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Abstract—In this paper, we extend our earlier results
on minimum variance filter for systems with additive
multiplicative noise in two different ways. Firstly, we
propose a novel characterization of the linearization
error in terms of multiplicative noise. Secondly, we
also allow for random delay of up to one time step in
the measurement. The delay is modelled by Bernoulli
random variables. We derive a closed-form expression
for the minimum variance filter for the resulting
system with a linearized state transition equation,
accounting for both the linearization error as well as
the random delay. The utility of the proposed filtering
algorithm is demonstrated through numerical exper-
iments.

Keywords Multiplicative noise, nonlinear filtering, de-
layed measurements

1. Introduction

In our previous work reported in [1], we considered
a linear discrete-time system with an interpretation of
multiplicative uncertainty as stochastic uncertainty in
parameters. It is however an accepted fact that, in many
applications of interest, the system dynamics and the
observation equation are nonlinear including economics,
radar tracking, weather forecasting and navigation sys-
tems. In the past few years, considerable attention has
also been devoted to the nonlinear filtering problem. A
series of suboptimal approaches have been developed in
the literature to solve the nonlinear filtering problem,
which include the Extended Kalman filter or the EKF
[2], the particle filter or the PF [3], the Unscented
Kalman filter or the UKF [4], the Ensemble Kalman
filter or EnKF [5] and the quadrature Kalman filter or
the QKF [6].
Moreover, an extensive theory and a number of algo-
rithms have been developed for filtering in nonlinear
systems using linearization, see e.g. [7]. If computational
time is not an issue, there are powerful sampling based
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particle filtering algorithms available which are guaran-
teed to converge and outperform the suboptimal meth-
ods if a sufficient number of samples are generated at
each time-step. However, linearization-based filters are
still often preferred in real time systems where sampling
tends to be an expensive operation.

A separate strand of literature considers randomly de-
layed measurements, which are frequently encountered
in many practical application, such as target tracking,
communication, signal processing, control, transporta-
tion, and so on see, e.g. [8], [9], [10] and [11]. In order
to make sure that the filtering error dynamics con-
verge, the possible measurement delays should be taken
into account in designing filters. In the past few years,
many results have been reported in the literature on
the estimation of the state of discrete-time systems with
randomly delayed observations see, e.g., [12], [13]. These
models have received a considerable research attention
and many important results have been reported in the
literature. Linear filtering for discrete time systems with
finite random measurement delays is investigated in [14].
In [15], an optimal filtering problem for networked sys-
tems with random transmission delays is investigated
using a multi-state Markov chain model for the delay
process. Centralized fusion filters have been designed
in [16] for linear systems with multiple sensors with
different delay rates. In [17], different approximations of
the statistics of a nonlinear transformation of a random
vector are used to investigate the filtering problem for
a class of nonlinear stochastic systems with randomly
delayed observations, where the possible delay is re-
stricted to a single step. This work is extended in [18]
to address the case when the measurements might be
delayed randomly by one or two sampling steps. For the
same model, a Gaussian approximation filter is derived
[19]. Furthermore, many researchers have investigated
these problems under different assumptions about the
possible delays and different filtering approximations;
See [20], [21], [22], [23] and [24], for example.

To the best of authors’ knowledge, the problem of state
estimation in nonlinear systems with random delays has



not been fully investigated. This paper is concerned
with the problem of the state estimation for a nonlinear
discrete time systems with a single random delay in
measurement. We use stochastic multiplicative noise as
a proxy for the impact of linearization error, and design
a closed form minimum variance filter for the resulting
linear system with additive multiplicative noise as well
as a random delay.

The remainder of the paper is arranged as follows. In
section 2, the aforementioned class of systems is de-
scribed. We outline the problem and derive its solution
for a single random delay in this section. In section 3,
the proposed filtering algorithm is demonstrated with
a numerical example. Some concluding remarks given
in section 4. Proof of the main theorem in section 2 is
provided in the Appendix.

