ≤ 2∆UB

– if σ̃ = σ̃1(?i, ki)(!o, ko)σ̃2 then there exist σ′
1, σ

′
2, σ

′
3 ∈ (Act×Time)∗ such that

σ̃t = σ̃′
1((?i, ki), ti)σ̃2((!o, ko), to)σ̃3 ∧ to − ti ≥ 2∆LB

We let L∆(σ) denote the set of timed observations of σ for ∆ = (∆LB,∆UB),
that is, L∆(σ) = {σ′|σ  ∆ σ′}. We overload this to say that given a system M ,
L∆(M) = ∪σ∈L(M)L∆(σ) is the set of timestamped traces that might be observed
when interacting with M through asynchronous FIFO channels with ∆LB and
∆UB as the lower and upper bounds on message latency, respectively.

Let us note that the conditions imposed by the definition of a timed observation
might be applied several times for each trace.

Example 3 Let us consider the following two sequences: σ =!o1?i1!o2?i2!o3 and
σt = (?i1, t1)(!o1, t2)(?i2, t3)(!o2, t4)(!o3, t5). In order to determine whether σt is a
timed observation of σ, we need to perform different evaluations of the conditions,
taking into account the following cases:

– σ = ǫ · !o1?i1·!o2?i2!o3 and
σt = ǫ · (?i1, t1) · ǫ · (!o1, t2) · (?i2, t3)(!o2, t4)(!o3, t5) then t2 − t1 ≤ 2∆UB

– σ =!o1?i1 · !o2?i2·!o3 and
σt = (?i1, t1)(!o1, t2) · (?i2, t3) · ǫ · (!o2, t4) · (!o3, t5) then t4 − t3 ≤ 2∆UB

– σ =!o1 · ?i1!o2·?i2!o3 and
σt = ǫ · (?i1, t1) · (!o1, t2)(?i2, t3) · (!o2, t4) · (!o3, t5) then t4 − t1 ≥ 2∆LB

– σ =!o1?i1!o2 · ?i2!o3 · ǫ and
σt = (?i1, t1)(!o1, t2) · (?i2, t3) · (!o2, t4) · (!o3, t5) · ǫ then t5 − t3 ≥ 2∆LB

In particular, we might have the conjunction of several temporal conditions asso-
ciated with the same timed trace.
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Example 4 Let us suppose that the SUT has produced the trace σ =?i1!o1?i2 and
the lower and upper bounds on message latency are 0.1 and 0.15 respectively. The
monitor might observe any of the timed traces belonging to the set

L(0.1,0.15)(σ) = {(?i1, t1)(!o1, t2)(?i2, t3)|t2 − t1 ≥ 0.2}
⋃

{(?i1, t1)(?i2, t2)(!o1, t3)|t3 − t1 ≥ 0.2 ∧ t3 − t2 ≤ 0.3}

In the rest of this section we introduce the crucial notion of ideal and present
some simple properties. This structure will be useful when defining the states of
the automata representing the properties to be checked by the monitors.

Given a sequence σ, we will define a partial order ≪ on the inputs and outputs
in σ to represent which actions must be observed before others if the SUT produ-
ces σ. Thus, if σ = a1 . . . an, i < j, ei = (ai, ki), and ej = (aj , kj) then we will use
ei ≪ ej to denote us knowing that ei must be observed before ej . Since outputs are
delayed and inputs are not delayed, this relation must hold if the second event is
an output and the first is an input. Further, since communications are FIFO, the
relation must also hold if ai and aj are both inputs or ai and aj are both outputs;
one input cannot overtake another and one output cannot overtake another.

Definition 6 Let σ = a1 . . . an ∈ Act∗ be a sequence of actions. Given two events
ei = (ai, ki) and ej = (aj , kj) belonging to E(σ), we write ei ≪ ej if either i = j or
i < j and one of the following conditions holds: ai and aj are inputs, or ai and aj
are outputs, or ai is an input and aj is an output.

The first two cases in the definition of ≪ result from channels being FIFO. The
last case results from the observation of outputs being delayed, while an input is
observed before it is received by the SUT. Essentially, (ai, ki) ≪ (aj , kj) does not
hold for i < j if ai is an output and aj is an input since in this case it is possible
that the observation of output ai is delayed until after input aj has been sent.

Example 5 Let us consider again the trace σ =?i1!o1?i2!o1!o2. For instance, we
have that (?i1, 1) ≪ (!o1, 2) while (!o1, 1) ≪ (?i2, 1) does not hold.

Given a trace σ ∈ Act∗ it is straightforward to prove that (E(σ),≪) is a partially
ordered set. Next we recall the definition of an ideal.

Definition 7 Let σ ∈ Act∗ be a sequence of actions and E(σ) be the set of its
events. A set I ⊆ E(σ) is said to be an ideal of (E(σ),≪) if for all ei, ej ∈ E(σ),
if ei ≪ ej and ej ∈ I then ei ∈ I. An ideal I is a principal ideal if there is
some ej such that I contains only ej and all elements below it under ≪, that
is, I = {ei ∈ E(σ)|ei ≪ ej}. Finally, a set E′ ⊆ E(σ) is an anti-chain if no two
different elements of E′ are related under ≪.

Intuitively, if the SUT produces σ and ei is a maximal element of ideal I, then I

includes all events that must be observed before ei is observed by the monitor.

