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We consider the Gierer–Meinhardt system with small inhibitor diffusivity and very 
small activator diffusivity in a bounded and smooth two-dimensional domain. For 
any given positive integer k we construct a spike cluster consisting of k boundary 
spikes which all approach the same nondegenerate local maximum point of the 
boundary curvature. We show that this spike cluster is linearly stable.
The main idea underpinning these stable spike clusters is the following: due to 
the small inhibitor diffusivity the interaction between spikes is repulsive and the 
spikes are attracted towards a nondegenerate local maximum point of the boundary 
curvature. Combining these two effects can lead to an equilibrium of spike positions 
within the cluster such that the cluster is linearly stable.

© 2018 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Nous considérons le système de Gierer–Meinhardt avec la petite diffusivité de 
l’inhibiteur et avec la très petite diffusivité de l’activateur dans un domaine de 
deux dimensions qui est limité et lisse. Pour toute donnée k entier positif nous 
construisons une grappe de spikes qui consiste en k spikes qui situé près de la 
frontière et qui approchent le point de maximum local non dégénéré du courbure 
de la frontière. Nous montrons que cette grappe de spikes est linéairement stable.
Le fondement de l’idée principale ces amas de spike stable est la suivante : en raison 
de la diffusivité de l’inhibiteur de la petite l’interaction entre pointes est répugnant 
et les pointes sont attirés vers un point de maximum local non dégénéré du courbure 
de la frontière. Combinant ces deux effets peut conduire à un équilibre des positions 
de spikes au sein du grappe tel que le grappe est linéairement stable.

© 2018 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Turing in his pioneering work in 1952 [16] proposed that a patterned distribution of two chemical sub-
stances, called the morphogens, could trigger the emergence of cell structures. He also gives the following 
explanation for the formation of the morphogenetic pattern: It is assumed that one of the morphogens, the 
activator, diffuses slowly and the other, the inhibitor, diffuses much faster. In the mathematical framework 
of a coupled system of reaction–diffusion equations with hugely different diffusion coefficients it is shown by 
linear stability analysis that the homogeneous state may be unstable. In particular, a small perturbation of 
spatially homogeneous initial data may evolve to a stable spatially complex pattern of the morphogens.

Since the work of Turing, many different reaction–diffusion system in biological modelling have been 
proposed and the occurrence of pattern formation has been investigated by studying what is now called 
Turing instability. One of the most popular models in biological pattern formation is the Gierer–Meinhardt 
system [7], see also [11]. In two dimensions in a special case after rescaling it can be stated as follows:

⎧⎪⎪⎨
⎪⎪⎩

ut = ε2Δu− u + u2

v , u > 0 in Ω,

τvt = DΔv − v + u2, v > 0 in Ω,

∂u
∂ν = ∂v

∂ν = 0 on ∂Ω.

(1.1)

The unknown functions u = u(x, t) and v = v(x, t) represent the concentrations of the activator and 
inhibitor, respectively, at the point x ∈ Ω ⊂ R

2 and at a time t > 0. Here Δ is the Laplace operator in R2, 
Ω is a smooth bounded domain in R2, ν = ν(x) is the outer unit normal at x ∈ ∂Ω.

Throughout this paper, we assume that

0 < ε � 1, 0 < D � 1, (1.2)

τ ≥ 0 is a fixed constant independent of ε, D and x. Further, the diffusivities ε and D do not depend on x
but they are both small constants. In this paper, we further assume that

e−
1√
D � ε �

√
D. (1.3)

This means that ε is much smaller than D. On the other hand, ε cannot be exponentially small compared 
to 

√
D.

In this paper, we study the Gierer–Meinhardt system in a bounded and smooth two-dimensional domain. 
We prove the existence and stability of a cluster consisting of k boundary spikes near a nondegenerate local 
maximum point P 0 of the boundary curvature h(P ).

A spike cluster is the combination of several spikes which all approach the same point in the singular 
limit. The main idea underpinning these stable spike clusters is the following: due to the small inhibitor 
diffusivity the interaction between spikes is repulsive and the spikes are attracted towards a nondegenerate 
local maximum point of the boundary curvature. Combining these two effects can lead to an equilibrium of 
spike positions within the cluster such that the cluster is linearly stable.

Highlights of the Gierer–Meinhardt system in this setting include the following: it contains three different 
length scales: O(1) scale of boundary curvature, O(

√
D) scale of inhibitor diffusivity and O(ε) scale of 

activator diffusivity; it is biologically relevant since it can model a hierarchical process (pattern formation 
of small-scale structures induced by the boundary of a pre-existing large-scale domain; the expressions for 
spike positions and eigenvalues can be made explicit and often have a particularly simple form.

The spike cluster solutions considered in this paper show multiple scales which appear in a robust and 
stable manner. A real-world biological example incorporating multiple scales similar to those in spike clusters 
is the pattern formation of the head (more precisely, hypostome), tentacles, and foot in hydra. Meinhardt’s 
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model [12] correctly predicts the following experimental observation: with tentacle-specific antibodies, Bode 
et al. [2] have shown that tentacle formation is a two-stage process: (i) after head removal tentacle activation 
first reappears at the very tip of the gastric column; (ii) then this activation becomes shifted away from the 
tip to a new location, where the tentacles eventually appear. This tentacle pattern incorporates multiple 
lengthscales such as the diameter of the gastric column, the distance between tentacles, and the diameter 
of tentacles. Both the dynamical process and the final pattern of tentacle formation resemble the behaviour 
of the Gierer–Meinhardt system considered in this paper.

Let us now summarize the analytical approach employed in our paper. The existence proof is based on 
Liapunov–Schmidt reduction. The stability of the cluster is shown by first separating the eigenvalues into 
two cases: large eigenvalues which tend to a nonzero limit and small eigenvalues which tend to zero in the 
limit D → 0 and ε√

D
→ 0. Large eigenvalues are then explored by deriving suitable nonlocal eigenvalue 

problems whose stability follows from [18]. Small eigenvalues are calculated explicitly by an using asymptotic 
analysis with rigorous error estimates for which the curvature of the boundary plays the key role similar to 
the analysis in [19]. However, in this paper, due to properties of the spike cluster, the small eigenvalues are 
of two different orders, whereas in [19] all small eigenvalues have the same order.

Before we state our main results, let us mention some previous ones concerning various regimes for the 
asymptotic behaviour of D.

The repulsive nature of spikes has been shown in [6]. The existence and stability of a spike cluster made 
up of two boundary spikes has been established in [5].

For the strong coupling case, i.e. D ∼ 1, the second and third authors constructed single-interior spike 
solutions [22]. In [24], they continued the study, and proved the existence of solutions with k interior spikes.

Moreover, it is shown that this solution is linearly stable for τ = 0.
For the weak coupling case D → ∞, in [23] the second and third authors proved the existence of multiple 

interior spike solutions.
Further, they showed that there are stability thresholds

D1(ε) > D2(ε) > · · · > Dk(ε) > · · ·

such that if limε→0
Dk(ε)

D > 1, the k-peak solution is stable and if limε→0
Dk(ε)

D < 1, the k-peak solution is 
unstable. Multiple spikes for the Gierer–Meinhardt system in a one-dimensional interval have been studied 
in [15,9,25] and on the real line in [4].

In [19] the existence, uniqueness and spectral properties of a boundary spike solution have been studied 
for the shadow Gierer–Meinhardt system (i.e. after formally taking the limit D → ∞).

In [26] the existence and stability of N -peaked steady states for the Gierer–Meinhardt system with 
precursor inhomogeneity has been explored. The spikes in the patterns can vary in amplitude. In particu-
lar, the results imply that a precursor inhomogeneity can induce instability. Single-spike solutions for the 
Gierer–Meinhardt system with precursor including spike dynamics have been studied in [17].

Previous results on stable spike clusters include a stable spike cluster for a consumer chain model [27]
and a stable spike cluster for the one-dimensional Gierer–Meinhardt system with precursor inhomogene-
ity [29].

Polygonal spike patterns for the Gierer–Meinhardt system in the two-dimensional plane have been de-
rived in [3]. Polygonal stable spike clusters have been considered in [30] in the interior of a bounded 
two-dimensional domain near a local minimum of a precursor inhomogeneity. Work on polygonal stable 
spike clusters for the Gierer–Meinhardt system on a two-dimensional Riemannian manifold near a local 
maximum of the Gaussian curvature is in progress [1].

For more background, modelling, analysis and computation on the Gierer–Meinhardt system, we refer 
to [28] and the references therein.



4 W. Ao et al. / J. Math. Pures Appl. 121 (2019) 1–46
2. Main results: existence and stability

Let Ω ⊂ R
2 be bounded and smooth two-dimensional domain. Let w be the unique solution in H1(R2)

of the problem

{
Δw − w + w2 = 0,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞.
(2.1)

For the existence and uniqueness of (2.1), we refer to [10] and [13]. We also recall that w is radially symmetric 
and

w(y) ∼ |y|− 1
2 e−|y| as |y| → ∞

and

w′(y) = −(1 + o(1))w(y) as |y| → ∞,

where w′ is the radial derivative of w, i.e. w′ = wr(r).

Theorem 2.1. Let k be a positive integer, and P 0 be a nondegenerate local maximum point of the curvature 
h(P ) of the boundary ∂Ω.

Then for 0 < e−
1√
D � ε �

√
D � 1, the Gierer–Meinhardt system (1.1) has a k-boundary spike cluster 

steady-state solution (uε, vε) which concentrates near P 0. In particular, it satisfies

uε ∼
Dξσ
ε2

k∑
i=1

w(x− Pi,ε

ε
),

where Pi,ε → P 0 as ε → 0 for i = 1, 2, . . . , k.
Further, we have

ξσ ∼ 1
log

√
D
ε

and

|Pi − Pi−1| ∼
√
D log ξσ

εD
, i = 2, . . . , k.

Remark 2.1. The spike cluster is established by a balance between repelling spikes and attracting boundary 
point of local maximum curvature.

Theorem 2.2. The k-boundary spike cluster solution given in Theorem 2.1 is linearly stable if τ is small 
enough.

Remark 2.2. There are eigenvalues of two different orders: n −1 eigenvalue related to repelling of neighbouring 
spikes are of order ε3 log ξσ

εD , and one eigenvalue stemming from the curvature of the boundary (corresponding 
to synchronous motion of all spikes) is of order ε3.

We confirm and illustrate (see Figs. 1–4) the main results by a few numerical computations which have 
been performed using the Software COMSOL. The patterns shown have been obtained as long-term limits 
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Fig. 1. Clustered spiky steady state of (1.1) for ε2 = 0.00004, D = 0.001. Shown is a boundary spike cluster consisting of 11 spikes. 
The activator A is displayed in a three-dimensional surface plot.

Fig. 2. Clustered spiky steady state of (1.1) for ε2 = 0.00004, D = 0.001. Shown is a boundary spike cluster consisting of 6 spikes.

of the time-dependent Gierer–Meinhardt system. Initial conditions are chosen as follows: the activator 
possesses a sharp peak near the maximum point of mean curvature combined with small-scale oscillations 
at the boundary, e.g. given by
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Fig. 3. Clustered spiky steady state of (1.1) for ε2 = 0.00004, D = 0.001. Shown is a boundary spike cluster consisting of 2 spikes.

Fig. 4. Clustered spiky steady states of (1.1) for ε2 = 0.00004, D = 0.001. Shown is a steady state of two boundary spike clusters 
consisting each of 6 spikes.

u(x, 0) = 3e−100000(1−0.25x2
1−4x2

2)e−100φ(2 − cos(1000φ))

close to the point x1 = 2, x2 = 0, where φ = arctan(x2/x1). For the inhibitor we have simply taken 
v(x, 0) = 0.
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This paper is organised as follows. In sections 3–5 we show existence of the spike cluster steady state by 
using Liapunov–Schmidt reduction. In section 3 we introduce an approximation to the spike cluster steady 
state. In section 4 we use the Liapunov–Schmidt method to reduce the problem to finite dimensions. In 
section 5 we solve this reduced problem. In sections 6–7 we study the stability of this spike cluster steady 
state. In section 6 we consider large eigenvalues. Finally, in section 7 we study small eigenvalues. In two 
appendices we show some technical results: in appendix A (section 8) we prove Proposition 4.1 and in 
appendix B (section 9) we compute the small eigenvalues.

3. Introduction of the approximate solutions

In this paper, we consider the following problem:

⎧⎪⎪⎨
⎪⎪⎩

ε2Δu− u + u2

v = 0 in Ω,

DΔv − v + u2 = 0 in Ω,

∂u
∂ν = ∂v

∂ν = 0 on ∂Ω,

(3.1)

where Ω ⊂ R
2 is a bounded and smooth two-dimensional domain.