2. System model and problem formula-
tion

Our aim is to address the problem of the state esti-

mation for nonlinear discrete time systems with additive
noise, where the measurement might be delayed ran-
domly by one sample time when the Bernoulli random
variables describing the delayed observations, with their
values one or zero indicate whether the measurement is
delayed or not.
Consider a class of discrete-time nonlinear stochastic
systems with additive noise, where the measurement
might be delayed. The model is described by the fol-
lowing state and measurement equations:

X(k+1) = f(X(k)) + U, W(k), (1)
Y(k) = h(X(k)) + U, V(k), (2)
Z(k) = (1 —pr)V(k) + ppY(k — 1), (3)

where X(k) € R™ is the state vector at time k to be
estimated, Y (k) € R" is the measurement vector at time
k and Z(k) € R” is the one step randomly delayed
measurement equation, pr denotes the Bernoulli ran-
dom variable at each time k (binary switching sequence
taking the values 0 or 1) with a known distribution
Plpr = 0) = g and P(pp = 1) = 1 — 8 and pg
are uncorrelated with other random variables. U,, and
U, are given deterministic matrices. W(k) € R™ and
V(k) € R” are the process noise and the measurement
noise, respectively The nonlinear function f(X(k)) and
h(X(k)) are analytic everywhere with known form. The
work of this paper is carried out based on the following
assumptions.

Assumption 1: The noise signals W(k) and V(k) are
zero mean, i.i.d. random vectors with identity covariance
matrix Z and mutually uncorrelated.

Assumption 2: The initial state is a random vector
with a known mean and covariance matrix, E[X'(0)] =
X(0) and E[(X(0) — X(0))(X(0) — X(0))T] = P(0)

respectively. X(0), W(k) and V(k) are mutually inde-
pendent.

The approximated conditional mean of X'(k + 1), which
provides the predictor, X (k + 1|k), is derived using (1):

X (k+1]k) = f(X(k|k)). (4)

For further brevity of notation, an expression LL T will
sometimes be denoted as (L)(x)", where L is a matrix-
valued or vector-valued expression and where there is no
risk of confusion.

The update equation for a nonlinear filter using one step
randomly delayed measurements is

Xk+1k+1)=X(k+1]k)+
K(k+1)(Z(k+1) - 2(k+1]k), (5)
and the estimation error covariance matrix is given by
Pk + 1k + 1) = E[(X(k + 1) — Rk + 1k +1))(0)7]
= E[(f(X (k) + UsW(k) — (f(X (k|k))
+E(k+1)(Z(k+1) = Z(k+1]k))) (%) ']
= E[f(X(k)) = f(X(k[F) ()] + Ul
—E[K(k+1)(Z(k+1) = Z(k +11k) (%) ],
(6)

where  Z(k+1) = (1 —pi)(R(X(k + 1)) + U V(k + 1))

+ pr(h(X (k) + U V(F)). (7)

By using the Taylor series expansion around X(k|k),
we linearize f(X(k)) and h(X(k)) as following:

F(X(R)) = (X (kIK)) + A(K)X (k|k) + o(| X (KIK)]),

X (k+1)) = h(X(k+ 1]k) + C(k + 1) X (k + 1|k)
+o(| X (k + 1|k)),

where
of(X(k))
A(k) = 9x (k) |X(k)=/\?(k\k)a
Oh(X(k+1))
Clk+1)= 782&’(1@‘ gy |x(k+1):/\?(k+1|k)

X(k+ilk)=X(k+i)—X(k+ilk) i=0,1. (8)
In [25], o(| X (k|k)|) are characterized as
o(|X(k|k)|) = B(k)N (k)L (k)X (k|k),

where B(k) are bounded problem-dependent scal-
ing matrices, L(k) is for providing an extra degree of
freedom to tune the filter and N (k) are unknown time-
varying matrices accounting for the linearisation errors
of the dynamical model and satisfies

N(k)N(k)" <I.



In our work presented here, we characterise the lin-
earization error o(|X' (k+ilk)|), i=0,1 as a stochastic
perturbation which is linear in X' (k + i|k):

o(| X (k+ilk)|) = Q;(k+1)X (k+ilk)R;(k+i), j=1,2.