Example 6 Consider the trace σ =?i1!o1?i2!o1!o2. The following sets of events are
ideals of (E(σ),≪).

I1 = {(?i1, 1), (?i2, 1)}
I2 = {(?i1, 1), (!o1, 1)}
I3 = {(?i1, 1), (!o1, 1), (?i2, 1)}
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However, only I1 and I2 are principal ideals. The ideal I3 contains the events
(!o1, 1) and (?i2, 1) that are not related under ≪. In addition, there are no elements
of I3 that are ‘above’ (!o1, 1) and (?i2, 1) under ≪. As a result, I3 is not a principal
ideal.

Now consider the set E1 = {(!o1, 1), (?i2, 1)}. The two events are unrelated by
≪ and so this is an anti-chain of (E(σ),≪).

Next we present an alternative characterisation of the notion of an ideal that
shows that an ideal is defined by its maximal (under ≪) elements. In this, given σ,
we say that event ei ∈ E(σ) is earlier than event ej ∈ E(σ) if posσ(ej) < posσ(ej).
The proof is easy as a direct application of Definitions 6 and 7.

Lemma 1 Let σ ∈ Act∗ be a sequence of actions. We have that I ⊆ E(σ) is an ideal

if and only if for all ei ∈ I with ei = (ai, ki) we have that:

– if ai is an input then I contains all earlier ej = (aj , kk) such that aj is an input;

and

– if ai is an output then I contains all ej = (aj , kk) that are earlier than ei.

The following classical result [11] relates ideals and anti-chains.

Proposition 2 The set of ideals is isomorphic to the set of anti-chains, by associating

with every anti-chain E′ the ideal which is the union of the principal ideals generated

by the elements of E′. Vice versa, the anti-chain corresponding to a given ideal I is

the set of maximal elements of I.

The following result [22] provides a measure, in the worst case, on the number
of ideals contained in a set of events. This result will be relevant since it will be
used to calculate the complexity of the algorithm that computes the automaton
associated with a certain property P .

Proposition 3 Let σ ∈ Act∗ be a sequence of actions with length m. There are O(m2)
ideals in E(σ).

Proof By Proposition 2 we know that the number of ideals is the same as the
number of anti-chains. However, we also know that any two inputs in E(σ) are
related under ≪. Similarly, any two outputs in E(σ) are related under ≪. Thus,
an anti-chain can have at most two elements (one input and one output) and so
there are O(m2) anti-chains. The result therefore holds.

This result shows that there is a quadratic upper bound (in terms of the number
of actions in a trace) and one might wonder whether the number of ideals really
can be quadratic. Consider the following class of traces of length 2m in which
input and output alternate: σ0 = ǫ; and for m > 0, σm = σm−1?im!om. Thus, for
example, σ2 =?i1!o1?i2!o2. Each pair of the form (?ix, !oy) with y < x defines an
anti-chain of E(σm). Further, these are distinct anti-chains and so there must be
at least one ideal for each pair (?ix, !oy) with y < x. It is now sufficient to observe
that there are O(m2) pairs (x, y) with 0 < y < x ≤ m.
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4 Creating automata for properties

As explained in Section 2, we will consider properties of the form (σ,Oσ) for
σ ∈ Act∗ and Oσ ⊆ O. Such a property says that if the SUT produces the sequence
σ then the next output must come from the set Oσ. In our previous work [22] we
defined an automaton A(σ,Oσ) accepting those traces that might have resulted
from a trace of the SUT that does not satisfy the property (σ,Oσ). It is worth
pointing out that the automaton does not produce false positives, but if an ob-
served trace is accepted by the automaton then we cannot ensure that the trace
produced by the SUT did not satisfy the property (σ,Oσ). In this section we adapt
the above approach for the case where we know message latency bounds and take
advantage of the timestamps included in the observations. We will show how, for
trace σ, we can produce an automaton AT

∆(σ) that accepts the set of timed traces
that might be observed if the SUT produces σ. Since we are applying passive tes-
ting, a trace σ of interest might not be the start of the overall trace observed and
so we will then adapt AT

∆(σ) to produce the final automaton A∆(σ,Oσ) that will
be used for analysing traces. We use the ideals of (E(σ),≪) to represent states and
based on this we define the transitions of a finite automaton AT

∆(σ) that accepts
the set of sequences in L∆(σ). Transitions will include restrictions over the obser-
ved times of the actions in σ. These conditions will allow us to determine if the
actions were performed at an instant compatible with the production of the consi-
dered trace by the SUT. It is worth noting that we do not require the expressive
power of complex formalisms such as timed automata [2] to analyse the observed
traces. In particular, we do not need to express relations between timed behavior
in different states of the machine as can be done with timed automata by defining
constraints involving different clocks that are initialized at different points. Our
restrictions will be based on the latest and earliest times that an event might have
been produced/observed. Therefore, our automaton will include a set of variables,
associated with the actions belonging to σ, to store time information. These va-
riables will be used to express the timed conditions that must be fulfilled by the
actual timestamps of the traces.