Let P 0 be a nondegenerate maximum point of the boundary curvature h(P ) on the boundary of Ω. For 
P ∈ ∂Ω,

∇τ(P ) := ∂

∂τ(P ) ,

where ∂
∂τ(P ) denotes the tangential derivative with respect to P at P ∈ ∂Ω. We will sometimes drop the 

variable P if this can be done without causing confusion.
In this section, we construct an approximation to a spike cluster solution to (3.1) which concentrates 

at P 0.
The approximate cluster consists of spikes σ−2ξσ,iw(x−Pi

ε ) which are centred at the points Pi for i =
1, · · · , k, where σ = ε√

D
and the amplitude ξσ,i satisfies

ξσ,i ∼
1

1
π log 1

σ

∫
R

2
+
w2 dx

(see (3.38)).
Let P1, · · · , Pk be k points distributed along the boundary ∂Ω such that we have for i = 2, · · · , k

∣∣∣∣∣Pi − Pi−1√
D

− log ξσ
εD

+ 3
2 log log ξσ

εD
+ log(−

∂2

∂τ2h(P 0)ν1

2ν2
) + log[(i− 1)(k + 1 − i)]

∣∣∣∣∣ ≤ η (3.2)

and

∣∣∣∣∣1k
k∑

i=1
Pi − P 0

∣∣∣∣∣ ≤ η
√
D log ξσ

εD
, (3.3)

where ν2 is given in (5.10) below. Further, η > 0 is a small constant independent of ε and D. The reason 
for assuming (3.2) and (3.3) will become clear in Section 5 when we solve the reduced problem.
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Remark 3.1. By (3.2), the distance of neighbouring spikes satisfies

|Pi − Pi−1| ∼ C
√
D log ξσ

εD
.

Since we want to construct multiple boundary spikes which collapse at one point, we require that assumptions 
(1.2) and (1.3) hold.

After re-scaling,

û(z) = σ2u(εz), v̂(z) = σ2v(εz),

if we drop the hat and still denote solutions by (u, v), equation (3.1) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

Δu− u + u2

v = 0 in Ωε,

Δv − σ2v + u2 = 0 in Ωε,

∂u
∂ν = ∂v

∂ν = 0 on ∂Ωε,

(3.4)

where Ωε = ε−1Ω.
From now on we will deal with (3.4). Before introducing an approximation to the spike solutions, we first 

define some notation.
Fixing Pε = (P1, · · · , Pk) such that (3.2) and (3.3) hold, we set

Λk = {pε = ε−1Pε : P1, · · · , Pk such that (3.2) and (3.3) hold }. (3.5)

We are looking for multiple spike solutions to (3.4) of the form

{
u(z) ∼

∑k
i=1 ξσ,iPwpi

(z − pi),

v(pi) ∼ ξσ,i,
(3.6)

where Pwpi
(z − pi) is defined to be the unique solution of

Δu− u + w(· − pi)2 = 0 in Ωε,pi
,
∂u

∂ν
= 0 on ∂Ωε,pi

. (3.7)

Here Ωε,pi
= {z : z + pi ∈ Ωε}, the function w has been defined in (2.1) and ξσ,i, i = 1, · · · , k are the 

heights of the spikes, which will be determined in (3.38).

3.1. The analysis of the projection Pwq(z − q)

Before calculating the heights of the spikes, we need some preliminaries of the projection Pwpi
(z − pi)

defined in (3.7) which are rather standard by now. Some of these results have been derived in [20,21].
Let P ∈ ∂Ω. We define a diffeomorphism straightening the boundary. We may assume that the inward 

normal to ∂Ω at P is pointing in the direction of the positive x2 axis. Denote B′(R) = {x ∈ R
2||x1| ≤ R}. 

Then since ∂Ω is smooth, we can find a constant R such that ∂Ω can be represented by the graph of a smooth 
function ρP : B′(R) → R, where ρP (0) = 0, and ρ′P (0) = 0. From now on, we omit the use of P in ρP and 
write ρ if this can be done without causing confusion. So near P , ∂Ω can be represented by (x1, ρ(x1)). The 
curvature of ∂Ω at p is h(P ) = ρ′′(0). Let Ω1 = Ω ∩B(P, R) = {(x1, x2) ∈ B(P, R)|x2 − P2 > ρ(x1 − P1)}, 
where B(P, R) = {x ∈ R

2||x − P | < R}.
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After rescaling, it follows that near p = P
ε , the boundary ∂Ωε can be represented by (z1−p1, ε−1ρ(ε(z1−

p1))), where (z1, z2) = ε−1(x1, x2) and p = (p1, p2). By Taylor expansion, we have

ε−1ρ(ε(z1 − p1)) = 1
2ρ

′′(0)ε(z1 − p1)2 + 1
6ρ

(3)(0)ε2(z1 − p1)3 + O(ε3(z1 − p1)4). (3.8)

Let hp(z) = w(z − p) − Pwp(z − p). Then hp satisfies

{
Δhp(z) − hp(z) = 0, in Ωε,

∂hp

∂ν = ∂
∂νw(z − p) on ∂Ωε.

(3.9)

For z ∈ Ω1ε = 1
εΩ1 we set

{
y1 = z1 − p1,

y2 = z2 − p2 − ε−1ρ(ε(z1 − p1)).
(3.10)

Under this transformation, the Laplace operator and the boundary derivative operator become

Δz = Δy + (ρ′(εy1))2∂y2y2 − 2ρ′(εy1)∂y1y2 − ερ′′(εy1)∂y2 ,

(1 + ρ′(εy1)2)
1
2
∂

∂ν
= ρ′(εy1)∂y1 − (1 + ρ′(εy1)2)∂y2 .

Let v(1) be the unique solution of
⎧⎨
⎩

Δv − v = 0 in R
2
+,

∂v
∂y2

= w′

|y|
ρ′′(0)

2 y2
1 on ∂R2

+,
(3.11)

where R2
+ is the upper half plane, namely R2

+ = {y = (y1, y2) ∈ R
2|y2 > 0}.

Let v(2) be the unique solution of
⎧⎨
⎩

Δv − v − 2ρ′′(0)y1
∂2v(1)

∂y1∂y2
= 0 in R

2
+,

∂v
∂y2

= −ρ′′(0)y1
∂v(1)

∂y1
on ∂R2

+.

Let v(3) be the unique solution of
⎧⎨
⎩

Δv − v = 0 in R
2
+,

∂v
∂y2

= w′

|y|
1
3ρ

(3)(0)y3
1 on ∂R2

+.
(3.12)

Note that v(1), v(2) are even functions in y1 and v(3) is an odd function in y1. Moreover, it is easy to 
see that |vi(y)| ≤ Ce−μ|y| for any 0 < μ < 1. Let χ be a smooth cut-off function, such that χ(a) = 1
for a ∈ B(0, R0

√
D log ξσ

εD ), and χ(a) = 0 for x ∈ B(0, 2R0
√
D log ξσ

εD )c for some suitable R0 such that 
|pi − p0| < R0

σ log ξσ
εD , and

χε(z − p) = χ(ε(z − p)) for z ∈ Ωε. (3.13)

Set
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hp(z) = −(εv(1)(y) + ε2(v(2)(y) + v(3)(y)))χε(z − p) + ε3ξp(z), z ∈ Ωε. (3.14)

Then we have the following estimate:

Proposition 3.1.

‖ξp(z)‖H1(Ωε) ≤ C. (3.15)

Proposition 3.1 was proved in [21] by Taylor expansion including a rigorous bound for the remainder using 
estimates for elliptic partial differential equations. Moreover, it has been shown that |ξp(z)| ≤ Ce−μ|z−p| for 
any 0 < μ < 1.

Similarly we know from [21] that

Proposition 3.2.

[ ∂w

∂τ(p) − ∂pΩε
w

∂τ(p) ](z − p) = εη(y)χε(z − p) + ε2η1(z), z ∈ Ωε, (3.16)

where η is the unique solution of the following equation:
⎧⎨
⎩

Δη − η = 0 in R
2
+,

∂η
∂y2

= −1
2 ( w′′

|y|2 − w′

|y|3 )ρ′′(0)y3
1 − w′

|y|ρ
′′(0)y1 on ∂R2

+.
(3.17)

Moreover,

‖η1‖H1(Ωε) ≤ C. (3.18)

It follows that η(y) is an odd function in y1. It can be seen that |η1(y)| ≤ Ce−μ|y| for some 0 < μ < 1.
Finally, let

L0 = Δ − 1 + 2w(z). (3.19)

We have

Lemma 3.1.

Ker(L0) ∩H2
N (R2

+) = span{ ∂w
∂y1

}, (3.20)

where H2
N (R2

+) = {u ∈ H2(R2
+) : ∂u

∂y2
= 0 on ∂R2

+}.

Proof. See Lemma 4.2 in [14]. �
Remark 3.2. In the following sections, we will denote by yi = (yi1, yi2) the transformation defined by (3.10)
centred at the point pi and let v(j)

i be the corresponding solutions in the expansion of hpi
.

3.2. The analysis of the Green’s function

Next we introduce a Green’s function G√ which is needed to derive our main results.
D
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For D > 0, let GD(x, y) be the Green’s function given by
⎧⎨
⎩

−ΔG√
D + G√

D = δy in Ω√
D,

∂G√
D

∂ν = 0 on ∂Ω√
D,

(3.21)

where y ∈ ∂Ω√
D and let G0 be the Green’s function of the upper half plane:

−ΔG0 + G0 = δ0 in R
2
+,

∂G0

∂y2
= 0 on ∂R2

+. (3.22)

Then H(x) = G√
D(x) −G0(x) will satisfy

{
ΔH −H = 0 in Ω√

D,

∂H
∂ν = −∂G0

∂ν on ∂Ω√
D.

(3.23)

Let η1 be the solution of
⎧⎨
⎩

Δη1 − η1 = 0 in R
2
+,

∂η1
∂y2

= −1
2
√
D

G′
0(|y|)
|y| ρ′′(0)y2

1 ,
(3.24)

and let η2 be the solution of
⎧⎨
⎩

Δη2 − η2 = 0 in R
2
+,

∂η2
∂y2

= D(−1
3
G′

0(|y|)
|y| ρ(3)(0)y3

1) on ∂R2
+.

(3.25)

It can be seen easily that η1 is even in y1 and η2 is odd in y1. Then one can get the following result.

Lemma 3.2.

G√
D(x, p) = G0(x, p) +

√
Dη1(y)χ√

D(x− p) + Dη2(y)χ√
D(x− p) + O(D 3

2 ). (3.26)

Proof. First we compute on ∂Ω√
D,

√
1 + ρ′(

√
Dx1)2

∂

∂ν
G0(x)

= G′
0(|x|)
|x| (x2 − x1ρ

′(
√
Dx1))

= G′
0(|x|)
|x| (−1

2
√
Dρ′′(0)y2

1 − 1
3Dρ(3)(0)y3

1) + O(D 3
2 e−l|y|),

for any 0 < l < 1.
Since we have

G′
0(|x|)
|x| = G′

0(|y|)
|y| + D

|y|G′′
0(|y|) −G′

0(|y|)
8|y|3 (ρ′′(0)y2

1)2 + O(D 3
2 e−l|y|),

we get
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√
1 + ρ′(

√
Dx1)2

∂

∂ν
G0(x)

= −1
2
√
D
G′

0(|y|)
|y| ρ′′(0)y2

1 − 1
3
D
G′

0(|y|)
|y| ρ(3)(0)y3

1 + O(D 3
2 e−l|y|).

From the expansion above, we can get the asymptotic behaviour of G√
D. �

Next we have the following expansion of G0:

Lemma 3.3. The following expansion of G0 holds:

G0(r) = − 1
π

log r + c1 + c2r
2 log r + ψ(r),

for 0 < r < 1, where ψ is a smooth function with ψ(0) = ψ′(0) = 0 and c1, c2 are universal constants.

Proof. By an even extension in y2, one can get the Green’s function in the whole space R2. For the expansion 
of fundamental solution, see Lemma 4.1 in [3]. Then the above expansion follows. �

We set

G√
D(x, y) = 1

π
log 1

|x− y| + H̃(x, y). (3.27)

From the estimates above, and for points pε ∈ Λk, we have

G√
D(σpi, σpj) = O(εD

ξσ
log εD

ξσ
) for |i− j| = 1, (3.28)

G√
D(σpi, σpj) = O((εD

ξσ
log εD

ξσ
)2) for |i− j| = 2. (3.29)

Generally, we have

G√
D(σpi, σpj) = O((εD

ξσ
log εD

ξσ
)|i−j|) for |i− j| ≥ 1. (3.30)

For the derivatives, we estimate

∂l

∂pli
G√

D(σpi, σpj) = O((εD
ξσ

log εD

ξσ
)|i−j|σl) for |i− j| ≥ 1. (3.31)

3.3. Calculating the heights of the spikes

In this section, we are going to determine the heights of spikes ξσ,i to leading order. In the sequel, by 
T [h] we denote the unique solution of the equation

{
Δv − σ2v + h = 0 in Ωε,

∂v
∂ν = 0 on ∂Ωε.

