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Abstract

Motivation: A deleterious amino acid change in a protein can be compensated by a second-site

rescue mutation. These compensatory mechanisms can be mimicked by drugs. In particular, the lo-

cation of rescue mutations can be used to identify protein regions that can be targeted by small

molecules to reactivate a damaged mutant.

Results: We present the first general computational method to detect rescue sites. By mimicking

the effect of mutations through the application of forces, the double force scanning (DFS) method

identifies the second-site residues that make the protein structure most resilient to the effect of

pathogenic mutations. We tested DFS predictions against two datasets containing experimentally

validated and putative evolutionary-related rescue sites. A remarkably good agreement was found

between predictions and experimental data. Indeed, almost half of the rescue sites in p53 was

correctly predicted by DFS, with 65% of remaining sites in contact with DFS predictions. Similar

results were found for other proteins in the evolutionary dataset.

Availability and implementation: The DFS code is available under GPL at https://fornililab.github.

io/dfs/

Contact: m.tiberti@qmul.ac.uk or a.fornili@qmul.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A single amino acid change can significantly disrupt the function of

a protein by affecting its structure, dynamics and stability and the

interaction with its partners. Indeed, a wide range of inherited and

somatic diseases has been associated with protein missense muta-

tions (Gao et al., 2015; Lu et al., 2015; Studer et al., 2013).

Interestingly, it has been shown that inactive mutants can be par-

tially or totally reactivated by additional mutations occurring at dif-

ferent positions of the same protein (intragenic rescue or suppressor

mutations) (Baroni et al., 2004; Kondrashov et al., 2002; Poon

et al., 2005). Early studies estimated that �80% of deleterious

mutations in an organism can be compensated by at least another

mutation and �80% of these suppressor mutations occur in the

same gene as the original mutation (Poon et al., 2005). A prototyp-

ical example of protein that can be reactivated is the tumour sup-

pressor p53: several mutations have been found to restore p53

function after disruption by single pathogenic mutations in the core

DNA binding domain (Joerger et al., 2005).

A remarkable aspect of rescue mutations is that they can be ex-

ploited for drug discovery (Baroni et al., 2004; Chen et al., 2010).

Indeed, the spatial location of rescue mutations in the p53 structure
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has been used as a guide to design new anti-cancer drugs. For ex-

ample, a region previously identified as rich in rescue mutations was

recently targeted in a computer-aided drug discovery study

(Wassman et al., 2013). The predicted compound was shown to ef-

fectively reactivate a severely compromised p53 mutant in human

cancer cells.

In principle, rescue mutations could be detected by systematic-

ally testing with specific functional assays all the possible combin-

ations of double or multiple mutations in a protein, but this can

easily result in a very large number of mutants to be assessed

(Baronio et al., 2010). The discovery of new rescue mutations could

be accelerated by in silico tools able to perform complete screenings

and to identify the best candidates for further experimental valid-

ation. For drug design, it would be particularly important to identify

rescue sites that act through intra-molecular mechanisms, i.e. that

can rescue the protein function by recovering intrinsic properties of

the protein and not by directly interacting with partners. Indeed,

these sites are more likely to be successfully mimicked by a small

molecule without the need to interfere with protein–protein

interactions.

Despite their importance, no general method based on physical

principles is currently available for the computational prediction of

intra-molecular rescue sites. Predictors based on machine learning

methods are available, but only for specific cases such as p53, where

a large amount of experimental information on rescue mutants

could be used to train the model (Danziger et al., 2009; Huang

et al., 2011; Ramani and Jacob, 2013).

The comparison of human and non-human sequences of evolu-

tionarily related proteins has provided some insight into rescue

mechanisms observed during evolution (evolutionary compensatory

mechanisms) (DePristo et al., 2005; Poon et al., 2005). In particu-

lar, compensated pathogenic mutations have been found, where the

mutated amino acid is part of the wild type sequence of non-human

homologues (Bare�si�c et al., 2010; Ferrer-Costa et al., 2007;

Kondrashov et al., 2002). Sequence and structural analyses of these

mutations have provided information on their frequency, type of

amino acid change and location in the 3D structure. However, in

this type of studies (i) it is difficult to identify with certainty the

compensatory mutations associated to a specific compensated

pathogenic mutation, because of the large number of divergent pos-

itions usually found in the alignments of human and non-human se-

quences (Kondrashov et al., 2002); (ii) it is not possible to

distinguish between compensatory mechanisms mediated by inter-

molecular and intra-molecular effects (Ferrer-Costa et al., 2007);

(iii) not all the possible cases of functional rescue are analysed, but

only those fixed during evolution and (iv) compensatory effects are

often assumed to be short-ranged or local (Bare�si�c et al., 2010;

Ferrer-Costa et al., 2007). Although this last assumption might be

true in many cases, global suppressor mutations, i.e. mutations that

can rescue multiple deleterious mutations, have been observed in

several proteins (DePristo et al., 2005). Moreover, allosteric rescue

mutations have been observed in different cases (Dokholyan, 2016;

Liu and Nussinov, 2008).