Definition 8 Given a set X of variables, a valuation over X is a function that
assigns a non-negative real number to every variable in X. The set of valuations
of X, denoted VX , is the set of all the total functions from X to Time. Given a
valuation v ∈ VX , a time t ∈ Time and a set of variables A ⊆ X we define the
valuation v[A/t] such that for all x ∈ X:

v[A/t](x) =

{
t if x ∈ A

v(x) otherwise

Given a set X of variables, the set CX of constraints over X is defined by the
following EBNF:

C ::= C ∧ C|E ⊚ t

E ::= x+ y|x− y
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where x, y ∈ X, t ∈ Time and ⊚ is an operator in {<,>,≤,≥}. The satisfaction by
a valuation v ∈ VX of the constraint C, denoted by v |= C, is defined as follows:

v |= true

v |= C1 ∧ C2 iff v |= C1 ∧ v |= C2

v |= (x+ y)⊚ t iff (v(x) + v(y))⊚ t

v |= (x− y)⊚ t iff (v(x)− v(y))⊚ t

Finally, we use P(X) to denote the powerset of X.

Next we introduce the notion of an extended finite automaton. Essentially, this
is a finite automaton extended with a set of variables; these variables will be used
to impose conditions to trigger transitions.

Definition 9 Let S be a finite set of states, Act be a set of actions,X be a finite set
of variables, sI , sF ∈ S be the initial and final states, and Tr ⊆ S×Act×X×CX ×
P(X)× S be a set of transitions. We say that the tuple A = (S,Act, T r,X, sI , sF )
is an extended finite automaton.

A configuration of A is a pair (s, v) where s ∈ S is the current state and v ∈ VX

is the valuation corresponding to the current value of the variables belonging to X.
Given a configuration (s, v), if an action a is received at time ta then a transition

(s, a, t, C, Y, s′) can be fired if v[{t}/ta] |= C. In this case, the configuration will
change to (s′, v′) where v′ is the valuation such that

v′(x) =





ta if x = t ∧ v(t) = 0
0 if x ∈ Y

v(x) otherwise

The initial valuation of A, denoted by v0, assigns 0 to every variable belonging
to X.

Intuitively, a transition (s, a, t, C, Y, s′) will be fired if the current state is s, the
automaton receives the action a and the condition C holds for the current valuation
of the variables. If the transition is triggered then the variables belonging to Y are
reset to zero, the variable t is updated to the time when the action was received
and the current state becomes s′. Next we define the first type of automata that
we use in our approach. Essentially, given ∆ = (∆LB,∆UB) and a sequence of
actions σ, the extended finite automaton AT

∆(σ) will accept those traces that are
a feasible variation of σ taking into account that the time difference between the
instant when the input was observed at the monitor and was received by the SUT
(and symmetrically for outputs) is bounded between ∆LB and ∆UB .

Definition 10 Let σ = a1 . . . an ∈ Act∗ be a non-empty sequence of actions and
∆ = (∆LB,∆UB) ∈ Time × Time. The extended finite automaton for σ and ∆,
denoted by AT

∆(σ), is defined as (S,Act, T r,X, Is, If ) where

– S, the set of states, is equal to the set of ideals of (E(σ),≪).
– Act is the alphabet.
– X = {tj |1 ≤ j ≤ n} is a finite set of variables.
– Is = {} is the initial, or start, state.
– If = E(σ) is the final state.
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I0 I1 I2 I4 I6

I3 I5 I7 I8

?i1, t1, true

?i2, t5, true ?i2, t5, true

!o1, t2

t2 − t1 ≥ 2∆LB

!o1, t2

t2 − t1 ≥ 2∆LB

∧
t2 − t5 ≤ 2∆UB

?i2, t5, true ?i2, t5, true

!o2, t3, true

!o2, t3

t3 − t5 ≤ 2∆UB

!o1, t4, true

!o1, t4

t4 − t5 ≤ 2∆UB

I0 = {}
I1 = {(?i1, 1)}
I2 = {(?i1, 1), (!o1, 1)}
I3 = {(?i1, 1), (?i2, 1)}
I4 = {(?i1, 1), (!o1, 1), (!o2, 1)}
I5 = {(?i1, 1), (!o1, 1), (?i2, 1)}
I6 = {(?i1, 1), (!o1, 1), (!o2, 1), (!o1, 2)}
I7 = {(?i1, 1), (!o1, 1), (!o2, 1), (?i2, 1)}
I8 = {(?i1, 1), (!o1, 1), (!o2, 1), (!o1, 2), (?i2, 1)}

Fig. 4 Automaton AT
∆(σ) for the trace σ =?i1!o1!o2!o1?i2.

and a tuple (I, a, ti, C, Y, I
′) belongs to the set of transitions Tr if and only if there

exists an event (a, k) ∈ (E(σ),≪) such that I′ = I ∪ {(a, k)} and posσ((a, k)) = i,
Y = ∅ and the restriction C is defined by the sequential application of the following
three rules:

1. C := true

2. If 1 < i ≤ n ∧ ai ∈ O ∧ ai−1 ∈ I then

C := C ∧ ti − ti−1 ≥ 2∆LB

3. If 1 ≤ i < n ∧ ai ∈ O ∧ ∃i < j ≤ n such that aj ∈ I ∧ (aj , kj) ∈ I then

C := C ∧ ti − tmin{j|aj∈I∧(aj,kj)∈I∧j>i} ≤ 2∆UB

Given a property (σ,Oσ) the automatonAT
∆(σ) accepts the timestamped traces

that might be observed if the SUT produces the trace σ in an asynchronous setting
where message latency is given by ∆. The transitions of the automaton include
temporal conditions in order to ensure that the relation between the different
timestamps is compatible with the production of σ. In this task, it is necessary to
take into account the considered message latency. We assume that the supplied
timestamped trace corresponds to a timed trace, that is, we cannot have two
consecutive actions where the timestamp of the first one is greater than or equal
to the timestamp of the latter one. However, it is not difficult to extend the
definition to include a condition attached to all the transitions to ensure that the
traces do actually satisfy this restriction. Each of the n variables ti with 1 ≤ i ≤ n,
will store the observed time corresponding to the i-th action of the trace σ. Next
we briefly explain how temporal restrictions appearing in transitions are defined.
Intuitively, their purpose is to capture the causality relations among the actions
included in σ. Only transitions labelled by an output may have a non-trivial, that
is, different from true, associated condition. The reason is that we only need to
check whether the delay of output actions due to the latency of the asynchronous
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setting might correspond to the excepted trace. Step 2 in the construction of the
temporal restriction is used to discard those traces showing an output !o after an
input ?i, as initially expected, but such that the timestamps together with the
lower bound in ∆, indicate that !o was produced before ?i. Step 3 also deals with
conditions on the observation of an output after an input, but assuming that the
property indicates that the input must be received after the output is produced.
In this case, the restriction associated with the transition allows us to determine
whether the timestamps are consistent with the production of the output after
the reception of the input, in order to discard the observed prefix of the trace.
Finally, let us note that although the set of variables to be reset appearing in all
the transitions of the automaton AT

∆(σ) is always equal to the empty set, that
is, no variable is set to 0, this element has been included in the definition of
transitions because it will be used, with different values, in the adapted version of
the automaton that is presented later.

Next, we formally define the meaning of an automaton AT
∆(σ) accepting a

timed trace.

Definition 11 Let ρ = (d1, r1) . . . (dn, rn) ∈ (Act × Time)∗, σ ∈ Act∗ and ∆ ∈

Time×Time.We say that the automatonAT
∆(σ) accepts ρ if there exist n transitions

(I0, d1, t1, C1, ∅, I1), . . . , (In−1, dn, tn, Cn, ∅, In), where I0 = Is and In = If , that
can be fired for the configurations (I0, v0), . . . , (In−1, vn−1), respectively, where
for all 1 ≤ j ≤ n we have that vj is the valuation obtained after the transition
(Ij−1, dj , tj , Cj , ∅, Ij) is executed. The set of all the timed traces accepted byAT

∆(σ)
is denoted by L(AT

∆(σ)).

As previously stated, the automaton AT
∆(σ) accepts those sequences of pairs

(action,time) such that the actions label walks from its initial state to its final
state and the time values satisfy the constraints imposed by the transitions. Next,
we give an example.

Example 7 Let σ =?i1!o1!o2!o1?i2 be a trace. Figure 4 depicts the automatonAT (σ)
that accepts the set of sequences in L∆(σ), where we have omitted the sets of
variables that will be reset in the each transition because they are always empty.

Next, we show how some of the transitions have been obtained. The transition
(I0, ?i1, t1, true, ∅, I1) is included in the automaton because I1 = I0 ∪ {(?i1, 1)}
and the condition is equal to true because the action is an input. The transition
(I1, !o1, t2, t2 − t1 ≥ 2∆LB, I2) corresponds to the observation of the second action
in σ, that is !o1, after the first one, that is ?i1. In this case, the restriction will
be used to determine whether it is possible, based on the timestamps, that !o1
was produced after ?i1 was received. If the condition is not satisfied then we
know that !o1 was sent before the reception of ?i1 and we will not proceed. The
transition (I3, !o1, t2, t2 − t1 ≥ 2∆LB ∧ t2 − t5 ≤ 2∆UB , I5) is associated with the
possibility that the observation of output !o1 is delayed until after the input ?i2
in σ has been sent. In this situation, it is necessary to check that the output was
not produced neither before ?i1 was received (t2 − t1 ≥ 2∆LB) nor after ?i2 was
received (t2 − t5 ≤ 2∆UB).

The next result shows that our automaton captures the admissible variations
in the observation of a trace σ for a given ∆.
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Proposition 4 Given σ = a1 . . . an ∈ Act∗ and ∆ = (∆LB,∆UB) ∈ Time× Time,
we have that L(AT

∆(σ)) = L∆(σ).

Proof We will prove a slightly stronger result, which is that ρ is a sequence of
pairs (action,time) that labels a walk from the initial state of AT

∆(σ) where the
time values satisfy the timed constraints imposed by the transitions if and only if
ρ is a prefix of a sequence in L∆(σ).

We first prove the left to right implication by induction on the length of ρ.
The result clearly holds for the base case in which ρ is the empty sequence. Now,
let us assume that the result holds for all sequences of length less than k, k ≥ 1,
and ρ has length k. Thus, ρ = ρ1(aj , t) for some 1 ≤ j ≤ n and t ∈ Time. By
the inductive hypothesis we have that ρ1 is a prefix of a sequence in L∆(σ). In
addition, by the definition of AT

∆(σ), we have that the set of actions in ρ1 forms
an ideal I1 and there exists 1 ≤ k ≤ n such that I1 ∪ {(aj , k)} is an ideal. Thus,
since I1 ∪ {(aj , k)} is an ideal, there does not exist (b, k′) ∈ E(σ) \ (I1 ∪ {(aj , k)})
such that b ≪ aj . By the definition of L∆(σ) we have that ρ1 can be followed by
(aj , t) for some t ∈ Time if some timed conditions are fulfilled. We must consider
different cases:

– aj ∈ O and aj−1 ∈ I. In this case aj−1 ≪ aj . We have that I1 ∪ {(aj , k)} forms
an ideal. Therefore, aj−1 ∈ I1 and ρ1 = ρ′(aj−1, t

′)ρ′′ for some t′ ∈ Time and
sequences ρ′ and ρ′′. By the construction of AT

∆(σ), we have that t− t′ ≥ 2∆LB

as required by the definition of L∆(σ).
– aj ∈ O and aj+1 ∈ I. In this case the definition of L∆(σ) establishes conditions

over the observation time values associated with both actions if aj is observed
after aj+1. If this is the case, we must have that aj+1 ∈ I1. Therefore, ρ1 =
ρ′(aj+1, t

′)ρ′′ for some t′ ∈ Time and sequences ρ′ and ρ′′. By the definition of
AT

∆(σ), we have that t− t′ ≤ 2∆UB as required by the definition of L∆(σ).

Finally, we have to show that each timed observation in L∆(σ) must be a
timed trace. Therefore, the timestamps associated with the actions must follow an
increasing order. The construction of AT

∆(σ) establishes for all the transitions that
the observation time value of an action must be greater than the previous one.
Therefore, ρ is a timed trace. Then, ρ1(aj , t) is a prefix of a sequence in L∆(σ) as
required.

We now prove the right to left implication, again, by induction on the length
of ρ. The result clearly holds for the base case in which ρ is the empty sequence.
Now, let us assume that it holds for all sequences of length less than k, k ≥ 1,
and ρ has length k. Thus, ρ = ρ1(aj , t) for some 1 ≤ j ≤ n and t ∈ Time. By the
inductive hypothesis we have that ρ1 is the label of a walk of AT

∆(σ) where the time
values satisfy the timed constraints imposed by the transitions and we assume that
this walk reaches a state representing ideal I1. By the definition of L∆(σ) there
cannot exist an action in σ that is not in ρ1 and that must be observed before aj
and so precedes aj under ≪. Thus, I2 = I1 ∪ {(aj , kj)} for some 1 ≤ kj ≤ n is
an ideal and so AT

∆(σ) contains a transition from the state representing I1 to the
state representing I2 with label aj. We need to prove that the timed restrictions
associated with this transition are satisfied by the valuation at state I1 when the
time values of the trace ρ are considered.

By the definition of L∆(σ), if aj ∈ O, aj−1 ∈ I and ρ1 = ρ′(aj−1, t
′)ρ′′ for some

t′ ∈ Time and sequences ρ′ and ρ′′, we have that t−t′ ≥ 2∆LB . By the construction
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of AT
∆(σ), this restriction is associated with the transition departing from the state

representing I1 and reaching the state representing I2 with label aj . In the same
way, if aj ∈ O, aj+1 ∈ I, and aj+1 is observed before aj , then the definition of
L∆(σ) establishes that t− t′ ≤ 2∆UB . Again, the construction of AT

∆(σ) associates
this condition with each transition originating from a state representing an ideal
I and reaching the state representing an ideal I′ with label aj if aj+1 ∈ I.

We conclude that ρ = ρ1(aj , t) is the label of a walk of AT
∆(σ) where the time

values satisfy the timed constraints imposed by the transitions as required. The
result therefore follows.

We have that AT
∆(σ) defines the set of behaviours included in L∆(σ) that can

be observed if the SUT produces σ. Now, we have to adapt AT
∆(σ) to take into

account the fact that a trace of interest might not be the start of the overall trace
observed, that is, σ might be preceded by other actions and the observation of
earlier outputs might be delayed. In addition, σ might be followed by later actions
and the outputs from σ might not be observed until after later inputs. We will
then modify AT

∆(σ) to produce the extended finite automaton A∆(σ,Oσ) that will
be used. Algorithm 1 achieves this. Taking AT

∆(σ) as the starting point, we add
new transitions to deal with actions that could be interleaved with the observation
of σ. After the initialisation, the first step (4) adds self-loops to the initial state
to capture all the possible starting points in the observed trace. Next, in order to
consider the possible delay of earlier outputs, new self-loops labelled by all possible
output actions are added to the automaton in states corresponding to ideals that
only contain input actions (5). The fact that we consider a FIFO communications
mechanism requires that earlier outputs can be delayed only until before the first
output of σ is observed. Actually, the temporal conditions attached to the new
transitions allow us to check that only outputs that might be produced before the
first input action of σ are accepted. Once all the inputs of σ have been observed it is
possible that the unobserved outputs in σ are delayed after later inputs. Therefore,
we need to include new self-loops labelled by all possible inputs in states containing
all the inputs in σ (6). The instant when the first later input is observed by the
monitor will be stored in the variable tei. It will be used to check that the outputs
in σ observed after that moment might correspond to a possible delay. In order
to do this, the temporal restrictions associated with transitions labelled by an
output action and outgoing from states corresponding to ideals that contain all
the inputs in σ are extended with new temporal constraints. If the final state of
the original automaton is reached then all the actions from σ have been observed.
If the next observed output does not belong to Oσ then the SUT does not satisfy
the property. In order to capture this fact, a new transition leading to an error
state se is included in the automaton (7). This will be the only final state of our
automaton. Finally, each of the states will be completed with transitions that will
capture all the possible combinations of actions and conditions not considered in
the transitions outgoing from it (8). These transitions correspond to observations
that do not fit with the production of σ by the SUT, except the one outgoing
from the state sf that capture the observation of an output action in Oσ after the
observation of a trace in L∆(σ). All these transitions will reset all the variables
and lead to the initial state.