(3.32)

Then we know that

v(z) =
∫

G√
D(σz, σx)h(x) dx. (3.33)
Ωε
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As mentioned before, we will choose the approximate solution to be

U(z) =
k∑

i=1
ξσ,iPwpi

(z − pi) (3.34)

and

V (z) = T [U2](z) (3.35)

=
∫
Ωε

G√
D(σz, σx)

(
k∑

i=1
ξσ,iPwpi

(x− pi)
)2

dx.

First we calculate the heights of the peaks:

V (pi) =
∫
Ωε

G√
D(σpi, σx)

(
k∑

i=1
ξσ,iPwpi

(x− pi)
)2

dx

=
∫
Ωε

G√
D(σpi, σx)

(
k∑

i=1
ξ2
σ,i (Pwpi

(x− pi))2
)

dx + O(ε4)

= ξ2
σ,i

∫
Ωε

(
1
π

log 1
σ|x− pi|

+ H̃(σx, σpi)
)

(Pwpi
(x− pi))2 dx

+
∑
j �=i

ξ2
σ,j

∫
Ωε

G√
D(σx, σpi)(Pwpj

(x− pj))2 dx + O(ε4)

= ( 1
π

log 1
σ

∫
R

2
+

w2 dx)ξ2
σ,i +

k∑
j=1

O(ξ2
σ,j).

Thus

ξσ,i = ( 1
π

log 1
σ

∫
R

2
+

w2 dx)ξ2
σ,i +

k∑
j=1

O(ξ2
σ,j). (3.36)

We assume that the heights of the spikes are asymptotically equal as ε, D → 0, i.e.

lim
σ→0

ξσ,i
ξσ,j

= 1, for i �= j. (3.37)

Then we get that

ξσ,i = ( 1
π

log 1
σ

∫
R

2
+

w2 dx)−1(1 + O( 1
log 1

σ

))

= ξσ(1 + O( 1
log 1

σ

)), (3.38)

where
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ξσ = ( 1
π

log 1
σ

∫
R

2
+

w2 dx)−1. (3.39)

The analysis in this subsection calculates the heights of the spikes under the assumption that their shape 
is given. In the next two sections, we provide the rigorous proof for the existence.

4. Existence I: reduction to finite dimensions

Let us start to prove Theorem 2.1.
The first step is choosing a good approximate solution which was done in (3.6). The second step is using 

the Liapunov–Schmidt method to reduce the problem to finite dimensions which we do in this section. The 
last step is solving the reduced problem which will be done in Section 5.

First we need to calculate the error terms caused by the approximate solution given in (3.6) to show that 
this is a good choice:

S1(U, V ) = ΔU − U + U2

V

= U2

V
−

k∑
i=1

ξσ,iw(x− pi)2

=
∑k

i=1 ξ
2
σ,iPwpi

(x− pi)2

V
−

k∑
i=1

ξσ,iw(x− pi)2 + O(ε4)

=
k∑

i=1
ξσ,i(Pw2

i − w2
i ) +

k∑
i=1

ξ2
σ,iPw2

i (
1

V (x) − 1
V (pi)

) + O(ε4),

where we have used the notation

Pwi(x) = Pwpi
(x− pi), wi(x) = w(x− pi). (4.1)

On the other hand, we calculate for x = pi + z

Pwi(x)2 − w2
i (x) = 2w(z)(εv(1)

i (z) + ε2v
(2)
i (z) + ε2v

(3)
i )(z) + ε2(v(1)

i (z))2 + O(ε3)

:= εR1,i(z) + ε2R2,i(z) + O(ε3),

where R1,i(z) = 2w(z)[v(1)
i (z) + εv

(2)
i (z)] + ε(v(i)

1 (z))2, R2,i = 2w(z)v(3)
i (z). This implies

V (pi + z) − V (pi)

=
∫
Ωε

[G√
D(σpi + σz, σx) −G√

D(σpi, σx)](
k∑

i=1
ξσ,iPwi)2 dx

=
∫
Ωε

1
π

log |x− pi|
|x− z − pi|

Pw2
i ξ

2
σ,i + (H̃(σpi + σy, σx) − H̃(σpi, σx))Pw2

i ξ
2
σ,i dx

+
∑
j �=i

ξ2
σ,j

∫
Ωε

[G√
D(σpi + σz, σx) −G√

D(σz, σx)]Pw2
j dx + O(ε4)

= ξ2
σ,i

∫
2

log |y|
|y − z|w

2(y)(1 + o(1)) dy +
∑
j �=i

ξ2
σ,j∇pi

G√
D(σpi, σpj) · z

∫
2

w2 dy
R+ R+



W. Ao et al. / J. Math. Pures Appl. 121 (2019) 1–46 15
+O(ξ2
σε

2h′(εpi)) + O(ξ2
σε

3) + O(
∑
j �=i

ξ2
σ|∇2

pi
G√

D(σpi, σpj)|)

:= ξ2
σ,iR1(z) + ξ2

σ,iR2(z) + h.o.t,

where R1(z) is even in z1 and R2(z) is odd in z1 and

R1(z) = O(log(1 + |z|)), R2(z) = O(
∑
j �=i

|∇pi
G√

D(σpi, σpj)||z|) (4.2)

and

h.o.t = O(ξ2
σε

2h′(εpi)) + O(
∑
i�=j

ξ2
σ|∇2

pi
G√

D(σpi, σpj)|) (4.3)

= O(ξ2
σε

2
√
D log ξσ

εD
).

Thus we can get that

1
V (pi + z) − 1

V (pi)
= 1

V (pi)2
(−ξ2

σ,iR1(z) − ξ2
σ,iR2(z) + h.o.t). (4.4)

By the above estimates, we have the following key estimate:

Lemma 4.1. For x = pi + z, |z| < R0
σ log εD

ξσ
, we have

S1(U, V ) = S1,1 + S1,2, (4.5)

where

S1,1 = ξ2
σ,iR̃1(z) (4.6)

S1,2 = −ξ2
σ,iw

2(z)R2(z) + ξσ,iε
2R2,i(z) + h.o.t, (4.7)

where R̃1(z) is even in z1 with the property that R̃1(z) = O(log(1 + |z|)), and R2(z), R2,i(z) are defined 
above.

Further, S1(U, V ) = ε
R0
σ for |x − pi| ≥ R0

σ log εD
ξσ

for all i.

The above estimates will be very useful in the existence proof using the Liapunov–Schmidt reduction. In 
particular, they will imply an explicit formula for the positions of the spikes in Section 5.

Now we study the linearised operator defined by

Lε,p := S′

(
U

V

)
, (4.8)

Lε,p : H2
N (Ωε) ×H2

N (Ωε) → L2(Ωε) × L2(Ωε). (4.9)

We first define

Kε,p = Cε,p = Span{ ∂U

∂τ(pi)
, i = 1, · · · , k} (4.10)

and define the approximate kernels by
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Kε,p := Kε,p + {0} ⊂ H2
N (Ωε) ×H2

N (Ωε),

and choose the approximate cokernels as follows:

Cε,p := Cε,p + {0} ⊂ L2(Ωε) × L2(Ωε).

We then define

K⊥
ε,p := K⊥

ε,p + H2
N (Ωε) ⊂ H2

N (Ωε) ×H2
N (Ωε),

C⊥
ε,p := C⊥

ε,p + L2(Ωε) ⊂ L2(Ωε) × L2(Ωε),

where C⊥
ε,p, K

⊥
ε,p denote the orthogonal complements with the scalar product of L2(Ωε).

Let πε,p denote the projection in L2(Ωε) × L2(Ωε) onto C⊥
ε,p. We are going to show that the equation

πε,p ◦ Sε

(
U + φ

V + ψ

)
= 0

has a unique solution Σε,p =
(

φε,p
ψε,p

)
∈ K⊥

ε,p if max{σ, D} is small enough.

Set

Lε,p = πε,p ◦ Lε,p : K⊥
ε,p → C⊥

ε,p. (4.11)

Written in components, we have

Lε,p :=
(
Lε,p,1

Lε,p,2

)

and (
Lε,p,1

Lε,p,2

)(
φε,p
ψε,p

)
=

(
Δφε,p − φε,p + 2U

V φε,p − U2

V 2ψε,p

Δψε,p − ψε,p + 2Uφε,p

)
.

As a preparation we state a result on the invertibility of the corresponding linearised operator Lε,p whose 
proof is postponed to Appendix A.

Proposition 4.1. There exist positive constants δ̄, C such that for max{σ, D} < δ̄, the map Lε,p is surjective 
for arbitrary p ∈ Λk. Moreover the following estimate holds:

‖Σε,p‖H2(Ωε)×H2(Ωε) ≤ C(‖Lε,p,1(Σε,p)‖H2(Ωε) + ξ−1
σ ‖Lε,p,2(Σε,p)‖H2(Ωε)). (4.12)

Now we are in the position to solve the equation

πε,p ◦ Sε

(
U + φ

V + ψ

)
= 0. (4.13)

Since Lε,p|K⊥
ε,p

is invertible, we can write the above equation as

Σ = −L−1
ε,p ◦ πε,p(Sε

(
U

V

)
) − L−1

ε,p ◦ πε,p(Nε,p(Σ)) := Mε,p(Σ), (4.14)
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where

Σ =
(

φ

ψ

)

and

Nε,p(Σ) = Sε

(
U + φ

V + ψ

)
− Sε

(
U

V

)
− S′

ε

(
U

V

)(
φ

ψ

)

and the operator Mε,p is defined above for Σ ∈ H2
N (Ωε) ×H2

N (Ωε). We are going to show that the operator 
Mε,p is a contraction mapping on

Bε = {Σ ∈ H2
N (Ωε) ×H2

N (Ωε)|‖Σ‖H2×H2 < C0ξ
2
σ} (4.15)

if C0 is large enough. We have that

‖Mε,p(Σ)‖H2×H2 ≤ C(‖πε,p ◦Nε,p,1(Σ)‖L2 + ξ−1
σ ‖πε,p ◦Nε,p,2(Σ)‖L2

+ ‖πε,p ◦ Sε

(
U

V

)
‖L2×L2

≤ C(c(ξσ)ξ2
σ + ξ2

σ),

where C > 0 is independent of ε > 0 and c(ξσ) → 0 as ξσ → 0. Similarly we can show that

‖Mε,p(Σ) −Mε,p(Σ′)‖H2×H2 ≤ Cc(ξσ)‖Σ − Σ′‖H2×H2 ,

where c(ξσ) → 0 as ξσ → 0. If we choose C0 large enough, then Mε,p is a contraction mapping on Bε. The 
existence of a fixed point Σε,p together with an error estimate now follows from the contraction mapping 
principle. Moreover, Σε,p is a solution. Thus we have proved

Lemma 4.2. There exists δ̄ > 0 such that for every triple (ε, D, p) with max{σ, D} < δ̄, and p ∈ Λk, there 
exists a unique (φε,p, ψε,p) ∈ K⊥

ε,p satisfying

Sε

(
U + φε,p
V + ψε,p

)
∈ Cε,p, (4.16)

and

‖(φε,p, ψε,p)‖H2×H2 ≤ Cξ2
σ.

More refined estimates for φε,p are needed. We recall that from Lemma 4.1 that S1(U, V ) can be de-
composed into two parts S1,1 and S1,2, where S1,1 is in leading order an even function in z1 and S1,2 is in 
leading order an odd function in z1. Similarly we can decompose φε,p.

Lemma 4.3. Let φε,p be defined by (4.16). Then for x = pi + z, we have

φε,p(x) = φε,p,1 + φε,p,2, (4.17)

where φε,p,1 is even in z1 which can be estimated by
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φε,p,1 = O(ξ2
σ) in H2

N (Ωε), (4.18)

and φε,p,2 can be estimated by

φε,p,2 = O(
∑
j �=i

ξ2
σσ|∇G√

D(σpi, σpj)|) + O(
k∑

i=1
ξσε

2h′(εpi)) (4.19)

= O(ξσε2
√
D log ξσ

εD
).

Proof. Let S(u) = S1(u, T (u)). We first solve

S(U + φε,p,1) − S(U) +
k∑

i=1
S1,1(x− pi) ∈ Cε,p, (4.20)

for φε,p,1 ∈ K⊥
ε,p. Then we solve

S[U + φε,p,1 + φε,p,2] − S[U + φε,p,1] +
k∑

i=1
S1,2(x− pi) ∈ Cε,p

for φε,p,2 ∈ K⊥
ε,p.

Using the same proof as in Lemma 4.2, the above two equations are uniquely solvable for max{σ, D} � 1. 
By uniqueness, φε,p = φε,p,1 + φε,p,2. Since S1,2 = S0

1,2 + S⊥
1,2, where S0

1,2 = O(ξσε2
√
D log ξσ

εD ) and 
S⊥

1,2 ∈ C⊥
ε,p, it is easy to see that φε,p,1 and φε,p,2 have the required properties. �

5. Existence proof II: the reduced problem

In this section, we solve the reduced problem. This completes the proof for our main existence result 
given in Theorem 2.1.