In this work, we introduce a general method to identify potential

rescue sites that uses intra-molecular mechanisms mediated by back-

bone dynamics. The method is based on the simultaneous perturb-

ation of candidate pathogenic-site/rescue-site pairs through the

application of external forces and the measurement of the resulting

structural variation. All the possible pairs in the protein are scanned

and a rescue effect is detected when the combined perturbation of

the two sites affects the protein structure less than the single perturb-

ation of the pathogenic site. This approach, which in the following

will be referred to as double force scanning (DFS), is unique in that

(i) it is based on first principles, with no parameters introduced to

reproduce specific rescue effects, (ii) only the native structure of the

protein is needed as input and (iii) no assumption is made on the dis-

tance between rescue and rescued sites.

DFS predictions were compared with reference rescue sites,

derived both from a dataset of experimental rescue mutants of p53

and from a dataset of evolutionary compensatory mutations in 10

different proteins. Remarkably, about half of the rescue sites in p53,

including the global suppressor region, were predicted by DFS, with

65% of remaining rescue sites in close contact with DFS predictions.

Similar results were found for other proteins in the evolutionary

dataset.

2 Materials and methods

2.1 The DFS method
The DFS method is designed to detect rescue sites in a protein i.e. resi-

dues that upon mutation can counteract the effects of deleterious mu-

tations at different sites. The method focuses on rescue sites that use

intra-molecular mechanisms mediated by backbone dynamics and it is

based on the assumption that the structural perturbation induced by a

mutation can be mimicked by the application of a force (Atilgan

et al., 2012; Echave and Fernández, 2010). Perturbations induced by

external forces have been previously shown to be compatible with the

structural changes associated with evolutionary structural divergence

(Echave, 2008), random mutations (Echave and Fernández, 2010)

and ligand binding (Atilgan and Atilgan, 2009).

In the DFS method, we simultaneously apply forces mimicking

the pathogenic mutation at a first site (residue i) and the candidate

rescue mutation at a second site (residue j) and compare the result-

ing structural modifications to the ones produced by a single force at

the first site (Fig. 1). The compensatory effect is quantified by the

rescuability index qij ¼ d u;pið Þ � dðu; pijÞ
� �

=dðu;piÞ, where u repre-

sents the native unperturbed structure, pi and pij the structures upon

application of the single and double forces, respectively, and d(x, y)

is a distance function measuring the difference between structures x

and y. A value of q between 0 and 1 indicates that the structural per-

turbation induced by the two forces is smaller than the one produced

by the single force, thus highlighting the presence of a compensatory

effect.

Fig. 1. Schematic representation of the DFS approach. The protein unper-

turbed structure (u) is represented as grey tube, together with the structures

after application of a single force Fi at i (pi structure, orange) and of two

forces Fi and Fj at i and j, respectively (pij structure, green). The deviation of

structure x from the unperturbed structure is measured by a distance function

d(u, x) (Color version of this figure is available at Bioinformatics online.)
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The effect of forces on the structure was simulated using the lin-

ear response theory (LRT) (Atilgan et al., 2012; Echave and

Fernández, 2010; Ikeguchi et al., 2005) applied to the anisotropic

network model (ANM) (Eyal et al., 2006), where protein residues

are described as single nodes (Ca atoms), connected by springs

if their distance is smaller than a cutoff value rc. Within this

framework, the effect of a perturbation is determined analytically

using DR ¼ H�1F, with DR indicating the vector of Ca atom dis-

placements � � � ;Drx
i ;Dry

i ;Drz
i ; . . .g

�
, F the vector of external forces

� � � ; Fx
i ;F

y
i ;F

z
i ; . . .g

�
and H the ANM hessian.