This gives us an approximate equivalent linear sys-
tem with additive multiplicative noise:

X(k+1) = f(X(k|k)) + Ak)X (k|k)+
Q1 (k)X (k|k)Ry (k) + U, W(k), (9)

V(k+1) = h(X(k+1]k)) + C(k + 1) X (k + 1|k)
+ Qa(k+ 1)X(k +1|k)Ra(k + 1) + U, V(K),  (10)

where Rq(k) € R™ and Ra(k) € R” are zero mean,
i.i.d. random vectors with identity covariance matrix 7
and are mutually independent with the initial state and
other noise signals. Q1 (k) and Q2(k) describe the effect
of higher order terms in the Taylor series in terms of pa-
rameter uncertainties. The justification of characterising
deterministic Taylor series truncation error by stochastic
multiplicative noise can be given as follows. Firstly, we
are typically interested in filter tracking performance
over a period of time, e.g. as measured by the root mean
squared error, and treating the error as stochastic can be
advantageous if it yields a closed-form result (as is the
case here). Secondly, as demonstrated in the numerical
example presented, the size of the stochastic uncertainty
representing the linearization error can be used as a
tuning parameter for the linearized filter, to improve the
filtering performance.

The objective of this section is to find the optimum filter
gain K (k + 1) that minimizes the trace of the covariance
matrix P(k+1|k + 1) of the state estimate X (k+1|k + 1)
for the approximate linear system given by (7), (8), (9)
and (10). Our main result in this section is given in the
next theorem.

Theorem 1. For equations (7)-(10), the filter gain

K(k 4+ 1) that minimizes the trace of the covariance

P(k + 1|k + 1) is given by

Kk+1)=BPk+1E)CE+1)T +1—p)x
A(E)P(k|k)C(k)N[B(C(k+ 1) Pk +1|k)C(k+ 1)
+ Q2(k+1)P(k+ 1|k)Q2(k + 1) T + U, U, )+
(1= B)(C(k)P(k|k)C(K) " + Q2(k)P(k|k)Q2(k) "+

U U ) + B — B)(dho(k + 1) + 91(k + 1) + Clk + 1)x

A(E)P(k|E)C(E)T + C(k)P(k|k)A(k)TC(k+1)T)—
B(1 = B)(o(k + V) (k+1)7

+ 1 (k4 Dpo(k + 1) )], (11)
where P(k+ 1|k) and ¢;(k+1), ¢;(k+1), i=0,1

are as defined in (14) and (13), respectively in the
Appendix.

Proof: See Appendix for an outline of proof; details
are omitted for brevity.

Remark: It can be easily verified that setting g = 1
and Q1 (k) = Q2(k) = 0 gives the familiar linear Kalman
filter for delay-free case.

3. Numerical Example

To test the accuracy of the new algorithm, the fol-
lowing univariate non-stationary growth model is con-
sidered,

X(k+1)=aX(k)+ bl_:‘;(f()]{)Q + dcos(1.2k) + U, W(k),
2
=2

where V(k) and W(k) are i.i.d random variables with
zero mean and unit variance. This model has been pre-
viously used in [26]. We use the parameters a = 0.5,
b=1d =38, U, = 0.1 and U, = 0.1. Initial con-
ditions are X(0) = 1, X(0) = 0 and P(0) = 0.1. In
equations (8) and (9), we use Q1 (k) = v trace (A(k)) and
Q2(k) = ytrace (C(k)), where + is our tuning parameter
expressing the linearization error as a percentage of
linearized parameters. As the model has strong nonlin-
earities, we expect that using a large non-zero gamma
might improve the performance.

In order to evaluate the efficiency of the estimators,
we use the root mean square error (RMSE) criteria.
Consider 100 independent simulations, each with 200
data points. Denoting X*)(k), k& =1,...,200 as the s
set of true values of the state, and X()(k|k) as the

+ U, V(k),

filtered state estimate at time k for the s simulation
run, the RMSE is calculated by
RMSE(s) = 1 QOZO(X(S)(k) — XG) (k|k))?
200 ’
s=1,...,100.

Then the average of RMSE of the state over 100 simu-
lations is given by

100
1
AvRMSE = ; RMSE(s).