By Lemma 4.2, for every p ∈ Λk, there exists a unique solution (φ, ψ) ∈ K⊥
ε,p such that

Sε

(
U + φ

V + ψ

)
∈ Cε,p. (5.1)

We need to determine p = (p1, · · · , pk) ∈ Λk such that

Sε

(
U + φ

V + ψ

)
⊥ Cε,p

and therefore Sε

(
U + φ

V + ψ

)
= 0.

To this end, we calculate the projection:
∫
Ωε

S1(U + φ, V + ψ) ∂Pwi

∂τ(pi)
dx

=
∫ (

Δ(U + φ) − (U + φ) + (U + φ)2

V + ψ

) ∂Pwi

∂τ(pi)
dx
Ωε
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=
∫
Ωε

(
Δ(U + φ) − (U + φ) + (U + φ)2

V

) ∂Pwi

∂τ(pi)
dx

+
∫
Ωε

( (U + φ)2

V + ψ
− (U + φ)2

V

) ∂Pwi

∂τ(pi)
dx

= I1 + I2,

where I1, I2 are defined by the last equality.
For I1, we have

I1 =
∫
Ωε

(
Δ(U + φ) − (U + φ) + (U + φ)2

V

) ∂Pwi

∂τ(pi)
dx

=
∫
Ωε

(
Δ(ξσ,iPwi + φ) − (ξσ,iPwi + φ) + (ξσ,iPwi + φ)2

V (pi)

) ∂Pwi

∂τ(pi)
dx

+
∫
Ωε

(ξσ,iPwi + φ)2( 1
V (x) − 1

V (pi)
) ∂Pwi

∂τ(pi)
dx + O(ε4)

= I11 + I12 + O(ε4).

Note that by the estimates satisfied by φ in Lemma 4.3, we have
∫
Ωε

(Δφ− φ + 2Pwiφ) ∂Pwi

∂τ(pi)
dx

=
∫
Ωε

φ
∂

∂τ(pi)
(Pw2

i − w2
i )

=
∫
Ωε

(φε,p,1 + φε,p,2)
∂

∂τ(pi)
[2εwiv

(1)
i + 2ε2wiv

(2)
i + 2ε2wiv

(3)
i + ε2(v(1)

i )2] dx + O(ξ2
σε

3)

=
∑
j �=i

O(εξ2
σ|∇pi

G√
D(σpi, σpj)|) +

k∑
i=1

ξ2
σε

2|h′(εpi)| + O(ε3ξ2
σ)

= O(ξσ)[
∑
j �=i

ξ2
σσ|∇G√

D(σpi, σpj)| +
k∑

i=1
ξσε

2|h′(εpi)|]

= O(ξ2
σσεD log ξσ

εD
), (5.2)

where we have used the estimates (3.28)–(3.31). Further, we have

∫
Ωε

φ2

V (pi)
∂Pwi

∂τ(pi)
dx = 1

ξσ,i

∫
Ωε

(φε,p,1 + φε,p,2)2
∂Pwi

∂τ(pi)
dx

= O(ξσ)(
∑
j �=i

ξ2
σσ|∇G√

D(σpi, σpj)| +
k∑

i=1
ξσε

2|h′(εpi)|)

= O(ξ2
σσεD log ξσ ). (5.3)
εD
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We compute

ξσ,i

∫
Ωε

(ΔPwi − Pwi + Pw2
i )

∂Pwi

∂τ(pi)
dx

= ξσ,i

∫
Ωε

(Pw2
i − w2

i )
∂Pwi

∂τ(pi)
dx

= ξσ,i

∫
R

2
+

ε(2wv(1)
i + 2εwv(2)

i + 2εwv(3)
i + ε(v(1)

i )2) (5.4)

×( ∂w
∂y1

+ ε
∂v

(1)
i

∂y1
+ ε2 ∂v

(2)
i

∂y1
+ ε2 ∂v

(3)
i

∂y1
) dy + O(ξσε3)

= 2ε2ξσ,i

∫
R

2
+

wv
(3)
i

∂w

∂y1
dy + O(ξ2

σσεD log ξσ
εD

). (5.5)

By (3.12), we have
∫
R

2
+

2w(y)∂w(y)
∂y1

v
(3)
i dy =

∫
R

2
+

−(Δ − 1)∂w(y)
∂y1

v
(3)
i dy

= −
∫
R

(
∂w(y)
∂y1

∂v
(3)
i

∂y2
− v

(3)
i

∂

∂y2

∂w(y)
∂y1

)
dy1

= −1
3

∫
R

(w
′(|y|)
|y| )2h′(εpi)y4

1 dy1

= −ν1
∂

∂τ(εpi)
h(εpi), (5.6)

where the constant ν1 > 0 is defined by

ν1 = 1
3

∫
R

(
∂w(y1, 0)

∂y1

)2

y2
1 dy1 > 0. (5.7)

Now by (5.2)–(5.6),

I11 = −ε2ξσν1
∂

∂τ(εpi)
h(εpi) + O(ξ2

σσεD log ξσ
εD

). (5.8)

Next we estimate I12:

I12 =
∫
Ωε

(ξσ,iPwi + φ)2( 1
V (x) − 1

V (pi)
) ∂Pwi

∂τ(pi)
dx

=
∫
Ωε

(ξσ,iPwi + φε,p,1 + φε,p,2)2
1

V (pi)2
(−ξ2

σ,iR1 − ξ2
σ,iR2)

∂Pwi

∂τ(pi)
dx

+O(ξσ)(
∑

ξ2
σ|∇pi

G√
D(σpi, σpj)| +

k∑
ξσε

2|h′(εpi)|)

j �=i i=1
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= −ξ2
σ,i

∫
R2

+

w(y)2R2(y)
∂w

∂y1
dy + O(ξ2

σσεD log ξσ
εD

)

= −
∑
j �=i

ξ2
σ

∂G√
D(σpi, σpj)
∂τ(pi)

(
∫
R

2
+

w2y1
∂w

∂y1
dy

∫
R

2
+

w2 dy) + O(ξ2
σσεD log ξσ

εD
)

= ν2
∑
j �=i

ξ2
σ

∂G√
D(σpi, σpj)
∂τ(pi)

+ O(ξ2
σσεD log ξσ

εD
)

= ν2
∑
j �=i

ξ2
σ

∂G0(σpi, σpj)
∂τ(pi)

+ O(ξ2
σσεD log ξσ

εD
), (5.9)

where we have used 
√
D log ξσ

εD � 1 and

ν2 = 1
3

∫
R

2
+

w3 dy

∫
R

2
+

w2 dy > 0. (5.10)

Thus by (5.8) and (5.9), we have

I1 = ν2
∑
j �=i

ξ2
σ

∂G0(σpi, σpj)
∂τ(pi)

− ε2ξσν1
∂

∂τ(εpi)
h(εpi)

+O(ξ2
σσεD log ξσ

εD
). (5.11)

Next we estimate I2:

I2 =
∫
Ωε

( (U + φ)2

V + ψ
− (U + φ)2

V
) ∂Pwi

∂τ(pi)
dx

= −
∫
Ωε

(ξσ,iPwi + φ)2

V 2 ψ
∂Pwi

∂τ(pi)
dx

+O(ξσ)(
∑
j �=i

ξ2
σ|∇pi

G√
D(σpi, σpj)| +

k∑
i=1

ξσε
2|h′(εpi)|)

= −1
3

∫
Ωε

∂(Pwi)3

∂τ(pi)
(ψ(x) − ψ(pi)) dx + O(ξ2

σσεD log ξσ
εD

).

By the equation for ψ, we have

Δψ − σ2ψ + 2Uφ + φ2 = 0

and therefore

ψ(pi + z) − ψ(pi) =
∫
Ωε

[G√
D(σpi, σy) −G√

D(σpi + σz, σy)](2Uφ + φ2)(y) dy

= O(ξσ
∑
j �=i

ξ2
σ|∇pi

G√
D(σpi, σpj)||z|) + O(ξ3

σ)R(z),

where R(z) is an even function in z1.
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Thus we have

I2 = O(ξ2
σσεD log ξσ

εD
). (5.12)

Combining the estimates for I1 and I2, (5.11) and (5.12), we have

Wε,i :=
∫
Ωε

S1[U + φ, V + ψ] ∂Pwi

∂τ(p1)
dx

= ξσ[ν2
∑
j �=i

ξσσG
′
0(σ|pi − pj |)

pi − pj
|pi − pj |

− ε3ν1
∂2

∂τ2h(εp0)(pi − p0)]

+ o(ξσσεD log ξσ
εD

).

Thus Wε,i = 0 is reduced to the following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν2ξσσG
′
0(σ|p1 − p2|) − ν1ε

3 ∂2

∂τ2h(εp0)(p1 − p0) = o(σεD log ξσ
εD ),

ν2ξσσ(G′
0(σ|p1 − p2|) −G′

0(σ|p2 − p3|)) − ν1ε
3 ∂2

∂τ2h(εp0)(p2 − p0) = o(σεD log ξσ
εD ),

· · ·

ν2ξσσ(G′
0(σ|pk−1 − pk−2|) −G′

0(σ|pk−1 − pk|)) − ν1ε
3 ∂2

∂τ2h(εp0)(pk−1 − p0) = o(σεD log ξσ
εD ),

ν2ξσσG
′
0(σ|pk − pk−1|) − ν1ε

3 ∂2

∂τ2h(εp0)(pk − p0) = o(σεD log ξσ
εD ).

(5.13)

We first solve the limiting case:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν2ξσσG
′
0(σ|p0

1 − p0
2|) − ν1ε

3 ∂2

∂τ2h(εp0)(p0
1 − p0) = 0,

ν2ξσσ(G′
0(σ|p0

1 − p0
2|) −G′

0(σ|p0
2 − p0

3|)) − ν1ε
3 ∂2

∂τ2h(εp0)(p0
2 − p0) = 0,

· · ·

ν2ξσσ(G′
0(σ|p0

k−2 − p0
k−1|) −G′

0(σ|p0
k−1 − p0

k|)) − ν1ε
3 ∂2

∂τ2h(εp0)(p0
k−1 − p0) = 0,

ν2ξσσG
′
0(σ|p0

k−1 − p0
k|) − ν1ε

3 ∂2

∂τ2h(εp0)(p0
k − p0) = 0.

(5.14)

This system is uniquely solvable with

k∑
i=1

p0
i = p0. (5.15)

Moreover, we have

σ(p0
i − p0

i−1) = log ξσ
εD

− 3
2 log log ξσ

εD
(5.16)

− log(−h′′(p0)ν1

2ν2
) − log[(i− 1)(k + 1 − i)] + O(

log log ξσ
εD

log ξσ
εD

),

where we have used the notation h′′(p0) = ∂2
2h(P 0) < 0.
∂τ
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From (5.16), we know

j∑
i=1

p0
i = O( 1

σ
log εD

ξσ
) for j = 1, · · · , k − 1. (5.17)

To find pi such that Wε,i = 0, we expand pi = p0
i + p̃i. Then adding the first i equations, we have

−ν2ξσσG
′′
0(σ|p0

i − p0
i+1|)[σ(p̃i − p̃i+1) + O(σ2|p̃|2)] + ν1

i∑
j=1

ε3h′′(p0)p̃i = o(σεD log ξσ
εD

). (5.18)

One can get that

p̃i = p̃1(1 + o(1)) + O( 1
σ

), for i = 2, · · · , k.

By the last equation

k∑
i=1

ν1ε
3h′′(p0)p̃i = o(σεD log ξσ

εD
). (5.19)

Thus

ν1ε
3h′′(p0)kp̃1(1 + o(1)) = o(σεD log ξσ

εD
) + O(ε

3

σ
). (5.20)

From the equation above, we can estimate p̃1 by

p̃1 = o( 1
σ

log εD

ξσ
). (5.21)

In conclusion, we solve Wε,i = 0 with

p̃i = o( 1
σ

log εD

ξσ
).

Thus we have proved the following proposition:

Proposition 5.1. For max{σ, D} small enough, there exists pε ∈ Λk with Pi → P 0 such that Wε,i = 0.

Finally, we complete the proof of Theorem 2.1.

Proof. By Proposition 5.1, there exists Pε → P0, such that Wε(pε) = 0. In other words, we have

Sε

(
U + φ

V + ψ

)
= 0. (5.22)

Moreover, by the maximum principle, (U, V ) > 0 and the solution satisfies all the properties of Theo-
rem 2.1. �
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6. Study of the large eigenvalues

We consider the stability of the steady-state (u, v) constructed in Theorem 2.1.
In this section, we first study the large eigenvalues which satisfy λε → λ0 �= 0 as max{σ, D} → 0.
Linearizing the system around the equilibrium states (u, v) obtained in Theorem 2.1, we obtain the 

following eigenvalue problem:

{
Δφ− φ + 2u

v φ− u2

v2 ψ = λφ,

Δψ − σ2ψ + 2uφ = τλσ2ψ
(6.1)

for (φ, ψ) ∈ H2
N (Ωε) ×H2

N (Ωε).
In this section, since we study the large eigenvalues, we may assume that |λε| ≥ c > 0 for max{σ, D}

small enough. If Re(λε) ≤ −c < 0, then λε is a stable large eigenvalue, we are done. Therefore, we may 
assume that Re(λε) ≥ −c and for a subsequence max{σ, D} → 0, λε → λ0 �= 0. We shall derive the limiting 
eigenvalue problem which is given by a coupled system of NLEPs.