Forces with different orientations can produce different struc-

tural perturbations (Supplementary Fig. S1A), making the value of

qij dependent on the relative orientation of the forces applied at the

two sites. To take this into account, the following procedure was

followed (see Supplementary Methods and Supplementary Fig. S2

for a schematic representation):

i. for a given first-site force vector Fi, multiple orientations of the

second-site force Fj are sampled and the rescuability index qij is

calculated for each of them. The maximum value of qij (qi
MAX)

is recorded.

ii. the qi
MAX values are recorded for different orientations of the

first-site force Fi and an overall rescuability score Sij is calculated

as their average.

In other words, the final rescuability score Sij was calculated by maxi-

mizing qij over the set of second-site force orientations (Fj) and by

averaging the resulting values over the set of first-site force orienta-

tions (Fi). To avoid any bias, the set of force vectors on each site was

generated so that the distribution of their orientations was as uniform

as possible using the spherical Fibonacci lattice (Keinert et al., 2015)

(Supplementary Information). The relative magnitude of the forces

applied on the two sites was determined using two different schemes.

In the Fixed Force (FF) scheme the same magnitude was used for both

Fi and Fj, while in the Fixed RMSD (FR) scheme, force magnitudes

were rescaled so that they produced structural perturbations of the

same magnitude when applied singularly, i.e. d(u, pi) ¼ d(u, pj).

Scores for all pairwise comparisons were collected in two rescuability

matrices SFF and SFR, which were then combined in a unique score

called the compensatory power P. First the number of residues rescued

by a given second-site residue j (i.e. for which Sij > 0) was calculated

from each matrix (SFF or SFR) and divided by the number of contacts

of j. All the residues i in the protein were considered in this calcula-

tion. The resulting values were then rescaled from 0 to 1 and their

average was used as the overall compensatory power P. Residues with

higher P values have a higher potential of rescuing first-site residues

according to SFF and/or SFR scores. The compensatory power P was

used to predict experimental rescue sites in p53 and evolutionary res-

cue sites in a subset of the compensated pathogenic deviation (CPD)

database as described below.

The DFS method was implemented in Python using the ProDy

(Bakan et al., 2014) package. Further details of the method are pro-

vided as Supplementary Material.

2.2 Database of rescue mutations in p53 and CPD80
A database of pathogenic and rescue mutations for p53 was derived

from the available literature (Supplementary Table S1 and

Supplementary Material). A dataset containing pathogenic sites (PS)

and rescue sites (RSexp) was then generated from the position of the

pathogenic and rescue mutations in the p53 sequence (Supplementary

Table S2).

The CPD80 dataset (Supplementary Table S3) was extracted

from the CPD database (Bare�si�c et al., 2010), where a pathogenic

mutation in a human protein is annotated as compensated if the

mutated amino acid occurs in the wild type sequences of non-

human, functionally equivalent proteins. The non-pathogenicity of

the mutated amino acid in the non-human protein is assumed to be

due to the other differences between the human and non-human

sequences. In this work we considered only proteins with close

non-human homologues (sequence identity > 80%), to reduce the

possibility that the differences in the sequences were not related to

compensatory mechanisms. A final dataset of 10 proteins was con-

sidered (CPD80, Supplementary Table S3), where putative compen-

satory sites (evolutionary-related rescue sites or RSevol) were

detected by identifying the positions with different amino acids in

pairwise alignments of the human and non-human homologues

(Supplementary Table S4 and Supplementary Material).

2.3 Performance analysis
DFS was run on each protein with the setup described in the

Supplementary Material. Since the focus of the method is the predic-

tion of intra-molecular rescue sites, a DNA-free structure was con-

sidered for p53 (PDB ID: 1TRS, chain A). Similarly, CPD80

structures were selected so that they contain the smallest biological

unit of the protein and they are as representative as possible of an

unbound state (Supplementary Material).

All the residues in each protein were ranked by DFS compensatory

power P and residues with P greater than a threshold were classified

as DFS rescue sites. The performance of the method at a given thresh-

old was expressed in terms of sensitivity, specificity and accuracy. An

optimal threshold (0.491, corresponding to the top 28% residues)

was calculated by minimizing the quantity D¼ (1 � sensitivity)2 þ (1

� specificity)2 for p53 (Hajian-Tilaki, 2013). This percentile value

(top 28%) was selected as the reference threshold for all the DFS cal-

culations performed in this work, since the p53 dataset is based on

direct experimental evidence of functional reactivation. A discussion

of the dependence of the threshold from the size of the dataset is

included in the Supporting Material.