Next we give an example to illustrate the transformation from the initial au-
tomaton AT

∆(σ) to the final one A∆(σ,Oσ).
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Algorithm 1 Producing A∆(σ,Oσ)

1: Input (σ, Oσ).
2: Let AT

∆(σ) = (S,Act, T r,X, Is,If ).
3: Let A∆(σ,Oσ) = (S∪{se},Act, T r, Z, s0, se) where Z = X∪{tx, tei}, s0 = Is, and se /∈ S

is a fresh state.
4: For all a ∈ Act add the transition (s0, a, tx, true,∅, s0). These transitions ensure that we

are considering all possible starting points in a trace ρ′ observed.
5: For every state s of A∆(σ, Oσ) that represents an ideal that does not contain output

and for all !o ∈ O, add the transition (s, !o, tx, tx − tk ≤ 2∆UB ,∅, s) where tk ∈ X is
the variable that corresponds to the first input in σ. These transitions correspond to the
possibility of earlier output being observed after input from σ. The constraints associated
with these transitions require these outputs not to be produced after the first input in σ.

6: For every state s of A∆(σ, Oσ) that represents an ideal that contains all of the inputs
from σ and for all ?i ∈ I, add the transition (s, ?i, tei, true,∅, s). In addition, for each
transition (s, !o, t, C, Y, s′) outgoing from a state of A∆(σ, Oσ) that represents an ideal that
contains all of the input from σ, we convert the condition C to C ∧ ((tei > 0 ∧ t − tei ≤
2∆UB) ∨ ((tei = 0)). These transitions correspond to the possibility of later input being
observed before some of the output from σ. The time corresponding to the first later input
observed is stored in the variable tei and the constraints associated with the transitions
outgoing from states that contains all the inputs and are labelled by outputs are extended
with a new requirement to ensure that the output correspond to a possible delay. Note that
by our definition of an extended finite automaton, the value of tei is only changed if it is
zero and so tei will record the time of the first ‘additional’ input even if more are received.

7: For all !o ∈ O \Oσ add the transition (If , !o, tx, true,∅, se). If we have observed a feasible
variation of the inputs and outputs from σ and the next output is not from Oσ then go to
the final (error) state.

8: Complete A∆(σ,Oσ): For all a ∈ Act and state s, let us consider the set of transitions
Tra = {(s, a, t, C, Y, s′)|s′ ∈ S ∧ t ∈ Z}. If

∨
tr∈Tra

C 6≡ true then add the transition

(s, a, tx, Ca, Z, s0), where Ca ≡ ¬
∨

tr∈Tra
C

9: Output A∆(σ,Oσ).

Example 8 Let σ =?i1!o1?i2!o1!o2?i2 and let us consider the automaton AT
∆(σ)

depicted in Figure 4. Given a set of outputs Oσ and ∆, Figure 5 shows the extended
finite automaton A∆(σ,Oσ) constructed by using Algorithm 1.

We will show that Algorithm 1 produces an automata that adequately encodes
the characteristics of its associated property. First, we recall our notion of sound
automaton [22].

Definition 12 Let σ ∈ Act∗ be a sequence of actions,∆ ∈ Time×Time be a pair of
bounds and Oσ ⊆ O be a set of outputs. Let us consider the property P = (σ,Oσ).
We say that an extended finite automaton A is sound for P and ∆ if and only if
whenever the SUT produces a trace σ1 that does not satisfy property P and the
timed trace σ′

1 ∈ L∆(σ1) is observed we have that σ′
1 ∈ L(A).

This notion essentially corresponds to the automaton not being able to pro-
duce false positives. The following result proves that the automaton produced by
Algorithm 1 is sound.

Theorem 1 Let σ ∈ Act∗ be a sequence of actions, ∆ ∈ Time × Time be a pair of

bounds and Oσ ⊆ O be a set of outputs. Given the property P = (σ,Oσ), the automaton

A∆(σ,Oσ) returned by Algorithm 1 is sound for P and ∆.
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s0 I1 I2 I4 I6

I3 I5 I7 sf

se

Act, tx, R1 tr1

O, tx, R2

O, tx, R2

I, tei, R1
I, tei, R1 I, tei, R1

I, tei, R1

?i1, t1, R1

?i2, t5, R1 ?i2, t5, R1

!o1, t2, C1

!o1, t2

C2 ∧ R3

?i2, t5, R1 ?i2, t5, R1

!o2, t3, R1

!o2, t3

C3 ∧ R4

!o1, t4, R1

!o1, t4

C4 ∧ R5

O \Oσ, tx, R1

tr2 tr4tr3

tr5

tr8

tr6
tr7

R1 = true

R2 = tx − t1 ≥ 2∆UB

R3 = (tei > 0 ∧ t2 − tei ≤ 2∆UB) ∨ tei = 0)
R4 = (tei > 0 ∧ t3 − tei ≤ 2∆UB) ∨ tei = 0)
R5 = (tei > 0 ∧ t4 − tei ≤ 2∆UB) ∨ tei = 0)
tr1 = {(I \ {?i2}, tx, true), (O \ {!o1}, tx,¬R2), (!o1, tx,¬C1 ∧ ¬R2)}
tr2 = {(O ∪ I \ {?i2, !o2}), tx, true)}
tr3 = {(O ∪ I \ {?i2, !o1}), tx, true)}
tr4 = {(I \ {?i2}, tx, true)}
tr5 = {(O \ {!o1}, tx,¬R2), (!o1, tx, (¬C2 ∨ ¬R3) ∧ ¬R2}
tr6 = {(O \ {!o2}, tx, true), (!o2, tx,¬C3 ∨ ¬R4}
tr7 = {(O \ {!o1}, tx, true), (!o1, tx,¬C4 ∨ ¬R5}}
tr8 = {(Oσ , tx, true)}