The second equation of (6.1) is equivalent to

Δψ − σ2(1 + τλε)ψ + 2uφ = 0. (6.2)

We introduce the following notation:

σλ = σ
√

1 + τλε,

where in 
√

1 + τλε, we take the principal part of the square root.
Let us assume that

‖φ‖H2(Ωε) = 1.

We cut off φ as follows:

φε,j = φεχε(z − pj), j = 1, · · · , k, (6.3)

where the cutoff function χε has been defined in (3.13).
From (6.1) and the exponential decay of w, it follows that

φε =
k∑

j=1
φε,j + O(ε5). (6.4)

Then by a standard procedure (see [8], Section 7.12), we extend φε,j to a function defined on R2 such 
that

‖φε,j‖H2(R2) ≤ C‖φε,j‖H2(Ωε), j = 1, · · · , k.

Since ‖φε‖H2(Ωε) = 1, ‖φε,j‖H2(R2) ≤ C. By taking a subsequence, we may assume that φε,j → φj as 
max{σ, D} → 0 in H1(R2) for some φj ∈ H1(R2) for j = 1, · · · , k.
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By (6.1), we have

ψε(pj) =
∫
Ωε

G√
D(σλpj , σλx)2uφε(x) dx

=
∫
Ωε

G√
D(σλpj , σλx)2(

k∑
j=1

ξσ,jPwjφε,j + O(ξ2
σ)) dx

= 1
π

log 1
σλ

∫
R2

2ξσ,iwiφε,i(1 + o(1)) dx.

Substituting the above equation into the first equation of (6.1), letting max{σ, D} → 0, and using the 
expansion of ξσ,j , we arrive at the following nonlocal eigenvalue problem (NLEP):

Δφj − φj + 2wφj −
2

1 + τλ

∫
R

2
+
wφj dx∫

R
2
+
w2 dx

w2 = λ0φj , j = 1, · · · , k. (6.5)

By Theorem 3.5 in [28], (6.5) has only stable eigenvalues if τ is small enough.
In conclusion, we have shown that the large eigenvalues of the k-peaked solutions given in Theorem 2.1

are all stable if τ is small enough.

7. Study of the small eigenvalues

Now we study the eigenvalue problem (6.1) with respect to small eigenvalues. Namely, we assume that 
λε → 0 as max{σ, D} → 0. We will show that the small eigenvalues in leading order are related to the 
matrix M(p0) given in (7.3) which is computed from the Green’s function. Our main result in this section 
says that if λε → 0, then in leading order

λε ∼ ξσσ0, (7.1)

where σ0 is an eigenvalue of M(p0). We will show that all the eigenvalues of M(p0) have negative real part 
provided that the eigenvector is orthogonal to (1, 1, ..., 1)T .

However, for the eigenvector (1, 1, ..., 1)T the eigenvalue of M(p0) is zero, the leading order term in the 
eigenvalue expansion vanishes and the next order term is needed to prove stability. To establish it we have 
to compute the contribution from the boundary curvature. It follows that for a local maximum point of the 
boundary curvature this eigenvalue has negative real part. Whereas the Green’s function part is of order 
ε3 log ξσ

εD , the part from the boundary curvature is of order ε3. Thus the small eigenvalues of (6.1) are all 
stable.

To compute the small eigenvalues, we need to expand the spike cluster solution to higher order. Then 
we expand the eigenfunction and compute the small eigenvalues. This will be done in Appendix B. The key 
estimates are given in Lemma 9.1.

We compute the small eigenvalues using Lemma 9.1. Comparing l.h.s. and r.h.s., we obtain

−ν2ξ
2
σM(p0)aε(1 + o(1)) = λεξσaε

∫
R

2
+

( ∂w
∂y1

)2 dy(1 + o(1)), (7.2)

where ν2 has been defined in (5.10).
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Further, we have

M(p0) = (mij(p0))ki,j=1, (7.3)

where

mij(p) =
[
[∇2

τ(pi)G0(σpi, σpi−1) + ∇2
τ(pi)G0(σpi, σpi+1)]δij

−[δi,j+1∇2
τ(pi)G0(σpi, σpi−1) + δi,j−1∇2

τ(pi)G0(σpi, σpi+1)]
]
.

Using the estimates for p0
i in (5.15) and (5.16), we have

mij(p0) = −h′′(p0)ν1

2ν2

εD

ξσ
log ξσ

εD
σ2

[
− (i− 1)(k + 1 − i)δj,i−1 − i(k − i)δj,i+1

+((i− 1)(k + 1 − i) + i(k − i))δij
]
.

This shows that if all the eigenvalues of M(p0) have positive real part, then the small eigenvalues are stable. 
On the other hand, if M(p0) has eigenvalues with negative real part, then there are eigenfunctions and 
eigenvalues to make the system unstable. Next we study the spectrum of the k × k matrix A defined by

as,s = (s− 1)(k − s + 1) + s(k − s), s = 1, · · · , k,
as,s+1 = as+1,s = −s(k − s), s = 1, · · · , k,
as,l = 0, |s− l| > 1.

We have the following result from Lemma 16 in [29]:

Lemma 7.1. The eigenvalues of the matrix A are given by

λn = n(n + 1), n = 0, · · · , k − 1. (7.4)

By Lemma 7.1, the eigenvalues of M(p0) are all positive except for a single eigenvalue zero with eigen-
vector (1, 1, . . . , 1)T .

Equation (7.2) shows that the small eigenvalues λε are

λε ∼ − ν2ξσ∫
R

2
+
( ∂w
∂y1

)2 dy
σ(M(p0)). (7.5)

We remark that the scaling of these small eigenvalues is

λε ∼ c5ε
3 log ξσ

εD

for some c5 < 0.
However, one of the eigenvalues of M(p0) is exactly zero, with eigenvector (1, 1, . . . , 1)T . To determine 

the sign of the real part of this eigenvalue, we have to expand to the next order. By considering contributions 
for the curvature of the boundary ∂Ω we have computed in Appendix B that for this eigenvalue

λε ∼ c6ε
3

for some c6 < 0.
To summarise, there are small eigenvalues of two orders which differ by the logarithmic factor log ξσ .
εD
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Remark 7.1. A corner can be considered as a point of infinite curvature. Although this case is not included 
in our analysis, we expect that there will be a stable spike cluster at an outgoing corner which is also a local 
one-sided maximum for the curvature on both sides of the corner such that a partial spike is located at the 
corner combined with a finite number of clustered spikes on each side of the corner.

8. Appendix A: linear theory

In this section we prove Proposition 4.1. We follow the Liapunov–Schmidt reduction method. Suppose 

that to the contrary, there exist sequences εn, σn, pn and Σn with εn, σn → 0 and Σn =
(

φn

ψn

)
∈ K⊥

εn,pn

such that
{

Δφn − φn + 2U
V φn − U2

V 2ψn = fn,

Δψn − σ2ψn + 2Uφn = gn,
(8.1)

where

‖πε,p ◦ fn‖L2(Ωε) → 0, (8.2)

‖ξ−1
σ gn‖L2(Ωε) → 0 (8.3)

and

‖φn‖H2(Ωε) + ‖ψn‖H2(Ωε) = 1. (8.4)

We now show that this is impossible. To simplify notation, we omit the index n. In the first step we show 
that the linearised problem given above tends to a limit problem as max{σ, D} → 0.

We define

φε,i = φ(x)χ(x− pi) for i = 1, · · · , k, (8.5)

and

φε,k+1 = φε −
k∑

i=1
φε,i. (8.6)

It is easy to see that φε,k+1 = o(1) in H2(Ωε), since it satisfies

Δφε,k+1 − φε,k+1 = o(1) in H2(Ωε).

We define ψε,i by
{

Δψε,i − σ2ψε,i + 2Uφε,i = 0, in Ωε,
∂ψε,i

∂ν = 0 on ∂Ωε.
(8.7)

Note that since ξ−1
σ ‖gn‖L2(Ωε) → 0, we also have ‖ψε,k+1‖H2(Ωε) = o(1).

Next by the equation satisfied by ψε, we have

ψε,n(x) =
∫

G√
D(σx, σy)(2Uφε − gn)(y) dy. (8.8)
Ωε
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So at x = pi, we calculate

ψε(pi) =
∫
Ωε

G√
D(σpi, σy)(2Uφε − gn)(y) dy

=
∫
Ωε

[ 1
π

log 1
σ|pi − y| + H̃(σpi, σy)]2Uφε(y) dy

+
∫
Ωε

G√
D(σpi, σy)gn(y) dy

= 2
∫
R

2
+

w(y)φε,i dy(1 + o(1)) + O(log 1
σ
‖gn‖L2(Ωε))

= 2
∫
R

2
+

w(y)φε,i dy + o(1).

Substituting the above equation into the first equation of (8.1), letting max{σ, D} → 0, we can show that

φε,i → φi in H2(R2
+), (8.9)

and

φi ∈ {φ ∈ H2(R2
+)|

∫
R

2
+

φ
∂w

∂y1
dy = 0} := K⊥

0 , (8.10)

where φi is solution of the following nonlocal problem:

Δφi − φi + 2wφi −
2
∫
R

2
+
wφi dy∫

R
2
+
w2 dy

w2(y) ∈ C⊥
0 , (8.11)

where C⊥
0 , K⊥

0 denote the orthogonal complements with respect to the scalar product of L2(R2
+) in the 

space of H2(R2
+) and L2(R2

+) respectively.
By Theorem 1.4 in [18], we know that φi = 0, i = 1, · · · , k.
By taking the limit in the equation satisfied by ψε, we see that this implies that ψε → 0 in H2(Ωε). This 

contradicts the assumption

‖φn‖H2(Ωε) + ‖ψn‖H2(Ωε) = 1. (8.12)

This proves the boundedness of the linear operator Lε,p.
To complete the proof of Proposition 4.1, we just need to show that conjugate operator to Lε,p (denoted 

by L∗
ε,p) is injective from K⊥

ε, to C⊥
ε,p. The proof for L∗

ε,p follows almost the same process as for Lε,p and 
therefore it is omitted.

The proof is complete.

9. Appendix B: computation of the small eigenvalues

In this appendix we will compute the small eigenvalues. First we expand the solution to a higher degree of 
accuracy than in Section 3. Then we expand the eigenfunctions and finally we calculate the small eigenvalues.
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9.1. Further expansion of the solution

In this subsection, we further improve our expansion to the solutions derived in Section 3.
First we define

ui(x) = uε(x)χε(x− pi), i = 1, · · · , k,

where uε is the exact boundary cluster solution derived in Section 3–5 and χε is the cutoff function given 
in (3.13). It is easy to see that

u(x) =
k∑

i=1
ui(x) + O(ε5).

We will derive an approximation to ui which is more accurate than that given in Section 3.
Our main idea is to start with a single boundary spike solution of the Gierer–Meinhardt system in a disk 

BR of radius R such that the curvature at the centres of the boundary spikes on the disk and the domain 
∂Ω agree. Further, the boundary spike solution in the disk is invariant under rotations of the solution which 
results in a zero eigenvalue. Then the small eigenvalue of the boundary spike solution in Ω can be computed 
by a perturbation analysis of the disk case.

The single boundary spike solution (u0, v0) in the ball BR with maxBR
u0 = u0(0, R) in polar coordinates 

solves the following system:
⎧⎨
⎩ ε2Δu0 − u0 + u2

0
TR[u2

0]
= 0 in BR,

∂u0
∂r = 0 on ∂BR,

(9.1)

where TR[u2
0] = v0 is the solution of the inhibitor equation

{
DΔv0 − v0 + u2

0 = 0 in BR,

∂v0
∂r = 0 on ∂BR.

(9.2)

It can be constructed from the ground state w following the approach in Section 3 by using a fixed-point 
argument in the space of even functions around α = 0 and no Liapunov–Schmidt reduction is needed.

Note that the single-boundary spike solution u0 is invariant under rotations of the solution. Therefore 
we can apply ∂

∂α in (9.1) and get
⎧⎨
⎩ ε2Δ∂u0

∂α − ∂u0
∂α + 2u0

∂u0
∂α

TR[u2
0]

− u2
0

(TR[u2
0])2

∂
∂αTR[u2

0] = 0 in BR,

∂2u0
∂α∂r = 0 on ∂BR.