The enrichment of DFS predictions in experimental rescue sites

with respect to to the whole set of residues was calculated as PDFS/

Prandom, where PDFS ¼ TP/(TP þ FP) is the fraction of DFS predic-

tions that are classified as experimental rescue sites and Prandom ¼
(TP þ FN)/nres is the fraction of residues in the protein that are clas-

sified as experimental rescue sites (where TP is the number of true

positives, FP the number of false positives, FN the number of false

negatives and nres the total number of residues).

All performance parameters were calculated using exact matches

between predicted and reference data unless otherwise stated. All ana-

lyses were performed in R (https://www.R-project.org) using the pack-

age ROCR (Sing et al., 2005) and Bio3D (Skjærven et al., 2014).

3 Results

In the following sections we will describe the performance of DFS in

predicting rescue sites for p53 and CPD80 proteins. In particular,

we will analyse the ability of the method to identify the regions on

the protein surface with a high density of rescue sites, since this is

particularly relevant for the detection of binding pockets for com-

pensatory drugs.
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3.1 Prediction of rescue sites in p53
To date, several p53 rescue mutants have been found and directly

tested for functional reactivation (RSexp dataset, Supplementary

Table S1) (Baroni et al., 2004; Baronio et al., 2010; Brachmann

et al., 1998; Danziger et al., 2009; Inga and Resnick, 2001; Joerger

et al., 2005; Merabet et al., 2010; Odell et al., 2013; Otsuka et al.,

2007; Wieczorek et al., 1996). Mapping their positions onto the

structure of p53 (spheres in Fig. 2A) highlights a non-uniform spa-

tial distribution, with a side of the b-sandwich (left panel) richer in

RSexp residues than the other (right panel). The RSexp-rich side in-

cludes residues from the S8 strand and nearby L1, L2 and L3 loops.

In particular, it contains the global suppressor motif (GSM) that in-

cludes residues N235 (S8) and N239, S240 (L3), which were shown

to rescue a large number of pathogenic mutants (Baroni et al.,

2004).

The rescue sites predicted by DFS were compared with the ex-

perimental sites by mapping them onto the p53 structure (green car-

toon in Fig. 2A) and sequence (green shading in Fig. 2B). The RSexp

sites (spheres in Fig. 2A and dots in Fig. 2B) were coloured in blue

when they were predicted by DFS as rescue sites and in cyan when

they were in contact with DFS predictions. Remarkably, predicted

rescue sites were found to follow the same spatial distribution as the

experimental ones, clustering in the RSexp-rich regions and including

the GSM (purple in Fig. 2B). The performance analysis (Table 1)

showed that about half (47%) of the RSexp residues were predicted

as rescue sites by DFS. Of the remaining 26 RSexp positions, 17 of

them were in contact (within 4 Å) with DFS-predicted sites, so that

82% of the RSexp sites were either predicted by DFS or in contact

with DFS predictions (Supplementary Tables S5 and S6). A high spe-

cificity was also found, with 78% of the non-rescue residues

correctly classified as such. Overall, the probability of finding a true

rescue residue among DFS predictions was 1.67 times larger than

that of a random guess. It is also to be noted that, while the compen-

satory power profile discussed earlier was obtained on a DNA-free

conformation of p53, it showed a good stability for small changes in

the structure (Supplementary Fig. S3 and Supplementary Material).

Since DFS was developed to detect specific compensatory mech-

anisms, it is not surprising that not all the known p53 rescue sites

are recovered. Indeed, some of the RSexp residues that were not

Fig. 2. Detection of p53 rescue sites with DFS. (A) Comparison of experimental rescue sites and DFS predictions mapped onto the p53 structure. Experimental rescue

sites (RSexp) are reported as spheres, coloured in blue (predicted by DFS), cyan (within 4 Å from DFS rescue sites) and grey (not predicted). The position of all DFS rescue

sites is indicated with green cartoon. Two different views of the structure are shown, representing the sides that are rich (left) and depleted (right) in rescue sites. Two resi-

dues from the GSM are labelled in magenta. (B) Plot of the compensatory power P. The threshold Pcut used for the definition of DFS rescue sites is represented with a

dashed grey line. Experimental rescue sites RSexp are indicated with dots coloured as in panel A. Secondary structure elements are indicated with gold (strands) and grey

(helices) blocks, while loops L1–L3 are indicated with brown lines. The position of the GSM residues is shaded in magenta. (C) Distributions of inner products calculated

between the compensatory motions and each of the first 10 normal modes represented as boxplots. The collectivity index of each normal mode is reported in orange.