Fig. 5 Automaton A∆(σ,Oσ) for the trace σ =?i1!o1!o2!o1?i2 and the set of outputs Oσ.

Proof Let us recall that we label actions using their occurrence, if necessary, so
that they are unique and this labelling is preserved by the delay of output. We
assume that the SUT has produced a trace σ1 that does not satisfy P , and it led
to the observation of the timed trace σ′

1 ∈ L∆(σ1) and we are required to prove
that σ′

1 ∈ L(A∆(σ,Oσ)). Since σ1 does not satisfy P we have that σ1 = σ2σaσ3

for some a ∈ O \ Oσ. Since σ′
1 ∈ L∆(σ1) we have that σ′

1 = σ′
2σ

′(a, ta)σ
′
3 for some

σ′, σ′
2, σ

′
3 ∈ (Act× T ime)∗ and ta ∈ T ime such that σ′ satisfies the following.

– σ′ starts with the first action of σ′
1 that is from σ;

– σ′ may contain outputs not in σ (delayed from σ2);
– σ′ may contain inputs not in σ (due to outputs from σ or a being delayed past

inputs from σ3); and
– σ′ can have outputs from σ being delayed past inputs from σ.

By the definition of A∆(σ,Oσ) we have that the state of A∆(σ,Oσ) after σ′
2

can be the initial state of A∆(σ,Oσ). Further, by Proposition 4 we know that σ′

with the extra initial outputs and final inputs removed can take A∆(σ,Oσ) to the
final state sf . Consider the corresponding path ρ of A∆(σ,Oσ).
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The additional outputs in σ′ that are not in σ (and so come from σ2) are
all before the first output in σ′ that was from σ and so, by construction, we can
define a path ρ′ that includes these by adding self-loops to ρ with timed restrictions
requiring the outputs were not produced after the first input from σ.

Similarly, the additional inputs in σ′ that are not in σ (and so come from σ3)
are all after the last input in σ′ that was from σ and so we can define a path
ρ′′ that includes these by adding self-loops to ρ′ with timed restrictions requiring
these inputs were not produced before the first output from σ. Path ρ′′ thus takes
A(σ,Oσ) to state sf and has label σ′. The result now follows from observing that
a takes A(σ, Oσ) from state sf to the final state and this final state cannot be left.

An automaton A being sound for P denotes an absence of false positives.
However, we might also want the absence of false negatives: if the SUT produces a
trace and the resultant observation is in L(A) then the trace produced by the SUT
must not have satisfied P . This is captured by the notion of an exact automaton.

Definition 13 Let P be a property and ∆ = (∆LB,∆UB) ∈ Time × Time be a
pair of bounds. We say that an extended finite automaton A is exact for P and ∆

if and only if whenever the SUT produces some trace σ1 and the observed trace
σ′
1 ∈ L∆(σ1) is such that σ′

1 ∈ L(A) we must have that σ1 does not satisfy P .

Unfortunately, the automatonA∆(σ,Oσ), produced by our algorithm, need not
be exact for (σ,Oσ) as the following example shows.

Example 9 Let us consider the property P = (?i, {!o}), the bounds ∆ = (0.1,0.3)
and the observed trace σ′

1 = (?i, 0.2)(!o′, 0.7)(!o,1.6). This trace belongs to the set
L(A∆(?i, {!o})). In this situation we have two admissible possibilities for the trace
σ1 actually produced by the SUT.

– σ1 =!o′?i!o and so σ1 satisfies P .
– σ1 =?i!o′!o and so σ1 does not satisfy P .

Therefore, we cannot categorically conclude that the SUT does not fulfill the
property.

The above shows that an observation made might be consistent with both
traces that satisfy P and traces that do not. Therefore, our automata might not
be exact. Despite this, we would like to ensure that if the observed trace is in L(A)
then the actual trace produced by the SUT might be one that does not satisfy
property P . This is captured by the following notion.

Definition 14 Let P be a property and ∆ = (∆LB,∆UB) ∈ Time × Time be a
pair of bounds. We say that an extended finite automaton A is precise for P if and
only if whenever a trace σ′

1 is in L(A) there is some trace σ1 that does not satisfy
P such that σ′

1 ∈ L∆(σ1).

The following result shows that Algorithm 1 returns an automaton that is
precise for the considered property.