(9.3)

As a preparation for this perturbation analysis, we represent the boundary ∂Ω in a neighbourhood of 
the centre of the spike pi in polar coordinates and deform it to a circle with the same curvature. This will 
imply that the perturbation of the boundary will only be in order ε3.

Near the point pi we have expanded the boundary ∂Ω in Section 3.1 using Cartesian coordinates. We 
have derived that ρ(0) = ρ′(0) = 0 and ρ′′(0) is the curvature of ∂Ω at pi. Recall that ρ was used to flatten 
the boundary ∂Ω near pi to a line.

Using polar coordinates (φ, r) such that x1 − p1 = r sinφ, x2 − p2 = R− r sinφ, the boundary ∂Ω can be 
represented as

r = f(φ).
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The radius R will be chosen such that ρ′′(0) = 1
R . We now derive the function f(φ) from the function 

ρ(x1 − p1) introduced in Section 3.1.
Substituting the Taylor expansion of ρ given in equation (3.8) into f(φ)2 gives

f(φ)2 = (x1 − p1)2 + (x2 − p2)2 = r2 sin2 φ + (R− ρ(r sinφ))2

= R2 + r2 sin2 φ− 2Rρ(r sinφ) + ρ2(r sinφ).

We expand

f(φ) = R + αφ + βφ2 + γφ3 + δφ4,

and compute the coefficients α, β, γ, δ by matching powers φi for i = 1, 2, 3, 4. First we get

α = 0.

Second we have

2β = R(1 − ρ′′(0)R)

which implies that

β = 0 provided ρ′′(0) = 1
R

and from now on we choose R such that this condition is satisfied. Third we compute

2Rγ = −1
3ρ

(3)(0)R4

which gives

γ = −1
6ρ

(3)(0)R3.

Finally, we get

2Rδ = −1
3R

2 + 1
3R

2 − 1
12ρ

(4)(0)R5 + 1
4

(
1
R

)2

R4

which gives

δ = − 1
24ρ

(4)(0)R4 + 1
8R.

To summarise, we have

f(φ) = R + 1
6f

(3)(0)φ3 + 1
24f

(4)(0)φ4 + O(φ5),

where f(φ) denotes the radius and φ the angle and

f (3)(0) = −ρ(3)(0)R3,

f (4)(0) = −ρ(4)(0)R4 + 3R.

The point φ = 0 with f(0) = R and f ′(0) = f ′′(0) = 0 corresponds to pi.
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Note that f(0) = R and f ′(0) = 0 follow from ρ(0) = ρ′(0) = 0.
Further, we have f ′′(0) = 0 due to the choice of the leading term f(0) = R. Since we have f(φ) = r, we 

get r = R + O(φ3) which enables us to replace r by R in the derivation of f(φ).
In polar coordinates, for r = R we get a point on ∂BR. We change variables such that for the variables 

(φ, r′) at r′ = R we get a point on ∂Ω. Thus r′ = R has to map into r = f(φ). This is achieved by defining 
r′ = r − f(φ) + R for each φ.

Then the Laplacian is transformed as follows:

Δ = Δ′ + 1
r2 (f ′(φ)2)∂φφ − 2

r2 f
′(φ)∂rφ − 1

r2 f
′′(φ)∂φ,

using partial derivatives ∂r = ∂
∂r etc. and

Δ = 1
r
∂r (r∂r) + 1

r2 ∂φφ,

Δ′ = 1
r′
∂r′ (r′∂r′) + 1

r′ 2
∂φφ

for the transformed variables (φ, r′).
We introduce rescaled variables (α, b) inside the spike such that

εα = φ, εb = R− r′.

Then in rescaled variables (α, b) we have

g(εα) = R− f(εα) = 1
6ρ

(3)(0)R3ε3α3 + 1
24ρ

(4)(0)R4ε4α4 − 1
8Rε4α4 + O(ε5α5).

This implies that in rescaled variables we get

Δ = Δ′ + 1
r2 (g′(εα)2)∂αα − 2

r2 g
′(εα)∂bα + ε

r2 g
′′(εα)∂α.

Using

g′(εα) = 1
2g

(3)(0)ε2α2 + 1
6g

(4)(0)ε3α3 + O(ε4α4)

and

g′′(εα) = g(3)(0)εα + 1
2g

(4)(0)ε2α2 + O(ε3α3),

we have

g′(εα) = O(ε2α2)

and

g′′(εα) = O(εα).

Thus second, third and fourth terms in the Laplacian are small and they can be estimated as follows: 
O(ε4α4), O(ε2α2) and O(ε2α), respectively.
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Comparing with Cartesian coordinates (z1, z2) for the ε-scale inside the spike used in Section 3.1, by 
elementary trigonometry we get

ε(z2 − p2) = R− (R− εb) cos(εα)

∼ εb + ε2
1
2Rα2 − ε3

1
2bα

2 + O(ε4)

and

ε(z1 − p1) = (R− εb) sin(εα)

∼ εRα− ε2αb− ε3
1
6Rα3 + O(ε4).

Now we approximate the exact solution for the activator uε as follows:

uε = w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4). (9.4)

Near the centre pi of each spike we have

ui = ξσ,iw̄i + ε3ξσ,iv̄
(1)
i + ε2ξσ,i(v̄(2)

i + v̄
(3)
i ) + O(ε4), (9.5)

where we have used the notation

w̄i(x) = ξ−1
σ,i w̄(x− pi)χε(x− pi), v̄

(j)
i (x) = ξ−1

σ,i v̄
(j)(x− pi)χε(x− pi) (9.6)

for i = 1, 2, . . . , k, j = 1, 2, 3 and χε is the cutoff function defined in (3.13).
Let us derive the terms in this expansion step by step. We start from the single boundary spike solution 

u0 defined in (9.1) in a ball of radius R such that ρ′′(0) = 1
R . Using polar coordinates, we can represent 

u0(εα, R− r) and this function satisfies the Neumann boundary condition in a ball:

∂u0

∂r

∣∣∣∣
r=R

= 0.

However, the function u0 does not satisfy the boundary condition at ∂Ω (and for r = R we reach the 
boundary of the disk (circle) but not the domain boundary ∂Ω). Recall that r − f(φ) = r′ − R. Thus, to 
get a function with a better approximation to the boundary condition at ∂Ω (and such that for r = R we 
reach ∂Ω), we define

w̄(εα, r′) = u0(εα, r).

Then for r′ = R, we have

w̄(εα,R) = u0(εα, f(εα)),

i.e. for r′ = R the arguments of the function w̄ are contained in ∂Ω and the arguments of u0 are contained 
in ∂BR. This means that the function f deforms the boundary to a circle (in the same way as in Section 3.1
ρ deforms the boundary to a straight line). Since the circle also takes into account the curvature it gives a 
better approximation to the boundary than the straight line and the approximate spike solution will give a 
better approximation to the exact solution than the approximations in Section 3.1. Note that the boundary 
spike solution in the ball is invariant under rotation (in the same way as the boundary spike is translation 
invariant in half space).
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Now we calculate the radial derivative of w̄ as follows:

∂w̄(εα, r′)
∂r′

|r′=R = ∂u0(εα, r)
∂r

|r=f(r) = 0. (9.7)

The outward unit normal vector in polar coordinates is given by

ν = 1√
f ′(φ)2 + f(φ)2

(−f ′(φ), f(φ)).

Using rescaled variables, this implies

ν = 1√
g′(εα)2 + (R− g(εα))2

(g′(εα), R− g(εα))

= 1√
1
4g

(3)(0)2ε4α4 + (R− 1
6g

(3)(0)ε3α3)2 + O(ε4α4)

×(1
2g

(3)(0)ε2α2 + 1
6g

(4)(0)ε3α3 + O(ε4α4), R− 1
6f

(3)(0)ε3α3)

Subtracting the radial unit vector er = (0, 1), this implies

ν − er =
(1
2g

(3)(0)ε2α2 + 1
6g

(4)(0)ε3α3, O(ε3α3))
R + O(ε3α3) .

Using that ‖w̄i − w‖H2(Ωε) = O(εα) and that w̄ satisfies (9.7), the outward normal derivative of w̄ is 
computed as

{
∂w̄i

∂ν =
(
∂w̄i

∂ν − ∂w̄i

∂r

)
+ ∂w̄i

∂r

= 1
Rw′(|y|)(1

2g
(3)(0)ε2α2 + 1

6g
(4)(0)ε3α3 + O(ε4α4)).

(9.8)

Now we compute the terms ε3v̄(1) (even around α = 0) and ε2v̄(2) (odd around α = 0) in the expansion 
(9.5) near pi such that the solution satisfies the Neumann boundary condition to higher order.

Let v̄(1)
i satisfy

{
Δv − v = 0 in BR,

∂v
∂b = 1

6Rg(4)(0)α3w′(|y|) on ∂BR.

Let v̄(2)
i be given by

{
Δv − v = 0 in BR,

∂v
∂b = 1

2Rg(3)(0)α2w′(|y|) on ∂BR.

Substituting the expansion (9.4) of the solution in the activator equation, we get

S1(w̄ + ε3v̄(1) + ε2v̄(2) + O(ε4), T [w̄ + ε3v̄(1) + ε2v̄(2) + O(ε4)])

=
k∑

ξσ,i((w̄i + ε3v̄
(1)
i + ε2v̄

(2)
i + O(ε4))2 − w̄2

i ) +
k∑

ξ2
σ,iw̄

2
i (

1
V (x) − 1

V (pi)
) + O(ξσε4).
i=1 i=1
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We calculate for x = pi + z

[(w̄i(x) + ε3v̄(1)(x) + ε2v̄(2)(x) + O(ε4)]2 − w̄2
i (x) = 2w̄i(z)(ε3v̄

(1)
i (z) + ε2v̄

(2)
i (z) + O(ε4))

:= ε3R̄1,i(z) + ε2R̄2,i(z) + O(ε4),

where R̄1,i(z) = 2w̄i(z)v(1)
i (z), R̄2,i = 2w̄i(z)v(2)

i (z). Further, we recall that by (4.4) we have

1
V (pi + z) − 1

V (pi)
= 1

V (pi)2
(−ξ2

σ,iR1(z) − ξ2
σ,iR2(z) + h.o.t). (9.9)

By the reduced problem in Section 5, we have

ξσ,iR̄2,i − ξ2
σ,iw̄

2
iR2 + O(ξσε3) ⊥

∂w̄i

∂α
.

Therefore we can add another contribution v̄(3)
i to the solution such that ε2v̄

(3)
i satisfies

{
L̃(i)v = ε2R̄2,i − ξσ,iw̄

2
iR2 + O(ξσε3) in Ω,

∂v
∂ν = 0 on ∂Ω,

where

L̃(i)φ = Δφ− φ + 2ξσ,i(w̄i + ε2v̄
(2)
i )φ

T
[
ξ2
σ,i(w̄i + ε2v̄

(2)
i )2

]

−
ξ2
σ,i(w̄i + ε2v̄

(2)
i )2

T
[
ξ2
σ,i(w̄i + ε2v̄

(2)
i )2

]2 T
[
2ξσ,i(w̄i + ε2v̄

(2)
i )φ

]
.

Setting

v̄(3) =
k∑

i=1
ξσ,iv̄

(3)
i

and adding this part to the solution will cancel out the odd terms (with respect to α = 0) of order ε2 in the 
activator equation and we get

S1(w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4), T [w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4)])

=
k∑

i=1
2ξσ,iε3w̄iv̄

(1)
i +

k∑
i=1

ξ2
σ,iw̄

2
i (−

1
(V (pi))2

1
2V

′′(pi)(x− pi)2) + O(ε4).

Taking the derivative ∂
∂α in this relation near x = pi, we compute

∂

∂α
S1(w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4), T [w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4)])

= 2
k∑

ξσ,i
∂w̄i(z)
∂α

(ε3v̄
(1)
i (z) + ε2(v̄(2)

i (z) + v̄(3)(z)))

i=1



W. Ao et al. / J. Math. Pures Appl. 121 (2019) 1–46 35
+2
k∑

i=1
ξσ,iw̄i(z)

∂

∂α
(ε3v̄

(1)
i (z) + ε2(v̄(2)

i (z) + v̄(3)(z)))

+
k∑

i=1
ξ2
σ,i2w̄i

∂w̄i

∂α
( 1
V (x) − 1

V (pi)
)

+
k∑

i=1
ξ2
σ,iw̄

2
i

∂

∂α
( 1
V (x) − 1

V (pi)
) + O(ε4)

=
k∑

i=1
2ξσ,iε3

(
∂w̄i

∂α
v̄
(1)
i + w̄i

∂v̄
(1)
i

∂α

)

+
k∑

i=1
ξ2
σ,iw̄

2
i (−

1
(V (pi))2

1
2V

′′(pi)(x− pi)2) + O(ε4).