(D) Surface representation of p53, with DFS rescue sites coloured in green. Binding pockets detected with fpocket are reported showing the centres of the probe spheres

used for their detection (a-spheres), coloured in blue (%RSDFS and %RSexp � 20), green (%RSDFS � 20), grey (%RSexp � 20) and white (%RSDFS and %RSexp < 20). The

content in DFS rescue sites (%RSDFS) is shown in parentheses for blue pockets (Color version of this figure is available at Bioinformatics online.)

Table 1. DFS performance for p53 and CPD80 proteins

Protein Sensitivitya Specificitya Accuracya

p53 0.469 0.782 0.704

SOD 0.435 0.758 0.693

AT-III 0.294 0.721 0.670

AAT 0.214 0.718 0.699

KRAS 0.571 0.730 0.723

TTR 0.362 0.744 0.648

ALB 0.288 0.722 0.645

TBG 0.247 0.711 0.622

AAC1 0.265 0.715 0.641

IL13 0.400 0.722 0.708

TPMT 0.213 0.696 0.568

<CPD80>b 0.329 0.724 0.662

<p53 þ CPD80>c 0.342 0.729 0.665

aValues obtained setting the cutoff on the compensatory power P to the top

28th percentile (0.491).
bAverage over CPD80 proteins.
cAverage over p53 and CPD80 proteins.
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classified as rescue sites by DFS are known to use compensatory

mechanisms that are less likely to rely on backbone motions.

Examples of such residues are H168, T284 and H178 (Supplementary

Table S6). Indeed, the H168R mutation is thought to rescue R249S by

side chain mimicking, i.e. by simply replacing the R side chain lost

when the pathogenic mutation occurs (Joerger et al., 2005), while

rescue mutations at T284 and H178 are directly involved in inter-

molecular interactions with DNA (T284R) (Wieczorek et al., 1996)

and other p53 monomers (H178Y) (Otsuka et al., 2007).

In order to get a deeper insight into the compensatory mechan-

isms detected by DFS, we analysed the double-force displacements

producing the largest values of the rescuability indices q for each

residue pair (‘compensatory motions’) in terms of the first 10 normal

modes of the unperturbed protein structure (‘essential space’). The

degree of similarity between the shape of compensatory motions and

normal modes was estimated by calculating their root mean square

inner product (RMSIP) (Supplementary Material). The magnitude

of the RMSIP was generally high, with average values > 0.6

(Supplementary Table S7). This indicates that the double-force dis-

placements have a good overlap with motions of the unperturbed es-

sential space. The contributions of single normal modes to the

RMSIP were generally non-uniform, with specific modes contribu-

ting more than the others (Fig. 2C). Interestingly, the modes featur-

ing higher overlaps with the double-force displacements tend also to

have a higher degree of collectivity (Brüschweiler, 1995) (orange

line), indicating that the compensatory effects detected by DFS tend

to involve the whole protein rather than be limited to the two per-

turbed sites. A detailed analysis of compensatory motions is pre-

sented as Supplementary Material (Supplementary Figs S4–S10).

3.2 Rescue pockets in p53
The results presented in the previous section indicate that DFS is

able to identify rescue hotspots i.e. regions in the protein that are

rich in rescue sites. This is particularly useful when screening a pro-

tein for sites that can be targeted by drugs. Indeed, targeting a rescue

hotspot region has the advantage of maximizing the chances that a

drug has a compensatory effect.

In order to detect possible rescue pockets i.e. ligand binding

pockets that include also rescue sites, fpocket (Le Guilloux et al.,

2009) predictions were first run on the p53 structure. The resulting

binding pockets were then defined as possible rescue pockets if at

least 20% of their residues were rescue sites. A total of nine pockets

were classified as rescue pockets on the basis of either experimental

data or DFS predictions (Fig. 2D and Supplementary Table S8).

Interestingly, the four pockets containing the largest number of ex-

perimental rescue sites (P3, P5, P7 and P11) were classified as rescue

pockets also on the basis of DFS predictions (blue). Moreover, two

of the DFS predicted pockets (P5 and P6) have been successfully tar-

geted by drugs in the past (Boeckler et al., 2008; Wassman et al.,

2013). In particular, drugs binding P5 have been shown to reactivate

different p53 pathogenic mutants (Wassman et al., 2013). The P5

pocket is composed for half of its residues by DFS rescue sites and it

ranks second for rescue sites content (%RSDFS, Supplementary

Table S8), so that it would have been screened as one of the best

candidates even in the absence of experimental information and

only using fpocket and DFS predictions.