We performed two experiments for this system with
different levels of of linearization error 7. Firstly, to iso-
late the improvement in performance even in the absence
of delay, we first conduct a delay-free experiment (i.e.
with 8 = 1) and compare the performance of filter with
pure linearization (i.e. v = 0) with filter with different
values of v (i.e.y = 0.25,0.5,0.75). We then use the
first experiment with actual delay free filter. Table 1
summarizes the results of this experiment. As can be
seen, the filtering algorithm with uncertainties outper-
forms the filtering algorithm with pure linearization (i.e.



~v = 0). Further, improvement in the performance of
filter becomes more pronounced as -y increases.

TABLE 1. COMPARISON OF AvRM SFE FOR DIFFERENT VALUES OF

2
¥y=0 ~v=025 ~=05 ~=0.75
AvRMSE  0.1169 0.1168 0.1166 0.1164

In the second experiment, we compared a one delay
filter with pure linearization (i.e. v = 0) with a one
delay filter using interpretation of multiplicative noise
in terms of linearization error. We use different level of
uncertainties (i.e.y = 0.25,0.5,0.75) and different values
of 8 (i.e.f8 = 0.3,0.5,0.7,0.9). Table 2 summarizes the
results of this experiment. As can be seen, the filtering
algorithm with uncertainties outperforms the filtering
algorithm with pure linearization (i.e. ¥ = 0) in all the
cases.

TABLE 2. COMPARISON OF AvRM SFE FOR DIFFERENT VALUES OF

P(k+1]k+1)

[ AND 7y
=09 p=07 p=05 pg=03
AvRMSE v=0 0.1170 0.1229 0.1216 0.1154
v=0.25 0.1169 0.1228 0.1215 0.1153
v=0.5 0.1168 0.1227 0.1214 0.1152
v=075 0.1167 0.1225 0.1213 0.1151

4. Conclusions

In this paper, an approximate minimum variance fil-
ter is discussed for a class of nonlinear discrete time sys-
tems with additive noise and a random delay. The paper
makes two distinct contributions. Firstly, it generalizes
the closed form solution for minimum variance filtering
for linear systems in [1]. We have used a novel approach
of modelling the linearization error as multiplicative
noise, and (in essence) ‘de-tuning’ the extended Kalman
filter to account for this ‘noise’ or the linearization error.
Secondly, we extend the results to cope with a random
delay of a single time step. Our numerical experiment
indicates that the proposed filtering algorithm can be
used to improve the filtering performance (as measured
by root mean squared error), when linearized dynamics
is used for filter design.

Current research involves exploring the use of this
filter in a biomedical application, where the purpose is
to detect atherosclerotic coronary stenosis (or blocked
arteries) by detecting, at the chest surface, the acoustic
signals that result from the arterial wall stresses induced
by the post-stenotic blood flow disturbance. We plan
to adapt our methods, with a computational model of
wave transit in the chest, to develop a new tool for non-
invasive testing for coronary stenosis.

Appendix

The proof follows on the same lines as our earlier
work [1] and details are omitted for brevity. The filtering
estimates of the state covariance is obtained by combin-
ing the equations (1)-(5) as follows. The state covariance
matrix at time k + 1 can be written as

=E[f(X(k)) — F(X(k[E)(x) ] + UuUy +

K (k+ 1)(E[(1 — pry1)*JB[(V(k + 1) = V(k + 1]k))(*) ]

+ E[(pe11) B[V (k) — Y(k[E)) (%) ] + [((1—pk+1)—5)2}
V(k+1k) ()" +El(pes1 — (1= B8)|(P(klk)) (%) T
+E[(1 — pes1) (Y (k+1) Yk + 1[k)) (prr1 (Y (k) —
V(k[E)(1 = pry1) (Y (k +1) -

V(k[k))"]

+ Elpr1 (V(k) — (k‘+1lk))T]

+E[((1 = prsr) = B)Prtr — (L= B V(k + 1K)V (k|k) "+
(k\k) V(k + 1K) DK (k+1)" — K (k + D)(E[(f(X (k) ~
FXRIR)) + UaW(E) (1 = prr1) (P(k + 1) = V(k + 1]k))+