On the other hand,

∂

∂α
S1(w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4), T [w̄ + ε3v̄(1) + ε2(v̄(2) + v̄(3)) + O(ε4)])

= L(i)

[
ξσ,i(

∂w̄i

∂α
+ ε3

∂v̄
(1)
i

∂α
+ ε2

∂v̄
(2)
i

∂α
+ ε2

∂v̄(3)

∂α
)
]

+ O(ε4), (9.10)

where

L(i)φ = Δφ− φ + 2ξσ,i(w̄i + ε3v̄
(1)
i + ε2v̄

(2)
i + ε2v̄

(3)
i )φ

T
[
ξ2
σ,i(w̄i + ε3v̄

(1)
i + ε2v̄

(2)
i + ε2v̄

(3)
i )2

]

−
ξ2
σ,i(w̄i + ε3v̄

(1)
i + ε2v̄

(2)
i + ε2v̄

(3)
i )2

T
[
(w̄i + ε3v̄

(1)
i + ε2v̄

(2)
i + ε2v̄

(3)
i )2

]2 T
[
2ξσ,i(w̄i + ε3v̄

(1)
i + ε2v̄

(2)
i + ε2v̄

(3)
i )φ

]
.

Finally, by an expansion similar to (9.8) we have

∂v̄
(3)
i

∂ν
= O(ε3) on ∂Ω

and

∂

∂ν

∂v̄
(3)
i

∂α
= O(ε3) on ∂Ω.

9.2. Expansion of the eigenfunction

We define the approximate kernels to be

Kε,p := Span{ ∂ui

∂τ(pi)
, i = 1, · · · , k},

Cε,p := Span{ ∂ui
, i = 1, · · · , k}.
∂τ(pi)
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Then we expand the eigenfunction as follows:

φε =
k∑

i=1
ai,ε

(
∂w̄i

∂α
+ ε3v̄

(1)
eig,i + ε2v̄

(2)
eig,i + ε2

∂v̄
(3)
i

∂α

)
+ φ⊥

ε + O(ε4),

:=
k∑

i=1
aε,iφi,ε + φ⊥

ε + O(ε4), (9.11)

where φ⊥
ε ∈ K⊥

ε,p.
Suppose that ‖φε‖H2(Ωε) = 1. Then |aj,ε| ≤ C. Let us put

aε := (a1,ε, · · · , ak,ε)T (9.12)

Then for a subsequence and

ai,0 = lim
ε→0

ai,ε, a0 := (a1,0, · · · , ak,0). (9.13)

The decomposition of φε in (9.11) implies that

ψε =
k∑

i=1
ai,εψi,ε + ψ⊥

ε , (9.14)

where ψi,ε satisfies

{
Δψi,ε − σ2(1 + τλε)ψi,ε + 2uφi,ε = 0 in Ωε
∂ψi,ε

∂ν = 0 on ∂Ωε
(9.15)

which we also write as ψi,ε = Tτλε
[φi,ε], and ψ⊥

ε is given by

{
Δψ⊥

ε − σ2(1 + τλε)ψ⊥
ε + 2uφ⊥

ε = 0 in Ωε

∂ψ⊥
ε

∂ν = 0 on ∂Ωε

(9.16)

which we also represent as ψ⊥
ε = Tτλε

[φ⊥
ε ].

Let us first consider the leading term of φε. For ∂w̄i

∂α we get, using (9.8),

⎧⎨
⎩Δ∂w̄i

∂α − ∂w̄i

∂α + 2w̄i
∂w̄i
∂α

T [w̄2
i ] − w̄2

i

(T [w̄2
i ])2

∂
∂αT [w̄2

i ] = O(ε4α3) in Ω,

∂
∂b

∂w̄i

∂α = 1
R

∂w′(|y|)
∂α (1

2g
(3)(0)ε2α2 + 1

6g
(4)(0)ε3α3)(1 + O(εα)) on ∂Ω.

Therefore, expanding the boundary condition as we did above for w̄i, we define v̄(1)
eig,i as the unique solution 

of
⎧⎨
⎩

Δv − v = 0 in BR,

∂v
∂b = 1

6R
∂w′(|y|)

∂α g(4)(0)ε3α3 on ∂BR.

Similarly, let v̄(2)
eig,i be the unique solution of
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⎧⎨
⎩

Δv − v = 0 in BR,

∂v
∂b = 1

2R
∂w′(|y|)

∂α g(3)(0)ε2α2 on ∂BR.

Let us compare this with the derivative ∂v̄
(1)

∂α which satisfies

{
Δv − v = 0
∂v
∂b = ∂

∂α [ 1
6Rw′(|y|)g(4)(0)ε3α3] on ∂BR.

Further, ∂v̄
(2)

∂α solves
{

Δv − v = 0 in BR,

∂v
∂b = ∂

∂α [ 1
2Rw′(|y|)g(3)(0)ε2α2] on ∂BR.

Using (9.10), we get

L

[
k∑

i=1
ai,ε

(
∂w̄i

∂α
+ ε3v̄

(1)
eig,i + ε2v̄

(2)
eig,i + ε2

∂v̄
(3)
i

∂α

)]

−L

[
k∑

i=1
ai,ε

(
∂w̄i

∂α
+ ε3

∂v̄
(1)
i

∂α
+ ε2

∂v̄
(2)
i

∂α
+ ε2

∂v̄
(3)
i

∂α

)]

= 2
k∑

i=1
ai,εε

3w̄iv̄
(1)
R,i

+
k∑

i=1
ai,ε(

w̄2
i

v2
∂v

∂τ(pi)
− 1

ξσ,i

u2

v2 ψi,ε) + O(ε4),

where

Lφ = Δφ− φ + 2(w̄ + ε3v̄(1) + ε2v̄(2) + ε2v̄(3))φ
T
[
(w̄ + ε3v̄(1) + ε2v̄(2) + ε2v̄(3))2

]
− (w̄ + ε3v̄(1) + ε2v̄(2) + ε2v̄(3))2

T
[
(w̄ + ε3v̄(1) + ε2v̄(2) + ε2v̄(3))2

]2 T
[
2ξσ,i(w̄ + ε3v̄(1) + ε2v̄(2) + ε2v̄(3))φ

]

and the remainder v̄(1)
R,i is given by the difference of the previous two contributions as follows:

v̄
(1)
R,i = v̄

(1)
eig,i − ∂v̄(1)

∂α which satisfies
{

Δv − v = 0 in BR,

∂v
∂b = − 1

6Rw′(|y|)g(4)(0)3α2 (1 + O(εα)) on ∂BR.
(9.17)

We note that v̄(1)
R,i is an even function around α = 0.

Substituting the decompositions of φε and ψε into (6.1), we have

L

[
k∑

i=1
ai,ε

(
∂w̄i

∂α
+ ε3v̄

(1)
eig,i + ε2v̄

(2)
eig,i + ε2

∂v̄
(3)
i

∂α

)
+ φ⊥

ε

]

=
k∑

2ε3w̄iv̄
(1)
R,i
i=1
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+ 1
ξσ

k∑
i=1

ai,ε(
u2
i

v2
∂v

∂τ(pi)
− u2

v2 ψi,ε)

+Δφ⊥
ε − φ⊥

ε + 2u
v
φ⊥
ε − u2

v2 ψ
⊥
ε − λεφ

⊥
ε

= 1
ξσ

λε

k∑
i=1

ai,ε
∂ui

∂τ(pi)
+ O(ε4). (9.18)

Set

I3 =
k∑

i=1
2ε3w̄iv̄

(1)
R,i,

I4 = 1
ξσ

k∑
i=1

ai,ε(
u2
i

v2
∂v

∂τ(pi)
− u2

v2 ψi,ε)

and

I5 = Δφ⊥
ε − φ⊥

ε + 2u
v
φ⊥
ε − u2

v2 ψ
⊥
ε − λφ⊥

ε .

We first compute

I4 = 1
ξσ

k∑
i=1

ai,ε(
u2
i

v2
∂v

∂τ(pi)
− u2

v2 ψi,ε) + O(ε4)

= 1
ξσ

k∑
i=1

ai,ε(
u2
i

v2
∂v

∂τ(pi)
− u2

i

v2 ψi,ε) −
1
ξσ

k∑
i=1

∑
j �=i

ai,ε
u2
j

v2 ψi,ε + O(ε4).

Since

1
ξσ

k∑
i=1

∑
|i−j|≥2

ai,ε
u2
j

v2 ψi,ε

= ξσ

k∑
i=1

∑
|i−j|≥2

|∇pi
G√

D(σλpi, σλpj)|(1 + o(1))

= O(ξσσ log ε(εD
ξσ

log εD

ξσ
)2)

= O(σ(εD
ξσ

log εD

ξσ
)2),

we can estimate I4 as follows:

I4 = 1
ξσ

k∑
i=1

k∑
j=1

ai,ε
u2
j

v2 ( ∂v

∂τ(pj)
δij − ψi,ε)) + O(ε4)

= − 1
ξσ

k∑
i=1

∑
|i−j|=1

ai,ε
u2
j

v2 ψi,ε + O(ε4) + O(σ2λε) + O(σ(εD
ξσ

log εD

ξσ
)2),

where we use the equation satisfied by ψi,ε.
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9.3. Expansion of the small eigenvalues

Multiplying both sides of (9.18) by ∂ul

∂τ(pl) and integrating over Ωε, we have

r.h.s = λε
1
ξσ

k∑
i=1

ai,ε

∫
Ωε

∂ui

∂τ(pi)
∂ul

∂τ(pl)
dx

= λεξσal,ε

∫
R

2
+

( ∂w
∂y1

)2 dy(1 + o(1)).

Using the estimate I4, we have

l.h.s =
∫
Ωε

(Δφ⊥
ε − φ⊥

ε + 2u
v
φ⊥
ε − u2

v2 ψ
⊥
ε − λεφ

⊥
ε ) ∂ul

∂τ(pl)
dx

+
∫
Ωε

1
ξσ

k∑
i=1

ai,ε(
u2
i

v2
∂v

∂τ(pi)
− u2

v2 ψi,ε)
∂ul

∂τ(pl)
dx + O(ε4)

=
∫
Ωε

u2
l

v2
∂v

∂τ(pl)
φ⊥
ε dx−

∫
Ωε

u2

v2 ψ
⊥
ε

∂ul

∂τ(pl)
dx− λε

∫
Ωε

φ⊥
ε

∂ul

∂τ(pl)
dx

+
∫
Ωε

1
ξσ

k∑
i=1

k∑
j=1

ai,ε
u2
j

v2 ( ∂v

∂τ(pj)
δij − ψi,ε))

∂ul

∂τ(pl)
dx

+
k∑

i=1

∫
Ωε

2ai,εε3w̄iv̄
(1)
R,i

∂ul

∂τ(pl)
+ O(ε4)

= J1,l + J2,l + J3,l + J4,l + J5,l + O(ε4),

where Ji,l are defined as the integrals in the last equality. We divide our proof into several steps.
The following lemma contains the key estimates:

Lemma 9.1. We have

J1,l = o(ξ2
σσ

2 εD

ξσ
), (9.19)

J2,l = o(ξ2
σσ

2 εD

ξσ
), (9.20)

J3,l = o(ξσλε), (9.21)

J4,l = (
∫
R

2
+

w2 dy

∫
R

2
+

w2 ∂w

∂y1
y1 dy)ξ2

σ(1 + o(1)) ×
[
[
∑

|i−l|=1

∇2
τ(pl)G

√
D(σpi, σpl)]al,ε

−[al−1,ε∇2
τ(pl)G

√
D(σpl, σpl−1) + al+1,ε∇2

τ(pl)G
√
D(σpl, σpl+1)]

]
+ o(ξ2

σσ
2 εD

ξσ
) (9.22)

J5,l = ε3ξσ,lal,ε
3
4ν1

∂2

∂τ(εpl)2
h(εpl) + o(ξ2

σσ
2 εD

ξσ
), (9.23)

where ai,ε has been defined in (9.11).
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Proof. We first study the asymptotic behaviour of ψj,ε.
Note that for l �= k, we have

ψk,ε(pl) =
∫
Ωε

G√
D(σλpl, σλy)2uφk,ε(y) dy (9.24)

= ∇τ(pk)G√
D(σλpl, σλpk)

∫
R

2
+

2ξ2
σ,kw

∂w

∂y1
y dy + O(ξ2

σσ
2 εD

ξσ
)

= ∇τ(pk)G√
D(σpl, σpk)

∫
R

2
+

2ξ2
σ,kw

∂w

∂y1
y dy(1 + O(λε log ε)) + o(ξ2

σσ
2 εD

ξσ
).

Next we compute ψl,ε − ∂v
∂τ(pl) near pl:

v(x) =
∫
Ωε

G√
D(σx, σy)u2(y) dy

=
∫
Ωε

1
π

log 1
σ|x− y|u

2
l (y) dy +

∫
Ωε

H̃(σx, σy)u2
l (y) dy

+
∑
i�=l

∫
Ωε

G√
D(σx, σy)u2

i (y) dy + O(ε4),

so

∂v

∂τ(pl)
(x) =

∑
|i−l|=1

∇τ(pi)G
√
D(σx, σpi)ξ2

σ,i

∫
R

2
+

w2 dy + O(ξ2
σσ| log ε|(εD

ξσ
log εD

ξσ
)2)

=
∑

|i−l|=1

∇τ(pi)G
√
D(σx, σpl)ξ2

σ,i

∫
R

2
+

w2 dy + o(ξ2
σσ

2 εD

ξσ
),

where we have used the relation e−
1√
D � ε.