Theorem 2 Let σ ∈ Act∗ be a sequence of actions, ∆ ∈ Time × Time be a pair of

bounds and Oσ ⊆ O be a set of outputs. Given the property P = (σ,Oσ), the automaton

A∆(σ,Oσ) returned by Algorithm 1 is precise for P and ∆.
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Proof Let us suppose that trace σ′
1 is in L(A∆(σ,Oσ)). By definition it is sufficient

to prove that there exists some trace σ1 that does not satisfy P such that σ′
1 ∈

L∆(σ1). Note that σ1 does not satisfy P if and only if it has a prefix that ends in
σa for some a ∈ O \Oσ.

By the construction of A∆(σ,Oσ), since σ′
1 ∈ L(A∆(σ,Oσ)), we have that σ′

1

has prefix σ′
2σ

′
3(a, t) for some t ∈ Time such that σ′

3 takes A∆(σ,Oσ) from state s0
to sf and a ∈ O \Oσ. In addition, we must have that untime(σ′

3) differs from σ in
only three ways:

– the addition of outputs before the outputs of σ, through self-loops in states
that correspond to ideals that contain no output;

– the addition of inputs after the inputs of σ, through self-loops in states that
correspond to ideals that contain all of the inputs from σ; and

– the delay in output from σ.

Thus, the input projection of untime(σ′
3) is the input projection of σ followed

by some sequence σ′
I of inputs and the output projection of untime(σ′

3) is some
sequence σ′

O of outputs followed by the output projection of σ. In addition, by the
construction of the automaton, timed conditions must be fulfilled by the times-
tamps in σ′

3. On the one hand earlier outputs might have been produced before
the first input in σ and outputs in σ being delayed might have been produced
before the first later input. As a result, σ′

3(a, t) ∈ L∆(σ′
Oσσ′

Ia). Thus, σ
′
1 has pre-

fix σ′
2σ

′
3(a, t) such that σ′

2σ
′
3(a, t) ∈ L∆(untime(σ′

2)σ
′
Oσσ′

Ia) for some a ∈ O \ Oσ.
By definition, since σ′

I contains only input actions and a is an output, we have
that L∆(untime(σ′

2)σ
′
Oσσ′

Ia) ⊆ L∆(untime(σ′
2)σ

′
Oσaσ′

I). Therefore σ′
1 has prefix

σ′
2σ

′
3(a, t) such that σ′

2σ
′
3(a, t) ∈ L∆(untime(σ′

2)σ
′
Oσaσ′

I) for some a ∈ O\Oσ . Since
untime(σ′

2)σ
′
Oσaσ′

I does not satisfy property P , we can set σ1 = untime(σ′
2)σ

′
Oσaσ′

I

and the result follows.

By Proposition 3 we know that A(σ,Oσ) has O(|σ|2) states. In addition, we can
construct the relation ≪ and the set of anti-chains in O(|σ|2) time. The following
result is therefore immediate.

Proposition 5 Let σ ∈ Act∗ be a sequence of actions, ∆ ∈ Time × Time be a pair

of bounds and Oσ ⊆ O be a set of outputs. Given the property (σ,Oσ), the process of

generating the automata A(σ,Oσ) takes O(|σ|2) time.

In passive testing we can update the current state of A(σ,Oσ) whenever we
make a new observation and thus the complexity of applying passive testing is
linear in the length of the trace that the SUT is producing. The following shows
that the process is polynomial in the length of σ, which suggests that it can be
applied in real-time since |σ| is usually relatively small.

Proposition 6 Let σ ∈ Act∗ be a sequence of actions, ∆ ∈ Time × Time be a pair

of bounds and Oσ ⊆ O be a set of outputs. Given the property (σ,Oσ), the process

of updating the state of A(σ, Oσ) takes O(|σ|4) time when a new input or output is

observed.

Proof At each point in the process of simulating A(σ,Oσ) with a trace we have a
current set of states. Let us suppose that a new action a is observed. It is well-
known that the membership problem can be tested in time O(n · s2), where n is



Passive Testing with Asynchronous Communications and Timestamps 23

the length of the sequence and s is the number of states of the automaton [24].
Since we do this for one action (n = 1) and we know that A(σ,Oσ) has O(|σ|2)
states, we conclude that the overall time complexity is in O(|σ|4) time.

5 Conclusions and future work

In this paper we presented a formal framework for the passive testing of software
systems with asynchronous communications. This corresponds to the situation in
which there is an asynchronous network between the monitor, which observes in-
puts and outputs, and the system under test (SUT). Due to the nature of the
communications, there may be alternative traces of the SUT that are consistent
with a trace σ observed by the monitor since the observation of an output !o pro-
duced by the SUT might be delayed past the observation of an input ?i sent to the
SUT. We considered the case where we can label an action with the time at which
it was observed by the monitor and we have lower and upper bounds on the time
that it takes for messages to pass between the monitor and the SUT. This allows
us to deduce more about the actual order of events produced by the SUT. We
developed an automata-based approach that checks whether the observations re-
garding the SUT contradict the requirement imposed by the monitor. Importantly,
this approach operates in low-order polynomial time and requires little storage.
As a result, the approach is suitable for use in real-time.

We have identified several lines for future work. First, we have developed a
tool implementing the different formalisms and algorithms of the untimed frame-
work [6]. We plan to extend it so that the new tool will help us to evaluate the
framework presented in this paper. As a more theoretical line of work, we plan to
extend our monitors to include other, more complex, safety properties. Finally, we
would like to add probabilistic information on the time values associated with the
observation of actions so that the induced probability distribution functions can
provide additional information about the real causality, at the SUT, between the
actions observed at the monitor.
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