3.3 Rescue sites and pathogenic mutations in p53
In the previous sections we described the performance of DFS in

identifying potential rescue sites in p53, independently from the spe-

cific residues to be rescued. Here we want to test the ability of DFS

to predict specific associations between rescue sites and residues

involved in pathogenic mutations. To this aim, we compared the

set of experimental and predicted rescue sites for each pathogenic

mutation site PS in our p53 dataset (Supplementary Table S2). A

DFS-predicted rescue site j was considered as potentially rescuing a

PS i if the corresponding rescuability score SX
ij was > 0, with X either

FF or FR.

For each PS position, we recorded the experimental rescue sites

RSexp that were correctly identified by DFS as compensatory residues

for that position (blue spheres in Fig. 3 and Supplementary Table S9).

At least one RSexp residue was recovered in 14 out of 22 cases (64%),

while for six PSs (V143, G244, M246, V272, R282 and E286), all the

experimental rescue sites were identified. Overall, rescue sites of spe-

cific PS positions were predicted with an average sensitivity and speci-

ficity of 0.38 and 0.90, respectively (Supplementary Table S10). The

average probability of finding an experimental compensatory residue

in the DFS predictions for a given PS was 3.7 times the probability of

a correct random guess (enrichment in Supplementary Table S10).

The clustering of rescue residues in specific regions means that

even when some experimental rescue sites are missed, the relevant

potential druggable regions with compensatory action can still be re-

covered. For this reason, we checked if among the RSexp positions

missed by DFS there were some in contact with DFS predictions

(cyan spheres in Fig. 3). If these are considered, the number of PS

positions for which at least one compensatory region is predicted by

DFS increases to 19 (86% of PS positions, Supplementary Table S9).

The relationship between each PS position and the rescue pock-

ets described in the previous section was also investigated, since it

can give information on the regions of the protein surface to be tar-

geted to reactivate a specific mutant. For each pocket we calculated

the number of its residues that can rescue a specific PS position

(Supplementary Table S11), using either predicted or experimental

information. DFS detected at least one of the pockets classified as

rescue on the basis of experimental sites for 16 out of 22 PS positions

(73%, Supplementary Table S11). Position G245 is particularly

interesting, since direct information on the binding sites of reactivat-

ing drugs is available for it. Indeed, mutations at this position have

Fig. 3. Detection of p53 rescue sites for selected pathogenic mutations. For

each pathogenic mutation site PS (orange spheres), experimental rescue sites

RSexp are shown in blue (predicted by DFS as rescue sites for the specific PS

site), cyan (within 4 Å from DFS sites) and grey (not predicted by DFS as asso-

ciated to the PS site). Selected secondary structure elements are also labelled

in grey (Color version of this figure is available at Bioinformatics online.)
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been shown to be rescued by different drugs binding at P5

(Wassman et al., 2013). Remarkably, position G245 was predicted

by DFS to be rescued by pockets P3, P5, P6 and P9, with P5 contain-

ing the second largest number of predicted G245 rescue sites

after P3.

3.4 Prediction of rescue sites in CPD80
To further test DFS performance on different proteins, predictions

from DFS were compared with putative rescue sites (RSevol) derived

from evolutionary analyses (CPD80 dataset).

A good overall agreement between DFS predictions and RSevol

positions was found, with an average sensitivity of 0.33, specificity of

0.72 and accuracy of 0.67 (Table 1). In four cases [Cu-Zn superoxide

dismutase (SOD), K-RAS GTPase (KRAS), transthyretin (TTR) and

Interleukin 13 (IL13)] the performance was comparable or superior to

that observed for p53, with sensitivity values ranging from 0.36 to

0.57, specificity values > 0.72 and accuracy values > 0.65.

Similarly to p53, the TTR and SOD proteins featured a non-

uniform distribution of RSevol residues (grey, cyan and blue spheres

in Fig. 4A and B). Mapping the DFS predictions onto the structure

shows that they parallel the RSevol distribution, with DFS rescue sites

(green cartoon) observed mostly in RSevol hotspots. Accordingly, 44

and 36% of the RSevol residues were identified by DFS as rescue sites

for SOD and TTR, respectively (blue spheres in Fig. 4A and B),

while an additional 35 and 38% (cyan spheres) was found in close

proximity to DFS predicted sites (Supplementary Table S5).

The smaller sensitivity observed in the CPD80 other proteins can

be justified on the basis of the nature of the reference RSevol set.