Prrr (V(k) — Y(k[K)) + (1 = pes1) — B)V(k + 1]k)+

(Prs1 — (1= B)V(kIE)) "]+ E[(1 — pra1)(V(k + 1)—

V(k + 1[k)) + prar (P(k) — D(K[k)) + (1 — prs1) — B)
V(k+ 1]k) + (prs1 — (1 — B)V(klk))

(F(X(R)) = F(X(KIK)) + U W(k). (12)

where Y(k + i|k) = h(X (k +i|k)),i = 0,1. For further
notational brevity, denote

bi(k+1) = V(k+ilk),i = 0,1
and P (k + 1) := i (k + Dk +1)7. (13)

In addition, let

P(k+1|k) = A(k)P(k|k)A(k) T+
Q1(k)P(k|[k)Q1(k) + UyU,, (14)

After some straightforward, but tedious simplification,
we get

P(k+ 1|k +1) = A(k)P(k|k)A(k) " + Q1 (k) P(k|k)Qu (k) " +

UwUs + K(k+1)(B(C(k+ 1)P(k + 1|k)C(k + 1)+

Qa(k + 1)P(k + 1|k)Q2(k + 1) + UUJ )+

(1= B)(C(k)P(kIk)C(k)" + Q2(k)P(k|k)Q2(k) " + U,U, +

B(1 = B)(Wo(k +1) + U1 (k + 1) + C(k + 1) A(k)P(k|k)C (k)" +
C(k)P(k|k)A(K) ' C(k+1)") = B = B)(tho(k + D)er (k+ 1)
+ i (k+ Dok +1) " NE(K+1)T — (BP(k+1|k)C(k+1)"

+ (1= B)A(K)P(k[K)C (k) K (k+1)" —
K(k+1)(BC(k + 1) P(k + 1|k) + (1 = B)C (k) P(k[k) A(k) ")

To find the value of K(k +
the covariance P(k + 1|k +

1) that minimizes the trace of
1) we differentiate the trace of



the above expression with respect to the filter gain matrix
K(k 4 1)and set the derivative to zero.

[15]

K(k+1) = (BP(k + 1k)C(k+1)7 + (1= B)AGR)P(klk)C(K)T) (14
P

x [B(C(k +

DP(k+1k)C(k+1)T+

Qa(k+ 1) Pk + 11k)Qa(k +1)T + U U, )+

(1-
sl -

C(k)P
+ i (k+ Do (k+1) )7,

A(C (k) P(kIk)C (k)" + Q2(k) P(k|k)Q2(k) " + UU, )+
B) (o (k +
(klk)A(k)"C(k+1)") — B(1 ~

(15)

which is the required expression. =

References

(1]

(10]

(11]

(12]

(13]

(14]

S. Allahyani and P. Date, “A minimum variance filter for
discrete time linear systems with parametric uncertainty,” in
MED’16: The 24th Mediterranean Conference on Control and
Automation. Mediterranean Control Association, 2016.

S. S. Haykin, Kalman filtering and neural networks. Wiley,

2001.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian
bayesian tracking,” Signal Processing, IEEE Transactions on,
vol. 50, no. 2, pp. 174-188, 2002.

S. J. Julier and J. K. Uhlmann, “Unscented filtering and
nonlinear estimation,” IEEE, vol. 92, pp. 401-422, 2004.

P. L. Houtekamer and H. L. Mitchell, “Data assimilation
using an ensemble Kalman filter technique,” Monthly Weather
Review, vol. 126, no. 3, pp. 796-811, 1997.

I. Arasaratnam and S. Haykin, “Square-root quadrature
kalman filtering,” Signal Processing, IEEE Transactions on,
vol. 56, no. 6, pp. 2589-2593, 2008.

A. H. Jazwinski, Stochastic processes and filtering theory.
Courier Corporation, 2007.

H. Zhang and L. Xie, Control and estimation of systems
with input/output delays.  Springer Publishing Company,
Incorporated, 2007.

W.-W. Che, Y.-P. Li, and Y.-L. Wang, “H tracking control
for ncs with packet losses in multiple channels case,” Inter-
national Journal of Innovative Computing Information and
Control, vol. 2011, no. 7, pp. 65076522, 2011.