Thus

∂v

∂τ(pl)
− ψl,ε(pl) =

∑
|i−l|=1

∇τ(pl)G
√
D(σpl, σpi)ξ2

σ,i

∫
R

2
+

w2 dy

+o(ξ2
σσ

2 εD

ξσ
). (9.25)

Combining (9.24) and (9.25), we have

(ψi,ε −
∂v

∂τ(pi)
δil)(pl) = ∇τ(pi)G

√
D(σpl, σpi)(2ξ2

σ,i

∫
R

2
+

w
∂w

∂y1
y1 dy)[δi,l−1 + δi,l+1]

−δil
∑

|m−l|=1

∇τ(pl)G
√
D(σpl, σpm)(ξ2

σ,m

∫
R

2
+

w2 dy)

+o(ξ2
σσ

2 εD ) + o(ξ2
σλε). (9.26)
ξσ
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Similarly, we have the following:

ψi,ε(pl + (y1, 0)) − ψi,ε(pl) (9.27)

=
∫
Ωε

(G√
D(σλ(pl + y), σλx) −G√

D(σλpl, σλx))2uφi,ε(x) dx

= 2ξ2
σ,i∇τ(pi)∇τ(pl)G

√
D(σλpl, σλpi)y1

∫
R

2
+

w
∂w

∂x1
x1 dx + O(σ3ξ2

σ

εD

ξσ
log εD

ξσ
y2)

= 2ξ2
σ,i∇τ(pi)∇τ(pl)G

√
D(σλpl, σλpi)y1

∫
R

2
+

w
∂w

∂x1
x1 dx[δl,i−1 + δl,i+1]

+O(σ3ξ2
σ

εD

ξσ
log εD

ξσ
y2) + O(ξ2

σσ
2 log ε(εD

ξσ
log εD

ξσ
)2y)

= 2ξ2
σ,i∇τ(pi)∇τ(pl)G

√
D(σpl, σpi)y1

∫
R2

+

w
∂w

∂x1
x1 dx[δl,i−1 + δl,i+1]

+O(σ3ξ2
σ

εD

ξσ
log εD

ξσ
y2) + O(ξ2

σσ
2 log ε(εD

ξσ
log εD

ξσ
)2y) + o(ξ2

σλεy)

for i �= l and

(ψl,ε −
∂v

∂τ(pl)
)(pl + (y1, 0)) − (ψl,ε −

∂v

∂τ(pl)
)(pl) (9.28)

=
∑

|i−l|=1

ξ2
σ,i∇τ(pi)∇τ(pl)G

√
D(σpi, σpl)y1

∫
R

2
+

w2 dx

+O(σ3ξ2
σ

εD

ξσ
log εD

ξσ
y2) + O(ξ2

σσ
2 log ε(εD

ξσ
log εD

ξσ
)2y) + o(ξ2

σλεy).

Thus we have for J4,l,

J4,l = 1
ξσ

k∑
i,j=1

∫
Ωε

ai,ε
u2
j

v2 ( ∂v

∂τ(pj)
δij − ψi,ε)

∂ul

∂τ(pl)
dx

= 1
ξσ

k∑
i,j=1

∫
Ωε

ai,ε
u2
j

v2 ( ∂v

∂τ(pj)
δij − ψi,ε)(pl)

∂ul

∂τ(pl)
dx

+ 1
ξσ

k∑
i,j=1

∫
Ωε

ai,ε
u2
j

v2 [( ∂v

∂τ(pj)
δij − ψi,ε)(x) − ( ∂v

∂τ(pj)
δij − ψi,ε)(pl)]

∂ul

∂τ(pl)
dx

= J6,l + J7,l.

For J6,l, we have from (9.26)
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J6,l = 1
ξσ

k∑
i,j=1

∫
Ωε

ai,ε
u2
j

v2 ( ∂v

∂τ(pj)
δij − ψi,ε)(pl)

∂ul

∂τ(pl)
dx

=
k∑
i

1
ξσ

( ∂v

∂τ(pl)
δil − ψi,ε)(pl)

∫
Ωε

ai,ε
u2
l

v2
∂ul

∂τ(pl)
dx

+
k∑

i=1

∑
j �=l

1
ξσ

( ∂v

∂τ(pj)
δij − ψi,ε)(pl)

∫
Ωε

ai,ε
u2
j

v2
∂ul

∂τ(pl)
dx = o(ξ2

σσ
2 εD

ξσ
).

Similarly, using (9.27), (9.28), (5.15) and (5.16), we get

J7,l = 1
ξσ

k∑
i,j=1

∫
Ωε

ai,ε
u2
j

v2 [( ∂v

∂τ(pj)
δij − ψi,ε)(x) − ( ∂v

∂τ(pj)
δij − ψi,ε)(pl)]

∂ul

∂τ(pl)
dx

= 1
ξσ

k∑
i=1

ai,ε

∫
Ωε

u2
i

v2 [( ∂v

∂τ(pi)
− ψi,ε)(x) − ( ∂v

∂τ(pi)
− ψi,ε)(pl)]

∂ul

∂τ(pl)
dx

−
k∑

i=1

∑
j �=i

1
ξσ

∫
Ωε

ai,ε
u2
j

v2 [ψi,ε(x) − ψi,ε(pl)]
∂ul

∂τ(pl)
dx

= 1
ξσ

∫
Ωε

al,ε
u2
l

v2 [( ∂v

∂τ(pl)
− ψl,ε)(x) − ( ∂v

∂τ(pl)
− ψl,ε)(pl)]

∂ul

∂τ(pl)
dx

− 1
ξσ

∑
|i−l|=1

∫
Ωε

ai,ε
u2
l

v2 [ψi,ε(x) − ψi,ε(pl)]
∂ul

∂τ(pl)
dx

+o(ξ2
σσ

2 εD

ξσ
)

= (
∫
R

2
+

w2 dy

∫
R

2
+

w2 ∂w

∂y1
y1 dy)[

∑
|i−l|=1

ξ2
σ,i∇2

τ(pl)G
√
D(σpi, σpl)]al,ε

+(2
∫
R

2
+

w
∂w

∂y1
y1 dy

∫
R

2
+

w2 ∂w

∂y1
y1 dy)

×[ξ2
σ,l−1al−1,ε∇2

τ(pl)G
√
D(σpl, σpl−1) + ξ2

σ,l+1al+1,ε∇2
τ(pl)G

√
D(σpl, σpl+1)]

+o(ξ2
σσ

2 εD

ξσ
)

= (
∫
R

2
+

w2 dy

∫
R

2
+

w2 ∂w

∂y1
y1 dy)ξ2

σ(1 + o(1)) ×
[
[
∑

|i−l|=1

∇2
τ(pl)G

√
D(σpi, σpl)]al,ε

−[al−1,ε∇2
τ(pl)G

√
D(σpl, σpl−1) + al+1,ε∇2

τ(pl)G
√
D(σpl, σpl+1)]

]
+ o(ξ2

σσ
2 εD

ξσ
),

where we have used the relation

2
∫
2

w
∂w

∂y1
y1 dy = −

∫
2

w2 dy.
R+ R+
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Combining the above two estimates, we have

J4,l = (
∫
R

2
+

w2 dy

∫
R

2
+

w2 ∂w

∂y1
y1 dy)ξ2

σ(1 + o(1)) ×
[
[
∑

|i−l|=1

∇2
τ(pl)G

√
D(σpi, σpl)]al,ε

−[al−1,ε∇2
τ(pl)G

√
D(σpl, σpl−1) + al+1,ε∇2

τ(pl)G
√
D(σpl, σpl+1)]

]
+ o(ξ2

σσ
2 εD

ξσ
),

and this proves (9.22).
Using

1
R

∂w

∂α
= w′(|y|)(1 + O(εα))

and

1
R4 g

(4)(0) = ∂2

∂τ(εpi)2
h(εpi) (1 + O(ε|pi|)),

we can evaluate the integral J5,l.
A computation analogous to (5.6) gives

J5,l =
k∑

i=1
2ε3aε,i

∫
Ωε

w̄iv̄
(1)
R,i

∂ul

∂τ(pl)

= ξσ,lε
3aε,l

∫
BR

2wv̄(1)
R

1
r

∂w

∂α
r (1 + O(εα)) dr dα

= ξσ,lε
3aε,l

∫
BR

−1
r
[(Δ − 1)∂w

∂α
]v̄(1)

R,l r (1 + O(εα)) dr dα

= ξσ,lε
3aε,l

∫
∂BR

− 1
R

(
∂w

∂α

∂v̄
(1)
R,l

∂b
− v̄

(1)
R,l

∂

∂b

∂w

∂α

)
R (1 + O(εα)) dα

= ε3ξσ,laε,l

∫
R

(w′)2 1
6R2 g

(4)(0)3y2
1

R2 (1 + O(εy1)) dy1

= ε3ξσ,laε,l
3

2R4 ν1g
(4)(0) + o(ξ2

σσ
2 εD

ξσ
)

= ε3ξσ,laε,l
3
2ν1

∂2

∂τ(εpl)2
h(εpl) + o(ξ2

σσ
2 εD

ξσ
), (9.29)

where the constant ν1 > 0 has been defined in (5.7). Thus

J5,l = ε3ξσ,lal,ε
3
2ν1

∂2

∂τ(εpl)2
h(εpl) + o(ξ2

σσ
2 εD

ξσ
).

From the estimates on I3 and I4, we know that

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I3‖L2(Ωε) ≤ Cξσσ

εD

ξσ
log εD

ξσ
. (9.30)

Next by the definition of J1,l, using (9.30)
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J1,l =
∫
Ωε

u2
l

v2
∂v

∂τ(pl)
φ⊥
ε dx

= O(ξ2
σσ

εD

ξσ
log εD

ξσ
)‖φ⊥

ε ‖H2(Ωε)

= o(ξ2
σσ

2 εD

ξσ
). (9.31)

We have obtained (9.19). Next we estimate J2,l:

J2,l = −
∫
Ωε

u2

v2 ψ
⊥
ε

∂ul

∂τ(pl)
dx

= −
∫
Ωε

u2
l

v2 ψ
⊥
ε

∂ul

∂τ(pl)
dx + O(ε4)

= −
∫
Ωε

u2
l

v2 ψ
⊥
ε (pl)

∂ul

∂τ(pl)
dx−

∫
Ωε

u2
l

v2
∂ul

∂τ(pl)
(ψ⊥

ε (x) − ψ⊥
ε (pl)) dx + O(ε4)

= −J8,l − J9,l + O(ε4).

By the equation satisfied by ψ⊥
ε , we have

ψ⊥
ε (pl) =

∫
Ωε

G√
D(σλpl, σλx)2uφ⊥

ε (x) dx

= O(ξσσ
εD

ξσ
log εD

ξσ
).

Further,

ψ⊥
ε (pl + y) − ψ⊥

ε (pl) =
∫
Ωε

[G√
D(σλ(pl + y), σλx) −G√

D(σλpl, σλx)]2uφ⊥
ε (x) dx

=
∫
Ωε

[G√
D(σλ(pl + y), σλx) −G√

D(σλpl, σλx)]2
k∑

j=1
ujφ

⊥
ε (x) dx + O(ε4)

= O(ξσσ3 εD

ξσ
log εD

ξσ
y)

We have by the estimate for ∂v
∂τ(pl) ,

J8,l = ψ⊥
ε (pl)

∫
Ωε

u2
l

v2
∂ul

∂τ(pl)
dx

= ψ⊥
ε (pl)(

∫
Ωε

2
3
u3
l

v3
∂v

∂τ(pl)
+ O(ε4))

= O(ξ3
σσ

2(εD
ξσ

log εD

ξσ
)2) = o(ξ2

σσ
2 εD

ξσ
),

and



W. Ao et al. / J. Math. Pures Appl. 121 (2019) 1–46 45
J9,l =
∫
Ωε

u2
l

v2
∂ul

∂τ(pl)
(ψ⊥

ε (x) − ψ⊥
ε (pl)) dx

= O(ξ2
σσ

3 εD

ξσ
log εD

ξσ
) = o(ξ2

σσ
2 εD

ξσ
)

Thus we have

J2,l = o(ξ2
σσ

2 εD

ξσ
), (9.32)

and (9.20) follows. Last we consider J3,l,

J3,l = λε

∫
Ωε

φ⊥
ε

∂ul

∂τ(pl)
dx

= O(ξ2
σσ

εD

ξσ
log εD

ξσ
λε) = o(ξσλε). (9.33)

Thus (9.21) follows. �
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