Indeed, this is not completely comparable to DFS predictions be-

cause (i) it can contain positions not necessarily related to compen-

satory mechanisms, (ii) multiple RSevol residues might need to be

mutated for a compensatory effect to be observed, while DFS con-

siders only one second-site mutation at a time and (iii) analogously

to p53, RSevol can contain residues that use compensatory mechan-

isms not detectable by DFS because based on side chain mimicking

or direct interactions with partners.

Possible binding pockets were predicted with fpocket for both

SOD and TTR and their location was mapped onto the protein struc-

tures (spheres in Fig. 4C and D) together with the DFS-predicted

rescue sites (green surface). The fraction of rescue sites in each pocket

was calculated using either DFS predictions (%RSDFS, Supplementary

Table S8) and evolutionary sites (%RSevol). Pockets with %RS � 20

were classified as possible rescue pockets. Most of the rescue pockets

detected on the basis of evolutionary data were classified as such also

by using DFS predictions for both SOD (14 out of 15) and TTR (5

out of 8), further confirming the similarity in the spatial distribution

of DFS and evolutionary rescue sites.

4 Discussion

In this article, we introduce the first general approach for the predic-

tion of rescue sites in proteins. The DFS method aims at detecting

compensatory effects that make use of the flexibility of the protein

backbone to rescue native features affected by mutations. The only

information required before the calculation is the native structure of

the protein, while the effect of mutations is mimicked by the applica-

tion of external forces. Differently from methods based on machine

learning (Danziger et al., 2009; Ramani and Jacob, 2013), no par-

ameters in the model have been optimized against experimental res-

cue sites, so that DFS can be applied in principle to any protein with

known 3D structure.

The types of compensatory effects that are detected by DFS can

be mediated by either local backbone rearrangements around the

first-site mutation (local changes) or changes of the overall back-

bone structure (global changes). The relative position of pathogenic/

rescue residue pairs in p53 (Fig. 3) shows that rescue sites recovered

by DFS can be either close to the residue they are rescuing (e.g.

C141 or R282) or very far from it (e.g. G245 or E286), suggesting

that long range communication between the two sites can be in place

in some cases (Supplementary Fig. S11). Analysis of the distributions

of the pathogenic site-rescue site distances shows that DFS can de-

tect both short- and long-range pairs, even if with a larger propor-

tion of short-range ones compared with the experimental data. At

last, the decomposition of the compensatory motions in terms of

normal modes shows that they tend to use modes with high collect-

ivity indices, indicating that changes are not limited to the two sites

but involve the whole protein.

The DFS method has been developed under the hypothesis that

second-site mutations reverting any structural changes induced by a

first-site mutation can potentially rescue also the protein function.

This allows for the DFS method to be as general as possible, since it

does not require any assumption on the specific relationship between

protein function on one side and protein structure/dynamics on the

other. Even if the DFS calculations performed in this work did not use

any specific functional information, our predictions were found in

striking agreement with the distribution of p53 sites known to rescue

its function. It is also important to note that any information on the

structure-dynamics-function relationship that might be available for

specific cases can be easily introduced within the DFS framework by

calculating additional rescuability indices based on specific function-

ally related properties (e.g. specific distances or angles) instead of all

the atomic positions in the protein as used in this work.

Fig. 4. Comparison of evolutionary rescue sites and DFS-predicted rescue

sites for SOD (A,C) and TTR (B,D). (A and B) Evolutionary rescue sites RSevol

are mapped on the surface representation of the protein as spheres, while

DFS-predicted rescue sites are shown as green cartoon. (C and D) Surface

representation of the proteins, with surface DFS-predicted residues coloured

in green. The a-sphere centres of the candidate pockets are shown as

spheres. For all the panels the same colouring scheme is used as for Figure 2

(Color version of this figure is available at Bioinformatics online.)
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Not all the types of compensatory mechanisms can be detected

by DFS. These include compensatory effects based exclusively on (i)

side chain mimicking and (ii) addition/removal of interactions with

partners, as they both can occur with small or no impact on the pro-

tein backbone. Examples of both cases are present in p53. Indeed,

the functional rescue of the R249S mutant by H168R is thought to

be mainly due to side chain mimicking: the guanidinium group of

R168 in the double mutant has a very similar position and orienta-

tion as the R249 guanidinium group in the wild type protein, thus

rescuing its interactions and keeping the overall structure close to

the native one (Joerger et al., 2005). The second-site mutation

T284R is instead thought to rescue p53 function by introducing add-

itional interactions with DNA and compensating for the contacts

that are lost in the cancer mutants R248Q or R273H (Wieczorek

et al., 1996). Similarly, the second-site mutation H178Y is thought

to be directly involved in intermolecular interactions important for

the formation of p53 tetramers (Otsuka et al., 2007). The fact that

positions 168, 178 and 284 do not rely on backbone motions as pri-

mary compensatory mechanism might explain why they are not pre-

dicted as rescue sites by DFS.