J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic
analysis and control of real-time systems with random time
delays,” Automatica, vol. 34, no. 1, pp. 57-64, 1998.

H. Dong, Z. Wang, and H. Gao, “Robust H filtering for a
class of nonlinear networked systems with multiple stochastic
communication delays and packet dropouts,” IEEE Transac-
tions on Signal Processing, vol. 58, no. 4, pp. 1957-1966, 2010.

S. Wang, H. Fang, and X. Tian, “Recursive estimation for
nonlinear stochastic systems with multi-step transmission de-
lays, multiple packet dropouts and correlated noises,” Signal
Processing, vol. 115, pp. 164—-175, 2015.

R. Caballero—Aguﬂa, A. Hermoso-Carazo, and J. Linares-
Pérez, “Fusion estimation using measured outputs with ran-
dom parameter matrices subject to random delays and packet
dropouts,” Signal Processing, vol. 127, pp. 12—23, 2016.

S. Sun, “Linear minimum variance estimators for systems with
bounded random measurement delays and packet dropouts,”
Signal Processing, vol. 89, no. 7, pp. 1457-1466, 2009.

1) + 91 (k + 1) + C(k + 1) A(k) P(k|k)C (k)T +
B)(who(k + 1) (k+1)"

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

C. Han, H. Zhang, and M. Fu, “Optimal filtering for net-
worked systems with Markovian communication delays,” Au-
tomatica, vol. 49, no. 10, pp. 3097-3104, 2013.

F. O. Hounkpevi and E. E. Yaz, “Minimum variance general-
ized state estimators for multiple sensors with different delay
rates,” Signal Processing, vol. 87, no. 4, pp. 602-613, 2007.

A. Hermoso-Carazo and J. Linares-Pérez, “Extended and un-
scented filtering algorithms using one-step randomly delayed
observations,” Applied Mathematics and Computation, vol.
190, no. 2, pp. 1375-1393, 2007.

——, “Unscented filtering algorithm using two-step randomly
delayed observations in nonlinear systems,” Applied Mathe-
matical Modelling, vol. 33, no. 9, pp. 3705-3717, 2009.

X. Wang, Y. Liang, Q. Pan, and C. Zhao, “Gaussian filter for
nonlinear systems with one-step randomly delayed measure-
ments,” Automatica, vol. 49, no. 4, pp. 976-986, 2013.

C.-L. Su and C.-N. Lu, “Interconnected network state estima-
tion using randomly delayed measurements,” Power Systems,
IEEE Transactions on, vol. 16, no. 4, pp. 870-878, 2001.

A. Hermoso-Carazo and J. Linares-Pérez, “Linear and
quadratic least-squares estimation using measurements with
correlated one-step random delay,” Digital Signal Processing,
vol. 18, no. 3, pp. 450-464, 2008.

S. Nakamori, R. Caballero—Aguila, A. Hermoso-Carazo, and
J. Linares-Pérez, “Recursive estimators of signals from mea-
surements with stochastic delays using covariance informa-
tion,” Applied Mathematics and Computation, vol. 162, no. 1,
pp. 65-79, 2005.

Z. Wang, J. Lam, and X. Liu, “Filtering for a class of nonlinear
discrete-time stochastic systems with state delays,” Journal of
Computational and Applied Mathematics, vol. 201, no. 1, pp.
153-163, 2007.

M. Choi, J. Choi, and W. Chung, “State estimation with
delayed measurements incorporating time-delay uncertainty,”
Control Theory & Applications, IET, vol. 6, no. 15, pp. 2351—
2361, 2012.

J. Hu, Z. Wang, B. Shen, and H. Gao, “Quantised recursive
filtering for a class of nonlinear systems with multiplicative
noises and missing measurements,” International Journal of
Control, vol. 86, no. 4, pp. 650-663, 2013.

P. Date, L. Jalen, and R. Mamon, “A new algorithm for latent
state estimation in non-linear time series models,” Applied
Mathematics and Computation, vol. 203, no. 1, pp. 224-232,
2008.