In a stricter performance assessment, DFS was tested to see if it

was able not only to recover the residues most likely to have a com-

pensatory effect, but also to predict the specific association between

sites involved in pathogenic mutations and potential rescue sites. It

was shown that DFS identified at least one experimental rescue site

in 64% of the pathgenic sites in our p53 database, including some of

the residues that are most commonly mutated in cancer such as

G245 and R273 (Baronio et al., 2010). On average, DFS recovered

almost 40% of the rescue sites for a given pathogenic position. Even

if not all the rescue sites were detected, potential compensatory

pockets could still be identified. For example, the pathgenic site

G245 was associated with pocket P5 even if not all its rescue sites

were predicted. Remarkably, the G245S cancer mutant has been

shown to be reactivated by different drugs binding p53 at P5

(Wassman et al., 2013).

On the basis of the present calculations and performance data,

the best protocol to follow when using DFS to identify potential

drug binding targets for the reactivation of specific pathogenic mu-

tants in a protein is:

1. Predict the rescue sites on the basis of their compensatory power.

A percentile cutoff threshold of around the top 30% was shown

to produce the best results for p53 and a good performance for

other proteins in this study.

2. Identify potential binding sites for small molecules with a pocket

detection method (Stank et al., 2016; Volkamer and Rarey,

2014) and map onto them the rescue sites identified at step 1.

Rank each pocket according to the fraction of its residues com-

posed by rescue sites.

3. For each pathogenic mutation, identify which of the rescue sites

found at step 1 are specifically predicted to rescue it on the basis

of the rescuability scores. Rank the potential rescue pockets ac-

cording to the number of these mutation-specific rescue sites

included in them. Even if no rescue sites are detected for a given

pathogenic site, the potential rescue pockets identified at step 2

might still be worth investigating. Indeed, DFS might have re-

covered the correct rescue sites but missed the connection with

the specific pathogenic site.

The outcome of this protocol would be a ranked list of potential res-

cue pockets for each pathogenic site, to be further investigated to as-

sess their druggability and to identify potential ligands.

In its current implementation, DFS predicts the position of candi-

date rescue mutations, but not the specific amino acidic changes that

are required to compensate a given pathogenic mutation. This infor-

mation might not be needed if the final goal is to identify possible re-

gions to be targeted by compensatory drugs. However, generating a

mutant that can be tested for functional rescue might be a direct way

to validate DFS predictions. Following the same principle of the CPD

database, sequences of close homologues could provide information

on alternative amino acids that can be used at a given position in the

sequence. These candidate mutations could then be tested for struc-

tural and functional rescue by in silico and in vitro assays.

As a final remark, it is important to note that within the DFS

framework it is in principle possible to use different types of physical

models to describe the protein dynamics and response to forces,

such as a coarse grained model that includes Cb atoms (Micheletti

et al., 2004) or methods coupling Elastic Network Models with

Brownian Dynamics to include non-linear responses to external

forces and solvent effects (Lavery, 2009). Methods based on

Molecular Dynamics simulations with atomistic force fields and

enhanced sampling methods (Maximova et al., 2016; Pandini and

Fornili, 2016) could be also considered, especially when mutations

are expected to produce large conformational changes that cannot

be predicted from the normal modes of the native state only.

Previous work has shown that covariance matrices from MD simu-

lations can be effectively used in the context of the Linear Response

Theory (LRT) (Kumar et al., 2015).

In conclusion, we have shown that the DFS method can be effect-

ively used to detect candidate rescue sites for pathogenic mutations

using as input only the native structure of a protein. We believe that

combined with drug design techniques, DFS can be a powerful tool

to identify new drug targets for the development of ad hoc therapies

of genetic disorders. Large-scale genome projects are currently gen-

erating a large amount of data on genome variability and its associ-

ation with disease phenotypes, so that it can be foreseen that

approaches based on rescuing disease-related mutations will become

increasingly important in the future (Hwang and Sykes, 2015).
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